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Abstract

Background: Foodborne infections caused by lung flukes of the genus Paragonimus are a significant and widespread public
health problem in tropical areas. Approximately 50 Paragonimus species have been reported to infect animals and humans,
but Paragonimus westermani is responsible for the bulk of human disease. Despite their medical and economic importance,
no genome sequence for any Paragonimus species is available. Results: We sequenced and assembled the genome of P.
westermani, which is among the largest of the known pathogen genomes with an estimated size of 1.1 Gb. A 922.8 Mb
genome assembly was generated from Illumina and Pacific Biosciences (PacBio) sequence data, covering 84% of the
estimated genome size. The genome has a high proportion (45%) of repeat-derived DNA, particularly of the long
interspersed element and long terminal repeat subtypes, and the expansion of these elements may explain some of the
large size. We predicted 12,852 protein coding genes, showing a high level of conservation with related trematode species.
The majority of proteins (80%) had homologs in the human liver fluke Opisthorchis viverrini, with an average sequence
identity of 64.1%. Assembly of the P. westermani mitochondrial genome from long PacBio reads resulted in a single
high-quality circularized 20.6 kb contig. The contig harbored a 6.9 kb region of non-coding repetitive DNA comprised of
three distinct repeat units. Our results suggest that the region is highly polymorphic in P. westermani, possibly even within
single worm isolates. Conclusions: The generated assembly represents the first Paragonimus genome sequence and will
facilitate future molecular studies of this important, but neglected, parasite group.
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Background

Paragonimus lung flukes represent a significant and widespread
clinical problem, with an estimated 23 million people infected
worldwide [1]. Approximately 50 species are described, with at
least 7 being human pathogens [2]. The majority of human Parag-
onimus infections can be attributed to the Paragonimus wester-
mani species complex, mainly in Southeast Asia and Japan [1].
Paragonimus westermani show considerable geographic genetic
variability, and human infections occur predominantly in East
Asia and the Philippines. In India the incidence rates of parag-
onimiasis caused by P. westermani is currently unknown [2–4];
however, many cases of paragonimiasis are attributed to the
related worm Paragonimus heterotremus [2]. Paragonimiasis is a
zoonotic disease; pigs, dogs, and other animals can also harbor
P. westermani [2].

Paragonimus spp. have a complex life cycle. Unembryonated
eggs are expelled by coughing or passed with stool and develop
in water. Miracidia hatch from the eggs and penetrate a fresh-
water snail, its first intermediate host. During several asexual
developmental phases inside the snail, a miracidium develops
into a sporocyst and then two redial generations occur, the sec-
ond of which gives rise to microcercous cercariae that escape
into fresh water. These crawling cercariae invade a species of
crustacean, the second intermediate host, to encyst in mus-
cles and other sites and develop into metacercariae. Humans
and other definitive hosts become infected through consump-
tion of raw or inadequately cooked freshwater crabs or crayfish
[5]. Ingested metacercariae excyst, penetrate through the gut,
and become encapsulated in the lungs where they mature into
hermaphroditic adult worms (7.5 mm to 12 mm in length) in 6–
10 weeks [5]. Paragonimiasis can lead to a chronic inflammatory
disease of the lung and can trigger asthma- or tuberculosis-like
symptoms [6–8]. In more severe cases, Paragonimus can infect the
brain or central nervous system of the definitive host, leading to
headache, visual loss, and even death [1].

Paragonimiasis is commonly diagnosed by microscopic de-
tection of parasite eggs in stool or sputum. The lack of sensi-
tive and reliable diagnostic tests in conjunction with unspecific
disease symptoms often leads to delayed treatment with the
drug of choice, praziquantel [8]. Despite their high medical, vet-
erinary, and economic importance, only limited information on
the molecular biology of Paragonimus is currently available. Re-
cent transcriptome sequencing studies have provided some in-
formation on the gene content of Paragonimus [9]; however, to
date, no Paragonimus genome sequence has been available. Here,
we present a 922.8 Mb assembly of the P. westermani genome
that provides new insights into the genomic composition of the
Paragonimus genus and represents an invaluable resource for fu-
ture studies of the neglected tropical disease paragonimiasis.

