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ARTICLE

Molecular memory with downstream logic
processing exemplified by switchable and
self-indicating guest capture and release
Brian Daly1, Thomas S. Moody1, Allen J.M. Huxley1, Chaoyi Yao1, Benjamin Schazmann1, Andre Alves-Areias1,

John F. Malone1, H.Q. Nimal Gunaratne1, Peter Nockemann1 & A. Prasanna de Silva1

Molecular-logic based computation (MLBC) has grown by accumulating many examples of

combinational logic gates and a few sequential variants. In spite of many inspirations being

available in biology, there are virtually no examples of MLBC in chemistry where sequential

and combinational operations are integrated. Here we report a simple alcohol-ketone redox

interconversion which switches a macrocycle between a large or small cavity, with erect

aromatic walls which create a deep hydrophobic space or with collapsed walls respectively.

Small aromatic guests can be captured or released in an all or none manner upon chemical

command. During capture, the fluorescence of the alcohol macrocycle is quenched via

fluorescent photoinduced electron transfer switching, meaning that its occupancy state is

self-indicated. This represents a chemically-driven RS Flip-Flop, one of whose outputs is fed

into an INHIBIT gate. Processing of outputs from memory stores is seen in the injection of

packaged neurotransmitters into synaptic clefts for onward neural signalling. Overall,

capture-release phenomena from discrete supermolecules now have a Boolean basis.
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Molecular-logic-based computation1–23 currently largely
consists of combinational logic arrays, with history-
dependent sequential logic systems being less common

and integrations of these two being rarer still19–21. Indeed, a
molecular memory carrying a downstream processor is unknown.
Nevertheless, inspiration can be found in stored neuro-
transmitters being released into the synaptic cleft22,23 for further
neural processing of the original signal. Although molecular
versions of computer memories or RS flip-flops24–32 are known,
all-chemical versions where the device, inputs and outputs are
chemical in nature are unavailable.

Reversible atom capture/release is well-established33–35.
Molecules can also be imprisoned/liberated36–44 but it is harder
to achieve in a reversible all-or-none manner without complica-
tions of side-reactions40 or incomplete conversion. On the other
hand, related intramolecular studies are available as parts of
molecular machines5,6,45–49.

We now present a molecular memory carrying a downstream
processor. In this case, it allows us to introduce an all-chemical
RS flip-flop. This permits logically controlled reversible capture/
release of molecules both in aqueous solution and in the solid
state. This pushes the relevance of molecular-logic-based com-
putation1–23 to previously unaffected areas of chemistry, e.g.
cleanup of pollutants, generation of chemical signals50 and pro-
grammed release of functional species from discrete super-
molecules. Logical release (but not capture) from materials (but
not discrete molecules) is available51. Digitally capturing/releasing
a molecular guest from a molecular host due to molecular inputs
shows the ability to create sequential logic devices with
input–output homogeneity for gate concatenation, which is a way
information is processed inside biological cells. In the present
instance, the memory component is serially integrated with an
INHIBIT gate whose final output is fluorescence emission. It is
also remarkable that all the output states of the device are opti-
cally self-indicating. The current work also demonstrates a useful
supramolecular mechanism for reversible guest capture/release in
water by erecting/collapsing phenylene ring walls in a p-cyclo-
phane by chemical redox conversions. Reduction is the set(S)
input which gives the output of guest capture. Oxidation is the
reset(R) input which produces the output of guest release. The
ideas underlying the RS flip-flop are explained in the Discussion
section below.

Results
Synthesis. The four compounds required for the systems 1/2 and
3/4 (Fig. 1c) are synthesized as follows. Macrocyclization assisted
by Cs2CO3 produces 1 from 4,4′-dihydroxybenzophenone (5)
and 1,5-diiodopentane37. NaBH4 reduction52 and work-up of 1
gives 2. Importantly, 1/2 can be derivatized so that biocompatible
water-soluble versions 3/4 become available. This begins with
selective monoiodination at ortho-positions with respect to the
oxygens of all four phenylene rings of 1 to give 6 in good yield53.
Each iodo substituent is converted to a carboxylic acid moiety to
give 3 in good yield by Pd0-catalyzed carbonylation54. NaBH4

reduction in water to the dialcohol tetracarboxylic acid 4 com-
pletes the synthesis (Supplementary Methods). The pair of tet-
racarboxylic acid derivatives 3/4 is used for aqueous solution-
phase experiments at pH 10.0. The oxidation reaction (air, hot
DMSO)55 converts dialcohols 2/4 to diketones 1/3. 4 is also
oxidized to 3 with KMnO4

52 in water at 40 °C (Supplementary
Methods). 1/3 and 2/4 are stable under ambient conditions
(Supplementary Methods).

