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Abstract

Compactness is one of the most versatile tools in the analysis of nonlinear PDEs and systems.

Usually, compactness is established by means of some embedding theorem between functional spaces.

Such theorems, in turn, rely on appropriate estimates for a function and its derivatives. While a

similar result based on simultaneous estimates for the Malliavin and weak Sobolev derivatives is

available for the Wiener-Sobolev spaces, it seems that it has not yet been widely used in the analysis

of highly nonlinear parabolic problems with stochasticity. In the present work we apply this result in

order to study compactness, existence of global solutions, and, as a by-product, the convergence of a

semi-discretisation scheme for a prototypical degenerate PDE-SDE coupling.
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1 Introduction

Compactness is one of the most versatile tools in the analysis of nonlinear equations and systems. Usually,
it is established by means of a compactness criterion for a particular functional space. Well-known exam-
ples include: the Rellich-Kondrachov theorem, the Lions-Aubin lemma, the Arzelà-Ascoli and Fréchet-
Kolmogorov theorems. Such results rely on appropriate estimates of a function and its classical or weak
derivatives or, more generally, of its increments. These theorems are most helpful instruments in the
study of deterministic differential equations and systems in Hölder and Sobolev spaces. A closely related
result was established for Wiener-Sobolev spaces by Bally and Saussereau [2]. It is based on simultaneous
estimates for the Malliavin and weak Sobolev derivatives. It seems, however, that this criterion has not
yet been widely used in the analysis of highly nonlinear parabolic problems with stochasticity. Indeed,
standard approaches mostly rely on some monotonicity of the elliptic part (see [10, 13, 17] and references
therein) which often fails to hold for strongly coupled systems. The approach based on a priori estimates
and a compact embedding has several advantages. For instance, it allows to treat rather general classes
of complicated problems by approximating them with better-studied, more regular ones, following the
so-called compactness method [12]. In the present work we adopt this scheme. Namely, we apply the
result by Bally and Saussereau in order to study compactness and existence of global solutions for a
prototypical degenerate PDE-SDE coupling. The proof of existence is based on the semi-discretisation
method. As a by-product, it justifies the convergence of a semi-discretisation scheme for our problem.

This paper is organised as follows. First, we introduce our model system in Section 2, fix some
notations in Section 3, and state the main results in Section 4. We then establish in Sections 5-6 a set
of uniform a priori estimates for the solutions of our system. While estimates in Subsections 5.1-5.4 and
Section 6 are rather standard, those in Subsections 5.5-5.6 are new and more involved. The a priori
estimates lie at the core of the proof of compactness in Section 7. In Section 8 we introduce a spatial
discretisation scheme and study its convergence in the nondegenerate case. Finally, we use compactness
in order to prove the existence of global solutions to the original degenerate problem in Section 9.

Acknowledgment. The author expresses her thanks to Wolfgang Bock and Christina Surulescu
(Technische Universität Kaiserslautern) for stimulating discussions. The idea to consider a model in the
form of a PDE-SDE coupling was proposed by Christina Surulescu in the context of [9].
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2 The model

Let T be a positive number and O be a smooth bounded domain in R
N . Also, let pΩ,F , pFtqtPr0,T s ,Pq be

a filtered probability space on which is defined a Wiener process pW ptqqtPr0,T s. We assume that pFtqtPr0,T s

is the usual completion of the natural filtration of pW ptqqtPr0,T s. In this setting, we consider the following
system of a random porous medium equation (random PME, RPME)

in Ω

$

’

&

’

%

Btβpcq “ ∆c ` fpc, yq in p0, T s ˆ O,

c “ 0 pBνc “ 0q in p0, T s ˆ BO,

c “ c0 in t0u ˆ O

(2.1a)

(2.1b)

(2.1c)

and an Itô SDE

in O

"

dy “ apyq dW ` bpc, yq dt in p0, T s ˆ Ω,

y “ y0 in t0u ˆ Ω.

(2.2a)

(2.2b)

Couplings of a PDE, however with a linear diffusion, with an SDE have lately emerged in the multiscale
tumor modelling [9]. In that work, the PDE- and SDE-variables represented, respectively, the intra-
and extracellular proton dynamics in a tumor. In the present case, the variables c and y could be seen,
e.g., as the tumor density and concentration of the intracellular protons, respectively (see also [6, 7] for
models based on PDE-RODE-couplings). Thereby, the (one-dimensional) Wiener process in SDE (2.2a)
captures some stochastic fluctuations in the intracellular proton dynamics (see [9] and references therein).
Through the coupling terms f and b, these fluctuations influence indirectly the dynamics of the cancer
cells on the macroscale as well.