Data Description
Sequencing

Diploid P. westermani metacercariae (National Center for Biotech-
nology Information [NCBI]: txid34504) were collected from
the freshwater crab Maydelliathelphusa lugubris in 2009 in the
Changlang District of Arunachal Pradesh, northeast India, and
fed to Wistar rats as experimental hosts. Genomic DNA was

Figure 1: k-mer frequencies for the 450 bp library. Distribution of 17-mers in the
450 bp short-insert library demonstrated low sequence heterozygosity. We ob-
served a single peak at 26×, and the P. westermani genome size was estimated to
be 1.1 Gb.

isolated from a pool of 50 worms (30–40 days of age), yield-
ing 18 μg of DNA. DNA was quantified by Pico green, Qubit,
and NanoDrop; degradation was tested by microplate reader
and agarose gel electrophorese (concentration of agarose gel,
1%; electrophoresis time, 40 minutes; voltage, 150 V). The P.
westermani genome was then sequenced from 2 μg of the iso-
lated DNA using a whole-genome shotgun approach. Paired-
end short-insert (200 bp and 450 bp) and mate-pair (5 kb and
10 kb) genomic DNA libraries were sequenced on the Illumina
HiSeq 2000 platform, yielding 58 Gb of sequence data (Table 1).
For genome scaffolding and quality evaluation of the assem-
bled sequence, additional long-read data were generated from
the same genomic DNA sample using the Pacific Biosciences
(PacBio) RSII platform, yielding 1.7 Gb of information (Table 1).
The genome size was estimated from the k-mer coverage of the
450 bp insert library. k-mer frequencies were calculated by the
program Jellyfish [10], version 2.2.6, using a k-mer size of 17 bp.
The 17-mer distribution in the 450 bp library had a single peak
at 26× (Fig. 1), demonstrating low sequence heterozygosity. The
genome size (G) was deduced from the k-mer distribution via
the formula G = N ∗ (L–K + 1)/K depth [11], where N is the total
number of reads, L is the read length, K is the k-mer size and
K depth is the peak frequency. The P. westermani genome size
was estimated to be 1.1 Gb.

Genome assembly

PacBio sequence data were error corrected by proovread ver-
sion 2.13.13 [12], using Illumina short reads from the 200 bp
and 450 bp libraries as input, and assembled into contigs by
Mira v4.0.2 (MIRA, RRID:SCR 010731) [13]. Short-read Illumina
sequence data were trimmed using Trimmomatic v0.36 (Trim-
momatic, RRID:SCR 011848) and subsequently error corrected
by KmerFreq HA (part of SoapDenovo2 [14]) with a k-mer size
of 23. The 10 kb mate-pair library showed a high proportion of
polymerase chain reaction (PCR) duplicates and was subjected
to PCR de-duplication prior to genome assembly. For assembly
of short-read data, several assembly programs were evaluated.
ABYSS performed best for this particular genome with its large
size, high percentage of repetitive regions, and some low-level
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Table 1: Paragonimus westermani sequencing libraries

Library Platform Library type
Insert size

(bp)
Read length

(bp) Read count (raw)

200 bp HiSeq Paired-end 200 2 × 120 140,542,299
450 bp HiSeq Paired-end 450 2 × 100 171,954,230
5kb HiSeq Mate-pair 5000 2 × 49 232,630,904
10kb HiSeq Mate-pair 10 000 2 × 49 266,480,540
PacBio PacBio Long read – – 1,731,327

sequence heterogeneity resulting from pooling genomic DNA
from the 50 individual worms. ABYSS is also one of the few as-
semblers that allows inclusion of long-read data to guide scaf-
folding. Illumina paired-end sequence data were assembled us-
ing the ABYSS assembly pipeline (ABySS, RRID:SCR 010709) [15],
version 2.0.2, with options n = 5 s = 200 N = 36 S = 500 k = 33
and including the PacBio contigs via the re-scaffolding feature.

The resulting assembly was de-gapped using the SoapDe-
novo2 GapCloser program (GapCloser, RRID:SCR 015026) [14],
which is well suited for closing gaps larger than 1kb; it per-
formed particularly well on this genome. Mate-pair libraries
were then used to scaffold the assembly with SSPACE v3.0 [16]
(with options −x 0 −a 0.60 −n 30 −z 200 −g 0) and gaps were
again filled with GapCloser. Un-closed gaps are represented by
Ns spanning the estimated sizes of the gaps. To detect and re-
solve scaffolding errors, the resulting assembly was processed
by the program REAPR [17] using the 5 kb mate-pair library as
input, breaking the assembly at sites with poor evidence for con-
tiguity. Contamination due to the experimental rat host and the
bacterium Delftia sp. was detected based on a comparison of pre-
dicted proteins with the NCBI protein database using the Basic
Local Alignment Search Tool (BLAST) and, additionally, via the
NCBI Genome Submission Portal quality control pipeline. A tar-
geted comparison of all scaffolds with the genomes of the rat
and Delftia using the BLAST-like alignment tool identified 531
short scaffolds with high similarity (>90%) to these genomes.
These sequences were manually scrutinized, with 529 of the af-
fected scaffolds found to be completely derived from rat or Delf-
tia, and these were removed from the assembly. The remaining
two contaminated sequences represented rat ribosomal DNA
that had been erroneously incorporated into Paragonimus scaf-
folds and were also removed from the final assembly by cutting
and trimming the affected scaffolds.