X-ray crystallography. 1/2 are switched reversibly between small
and large states of their macrocycle cavity by simple chemical

redox reactions. Ered for 1 is −2.3 V and Eox for 2 is+1.7 V (vs
sce, MeCN, 60 °C and DMF, respectively, glassy carbon working
electrode, Bu4NBF4). The large cavity captures aromatic guests,
but the small cavity does not, as demonstrated by X-ray crystal-
lography (Fig. 1d–j). Diketone 1 has the small cavity due to
flattening of the phenylene rings into the macrocycle plane by π-
conjugation with the carbonyl groups. The phenylene rings in
dialcohol 2 have no such restrictions and stand orthogonal to the
macrocycle plane to create the large cavity to accommodate the
benzene guest with edge-to-face interactions.

It is clear from the X-ray crystal structures in Fig. 1d, e, g, h
that dialcohol 2 has four erect alkoxyphenylene wall sections as
found in classical p-cyclophanes37, where the wall sections
are essentially orthogonal to the mean macrocycle plane. One
molecule of benzene is symmetrically held within the macrocycle
cavity, with the benzene lying in the mean macrocycle plane.
The benzene has edge-face contacts56 with the four erect
alkoxyphenylene wall sections, which drive the ordered benzene
inclusion within 2. The 1:1 host:guest stoichiometry means that,
when the host is switched to the releasing state, molecular-scale
dosing occurs—a crucial feature for chemical signalling with
highly active agents50.

In contrast to those concerning 2, the X-ray crystal structures
in Fig. 1f, i, j show that diketone 1 has more-or-less collapsed
alkoxyphenylene wall sections that are π-conjugated to the
carbonyl groups to some degree. Of each pair, one alkoxyphe-
nylene is aligned much more towards the mean macrocycle
plane than the other as a result of the cross-conjugation with
the carbonyl. Their orientation with respect to the mean
macrocycle plane are 75.85° and 17.67°. The relative orientation
of the alkoxyphenylenes and the carbonyl agrees with that of 4,4′-
dimethoxybenzophenone57,58 (Supplementary Methods) showing
that these angles are the result of cross-conjugation rather than
sterics originating from the macrocycle. It is clear that the
macrocycle cavity has undergone substantial contraction in 1 (c.f.
2) owing to the wall collapse, and no benzene occupant is found.
Smaller molecules, e.g. dimethylformamide, are known to be
included in some related macrocycles59,60, though in a disordered
fashion59. Examination of the packing diagrams shows that
benzene is found only in the internal cavity of 2 and it is
completely absent from 1.

Spectroscopy in solution. Since the X-ray crystallography studies
clearly showed that the walled 2 contained one benzene occupant
whereas the wall-collapsed 1 lost its occupant, we next examine
aqueous solution-phase data of solubilized counterparts 4 and 3,
respectively. No suitable crystals of 3 and 4 could be grown from
solvents in which they were soluble. 4 and 3 are employed at
levels which are below their critical aggregation concentrations
(Table 1, footnote a). 7–9 (in the form of their dibromide salts)
are evaluated as potential occupants. If the geometric fit is sui-
table, the dications of these p-xylyldiammonium salts (9 being a
bicyclo[2,2,2]octane derivative) should be electrostatically
attracted to the tetraanionic macrocycle cavity, besides some
favourable hydrophobic attractions between the central parts of
both the hosts and guests. The p-xylyldiammonium unit is stable
under our redox conditions. The 1H NMR spectra of 7 with/
without 3 or 4 are shown in Fig. 2. Complexation-induced che-
mical shift differences (Δδ) are observed for 7 in the presence of
dialcohol 4, but not in the presence of diketone 3. The corre-
sponding Δδ values for dialcohol 4 in the presence of 7 are shown
in the inset in Fig. 2. The pattern of these Δδ values, which is
evidence for an axial inclusion complex in the solution state, are
similar to those seen for classical examples of cyclophane inclu-
sion complexes37,61,62, but with some differences. No significant
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chemical shift differences are found for diketone 3 in the presence
of 7. Somewhat analogous to the X-ray crystallography studies
(which employs the smaller and neutral guest benzene), inclusive
complexation is clear between 4 and 7, and no binding is
observed for 3 and 7 in spite of ion-pairing in both cases.
Although p-cyclophane hosts are known to be shape-dependent
binders37, reversible all-or-none switching between binding and
releasing states in water has not been demonstrated until now.

