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The majority of existing models for predicting disease risk in response to

climate change are empirical. These models exploit correlations between his-

torical data, rather than explicitly describing relationships between cause

and response variables. Therefore, they are unsuitable for capturing impacts

beyond historically observed variability and have limited ability to guide

interventions. In this study, we integrate environmental and epidemiological

processes into a new mechanistic model, taking the widespread parasitic

disease of fasciolosis as an example. The model simulates environmental

suitability for disease transmission at a daily time step and 25 m resolution,

explicitly linking the parasite life cycle to key weather–water–environment

conditions. Using epidemiological data, we show that the model can repro-

duce observed infection levels in time and space for two case studies in the

UK. To overcome data limitations, we propose a calibration approach com-

bining Monte Carlo sampling and expert opinion, which allows constraint of

the model in a process-based way, including a quantification of uncertainty.

The simulated disease dynamics agree with information from the literature,

and comparison with a widely used empirical risk index shows that the new

model provides better insight into the time–space patterns of infection,

which will be valuable for decision support.
1. Introduction
The transmission of several highly pathogenic infectious diseases is closely

linked to weather and environmental conditions [1]. Waterborne diseases, like

cholera, are directly affected by hydro-meteorological factors such as rainfall,

through transport and dissemination of the pathogens, and water temperature,

through their development and survival rates. Diseases involving a vector or

intermediate host as part of their life cycle, such as schistosomiasis, are also

indirectly controlled by characteristics of the water environment and land

surface, through their influence on the vector or host [2,3].

Our environment is changing at unprecedented rates due to climate change

and direct human activities [4,5], with implications for the behaviour, seasonal-

ity and distribution of many diseases and their carriers [6,7]. Evidence of

climate and environment-driven changes in the phenology of pathogens and

incidence of diseases already exists. The increase in frequency and intensity

of extreme weather events is altering the occurrence of floods and droughts,

changing the concentration of infectious agents such as Vibrio cholerae in the

water environment and human exposure to infection [3]. Similarly, changes
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in the prevalence of schistosomiasis have been observed

due to the expansion of the snail intermediate host habitat,

following the construction of dams and implementation of

irrigation schemes to meet demands for food and energy

from increasing numbers of people [8].

As climate change accelerates and other human-caused

disturbances increase, it is urgent to assess impacts on disease

transmission, to guide interventions that can reduce and/or

mitigate risk [9]. To this end, we need to: (i) understand

the mechanisms by which the environment affects epide-

miological processes, addressing the system as a whole,

(ii) represent these processes with models that are explicit in

space and time, to more reliably simulate conditions beyond

historically observed variability, and (iii) test these models

in new ways, since simply reproducing past observations

may no longer be sufficient to justify their use for decision

support [1,3,7,10–12].

However, most current models that predict changes to

disease patterns in response to climate change are empirical

[7,13,14]. This means they do not explicitly represent mechan-

isms, but are based on statistical correlations between

historical data, thus becoming unreliable when extrapolated

to novel conditions, e.g. into different regions or future

climates [15]. Moreover, empirical models do not allow for

what-if analyses, i.e. they cannot be used to test the effect

of interventions on disease incidence, which would be

valuable for guiding decision-making [10,16].

In this paper, we incorporate knowledge of environ-

mental and epidemiological processes into a new integrated

mechanistic model, using fasciolosis as an example. This is

a globally distributed parasitic disease of livestock and

zoonosis, whose most widespread agent is Fasciola hepatica,

the common liver fluke [17]. Clinical signs of disease in

animals include weight loss, anaemia and sudden death,

while sub-clinical infections result in lowered productivity

and are estimated to cost the livestock industry $3 billion

per year, globally [18,19]. Risk of infection with liver fluke

is strongly influenced by weather and environmental con-

ditions, especially temperature and soil moisture, as the

parasite has an indirect life cycle involving an intermediate

host (in the case of F. hepatica, the amphibious mud snail

Galba truncatula) and free-living stages, which grow and

develop in the environment [20–22].

Addressing fasciolosis is urgent for a number of reasons.

First, resistance to available antiparasitic drugs is on the rise

worldwide, making disease control challenging [23]. Second,

increases in disease prevalence, expansions into new areas

and shifts in its seasonality have been observed in recent

years and attributed to altered temperature and rainfall pat-

terns, raising concerns about the effects of climate change in

the future [23,24]. Finally, fasciolosis is emerging as a major dis-

ease in humans, with at least 2.4 million people infected around

the world, and human treatment relying on the same veterinary

drug to which resistance is increasing [25]. Climate-based fluke

risk models have been developed since the 1950s [20,26–28].