The final assembly resulted in a 922.8 Mb genome sequence
(30,466 scaffolds with N50 of 135 kb) (Table 2), covering 84.0%
of the estimated genome size. The discrepancies in genome size
can potentially be the result of problematic DNA regions that are
difficult to sequence or assemble (e.g., regions with strong sec-
ondary structures, highly repetitive regions, or long homopoly-
meric runs) or the result of low-level sequence heterogeneity,
which can lead to an overestimation of genome size by k-mer
approaches. The P. westermani genome sequence is among the
largest known pathogen genomes and one of the largest parasite
genomes sequenced to date. The assembled genome sequence
is considerably larger than the published genomes of the related
trematodes Clonorchis sinensis (assembly size of 546.9 Mb) [18],
Opisthorchis viverrini (606.0 Mb) [19], and Schistosoma spp. (364.5–
397.7 Mb) [20–22] and comparable to the 1.3 Gb genome of Fasciola
hepatica [23].

The GC content of the genome was 43.3%, comparable to
genomes of other related trematodes (Table 2). Genome as-
sembly completeness was evaluated by Benchmarking Univer-

Figure 2: The complete P. westermani mitochondrial genome. A graphical repre-

sentation of the P. westermani circular mitochondrial genome is shown, including
an ∼6.9 kb repetitive region. Three distinct repeat units were identified in this
region, as well as an intervening tRNA gene (tRNA-Glu). All genes are transcribed
in the clock-wise direction.

sal Single-Copy Orthologs (BUSCO) (BUSCO, RRID:SCR 015008)
[24] using the metazoan lineage data, resulting in scores simi-
lar to those obtained for the genomes of comparable trematode
species (Table 2). The proportion of duplicated genes reported by
BUSCO was also similar to that of comparable trematodes, sug-
gesting that the relatively large size of the P. westermani genome
is not the result of genome duplication events.

Mitochondrial genome

The mitochondrial genome of P. westermani is present at a much
higher copy number than the nuclear genome, and we were
able to assemble the full mitochondrial genome at high coverage
from error-corrected long PacBio reads using the Mira assembler
[13], version 4.0.2. This resulted in a single mitochondrial con-
tig of 20.3 kb (Fig. 2). The accuracy of the contig was confirmed
by mapping short insert paired-end sequences directly onto the
contig, revealing single nucleotide discrepancies at only four po-
sitions. The mitochondrial genome was found to closely match
previously published Paragonimus mitochondrial genomes, with
the best match from a BLAST search against the Nucleotide col-
lection at the NCBI [25] being accession NC 027673.1, a P. wester-
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Table 2: Assembly statistics for P. westermani and comparable trematode genomes of similar size

P. westermani F. hepatica O. viverrini C. sinensis

Assembly size (Mb)a 922.8 1,275.0 606.0 546.9
Ungapped size
(Mb)b

877.7 1,183.5 558.0 547.1

Contig N50 (kb) 7.0 (>100 bp) 9.7 NA 14.7
Scaffold N50 (kb) 135 (>1kb) 204 1,324 30.2
Scaffold L50 1943 1,799 135 408
Scaffold count 30,466 (>1 kb) 45,354 (>1 kb) 4,919 (>1kb) 31,822
GC content (%) 43.3 44.1 43.8 44.1
Repeat content (%) 45.2 57.1 28.9 32.6
Protein coding
genes

12,852 15,740c 16,356 13,634

Longest scaffold
(kb)

809 1,565 9,657 2050

BUSCO—Complete 65.3% 65.8% 71.4% 70.8%
BUSCO—Duplicated 1.4% 0.8% 1.1% 1.5%
BUSCO—Missing 25.8% 25.4% 23.0% 23.1%

aCombined length of all scaffolds in Mb.
bCombined length of all scaffolds without gaps (Ns) in Mb.
cNon-overlapping RNA-sequencing-supported gene models [23]. BUSCO: Benchmarking Universal Single-Copy Orthologs.