The class of functions β considered in the present study (see Assumptions 4.1 below) includes as a
particular case

βpcq “ c
1

m for some m ą 1.

For such β, we can transform the macroscopic PDE (2.1a) into the equation

Btu “ ∆um ` fpum, yq,

where

u :“ c
1

m .

Thus, switching to the new variable u, we regain a RPME with a source term, written in the conventional
form. Porous medium equations are standard examples of degenerate-diffusion equations. As in our
recently proposed deterministic models, [20, 21], degeneracy accounts for a finite speed of propagation of
a tumor. While in [20, 21] we assumed the diffusion coefficient to be degenerate not only in c, but also
in another variable, here we consider a simpler case, with the diffusion being of the porous medium type.

3 Basic notation and functional spaces

We denote R
` :“ p0,8q, R`

0 :“ r0,8q.
For a Lebesgue measurable set E we denote by |E| its Lebesgue measure. The space dimension

depends on the context. The integral average of an integrable function f : E Ñ R is defined via

-

ż

E

fpxq dx :“
1

|E|

ż

E

fpxq dx.

We assume a smooth bounded domain O Ă R
N , N P N, to be given. The outward unit normal vector

on the boundary of O we denote by ν.
The derivative of a function u of one real variable is denoted by u1. Partial derivatives in the classical

or distributional sense with respect to a variable z are denoted by Bz. The variable z can, for example,
be the ’time’ variable t P R

`
0 or a component of the ’spatial’ variable x P O. Further, ∇ and ∆ stand for

the spatial gradient and Laplace operator, respectively.
We assume the reader to be familiar with the standard Lp, Sobolev, and Hölder spaces and their

usual properties, as well as with the more general Lp spaces of functions with values in general Banach
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spaces, and with anisotropic spaces. In particular, for relatively open w.r.t. p0, T s ˆ O (not necessarily
cylindrical) sets Q, we need the spaces

W p1,2q,qpQq :“
 

u “ upt, xq P LqpQq : Btu, Bxi
u, Bxi

Bxj
u P LqpQq for i, j “ 1, . . . , N

(

with a norm defined via

}u}W p1,2q,qpQq :“

˜

}u}q
LqpQq ` }Btu}q

LqpQq `
N
ÿ

i“1

}Bxi
u}q

LqpQq `
N
ÿ

i,j“1

›

›Bxi
Bxj

u
›

›

q

LqpQq

¸
1

q

.

We recall that the Hölder coefficient for a Hölder exponent γ P p0, 1q and a real-valued function w defined
in a set A Ă R

k, k P N, is given by

|w|CγpAq :“ sup
x,yPA, x‰y

|wpxq ´ wpyq|

|x ´ y|γ
.

By BA we denote the topological boundary of a set A Ă R
k, k P N. For a set Q Ă r0, T s ˆ O, we call

BQzptT u ˆ Oq

the parabolic boundary of Q.

Further, let a filtered probability space pΩ,F , pFtqtě0 ,Pq on which is defined a Wiener process
pW ptqqtě0 be given. We assume that pFtqtě0 is the usual completion of the natural filtration of pW ptqqtě0.
The corresponding Itô differential is denoted by dW . We presuppose that the reader is familiar with some
Itô and Malliavin calculi. In particular, we assume such standard results as: the Itô isometry (see, e.g.,
[14, Chapter 1 Theorem 7.1]) for p “ 2), a version of the Burkholder-Gundy-Davis inequality as stated
in [14, Chapter 1 Theorem 7.1], as well as the Kolmogorov’s continuity criterion (see, e.g., [4, Chapter
1 Theorem 3.1] and the subsequent remark) to be known. For T ą 0, the Malliavin derivative of an
FT -measurable c is denoted by pDrcqrPr0,T s. We make use of the following properties of the Malliavin
derivative: the chain rule [16, Proposition 1.2.3] and a result on the weak differentiability of solutions to
Itô SDEs (see, e.g., [16, Theorem 2.2.1] and the subsequent observation). We refer to [4, 14, 16] for more
details on the calculus for stochastic processes.