The complexation between 4 and 7–9 is quantified by measure-
ment of concentration-dependent Δδ values to obtain binding
constants (log β) which have values around 4 (Table 1).

Fluorescence spectra also illuminate the interaction between 4
and 7–9. 7–9 quench the fluorescence of 4 (Supplementary
Methods)63. Thus, 4 optically self-indicates its guest occupancy
status. 4 is excited without significant absorption by 7–9 except
at rather high concentrations of the latter. The addition of
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Fig. 1 Memory, chemical compounds and X-ray crystallography. a Physical electronic representation of a computer memory which is conceptually related
to the redox-induced reversible guest capture/release by 1/2 in the solid state. b Truth table for redox-induced reversible guest capture/release by 1/2.
c Molecular structures 1–4 & 6–9 (no stereochemistry is implied). The structure numbers and group identities of hosts, guests and synthetic intermediate
are shown in the arbitrary colours of red, blue and green, respectively. d–j X-ray crystal structures of 2 (d, e, g, h) and 1 (f, i, j) after separate crystallization
from benzene. Ball-and-stick representation in elevation view (g, i), space-fill representation (with calculated hydrogen positions included) in plan view
(e, f) and ball-and-stick representation in plan view (h, j), are shown in each case, respectively. Case d is a space-fill representation (with calculated
hydrogen positions included) of 2 shown in elevation view to emphasize the ‘wall’ aspect of the host
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self-indication to host 4’s redox switchability immediately extends
its logic integration64 (Fig. 3a). Since a high level of the guests 7–9
quenches the fluorescence, 7–9 serve as the inhibiting input (In4)
to the INHIBIT logic gate (Fig. 3a), which is now integrated to the
Out1 line of the RS Flip-Flop in the form of In3 (Fig. 3a, b). This is
the bridge between the sequential logic component and the
combinatorial component. Such fluorescence quenching is likely
caused by photoinduced electron transfer (PET)65,66 from the
alkoxyphenylene units of 4 to the electron-poor phenylene group
of 7–9 within the pseudo-intramolecular system. PET from 4 to 7
is thermodynamically allowed, with ΔGPET=−0.2 eV (Supple-
mentary Methods). No exciplex emissions are seen67. Analysis of
the variation of fluorescence intensity with the concentration of
7–9 gives logβ results essentially in agreement with the

corresponding values obtained via 1H NMR spectra (Table 1).
The releasing state has a high ε of 31,000M−1 cm−1 at 304 nm for
the ππ* band owing to the well-delocalized aromatic ketone units
and has a low ΦFlu of 0.00368 (λFlu= 458 nm) due to energetically
low-lying nπ* excited states69. The capturing states have low ε
values of 3900M−1 cm−1 at 290 nm owing to the smaller π-
delocalization of the benzhydrol moieties, while the ΦFlu value is
low (0.004) when the guest 7 is bound and high (0.013, λFlu=
356, 416 nm) when guest-free. All three output states, i.e. vacant
capturing state, occupied capturing state and releasing state, are
therefore distinguishable by optical spectroscopy.

Discussion
Having been inspired by the roles played by cyclophanes in
supramolecular chemistry37,42,45,48, we felt that we could apply
our experience of molecular switching4,10–12 to make a con-
tribution to this area. Excellent examples of switchable cyclo-
phanes and related macrocycles already exist37–44, but binary all-
or-none switching of cyclophanes in water still remains a
worthwhile goal. Since cyclophanes are well-known to bind
shape-complementary organic guests in water37, a method of
switching the cavity size/shape should enable the guest’s release.
Such guest capture/release would have immediate consequences
for dosing of drugs and other bio-signalling agents, as well as
environmental beneficiation by toxin removal. Notably, each of
these interventions could remain under the user’s external control
or could be triggered by an existing (e.g. intracellular) condition.
The capabilities of such a switchable system could be made more
intelligent if it could be endowed with self-indicating properties.
Self-indication is key for nanometric molecules to communicate
their status to their far-larger human handlers, i.e. to say when a
task has been accomplished successfully18.