The Ollerenshaw index is the best-known example, which is

still actively used to predict disease severity in Europe

[20,29,30]. However, these models are empirical in nature and

therefore of little use for assessing risk under changing con-

ditions. On the other hand, previous attempts to model

fasciolosis mechanistically, in connection with climate, neglect

the role of soil moisture dynamics in driving infection and do

not account for the spatial aspect of the disease (e.g. [19,31]).
Therefore, in this study, we introduce a new mechanistic

coupled hydro-epidemiological model for liver fluke, which

explicitly represents the parasite life cycle in time and

space, linked with key environmental conditions. We then

parametrize the model for two case studies in the UK and

assess whether it can replicate temporal and spatial variabil-

ity of observed infection levels. To overcome limitations of

available epidemiological data, we propose a calibration

approach that combines observations and expert knowledge.

Finally, we further evaluate the model by comparing it with

the widely used empirical Ollerenshaw index.
2. The Hydro-Epidemiological model for
Liver Fluke

The Hydro-Epidemiological model for Liver Fluke (HELF)

quantitatively captures the mechanisms underlying trans-

mission of fasciolosis, describing the causal relationships

between hydro-meteorological factors and biological processes,

instead of relying on correlation. To this end, HELF integrates

TOPMODEL [32,33], an existing hydrological model which

we use to simulate soil moisture dynamics, and a novel epide-

miological model, which represents the parasite life cycle.

TOPMODEL is chosen because its underlying assumptions

are physically realistic for humid–temperate catchments, such

as UK catchments, where the dominant mechanism of run-off

generation is soil saturation [32]. The epidemiological model

is developed based on current understanding of the life cycle

of F. hepatica and its dependence upon soil moisture and air

temperature [20–22].
2.1. Hydrological component
TOPMODEL is a catchment-scale rainfall-run-off model, which

was developed for hydrological predictions and has been

extensively used for different water resources applications

(e.g. references in [34]). The model uses air temperature, rain-

fall and Digital Elevation Model (DEM) data to estimate, at

each time step, spatially distributed soil moisture over the

catchment (calculated as a saturation deficit), as well as stream-

flow at the catchment outlet. The model we use is based on the

version explained in [33] and has seven parameters (table 1).

In TOPMODEL, hydrological processes are represented

using a sequence of conceptual stores for which the model

estimates and tracks water balances. An interception store,

representing vegetation cover, must be filled by rainfall

before infiltration into the soil can occur. When water infil-

trates into the soil, it first enters the root zone, from which it

evaporates as a function of potential evapotranspiration,

maximum capacity of the store, and its actual water content.

Water that is not evaporated or retained by the soil percolates

to the saturated zone (i.e. the groundwater), which contributes

to the channel network through subsurface flow.

To simulate the spatial distribution of soil water content over

the catchment, this water balance accounting routine, which

is lumped at the catchment scale, is integrated with spatially

distributed topographic information derived from DEM data.

The effect of topography is captured, for each grid cell in the

catchment, through calculation of a topographic index (TI):

TI ¼ ln
a

tan (b)

� �
,



Table 1. Hydrological model parameters and initial ranges.

no. parameter description unit min. max.

1 LnTe log of transmissivity of soil when saturated to the surface mm2 d21 25 10

2 m soil parameter controlling decline of transmissivity as saturation deficit increases mm 1 200

3 Srz_init initial saturation deficit in root zone mm 0 300

4 Srz_max maximum allowable saturation deficit in root zone mm 5 300

5 td time delay from unsaturated to saturated zone day mm21 0 0.9

6 a shape parameter for gamma distribution used for routing — 0.01 5

7 b scale parameter for gamma distribution used for routing — 0.01 5
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Figure 1. Spatial pattern of topographic index values for the River Tawe
Catchment (UK).
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where a is the upslope contributing area and tan(b) the local

slope. TI is used as a measure of the likelihood that a grid cell

becomes saturated by downslope accumulation: high values

occur over flat areas in valleys, which tend to saturate first,

whereas low values are associated with areas at the top of

hills, where there is little upslope area and slopes are steep

(figure 1). The model assumes that all points with the

same index value will respond similarly, hydrologically.

For computational efficiency, the distribution of TI values is

then discretized into classes, so that computations are

performed for each class instead of for each grid cell.

Therefore, a saturation deficit for each TI class is calculated

as a function of the catchment average saturation deficit,

updated at each time step by water balance calculation, and

the spatial distribution of the TIs. Rainfall that falls on satu-

rated areas (i.e. where deficit is less than or equal to zero)

cannot infiltrate into the soil and generates saturation-excess

overland flow. Finally, total streamflow is calculated as the

integrated subsurface flow and saturation-excess overland

flow, and a gamma distribution is used to model the time

delay in discharge generation at the catchment outlet, due to

water moving through the river network of the catchment.
2.2. Epidemiological component
The epidemiological component of HELF represents the

stages of the liver fluke life cycle that live on pasture: eggs,

miracidia, snail infections and metacercariae (figure 2).