To ease the notation while dealing with purely PDE (SDE) properties which hold P-a.s. in Ω (a.e. in
O), we sometimes drop the dependence upon variable ω (variable x) and write, for example, c instead of
cp¨, ω, ¨q (cp¨, ¨, xq). Moreover, for a stochastic process u : r0, T s ˆΩ Ñ V , where V is a space of functions
defined for x P D, we often write uptq instead of upt, ¨q.

Finally, we make the following two useful conventions. Firstly, for all indices i, Ci or αi denotes a
non-negative constant or, alternatively, a non-negative function, which is non-decreasing in each of its
arguments. Secondly, we assume that the reappearing numbers T, r, t, h1, and h2 always satisfy

0 ă r ă t ď T, 0 ă h1 ď T ´ t, 0 ă h2 ď t ´ r.

4 Problem setting and main result

We make the following assumptions on the problem parameters.

Assumptions 4.1.

1. O is a smooth bounded domain in R
N , N P N.

2. Function β : R`
0 Ñ R

`
0 satisfies for some constants m1 ą 1, m2 ě 1, and M,µ ą 0 the conditions

β has an inverse function βp´1q, βp0q “ 0, (4.1)

β P C1pR`q X CpR`
0 q, β1 ą 0 in R

`, (4.2)

β1 is decreasing in R
`, (4.3)

pβ1q´1 P C
1´ 1

m1 pR`
0 q, (4.4)

c
1´ 1

m2 β1pcq ď µ for c P p0,M s. (4.5)

3
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3. Functions f, b : R`
0 ˆ R

`
0 Ñ R, and a : R`

0 Ñ R satisfy the conditions

sup
c,yPR`

0

fpc, yq

βpcq ` 1
ă 8, (4.6)

f P C1pR`
0 ˆ R

`
0 q, Bcf, Byf P CpR`

0 ;CbpR`
0 qq, (4.7)

a P C1pR`
0 q, a1 P CbpR

`
0 q, (4.8)

b P C1pR`
0 ˆ R

`
0 q, Bcb, Byb P CpR`

0 ;CbpR
`
0 qq. (4.9)

Moreover, f, a, and b also satisfy

fp0, yq ě 0 for all y P R
`
0 , ap0q “ 0, bpc, 0q ě 0 for all c P R

`
0 . (4.10)

4. The initial data c0, y0 : O Ñ R
`
0 satisfy

c0 P L8pOq X H1pOq, (4.11)

y0 P H1pOq, (4.12)

as well as

c0, y0 ě 0 a.e. in O. (4.13)

Definition 4.2 (Weak-strong solution). Let Assumptions 4.1 be satisfied. Let T ą 0. We call a pair
pc, yq : r0, T s ˆ O ˆ Ω Ñ R

`
0 ˆ R

`
0 a weak-strong local solution of system (2.1)-(2.2) if it holds that:

1. pc, yq : r0, T s ˆ Ω Ñ L2pOq is an adapted process;

2. c P L8pΩ;L8pp0, T q;L8pOqqq, Btc P L8pΩ;L2pp0, T q;L2pOqqq;

3. c P L8pΩ;L8pp0, T q;H1
0 pOqqq (c P L8pΩ;L8pp0, T q;H1pOqqq);

4. Drc P L2ppr, T q;L2pΩ;L2pOqqq, BtDrβpcq P L2ppr, T q ˆ Ω;H´2pOqq for all r P r0, T s;

5. y P L8pp0, T q;L2pΩ;H1pOqqq X C
1

2 pr0, T s;LqpΩ;LqpOqqq for some q ą 2;

6. Dry P L8ppr, T q;L2pΩ;L2pOqqq for all r P r0, T s;

7. pc, yq satisfies

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´ pβ pc0q , vqL2pOq ξp0q ´

ż T

0

pβ pcq psq, vqL2pOq

dξ

dt
psq ds

“ ´

ż T

0

p∇cpsq,∇vqL2pOq ξpsq ` pf pc, yq psq, vqL2pOq ξpsq ds

for all v P H1
0 pOq pv P H1pOqq for all ξ P C8

0 r0, T q a.s. in Ω,

yptq “ y0 `

ż t

0

apyqpsq dW psq `

ż t

0

bpc, yqpsq ds in L2pOq for all t P r0, T s a.s. in Ω.

(4.14a)

(4.14b)

If pc, yq is a local solution for all T ą 0, then we call it a global solution.

