
Implementation of a Heterogeneous-Reliability Memory Framework

Tovletoglou, K. (2018). Implementation of a Heterogeneous-Reliability Memory Framework. Poster session
presented at 27th International Conference on Parallel Architectures and Compilation Techniques (PACT18),
Limassol, Cyprus.

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 The author.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

https://pure.qub.ac.uk/portal/en/publications/implementation-of-a-heterogeneousreliability-memory-framework(ae18e92d-8050-4666-ad7a-d15ca149b438).html

Motivation

Implementation of a Heterogeneous-Reliability Memory Framework
Konstantinos Tovletoglou

Georgios Karakonstantis and Dimitrios S. Nikolopoulos

Institute of Electronics, Communications and Information Technology (ECIT)
Queen’s University Belfast, United Kingdom

 Nanometer memories are becoming unreliable

 Increased failure rates threatening the system

 Conventional approach: adoption of guardbands based
on the worst-case scenario

 Power and performance overhead

 DRAM consumes up to 40% of the total
power dissipation in servers

H2020 programme : UniServer (grant no. 688540) : www.uniserver2020.eu Contact email: ktovletoglou01@qub.ac.uk

En
e

rg
y

P
o

w
e

r

 The naive HRM introduces an average performance overhead of 49%
and it reaches up to 128% for 462.libquantum.

 Our implementation decreased the average overhead down to 6% ,
while 462.libquantum has the highest overhead at only 28%.

 Performance overhead is correlated with memory intensity.

Expose and disable the hardware-based
memory interleaving on the server

 Enable distinct memory address
ranges for each memory channel

 Performance overhead is introduced

Implement a software-based memory
interleaving scheme

 Exploit multiple memory controllers
for consecutive accesses

 On-the-fly selection of the
interleaving function

Introduce an interface for HRM alloca-
tions under the Linux OS

 NUMA interface, numactl, to control
on application-level (e.g. APP1, APP2)

 Allocation functions, malloc, can be
replace with numa_alloc_onnode,
to specify the reliability domain for
each allocation (e.g. APP0, APP3)

Enable the selection of software-based
interleaving through the same interface

 The naive HRM decreases the power consumption by 23%.

 Our implementation reduces the DRAM power consumption by 20%.

 The most power consuming application has the highest power savings.

 For the naive HRM, no benchmark achieves any energy savings, and the
energy of the system (processor and DRAM) is increased by 22%.

 Our implementation achieves 9% energy savings for the system.

 Implement a heterogeneous-reliability memory framework on a real server.

 Introduce a software-based interleaving technique to mitigate the perfor-
mance overhead when hardware-based memory interleaving is disabled.

 Obtain 9% energy savings and reduce DRAM power consumption by 20%.

 Enable fine-grain control of the allocation on the reliability domains.

 Ensure that errors will not manifest in the critical data, such as OS data.

Implemented on a real commodity server

 AppliedMicro X-Gene 2, 8 AArch64 cores

 4 Memory controllers (MCUs), 4 DIMM DDR3 8GB

 CentOS 7, Linux kernel 4.11

Evaluated with 35 workloads (SPEC CPU2006 and NAS)

Parameters of the variably-reliable memory domain:

 Refresh rate: 35x relaxed (64 ms to 2.283 s)

 Voltage: 5% reduction (1.5 V to 1.425 V)

Experimental Results

Proposed HRM

Experimental Setup

Conclusions

P
e

rf
o

rm
an

ce

In
te

rl
e

av
in

g
In

te
rf

ac
e

R
e

lia
b

ili
ty

 Under non-controlled temperature, only correctable errors occur in the
variably-reliable memory domain, while under high temperature, un-
correctable errors manifest and applications must tolerate them.

 No errors occur in the reliable domain even at high temperature.

Heterogeneous-Reliability Memory Framework (HRM)

 Evaluated only on simulators

 The existence of hardware-based memory interleaving

 Disabling interleaving introduces a performance overhead

 The lack of an intuitive interface for the HRM

Proposed Approach

C
h

al
le

n
ge

s

 High cost guardbands

Storage of:

 Critical data

 Relaxed DRAM parameters

Storage of:

 Error-resilient data

Separate the memory into two domains and allocate data on each
one based on their criticality and tolerance to errors.

 Existing approaches showcased:

 the potential gains of HRM on simulators

 identified the existence of variable criticality of application data