Development and survival of these, as well as the presence

of mud snails, require particular temperature conditions

and wet soil. Therefore, the model takes as input variables

temperature and soil moisture, as well as an egg scenario

(i.e. number of embryonic eggs we assume are deposited on

each TI class at each time step by infected animals), to calculate

the abundance of individuals in each life-cycle stage.

Once passed out on pasture in the faeces of infected

animals, eggs (E) develop at a temperature-dependent rate,

and hatch into miracidia when both temperature and soil

moisture conditions are suitable [35]. Miracidia (Mi) are

short lived: either they find a snail host or die within 24 h

[35,36]. Therefore, progression from miracidium to the next

stage is calculated as the probability of finding a snail.

This is assumed to depend on soil moisture levels and temp-

erature, as G. truncatula snails are only found in poorly

drained areas and are known to hibernate with cold weather

and aestivate during hot dry periods [35]. Snail infections (SI)

also develop in the model as a function of both temperature

and soil moisture, as development within the snail may be
halted due to hibernation and aestivation [21], until parasites

emerge from snails in the form of cercariae. Once attached to

grass as metacercariae (Me), these survive on pasture and

retain infectivity based on temperature, with moderate

weather being most favourable [35].

Each stage, except for miracidia that only have a lifespan

of 1 day, is represented as a pool of developing cohorts of

individuals to capture maturation progress in a more realistic

way. Individuals in different cohorts are exposed to different

environmental conditions, and therefore will develop at

different times [35,36]. We account for this by using two

state variables for each cohort within each stage: number of

individuals and ‘age’ of the cohort. The rationale is that

each cohort has a certain age, which increases with the

number of days that have suitable environmental conditions,

until the cohort eventually matures to the next life-cycle

stage. Output from a stage is then the sum of cohorts per

unit area which mature to the next one.

At each time step, development and/or survival rates for a

stage are calculated based on the value of the relevant environ-

mental conditions for that stage at that time step, and on

the stage-specific requirements for development/survival,

which are defined through model parameters (table 2). The

technique employed to build the functions to calculate these

rates has previously been used for modelling both liver

fluke and other parasites (e.g. [19,31]). For temperature-

dependent rates, we use information in the literature from

laboratory experiments or controlled micro-environment

studies that examine the time to development or death at a

range of constant temperatures. First, rates are calculated for

each constant temperature from the reported e.g. time to
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Figure 2. Representation of the liver fluke life cycle, with an amphibious mud snail serving as the intermediate host. (Online version in colour.)
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development (i.e. rate ¼ 1/time to development); then piece-

wise linear models are fitted to these rates, yielding a

regression equation which can be used to estimate the daily

rates based on a time series of observed temperature. For

soil moisture, we adopt the same approach, assuming that

development is fastest when the soil is fully saturated

(i.e. when deficit ¼ 0) and that there is no development

above a certain maximum deficit [20,35]. For stages with

both temperature and soil moisture requirements, we allow

for development to progress as a function of both (figure 3).

2.3. Coupled model
The coupled hydro-epidemiological model runs at a daily

time step and has a total of 29 parameters. For each day,

HELF calculates the catchment average saturation deficit

based on rainfall and temperature, and derives the saturation

deficit for each of 25 TI classes, as a function of this and the TI

value for the class. Then, for each class and life-cycle stage, the

model calculates the relevant development and/or survival

rates, based on environmental conditions. The age of each

cohort is updated based on the development rate, and, given

an egg scenario, the model finally computes the number of

individuals in the stage as a function of the number from

the previous time step, plus the sum of the cohorts developed

from the previous stage, minus those that die (figure 4).

Therefore, the model outputs are the abundances of developed

eggs, snails located and infected by miracidia, developed snail

infections, and infective metacercariae surviving on pasture,

which represents the environmental suitability for disease

transmission to grazing livestock. These variables, calculated

for each TI class, are then mapped back onto each grid cell in

the catchment.

Regarding the egg scenario, the current assumption is

that 100 embryonic eggs are introduced on each TI class

daily, over the whole simulation period. This means we are

considering a scenario of continuous livestock grazing and

no disease management over the catchment. However, this

assumption can be easily changed. The fact that the egg
scenario is a model input gives the model-user the possibility

to estimate how the environmental suitability for disease

transmission translates into risk of infection, based on local

farm management factors such as grazing season length or

disease control strategy.
3. Study sites and data
We test HELF in two UK catchments, located in South Wales

and north-west Midlands (England), respectively. The data-

sets employed include both hydro-meteorological and

epidemiological data.