mani complex sp. type 1 mitochondrial genome isolated in India
(97% sequence identity across 13.4 kb of NC 027673.1). This se-
quence was used as reference for mitochondrial gene identifica-
tion and annotation, supplemented by mitochondrial gene pre-
dictions by Mitos [26] and tRNA prediction by Aragorn (Aragorn,
RRID:SCR 015974) [27]. The mitochondrial genomes of flatworms
are known to harbor a region of non-coding repetitive DNA,
generally comprised of a long non-coding region (LNR) and a
short non-coding region (SNR) with a single tRNA gene separat-
ing them [28]. Reconstructing this region from short-read data
proved challenging, but our long-read PacBio data allowed com-
plete assembly of the repetitive region and circularization of the
genome. Interestingly, our assembled mitochondrial genome se-
quence had a much longer non-coding region (6.9 kb) than the
previously published NC 027673.1 (0.7 kb) and the non-coding
regions of both genomes showed only partial homology, but with
close homology of the intervening tRNA gene. We found the LNR
to be comprised of two distinct repeat units with 8 and 13 copies,
while the SNR was comprised of another distinct repeat unit
with 3 copies (Fig. 2 and Additional File 1). Strikingly, five inde-
pendent PacBio reads spanned the entirety of the non-coding re-
gion but with slight differences in length (6.3–6.9 kb), suggesting
that the region is polymorphic, possibly even within individual
worms.

Repeat annotation

RepBase repeat consensus sequences did not adequately repre-
sent the repeats found in the P. westermani assembly, consis-
tent with the distant evolutionary relationship of lung flukes
with previously sequenced worm genomes. We therefore car-
ried out de novo repeat characterization using the RepeatMod-
eller package, version 1.0.9 (RepeatModeler, RRID:SCR 015027)
and used the generated consensus sequences to identify repeti-
tive regions by RepeatMasker (RepeatMasker, RRID:SCR 012954),
version 4.0.7 (both available at [29]). To enable direct compari-
son with related trematode species, we also ran RepeatModeller
and RepeatMasker separately on the F. hepatica, O. viverrini, and
C. sinensis genomes with the same program parameters as those
used for P. westermani.

A relatively high percentage (45.2%) of the P. westermani
genome sequence was repeat derived, similar to the rate re-
ported for Schistosoma spp. (40.1–47.5%) [20–22] and F. hepatica
(57.1%) but considerably higher than the rate observed for the
closer relatives O. viverrini (28.9%) and C. sinensis (32.6%) (Table
3). Retrotransposons of the long interspersed nuclear element
(LINE) subtype were found to be the greatest contributors of
repetitive DNA (21.6%) (Table 3), consistent with reports for other
trematode genomes [23]. In P. westermani and F. hepatica, the two
largest of the four included trematode genomes, long terminal
repeat (LTR) retrotransposons were also highly abundant, con-
tributing 7.7% and 10.1% of the genomes, respectively. Addi-
tionally, all four genomes had considerable amounts of repeti-
tive DNA (10.7–17.1%) that did not match repeat consensus se-
quences of any of the known repeat classes modeled by Repeat-
Modeler. The relatively large proportion of repeat-derived se-
quences in P. westermani may explain some of the increased size
observed for this genome compared to the genomes of related
flatworm species.

Gene prediction and functional annotation

Genes were predicted by the Maker pipeline, version 2.31.9, us-
ing Augustus [30], version 3.2.3, and GeneMark-ES [31], version
4.32, for ab initio gene prediction. To accurately model the se-
quence properties of the P. westermani genome, both gene finders
were initially trained by BRAKER1 [32], version 1.9, which makes
use of mapped transcriptome sequence data. Previously pub-
lished RNA-sequencing (RNA-seq) data from adult P. westermani
[9] were obtained from the short-read archive and mapped to our
genome assembly using the Star aligner [33], version 2.5, with
the option –twopassMode Basic. BRAKER1 was then run with
default parameters. The RNA-seq data were further assembled
into transcripts using cufflinks [34], version 2.2.1, with the op-
tions –frag-bias-correct <p.westermani assembly> –multi-read-
correct. The resulting transcripts were provided as input for
Maker via the ‘est gff’ option. For homology-based searches
Maker was provided with the following wormbase v8 protein
datasets: Clonorchis sinensis (PRJDA72781), Opisthorchis viverrini
(PRJNA222628), Schistosoma mansoni (PRJEA36577), Caenorhabdi-
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Table 3: Repeat content percentage of P. westermani and related trematode genome sequences