Remark 4.3 (Weak-strong solution). We call a solution pc, yq from Definition 4.2 a weak-strong solution
since it satisfies the PDE (2.1) in a weak PDE-sense and the SDE (2.2) in the strong SDE-sense.

Remark 4.4 (Continuity of sample paths).

1. Conditions c P L8pΩ;L8pp0, T q;H1pOqqq and Btc P L8pΩ;L2pp0, T q;L2pOqqq imply that cp¨, ¨, ωq P
H1pp0, T q;L2pOqq a.s. in Ω. Standard result [12, Chapter 1 Lemma 1.2] yields that cp¨, ¨, ωq P
Cpr0, T s;L2pOqq a.s. in Ω.

2. Since q ą 2, condition y P C
1

2 pr0, T s;LqpΩ;LqpOqqq implies that yp¨, ¨, ωq P Cpr0, T s;LqpOqq a.s. in
Ω. This is a direct consequence of the Kolmogorov’s continuity criterion (see [4, Chapter 1 Theorem
3.1] and the subsequent remark). Below we choose q as in the Sobolev embedding theorem, i.e., such
that H1pOq Ă LqpOq.
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For arbitrary T ą 0 and R “ pR0, R1q, R0, R1 ą 0, we introduce the parameter set

PpT,Rq

:“
!

pβ, f, a, b, c0, y0q| as in Assumptions 4.1 and such that }c0}L8pOq, sup
c,yPR`

0

fpc, yq

βpcq ` 1
ď R0,

›

›pβ1q´1
›

›

C
1´ 1

m1 r0,R2pT,R0qs
, sup

cPp0,R2pT,R0qs

c
1´ 1

m2 β1pcq, }pBcf, Byf, Bcb, Bybq}
Cbpr0,R2pT,R0qsˆR

`
0 q ď R1,

}a1}
CbpR`

0
q, bp0, 0q, }pc0, y0q}H1pOq ď R1

)

,

where

R2pT,R0q :“ βp´1q
`

eTR0pβpR0q ` 1q ´ 1
˘

(4.15)

is an upper bound for solution component c if the parameters belong to PpT,Rq (see estimate (5.4)
below). We define the corresponding sets of solutions and of their components via

UpT,Rq :“ tpc, yq| pc, yq is a weak-strong solution corresponding to pβ, f, a, b, c0, y0q P PpT,Rqu,

CpT,Rq :“ tc| pc, yq P UpT,Rqu,

YpT,Rq :“ ty| pc, yq P UpT,Rqu.

Now we are ready to formulate our compactness result:

Theorem 4.5 (Compactness). Let Assumptions 4.1 1.-3. be satisfied. Then for all T ą 0 and R “
pR0, R1q, R0, R1 ą 0, it holds that

CpT,Rq and YpT,Rq are precompact in L2pp0, T q ˆ O ˆ Ωq.

We prove this theorem in Section 7 and then use it in Section 9 in order to establish the following result
which deals with the existence of solutions:

Theorem 4.6 (Existence of a weak-strong solution). Let Assumptions 4.1 be satisfied. Then there exists
a weak-strong global solution in terms of Definition 4.2 to system (2.1)-(2.2).

Remark 4.7 (Uniqueness). The uniqueness of solutions to (2.1)-(2.2) holds as well. It can be proved in
a standard way by exploiting the monotonicity of β without requiring the solutions to be differentiable in
the Malliavin sense.

Remark 4.8 (Notation). We make the following useful convention: the statement that a quantity (a
constant or a function) depends on the parameters of the problem means that it depends upon the space
dimension N , domain O, constants T , m1, m2, µ, and q, and the structure of the initial values c0 and
y0 and of the coefficient functions β, f, a and b (the latter means their norms etc. which appear in the
definition of the parameter set PpT,Rq).

Moreover, dependence upon these parameters is mostly not indicated in an explicit way.

5 A priori estimates for the RPME (2.1)

5.1 Standard PDE estimates for c

Equation (2.1a) is a.s. in Ω a standard PME in p0, T s ˆ O. This allows us to derive in a standard
way several basic estimates for c which hold irrespectively of ω. To begin with, we multiply (2.1a) by
ppβpcq ` 1qp´1 for an arbitrary p ą 1 and integrate by parts over O using the boundary conditions. We
thus obtain with the help of assumptions (4.2) and (4.6) that

d

dt
}βpcq ` 1}p

LppOq “ ´ ppp ´ 1q

ż

O

cβ1pcqpβpcq ` 1qp´2|∇c|2 dx ` p

ż

O

fpc, yqpβpcq ` 1qp´1 dx

ďpC1}βpcq ` 1}p
LppOq, (5.1)

where

C1 :“ sup
c,yPR`

0

fpc, yq

βpcq ` 1
.