3.1. The Tawe and Severn Catchments
The River Tawe flows approximately 50 km south-westwards

from its source in the Brecon Beacons to the Bristol Channel

at Swansea. The catchment is about 240 km2 in size, with

elevation ranging from about 10 to 800 m.a.s.l., and most of

the area characterized by a relatively impermeable bedrock.

The River Severn rises in mid Wales and flows through

Shropshire, Worcestershire and Gloucestershire, before also

discharging into the Bristol Channel. The catchment, gauged

at Upton-on-Severn, is about 6850 km2 in area, with elevation

range and geological characteristics similar to the Tawe [37].

Both catchments have grassland as the dominant land cover

(figure 5), which is extensively used for livestock farming,

and are located in known fluke endemic areas [38]. Moreover,

these areas are predicted to become increasingly warmer and

wetter on average [39], which suggests they will become even

more favourable for liver fluke transmission in the future.

3.2. Hydro-meteorological and epidemiological data
The hydro-meteorological dataset includes daily observations

of rainfall, temperature and discharge. Gridded time series

of rainfall and temperature are obtained from CEH-GEAR

and the UK Met Office, respectively. For both case studies, to

run HELF, we take the average over the grid cells within the



Table 2. Epidemiological model parameters and initial ranges.

no. parameter description unit min. max. references

1 S1MinTemp min temp for egg development 8C 5 15 [20,21,35]

2 S1PeakTemp optimal temp for egg development 8C 15 27 [35,36]

3 S1PeakRate egg development rate at optimal temp day21 0.025 0.5 [35,36]

4 S1MortRate egg mortality rate day21 0 0.0693 [35]

5 S1MaxTemp max temp for egg development 8C 27 40 [35]

6 S1TrigSatDef max saturation deficit for egg hatching mm 1 100 [21,35]

7 S1TrigMinTemp min temp for egg hatching 8C 5 15 [21]

8 S2SatDef max saturation deficit for miracidia finding snails mm 1 100 [20,35,36]

9 S2SatSlope slope defining optimal saturation deficit for

miracidia finding snails

— 0.01 0.5

10 S2MinTemp min temp for miracidia finding snails 8C 5 15 [35]

11 S2PeakTemp optimal temp for miracidia finding snails 8C 15 27 [35]

12 S2MaxTemp max temp for miracidia finding snails 8C 27 40 [21]

13 S3SatDef max saturation deficit for snail infections

development

mm 1 100 [20,35,36]

14 S3SatSlope slope defining optimal saturation deficit for snail

infections development

— 0.01 0.5

15 S3MinTemp min temp for snail infections development 8C 5 15 [20,21,30]

16 S3PeakRate snail infections development rate at optimal temp day21 0.0204 0.0357 [35]

17 S3MortRate snail infections mortality rate day21 0 0.0693 —

18 S4MinTemp min temp for metacercariae survival 8C 220 10 ([35] and therein)

19 S4PeakTemp optimal temp for metacercariae survival 8C 10 15 ([35] and therein)

20 S4MaxTemp max temp for metacercariae survival 8C 15 40 ([35] and therein)

21 S4PeakRate metacercariae survival rate at optimal temp day21 0.0027 0.0333 ([35] and therein)

22 S4MinRate metacercariae survival rate at min/max temp day21 0.0333 0.5 ([35] and therein)
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catchment. For the Tawe we use these time series for a 12-year

period (1999–2010), whereas for the Severn we use 2 years of

data (2013–2014), in line with the available epidemiological

data periods. Observed discharge, at Ynystanglws for the

Tawe and Upton-on-Severn for the Severn, is derived from

[37]. DEM data for both catchments are obtained from Next-

Map with spatial resolution of 5 m, then aggregated to 25 m.

The epidemiological dataset consists of a time series from

the Veterinary Investigation Diagnostic Analysis (VIDA)

database for the Tawe and a spatial dataset based on faecal

egg counts (FECs) for the Severn. The VIDA database, com-

piled from reports from the UK Government’s Animal

and Plant Health Agency regional laboratories, provides

diagnoses of fasciolosis made from ill or dead animals. The

time series we use is the monthly number of sheep diagnosed

with acute fasciolosis from the postcode district areas within

the Tawe Catchment over 1999–2010. These data are believed

to reflect well the temporal dynamics of within-year infection

levels but may not always reflect the magnitude of infection

in the field, as the rate of submission of animals to the labora-

tories is potentially influenced by multiple factors [40]. In our

series, no cases are reported for 2001 and values over the

following years are low, which may have been affected by

the 2001 UK foot-and-mouth outbreak, which killed over

10 million animals, affecting submissions to the veterinary

laboratories. On the other hand, the spatial dataset for the
Severn Catchment consists of 174 cattle herds, from farms

within a 60 � 75 km area in Shropshire, that have been classi-

fied into infected and non-infected based on FECs collected

over October 2014–April 2015. Unlike VIDA, these are

active surveillance data, and thus more likely to reflect true

levels of infection. However, rather than a continuous/quan-

titative measure of the magnitude of infection, this dataset

only provides a binary classification into positive–negative

farms, at one moment in time and at a limited number of

points within the catchment.
4. Model calibration and testing
HELF comprises parameters related to the environment and

parameters related to the phenology of the parasite (tables 1

and 2). Usually, more or less well-defined ranges of values

can be found in the literature for these, rather than point esti-

mates, partly because of their associated natural variability

and partly due to uncertainty and poor understanding.