Repeat class P. westermani F. hepatica O. viverrini C. sinensis

LINE 21.57 26.17 12.76 14.85
LTR 7.71 10.06 2.82 1.97
DNA elements 1.76 2.14 0.94 1.04
SINE 0.96 1.06 1.26 1.22
Simple repeats 0.18 0.63 0.43 0.36
Unclassified 12.97 17.06 10.69 13.15
Total 45.15 57.12 28.9 32.59

tis elegans (PRJNA13758), Echinococcus granulosus (PRJEB121), Hy-
menolepis diminuta (PRJEB507), and Schistosoma haematobium (PR-
JNA78265). Additionally, the Swiss-Prot dataset from UniProt
was included. Maker was allowed to report single exon genes
and otherwise run with default parameters.

Proteins were functionally annotated based on a BLASTp
search against the NCBI non-redundant protein database (ob-
tained on 25.10.17) requiring an e-value <1e-15 and the best hit
spanning at least 40% of the query sequence. Kyoto Encyclope-
dia of Genes and Genomes annotations were identified using the
BlastKoala server with the option ‘genus eukaryotes’ [35]. Addi-
tionally, functional domains, Gene Ontology (GO) annotations,
transmembrane proteins, and signal peptides were identified
with InterProScan (InterProScan, RRID:SCR 005829) [36], version
5.25–64.0. GO annotations were then visualized using WEGO [37].
In total, 12,852 protein encoding genes were predicted in the P.
westermani genome and functionally annotated (Table 2).

Genome comparison

Predicted P. westermani coding genes were mapped to the
genomes of related trematode species using Exonerate, version
2.4.0, requiring a minimal sequence identity of 30% and exclud-
ing matches spanning less than 40% of the query protein. The
majority of predicted proteins (86.2%) had inferred homologs
in the related trematode species (Fig. 3A) and showed a simi-
lar distribution of protein functional categories (Fig. 3C). The P.
westermani-predicted proteome was most similar to O. viverrini
and C. sinensis. Of the 12,852 predicted proteins, 10,350 (80%) had
inferred homologs in O. viverrini with an average sequence iden-
tity of 64.1%, and 10,227 (79.6%) had homologs in C. sinensis with
an average sequence identity of 63.8% (Fig. 3A and 3B).

Phylogenetic analysis and estimation of divergence
time

A protein-based phylogenetic tree was inferred from 14 worm
genomes, including P. westermani, 12 related trematode/cestode
species, and Schmidtea mediterranea, a free-living turbellarian
flatworm, as outgroup (Fig. 4). We first identified single-copy
proteins shared across all 14 included worm species. Single-
copy proteins were identified based on BLASTp searches of
a species proteins against the species own proteome using a
sequence-identity cutoff of 30% and requiring hits to cover >50%
of the query sequence. Single-copy proteins shared across all
14 species were then identified using a less stringent BLASTp
search with a 30% sequence identity cutoff but requiring only
>40% coverage of the query sequence. We identified 104 single-
copy proteins shared across the 14 worm species that were then
aligned using MUSCLE [38]. The resulting multiple sequence
alignment was de-gapped with trimAI [39], and a phylogenetic
tree was reconstructed by PhyML (PhyML, RRID:SCR 014629) [40].

Figure 4: Phylogenetic tree and estimated divergence times. A phylogenetic tree
of selected trematodes and cestodes and S. mediterranea as outgroup was recon-
structed from 104 shared single-copy proteins using the maximum likelihood
method. Species divergence was estimated by a Bayesian model using MCMC-

TREE with relaxed molecular clock and is given in million years, with 95% con-
fidence intervals in round brackets. The split of P. westermani was estimated to
have occurred somewhere around 38.9 million years ago (Mya; 28.0–58.6 mil-
lion years). The analysis was repeated using BEAST 2, and estimated divergence

times are shown in square brackets. BEAST 2 estimated the split of P. westermani

to have occurred 31.5 Mya.

Model selection in PhyML [41] identified the LG model [42] with
decorations +G+I+F as optimal. PHYLIP v3.696 [43] using the
maximum likelihood method and the Jones-Taylor-Thornton
(JTT) probability model [44] resulted in the same tree topology,
demonstrating the robustness of the inferred phylogenetic rela-
tionships.