5
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Applying the Gronwall lemma to (5.1) and taking the 1
p
-power on both sides of the resulting inequality,

we obtain that

}βpcqptq ` 1}LppOq ď etC1}βpc0q ` 1}LppOq. (5.2)

In the limit as p Ñ 8 estimate (5.2) and the fact that β is increasing yield that

}βpcqptq ` 1}L8pOq ďetC1}βpc0q ` 1}L8pOq

ďetC1

`

β
`

}c0}L8pOq

˘

` 1
˘

. (5.3)

Consequently, we arrive with (5.3) and assumption (4.1) at the estimate

}c}L8pp0,T qˆOˆΩq ďβp´1q
`

eTC1

`

β
`

}c0}L8pOq

˘

` 1
˘

´ 1
˘

,

ďR2pT,R0q, (5.4)

where

R0 :“ maxtC1, }c0}L8pOqu,

and R2 was defined in (4.15).

Remark 5.1. Due to estimate (5.4), it suffices to consider the coefficient functions for c P r0, R2pT,R0qs
only.

Another standard estimate for c as solution to the PME (2.1) is obtained by multiplying by Btc and
integrating by parts over O using the boundary conditions and then over r0, ts for t P p0, T s. This implies
due to (5.4), assumptions (4.3) and (4.11), and the Young inequality that

C2

ż t

0

}Btcpsq}
2

L2pOq ds ďβ1
`

}c}L8pp0,T qˆOˆΩq

˘

ż t

0

}Btcpsq}
2

L2pOq ds

ď

ż t

0

ż

O

β1pcq|Btc|
2psq dxds

“ ´ }∇cptq}2pL2pOqqN ` }∇c0}2pL2pOqqN `

ż t

0

ż

O

fpc, yqBtcpsq dxds

ď ´ }∇cptq}2pL2pOqqN `
C2

2

ż t

0

}Btcpsq}
2

L2pOq ds ` C3.

Consequently, we obtain that

ż t

0

}Btcpsq}2L2pOq ds, }∇cptq}2pL2pOqqN ď C4 for all t P r0, T s. (5.5)

Altogether, estimates (5.4) and (5.5) yield the first group of estimates for norms of c:

a.s. in Ω

$

’

’

&

’

’

%

}c}L8pp0,T qˆOq ď C5,

}∇c}L8pp0,T q;pL2pOqqN q ď C5,

}Btc}L2pp0,T q;L2pOqq ď C5.

(5.6)

(5.7)

(5.8)

In particular, assumption (4.6) together with estimate (5.6) imply that

}fpcq}L8pp0,T qˆOq ď C6 a.s. in Ω. (5.9)

5.2 Estimate for the Malliavin derivative Drc

The next step is to apply the Malliavin derivative operator Dr on both sides of the integrated form of
equation (2.1), the integro-differential equation (4.14a). Using the chain rule and the locality property
(Dt1F pt2q “ 0 for t2 ă t1 for F adapted) of the operator Dr, we compute that

β1pcqDrcptq “Drβpcqptq

“Dr∆

ż t

0

cpsq ds ` Dr

ż t

0

fpc, yqpsq ds

6
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“∆

ż t

r

Drcpsq ds `

ż t

r

Drfpc, yqpsq ds. (5.10)

Multiplying (5.10) by Drcptq and integrating by parts over O using the boundary conditions and then
over rr, ts, we obtain using assumption (4.3), estimate (5.6), and the Young inequality that

C7

ż t

r

}Drcpsq}
2

L2pOq ds

ď

ż t

r

ż

O

β1pcq|Drc|
2psq dxds

“ ´
1

2

›

›

›

›

∇

ż t

r

Drcpsq ds

›

›

›

›

2

pL2pOqqN
`

ż t

r

ż

O

Drcpsq

ż s

r

Drfpc, yqpτq dτdxds

ď
C7

2

ż t

r

}Drcpsq}
2

L2pOq ds ` C8

ż t

r

ż s

r

}Drfpc, yqpτq}
2

L2pOq dτds.