Such relatively complex molecular-logic behaviour can benefit
from the insights of computer science4. Computer scientists and
electrical engineers have dealt with such situations in larger-sized
systems. This relationship between the disciplines is clear to us
since we had the pleasure to introduce the field of molecular-logic-
based computation10.
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7 caused by 4 are shown. Inset. δ values in the 1H NMR spectra of 4 (a part structure is shown) and Δδ values caused by 7

Table 1 1H NMR and fluorescence emission spectroscopic
data for complexation of 4 and 7–9a

Datum 7 8 9

δArH, −Δδ 7.72 0.74 7.66 0.58 7.62 0.52
δBzH, −Δδ 4.58 0.36 4.50 0.26 4.40 0.31
δα, −Δδ 3.14 0.29 3.27 0.22 3.46 0.42
δβ, −Δδ — — 1.42 0.11 2.19 0.16
δγ, −Δδ — — — — 1.97 0.26
logβb 4.2 3.7 4.6
logβc 4.5 4.5 4.6
QFd 3.1 2.4 1.7

aCompound numbers 4 and 7–9 are given in bold formatting. D2O, pD 10.0 for all experiments
except fluorescence spectroscopy. δ values for 7–9 are given. Δδ values of −0.02+ 0.02 for all
protons are seen when 3 is used instead of 4. The uncertainty in this case is the sample-to-
sample variability. For details, see Supplementary Tables 1–3. The critical aggregation
concentrations (CAC) of 4 and 3 are 1.6 × 10−3 and 2.0 × 10−3 M, respectively
bDetermined by 1H NMR spectroscopy from analysis of Δδ values for δArH, according to the
equation (Δδ /Δδmax)/[1− (Δδ /Δδmax)]2= βa73, where a is the concentration of 7–9. 1:1
molar ratios of 4:7–9 are maintained in the concentration range 10−5–10−3 M
cH2O, pH 10.0. Determined by fluorescence emission spectroscopy from analysis of integrated
fluorescence intensity (IF) (excited at 290 nm), according to the equation log[(IFmax− IF) / (IF−
IFmin)]= logβ − pa73,74. 2.5 × 10−5 M 4, 0–10−3 M of 7–9
dQuenching factor (QF) for integrated fluorescence intensity (IFmax / IFmin)
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The inclusive complexation of a guest by a cyclophane can be
seen, from some viewpoints, to be a case of a guest being corralled
by a surrounding wall, with the corral itself being specified by the
macrocycle and with the wall height being determined by the
width of the aromatic rings. Notably, the walls are perpendicular
to the corral area, i.e. the aromatic ring planes are orthogonal to
the mean macrocycle plane. Human experience70 suggests that a
guest cannot be corralled if the walls have fallen down for some
reason. The present work shows that these human situations are
mirrored in the molecular world.

Although cyclophanes of this type are well-known37, a pro-
minent feature of our particular cyclophanes is the presence of a
pair of ketones or secondary alcohols with flanking phenylene
moieties. The benzhydrol version behaves as a more-or-less
normal cyclophane host by orienting its phenylene ring planes
orthogonal to the macrocycle plane, thereby creating a rather
deep and hydrophobic cavity which can include an aromatic
guest37,61. On the other hand, the benzophenone version has
additional cross-conjugation due to the ketones flanked by the
phenylene units. This flattens one phenylene of the pair beside
each ketone so that the ketone and the phenylene form a plane
which is nearly in the macrocycle plane. Such phenylene ring
rotation closes off a large part of the macrocycle cavity. Thus a
suitable aromatic guest which is inclusively complexed by the
benzhydrol version is rejected by the corresponding
benzophenone.

It is well-appreciated that ketones and secondary alcohols can
be interconverted by appropriate reduction and oxidation52, each
of which are efficient unidirectional chemical reactions. When the
ketone is treated with a reducing agent, the corresponding alcohol
is formed and it stays as an alcohol whether excess reductant is
present or whether the reductant is removed entirely. Similarly,
when the alcohol is treated with an oxidant, the corresponding
ketone is formed which persists whether the oxidant is absent or
present in excess.

From a computer science perspective, the ketone/alcohol sys-
tem can exist in either of two stable states, depending on the input
condition. If a high concentration of reductant is applied as the
input, the resulting output state is the alcohol because of the
reduction of any starting ketone. This input is called the set(S)
input because it sets the alcohol as the output state (Out1= 1,
Out2= 0 in Fig. 1a, b). If a high concentration of oxidant is
applied as the input, the resulting output state is the ketone
(Out1= 0, Out2= 1 in Fig. 1a, b). This input is called the reset(R)
input because it returns the output state to the ketone with which
we started. If no input is applied, the system maintains its
previous state.