Different parameter sets, selected from these ranges, often

provide equally good representations of system behaviour,

with implications in terms of predictive uncertainty and limit-

ations for the applicability of the model [15,34]. This type of

parameter uncertainty can be reduced through a calibration

or constraining process.
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Usually models are calibrated and validated using

historic records, assuming that the data available reflect the

underlying system, and that conditions in the period con-

sidered are similar to those under which the model will be

used. However, this may not be sufficient if data are disinfor-

mative in some respects and/or if the purpose of the model is

to simulate conditions that are significantly different to those

previously observed [11,41].
Our calibration strategy involves multiple datasets and

methods. On one hand, we have high quality continuous

data for both the meteorology and the hydrology.

Therefore, we calibrate and validate the hydrological com-

ponent of HELF by adopting a standard split-sampling

approach [41]. On the other hand, given the epidemio-

logical data limitations mentioned in §3.2, our approach

for constraining the epidemiological model component
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not only uses past observations, but also expert-driven

rules.

4.1. Calibration and testing of the hydrological
component

To estimate TOPMODEL parameter values and evaluate its

prediction capabilities, we perform a split-sample test using

streamflow observations (years 2000–2006 for calibration

and 2007–2010 for validation, with 1999 as warm-up

period) [41]. The shuffled complex evolution (SCE-UA)

optimization method is employed to find the parameter set

which maximizes the coefficient of determination (R2)

between simulations and observations on our catchments

[42]. The algorithm samples an initial population of par-

ameter sets from a priori defined ranges (table 1) and then

evolves this population of sets to find the best performing

one with respect to R2.

4.2. Calibration and testing of the epidemiological
component

Using the best performing parametrization obtained for

TOPMODEL (and therefore for now neglecting the uncer-

tainty in representing the hydrology), first, we fit the fluke

component of HELF to the two epidemiological datasets

and assess whether we can reproduce the observed patterns

of infection, ignoring the data limitations discussed.

Second, under the assumption that these data may be disin-

formative, and given that we ultimately want to use HELF

to simulate fluke risk under changing conditions, we propose

an alternative calibration approach based on Monte Carlo

sampling and expert knowledge. Finally, we evaluate the

model by comparing results to information from previous

studies and to the commonly used Ollerenshaw index.

4.2.1. Single-objective approach using epidemiological data
To estimate parameters of the epidemiological model for the

Tawe Catchment, we fit HELF to the VIDA time series by
using SCE-UA to maximize the Pearson coefficient of

correlation (r) between simulated abundance of infective

metacercariae and observed number of sheep infections. As

the VIDA dataset only provides a single time series for the

Tawe, we aggregate the simulated abundance of metacercar-

iae over the catchment by taking the average across TI classes.

Moreover, to account for the delay between the variable we

simulate and the observations, a lag parameter is included

in the optimization process, which is allowed to vary between

0 (no delay) and þ5 months [18].

Similarly, to estimate parameters for the Severn Catch-

ment, we fit HELF to the FEC-based spatial dataset. First,

we divide the area over which we have observations into

sub-areas with a minimum of 15 data points each. Second,

we use SCE-UA to find the parameter set which maximizes

r between the simulated percentage of grid cells at risk of

infection and the observed percentage of herds infected,

over each sub-area. To this end, for each parameter set, we

aggregate the simulated abundance of metacercariae over

months July–December 2014, assuming that pasture con-

tamination over this period will be responsible for the

observed infection levels [38]. Then, we classify the simulated

abundance of metacercariae in each grid cell into two classes

(no-risk and risk) by setting a threshold based on the overall

observed percentage of infection.