Thus, we arrive at the inequality

ż t

r

}Drcpsq}
2

L2pOq ds ďC9

ż t

r

ż s

r

}Drfpc, yqpτq}
2

L2pOq dτds. (5.11)

In order to estimate the term on the right hand side of (5.11), we use the chain rule and assumption
(4.7). We thus obtain that

}Drfpc, yqptq}
2

L2pOq ď C10 }Drcptq}
2

L2pOq ` C10 }Dryptq}
2

L2pOq . (5.12)

Combining (5.11) and (5.12) yields that

ż t

r

}Drcpsq}
2

L2pOq ds ďC11

ż t

r

ż s

r

}Drcpτq}
2

L2pOq dτds ` C11

ż t

r

ż s

r

}Drypτq}
2

L2pOq dτds. (5.13)

Application of the Gronwall lemma to (5.13) yields that

ż t

r

}Drcpsq}2L2pOq ds ďC12

ż t

r

ż s

r

}Drypτq}2L2pOq dτ ds

ďC13

ż t

r

}Drypsq}2L2pOq ds a.s. in Ω. (5.14)

Moreover, estimates (5.12) and (5.14) imply that

ż t

r

}Drfpc, yqpsq}
2

L2pOq ds ď C14

ż t

r

}Drypsq}
2

L2pOq ds a.s. in Ω. (5.15)

5.3 Estimate for BtDrβpcq

Applying the differential operator Dr to the original equation (2.1a), we have that

BtDrβpcq “ ∆Drc ` Drfpc, yq (5.16)

Combining estimates (5.14) and (5.15) with the Sobolev inequality, we conclude from (5.16) that

ż t

r

}BtDrβpcqpsq}
2

H´2pOq ds ďC15

ż t

r

}Drcpsq}
2

L2pOq ` }Drfpc, yqpsq}
2

H´2pOq ds

ďC16

ż t

r

}Drcpsq}
2

L2pOq ` }Drfpc, yqpsq}
2

L2pOq ds

ďC17

ż t

r

}Drypsq}
2

L2pOq ds a.s. in Ω. (5.17)

7
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5.4 Estimate for Dr`h2
c ´ Drc

Inserting r ` h2 in place of r in (5.10), we have (recall that Dt1F pt2q “ 0 for t2 ă t1 for F adapted) that

β1pcqDr`h2
cptq “∆

ż t

r`h2

Dr`h2
cpsq ds `

ż t

r`h2

Dr`h2
fpc, yqpsq ds,

“∆

ż t

r

Dr`h2
cpsq ds `

ż t

r

Dr`h2
fpc, yqpsq ds. (5.18)

Subtracting (5.18) and (5.10), we obtain that

β1pcqpDr`h2
c ´ Drcqptq “∆

ż t

r

pDr`h2
c ´ Drcqpsq ds `

ż t

r

pDr`h2
fpc, yq ´ Drfpc, yqqpsq ds. (5.19)

Arguing for (5.19) as we just did for (5.10) above, we obtain that

ż t

r

}pDr`h2
c ´ Drcqpsq}

2

L2pOq ds ďC18

ż t

r

}pDr`h2
y ´ Dryqpsq}

2

L2pOq ds a.s. in Ω. (5.20)

5.5 A regularising transformation for solutions of a PME

In this sequel, we deal with some purely PDE properties of (2.1a). It is well-known that solutions of a
PME like (2.1a) are, in general, only weak-strong solutions if c ı 0 and is not strictly separated from zero.
In particular, ∆c is generally not even L2-bounded. Still, it is well-understood [1, 3, 5, 8, 22] that under
reasonable assumptions on f the solution is at least locally Hölder continuous. Following our idea from
[19], we show how the information on the (local) Hölder continuity of a solution function can be used in
order to transform this function into a smooth one by means of a smooth and strictly increasing function
which depends only upon the parameters of the problem. We believe that this result is of interest by
itself. We then use this transformation for the compactness proof, see Section 7. Before we begin with a
construction for solutions of a PME, let us consider a simple motivating example.

Example 5.2. Denote by Br, r ą 0, the closed ball of radius r in R
N centred at the origin. Let

w : B1 Ñ r0, 1s, wpxq “ |x|γ for some γ P p0, 1q.