The multiple alignment and the inferred phylogenetic tree
were then used to estimate species divergence by a Bayesian
model with relaxed molecular clock using MCMCTREE in PAML
4.9e (Fig. 4)(PAML, RRID:SCR 014932). The model was calibrated
based on previously published divergence times and ages of fos-
sil records. Evidence for trematode infestation have been re-
ported from the Eocene (56 to 33.9 million years ago [Mya]) and
preserved trematode eggs have been found in dinosaur copro-
lites from the Early Cretaceous (146 to 100 Mya); however, fos-
sil records indicate that trematodes may have already existed
more than 400 Mya [45, 46]. The trematode split from other neo-
dermatan lineages was therefore fixed at >56 million years. The
origin of schistosomes has been estimated somewhere in the
Miocene around 15–20 Mya [47, 48]. It has further been estimated
that the divergence of S. mansoni did likely not occur before 2–
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6 Whole-genome sequence of P. westermani

Figure 3: Conservation of the P. westermani proteome across four related trematode species. Paragonimus westermani proteins were mapped to the genome sequences
of O. viverrini, C. sinensis, F. hepatica, and S. mansoni using Exonerate. (A) Paragonimus westermani centered Venn diagram of 12,852 predicted proteins. The four included
trematode species shared a core set of 7,599 proteins. (B) Sequence identity of P. westermani proteins and orthologues inferred in genomes of related trematodes.

Average sequence identity is given in brackets. (C) Distribution of identified functional GO categories across three trematode species. GO annotations were assigned
by InterProScan and visualized using WEGO.

5 Mya, based on fossil records of its intermediate host Biom-
phalaria [49]. From these data, the split of Plagiorchiida (includ-
ing P. westermani) and Opistorchiida (including O. viverrini and
C. sinensis) was estimated to have occurred 38.9 Mya (95% confi-
dence interval of 28.0–58.6 million years) (Fig. 4). To estimate the
robustness of the inferred divergence times, the analysis was re-
peated using BEAST 2 version 2.5.0 [50], based on the JTT substi-
tution matrix, gamma category count of 4, estimated substitu-
tion rate, relaxed clock log normal model, and a chain length of
6M [51, 52]. A maximum clade credibility tree using median node
heights was generated by the BEAST 2 treeannotator tool. Diver-
gence times inferred by BEAST 2 matched well with the MCMC-
TREE results and were within the estimated confidence intervals
(Fig. 4). The split of the Plagiorchiida and the Opistorchiida was
estimated to have occurred 31.5 Mya.

Discussion

We have presented the first whole-genome sequence of a Parag-
onimus spp. worm, providing a valuable resource to the field
that will aid our understanding of this group of clinically im-
portant parasites. The genome was found to be unusually large
for a worm. This is a feature that at least in part appears at-

tributable to an expansion of retrotransposable elements, rather
than genome duplication events.

The mitochondrial genome was also found to be very large,
comprising 20.3 kb. Such a large size appears to be a common
feature of worms and results from a long repetitive region of
unknown function. However, while this region appears to be a
feature of most flatworms, it is rarely sequenced in full due to
the technical challenges of sequencing long tandemly repeated
sequences.

Paragonimus westermani has been described as a species com-
plex with considerable genetic differences across geographic re-
gions [2]. The genome presented herein is of an Indian isolate,
and it will be of considerable interest to compare this and the
genomes of isolates from other regions where P. westermani is
endemic in order to elucidate the region-specific genetic fea-
tures. This would be particularly informative as not all endemic
regions are associated with paragonimiasis in humans [2].

Phylogenetic analyses of P. westermani shows that it has di-
verged considerably from its closest relatives, Clonorchis sinen-
sis and Opisthorchis viverrini, with a split estimated to have oc-
curred 28–59 Mya. Subsequent to that split, the species spread
out across a vast geographical range, acquiring distinct local
traits in what may eventually be considered speciation events.
This time span has also seen an expansion of two repeat fami-
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lies, in particular, the LINE and LTR elements. In mammals, these
elements are known to occasionally become exapted and gain
novel regulatory functions [53], and they are therefore likely to
add to the diversity of the P. westermani species complex.

Conclusions

The presented P. westermani genome assembly provides new in-
sights into the molecular biology of Paragonimus and provides
an unprecedented resource for functional studies of lung flukes
and for the design of new disease interventions and diagnostics
tests.

Availability of supporting data

The nuclear and mitochondrial genomes are available from NCBI
under accession number PRJNA454344. Annotation and tree data
is available from the GigaScience GigaDB repository [54].
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