4.2.2. Monte Carlo sampling-based approach using expert
opinion

Given the limitations of the epidemiological datasets, we

believe that simply fitting these may not be sufficient to guar-

antee reliability of our new model. Moreover, if HELF is to be

used to assess future disease risk, its credibility should be

assessed via more in-depth evaluation of the consistency

with the real-world system, instead of just comparison

against historical data [11]. To this end, we collect infor-

mation from the literature (e.g. [24,27,30]) and use our

perceptions to characterize the seasonality of the liver fluke

life-cycle stages in the UK over years 2000–2010. This

currently includes shifts in seasonality experienced over this
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period, compared to what has been traditionally observed,

driven by altered temperature and rainfall patterns, but

could be adjusted to account for further changes and shifts,

going forwards. Then, we formalize this knowledge into a

set of rules:

— Rule 1. Retain parameter sets that every year predict the

first month of snail presence (i.e. with positive number

of snails) to happen earlier than average, if temperature

is above average over January–March.

— Rule 2: Retain sets that every year produce higher mean

number of snail infections over summer (June–August),

if number of rain days over May–July is above average.

— Rule 3: Retain sets that every year produce higher mean

number of metacercariae over autumn (August–October),

if rainfall is above average and the number of days .208C
is below average over May–August.

— Rule 4: Retain sets that every year produce higher mean

number of metacercariae over winter (January–February),

if total number of days .108C is above average over

Jan–Feb.

We randomly sample 8000 parameter sets using uniform

distributions from ranges in table 2, and reject all sets produ-

cing model outputs that are inconsistent with these rules.

4.2.3. Comparison with the Ollerenshaw index
To further evaluate HELF, we use the behavioural parametri-

zations, i.e. those retained from sequential application of the

rules, and compare disease risk simulated using these with

the Ollerenshaw index. This, calculated at the monthly scale

based on rainfall and temperature characteristics as explained

in [29], is the current standard for providing liver fluke fore-

casts in the UK, where it is used by the National Animal

Disease Information Service to warn farmers about high

risk years [30].
5. Results
5.1. Performance of the hydrological model
Comparison of simulated and observed daily streamflow

shows that TOPMODEL is capable of reproducing the tem-

poral dynamics of observations well, including the peaks

and recession periods of the hydrograph. The model achieves
an R2 ¼ 0.87 during calibration and 0.84 in the validation

phase (figure 6).
5.2. Performance of the epidemiological model
5.2.1. Fit to epidemiological data
A delay is evident between simulated catchment average

number of metacercariae and reported number of sheep diag-

nosed with fasciolosis from the Tawe Catchment (figure 7).

This is due to the time-lag between pasture contamination,

which HELF simulates, and infection diagnosed in the

animal, which the VIDA dataset reports. Except for the year

2000, for which the model predicts risk of infection that is

not reflected in the VIDA numbers over 2001, HELF seems

to adequately predict the observed temporal dynamics of

infection. It simulates low pasture contamination for most

of the period and captures the higher peaks over winters

2008–2009 and 2009–2010, driven by the preceding excep-

tionally wet summers and rainy autumns. The highest

correlation between the two series (r ¼ 0.62) is found at a

lag of three months, which corresponds to the prepatent

period of fasciolosis reported in the literature [18]. If, instead

of using the whole dataset for calibration, we perform a five-

fold cross-validation, mean correlation results are 0.52 in

calibration and 0.41 in validation.

Division of the area for which we have observations within

the Severn Catchment into sub-areas with at least 15 data

points each, results in nine sub-areas (figure 8). When we com-

pare the simulated percentage of grid cells at risk of infection

with the observed percentage of infected herds, in each of

the sub-areas, the two are in good agreement (r ¼ 0.83),

suggesting that the model can replicate the observed spatial

pattern (here, performing a leave-one-out cross-validation

results in a mean absolute error of 0.1). Risk of infection seems

overestimated in sub-areas A2 and A5. However, these areas

were significantly drier than the others in 2014 (electronic

supplementary material, figure S1) and have a lower percen-

tage of area suitable for snail hosts in terms of soil pH

(electronic supplementary material, figure S2), which HELF

currently does not account for.
5.2.2. Results of the expert-driven approach
Sequential application of the expert-driven rules reduces the

initial sample of 8000 parameter sets to 14 behavioural
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parametrizations (figure 9). The resulting simulated abun-

dance of developed eggs on pasture seems to increase in

March, as the weather warms up, before decreasing gradually
over the following months, as hatching into miracidia begins

(figure 10). Snail activity, and therefore infection of snails by

miracidia, also starts in spring and carries on until Novem-

ber, when frosts may send snails back into hibernation.