It is well-known that w P C2pB1zt0uq X CγpB1q, but w R C2pB1q. Since

ˇ

ˇBxi
Bxj

wpxq
ˇ

ˇ ď γpγ ´ 1q|x|γ´2 for all x P B1zt0u

and

tw ą ku “ B
k

1

γ
for all k P p0, 1s,

we have that

}Bxi
Bxj

w}
Cptwąkuq ď γpγ ´ 1qk1´ 2

γ for all k P p0, 1s. (5.21)

Set

ϕ : r0, 1s Ñ R
`
0 , ϕpkq :“

´

γpγ ´ 1qk1´ 2

γ

¯´1

“ pγpγ ´ 1qq´1
k

2

γ
´1.

We define a regularising transformation for w by

Φ : r0, 1s Ñ R
`
0 , Φpkq :“

ż k

0

ż s2

0

ϕps1q ds1ds2 “

ˆ

γpγ ´ 1q
2

γ

ˆ

2

γ
` 1

˙˙´1

k
2

γ
`1.

Then, we have that

Φpwpxqq “

ˆ

γpγ ´ 1q
2

γ

ˆ

2

γ
` 1

˙˙´1

|x|2`γ for all x P B1.

It is easy to see that Φ has the following properties:

1. Φpwq P C2pB1q;

8
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2. Φ is a strictly increasing function, so that it allows to reconstruct back w from Φpwq;

3. Φ preserves the zero set of w and allows to reconstruct it back;

4. Φ can be used to regularise a whole class of functions w which are smooth everywhere but for their
zero sets and satisfy (5.21). Thus, Φ smooths down such a function w near its zero set.

Let us now apply the idea from Example 5.2 to solutions c of (2.1a). In this general case, however,
we cannot hope for pointwise estimates like (5.21) to hold uniformly in ω. This is because the source
term f depends upon y, which is, for each x, a solution of an SDE. Hence, instead of using the spaces
of functions which are differentiable in the classical sense, we work in anisotropic Sobolev spaces. The,
possibly, irregular behaviour of c at the parabolic boundary of the cylinder p0, T s ˆO presents yet enough
difficulty. Our regularising transformation should thus be able to smooth down c not only near tc “ 0u,
where the equation has a degeneracy, but also at the parabolic boundary

Γ :“ Bpp0, T s ˆ OqzptT u ˆ Oq.

For this reason, we consider c on the intersections of its level sets with a decreasing family of subcylinders
of p0, T s ˆ O:

Qd :“ tpt, xq P p0, T s ˆ O : distppt, xq,Γq ą du for all d P

ˆ

0,
1

4
diampOq



.

We recall that due to assumptions on β and estimates (5.6) and (5.9) it holds (see, e.g., [8, Theorem 2.I])
that

|c|Cα0pQdq ď C19

`

d´1
˘

for all d P

ˆ

0,
1

4
diampOq



for some α0 P p0, 1q. (5.22)

Thus, the Hölder constant may explode as d Ñ 0, that is, as Γ is approached. We next divide both sides
of (2.1a) by β1pcq and thus obtain an equation in a non-divergence form:

Btc “ pβ1pcqq´1∆c ` pβ1pcqq´1fpc, yq. (5.23)

Due to assumption (4.4) and estimates (5.6), (5.9), and (5.22), it holds that

›

›pβ1pcqq´1
›

›

Cα1pQdq
ď C20

`

d´1
˘

for some α1 P p0, 1q, (5.24)
›

›pβ1pcqq´1fpc, yq
›

›

L8pQdq
ď C21.

In order to obtain (5.24), we used the well-known property of superpositions of Hölder continuous func-
tions:

u1 P Cγ1pDq, u2 P Cγ2pu1pDqq for some γ1, γ2 P p0, 1q

ñu2 ˝ u1 P Cγ1γ2pDq and |u2 ˝ u1|Cγ1γ2 pDq ď |u2|Cγ2pu1pDqq|u1|γ2

Cγ1pDq.

Let us consider for any k P
´

0, }c}L8pp0,T qˆOq

¯

, d P
`

0, 1
4
diampOq

‰

the sets tc ą kuXQd and
 

c ą k
2

(

XQ d
2

.