The above behaviour pattern is well-known to computer sci-
entists as a RS flip-flop, which is the memory element in modern
computers4. Indeed, we have here an all-chemical RS flip-flop,
where the inputs, outputs and the device itself are all
chemical species. Molecular RS flip-flops based on photo-
chromic27, enzyme29, and DNA28 systems are known. We have
pointed out that chemical oxidation and reduction of molecules
can also lead to RS flip-flop action4. The truth table of a RS flip-
flop annotated for our situation is shown in Fig. 1b. However, it is
important to note some key differences between the electronic
and chemical RS flip-flops arising from the diversity present
within chemistry. The electronic version is prevented from
receiving two high inputs (hence the truth table having only three
rows) since it leads to an unstable output situation. The chemical
version naturally avoids receiving two high inputs because it is
recognized that mixing equivalent amounts of reductants and
oxidants would not have a net effect on a substrate. Secondly, the
two outputs of an electronic RS flip-flop are always opposite
whereas the chemical case is more nuanced. Opposition is
available in terms of the guest-capturing and -releasing states.
Opposition is also available in terms of the ketones and the
alcohols being redox-interconvertible. On the other hand, there is
no natural opposition between ketones and alcohols per se or in
terms of their different chemistries.

In conclusion, X-ray crystallography shows that, when π-
conjugation opportunities are depleted in benzhydrol derivative
2, the phenylene units in a p-cyclophane orient essentially
orthogonal to the mean macrocycle plane37. This macrocyclic
cavity encapsulates benzene. When extra π-conjugation is
arranged via ketone groups in benzophenone derivative 1, the
phenylene groups flatten significantly into the mean macrocycle
plane so that no encapsulation is possible. The aqueous solution-
phase spectroscopy experiments on 4 and 3 confirm that inclusive
macrocycle occupancy (by 7–9) is only permitted for the benz-
hydrol 4 with its erected phenylene walls. An all-chemical RS flip-
flop feeding an INHIBIT gate is demonstrated since chemical
redox inputs applied to the p-cyclophane devices 1/2 or 3/4
permit reversible all-or-none capture or release of the guests
where guest occupancy is self-indicated by the fluorescence out-
put being quenched. This augurs well for the small-scale serial
integration of sequential and combinational logic devices in the
context of guest capture/release applications.

Methods
Synthesis and characterization of the molecular-logic gate arrays and their
precursors. All the procedures are given in the Supplementary Methods.

X-ray crystallography of the guest-binding and guest-releasing states. Single
crystals of 1 and 2 were obtained by evaporation of concentrated solutions of the
compounds in benzene. Suitable crystals were selected and measured on a Rigaku
Saturn724+ (2 × 2 bin mode) diffractometer. The crystals were kept at 100 K
during data collection. Using Olex271, the structures were solved with the ShelXS72

structure solution programme using direct methods and refined with the ShelXL72

refinement package using least squares minimization. X-ray crystallographic data
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Fig. 3 Integrated sequential-combinational logic. a Physical electronic
representation of redox-induced reversible guest release/capture by 3/4 in
water followed in the latter case by fluorescence signalling according to
INHIBIT logic. Output1 is the status of the capturing state, which is
characterized by the UV spectroscopic parameter ε= 3,900M−1 cm−1 at
the absorption maximum wavelength (λmax) 290 nm. Output2 is the status
of the releasing state, which is characterized by ε= 31,000M−1 cm−1 at
λmax 304 nm. b Truth table for guest (7)-induced quenching of fluorescence
of device 3/4 in water corresponding to an INHIBIT logic gate. Guest-free
fluorescence quantum yields (ΦFlu) are 0.013 and 0.003 for 4 and 3,
respectively, at pH 10.0, determined by comparison with 2-
methoxybenzoate in water at pH 8.0 (ΦFlu= 0.011) as secondary
standard68. 7 quenches the fluorescence of 4 by a factor of 3.1. 7 does not
measurably affect the fluorescence of 3. The output is digitized by applying
a threshold value of 0.008 to the ΦFlu values
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for 1 and 2, as well those for control compounds are detailed in the Supplementary
Methods.

Guest-dependent fluorescence spectroscopy of the dialcohol cyclophane.
Fluorescence spectroscopic data obtained on a Perkin-Elmer LS55 spectrometer
running FLWinlab software for 4 as a function of added guest are detailed in
the Supplementary Methods.

Data availability
The authors declare that the data supporting the findings of this study are available
within the Article and its Supplementary Information files. The X-ray
crystallographic coordinates for structures 1 and 2 reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under
deposition numbers 1875556–1875557. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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