Development of intra-molluscan infections peaks around

August, leading to high numbers of infective metacercariae

on pasture in Autumn. Finally, if we compare the abundance

of metacercariae—this time obtained using the whole set of

behavioural parametrizations—with the VIDA time series,

first, we still see the expected delay between simulations

and observations (figure 11). Second, we note that, while

uncertainty is still large in terms of magnitude of the yearly

peak of infection, bounds are narrower in terms of timing

and duration of the outbreaks, with the number of infective

metacercariae on pasture beginning to increase in July, reach-

ing a peak in September, before decreasing again in

December, on average.
5.2.3. Comparison with the Ollerenshaw index
Temporal comparison of the suitability for disease trans-

mission simulated by HELF, constrained using the rules,

with the Ollerenshaw index, shows a time-lag of one month
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between the two series (figure 12a and electronic supplemen-

tary material, figure S3). This is due to the two models

representing different things: a risk index based on monthly

temperature and rainfall in the case of Ollerenshaw, and

the abundance of metacercariae, based on soil moisture and

accounting for the delays in the parasite life cycle, in the

case of HELF. Moreover, we see that, while matching

the empirical index on interannual variation (at lag of one

month, r ¼ 0.73), the two models’ responses may differ at

higher temporal resolution. For example, the Ollerenshaw

index reaches the same peak value in years 2007 and 2008,

but risk of infection in 2007 seems lower than the following

year according to HELF. Comparison of the two models in

space, presented in figure 12b for August 2006 as an example,

shows the presence of high risk areas in the Tawe Catchment

according to both models. However, when using the Olleren-

shaw index, no proportion of the catchment seems risk-free

and risk of infection is highest in the north-east where rainfall

is highest [37]. In contrast, for the same month, assuming

an area is at risk if its number of metacercariae is positive,

HELF estimates that 17.3% of the catchment is risk-free, and
that there are 134 patches at risk, spread throughout the

catchment, with mean size of 1.6 km2.
6. Discussion
In this study, we developed the first mechanistic model

which explicitly simulates the risk of infection with F. hepatica
in time and space, driven by temperature and soil moisture

dynamics. The novelty of our work lies in the description

of the bio-physical processes underlying transmission of fas-

ciolosis, advancing the study of the disease beyond empirical

associations of infection levels with temperature and rainfall.

Despite current forecasting models calculating fluke risk

based on these meteorological variables [20,29,30], soil moist-

ure has always been recognized as the critical driver of

disease transmission for its role on development of the free-

living stages and presence of the snail intermediate hosts

[20]. Here we included it using an existing hydrologic

model, which is based on spatially distributed topographic

information, also known as an important fluke risk factor
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[27]. Moreover, collaboration across the physical and biologi-

cal sciences was necessary to analyse the effect of both soil

moisture and temperature on the multiple parasite life-cycle

stages (figure 3), and translate the mechanistic understanding

of the system into an integrated model (figure 4).

By simulating the system at 25 m with a daily time step,

HELF provides new insight into the space–time patterns of

disease risk, which will be valuable for decision support.

Compared to the Ollerenshaw index, which considers each

month independently from every other, HELF is dynamic.

Therefore, high rainfall may result in high risk of infection

depending on the antecedent moisture conditions of the soil

and their effect on the life-cycle progress (figure 12a). More-

over, by providing greater temporal resolution, HELF

allows capturing the impact of short-term weather events,

such as extremely warm days or intense concentrated rainfall,

which are believed to be particularly relevant for the biologi-

cal system [13–15]. Combined with the fact that HELF

can identify hotspots of transmission potential (figure 12b),

this means it may be possible for farmers to control the

magnitude of exposure to fluke in the field, e.g. by altering

management practices to avoid livestock grazing in high

risk areas during peak metacercarial abundance. Finally, the

stages included in HELF represent the part of the life cycle

which is missing in the model of fluke dynamics within the

final host developed in [19]. Integration of the two would
allow a mechanistic description of the whole cycle, thus pro-

viding the opportunity to assess e.g. the impact of vaccines

on infection levels.

In addition to aiding the management of fasciolosis, HELF

could also benefit the study of other diseases. A similar model

could be useful for rumen fluke, which is on the rise in British

and Irish livestock and has a similar life cycle to liver fluke,

sharing the same intermediate host [43]. On the other hand, a

different hydrological model component could be employed

instead of TOPMODEL, depending on the hydro-environmental

drivers relevant for the disease considered [3]. For example,

a model describing freshwater connectivity would be needed

for diseases involving aquatic intermediate hosts, such as

freshwater snails in the case of schistosomiasis [2].

Several assumptions are embedded in HELF. Notably, to

account for seasonality and distribution of the disease, we

assumed the parasite life cycle is entirely driven by environ-

mental conditions, simplifying the mechanisms related to

the intra-molluscan stage and neglecting density-dependent

processes. Even with regard to environmental factors, charac-

teristics such as soil pH and texture have been described as

potentially relevant for the suitability of snail habitats [27],

but have not been included in our model, yet. Similarly,

surplus run-off water may have a role in the infection trans-

mission pathway, contributing to the dispersal of snails and

metacercariae down water courses [44]. However, HELF
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could be expanded to incorporate these, as well as additional

spatial data, including remote sensing information.

To address common disease data limitations, we pro-

posed an approach that includes the use of expert

knowledge to constrain and evaluate our new model. Fitting

observations is standard practice for calibration of hydrologic

models, when there is a gauging station providing data to

compare simulations against (figure 6). Distributed soil

moisture observations were not available for our case studies,

but previous works have shown that TOPMODEL can

provide good representation of the spatial pattern of satu-

rated areas [45]. Less frequently, when data are available,

calibration is performed to parametrize epidemiological

models (e.g. [10,16,46]). Our results show that HELF is flex-

ible enough to replicate the observed time–space patterns

of infection over two case study catchments (figures 7 and

8). We speculate remaining mismatches when we fit the

two datasets are not necessarily due to aspects not yet

included in the model only, but may also be related to data

issues. The absence of reported cases for 2001 from the

Tawe Catchment is believed to have been influenced by the

UK outbreak of foot-and-mouth in the same year. Similarly,

discrepancies in some sub-areas of the Severn Catchment

may also be due to our underlying assumption of uniform

distribution of farms per sub-area, which may not reflect

the real-world system. Mis-reporting and low space–time res-

olution of data are common issues for many diseases and

have often been recognized as a bottleneck to developing

models providing meaningful predictions of disease risk

[12,14,16]. Recent correlative fluke studies (e.g. [47]), have

used geo-referenced data from abattoir liver condemnations,

which, if routinely collated and made available, may benefit

testing of models such as HELF across wider areas. However,

even if larger, potentially more reliable epidemiological data

were available, they would still reflect historical conditions,

which may not necessarily be relevant for the future

[11,15]. Our calibration strategy includes the use of expert-

driven rules to overcome these issues. The rules represent

mechanistic knowledge of the system translated into prior

information about the output variables. By using these, we

can constrain aspects of the model for which no hard data

are available in a process-based manner, without biasing

the parameters towards external drivers not included in the

model. The current formulation reflects changes in seasonal-

ity experienced over our simulation period. However, going

forward, this can be adjusted to account for further changes,

in order to reliably assess the impact on disease risk of

conditions beyond the range of historical variability [48].

Our results show there are parametrizations satisfying all

four our rules (figure 9), and that the behaviour of the simu-

lated stages and the lags between them (figure 10) agree with

what is reported in the literature [20,24]. This suggests that

HELF reflects well (our current knowledge of) the real-

world system. The fact that simulations are rejected from

the initial sample suggests that our parameter confinement

strategy is effective, which is crucial as the inability to ident-

ify behavioural parametrizations may result in significant

predictive uncertainty when using the model under changing

conditions [15,34]. Moreover, using HELF with Monte Carlo

sampling allows explicit consideration of uncertainty, by

propagating it from the parameter ranges to the model simu-

lations. This means we can provide decision-makers with a

degree of confidence attributed to the model results. The
reason why uncertainty in the simulated risk of infection

still seems high in terms of magnitude (figure 11) is that

the rules are currently based on information about the sea-

sonality of the disease only, driven by our aim of providing

a model that is generally applicable across the UK. However,

if reliable local data were available, the rules could be modi-

fied or increased in number to make the model more accurate

locally (see [16,49]). Instead, the fact that uncertainty bounds

are narrow in terms of timing and duration of the outbreaks

is particularly useful to inform farmers’ decisions about e.g.

when to allow grazing of animals or when to treat them.
7. Conclusion
We developed and tested a new mechanistic hydro-epidemio-

logical model to simulate the risk of liver fluke infection linked

to key weather–water–environmental processes (HELF). The

fact that, unlike previous models, HELF explicitly describes

processes, rather than relying on correlation, makes it better

suited for capturing the impact of ‘new’ conditions on disease

risk. We showed that the model is sufficiently flexible to fit

observations for two UK case studies, but also introduced

an expert-driven calibration strategy to make the model

more robust to data with limited reliability and in the presence

of climate change. Finally, comparison with a widely used

empirical model of fluke risk showed that, while matching

the existing index on interannual variation, HELF provides

better insight into the time–space patterns of disease, which

will be valuable for decision support. Driving the model

with climate and management scenarios will enable assess-

ment of future risk of infection and evaluation of control

options to reduce and/or mitigate disease burden. This is

urgent, given the widespread increase in drug resistance and

threat of altered patterns of transmission due to climate-

environmental change. Through the example of fasciolosis,

we demonstrated (i) that sufficient mechanistic understanding

of the bio-physical system may be available to develop and

test a process-based model for an environment-driven disease,

without having to rely only on limited and potentially disin-

formative data, and (ii) how accounting for the critical

hydro-environmental controls underlying transmission can

be valuable to better understand seasonality and spread of

emerging or re-emerging threatening diseases.
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