Using the crucial property (5.22), we deduce the following: these two sets are relatively open w.r.t.
p0, T s ˆ O and their parabolic boundaries do not intersect. Moreover, the estimate on the Hölder norm
allows to estimate the distance between the parabolic boundaries from below by a positive number which
depends only upon d, k, and, of course, the parameters of the problem. Now, equation (5.23) is non-
degenerate in

 

c ą k
2

(

. Therefore, we can apply standard results on local regularity for linear parabolic
equations, see Theorems 9.1 and 10.1, and the remark on local estimates in Sobolev spaces at the end
of §10 in [11, Chapter IV]. Considering tc ą ku X Qd as a subdomain of

 

c ą k
2

(

X Q d
2

, these regularity

results can be interpreted in the following way: for each p P p1,8q there exists a function

ϕp : R`
0 ˆ

„

0,
1

4
diampOq



Ñ R
`
0

with the properties

1. ϕp depends only upon p and the parameters of the problem;

2. ϕpp0, ¨q ” 0, ϕpp¨, 0q ” 0 in R
`
0 , ϕp ą 0 in R

` ˆ
`

0, 1
4
diampOq

‰

;

9
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3. ϕp is uniformly bounded;

4. ϕp is increasing in each of the two variables;

5. for each k P
´

0, }c}L8pp0,T qˆOq

¯

and d P
`

0, 1
4
diampOq

‰

it holds that

}c}W p1,2q,2pptcąkuXQdq ď ϕ´1
p pk, dq; (5.25)

6. ϕpβ
1 ď 1.

Remark 5.3. Local estimates from [11] deal with cylindrical sets, which is generally not the case for a
set tc ą ku X Qd. However, since the closure of such a set is a compact set, lies inside of a relatively
w.r.t. p0, T s ˆ O open set

 

c ą k
2

(

X Q d
2

, and we have control upon the distance between the parabolic

boundaries, we can cover tc ą kuXQd by a finite number of sufficiently small cylinders which lie completely
in

 

c ą k
2

(

XQ d
2

and such that their number and the distance between their parabolic boundaries and the

parabolic boundary of
 

c ą k
2

(

X Q d
2

is bounded from below by a positive number which depends only

upon d, k, and the parameters of the problem. Hence, we can apply the results from [11] to each of these
cylinders and subsequently sum together the resulting estimates in order to deduce (5.25) with ϕ satisfying
conditions 1.-4. from above.

Remark 5.4. Observe that if a function ϕ̃p satisfies conditions 1.-5. from above, we can clearly satisfy
all six conditions by taking

ϕppk, dq :“ mintϕ̃ppk, dq, pβ1pkqq´1u.

Estimate (5.25) together with properties 1.-4. convey that c is well-behaved away from its zero set tc “ 0u
and the parabolic boundary of p0, T s ˆ O, may possibly have singularities on that parabolic boundary
and/ or tc “ 0u, but, also, that we have some control on its behaviour near the singularities. Using ϕp,
we are now able to produce our regularising transformation for c:

Φp : R`
0 ˆ

„

0,
1

4
diampOq



Ñ R
`
0 ,

Φppk, dq :“

ż k

0

ż N

0

ż s2

0

ż z2

0

s1

2
ϕ2
p

´s1

2
, z1

¯

dz1 ds1 dz2 ds2.

Due to properties 2. and 4. of ϕp, we have for each k P
´

0, }c}L8pp0,T qˆOq

¯

and d P
`

0, 1
4
diampOq

‰

that

0 ď Bα1`α2

kα1dα2
Φppk, dq ď C22

k

2
ϕ2
p

ˆ

k

2
, d

˙

for α1, α2 P t0, 1, 2u, α1 ` α2 ď 2. (5.26)

Next, we recall that domain O has a smooth boundary. Consequently, there exists a function

γ : r0, T s ˆ O Ñ

„

0,
1

4
diampOq



with the following properties:

1. γpt, xq ą 0 in p0, T s ˆ O, γpt, xq “ 0 in Γ;

2. γ P C2pr0, T s ˆ Oq;

3. there exists a number d0 P
`

0, 1
4
diampOq

‰

, which depends only upon the domain O, such that

γ ď d in Qd for all d P r0, d0s.

Using the chain rule, (5.26) and the properties of ϕp and γ, one readily checks that for all p P p1,8q it
holds that

}Φppc, γq}W p1,2q,ppp0,T qˆOq ď C23ppq, (5.27)

}BtΦppc, γqβ1pcq}Lppp0,T qˆOq ď C24ppq. (5.28)

10
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Indeed, for each i, j P t1, . . . , Nu, k P
´

0, }c}L8pp0,T qˆOq

¯

and d P p0, d0s, it holds due to the Hölder

inequality that, for instance,

›

›Bc2Φppc, γqBxi
cBxj

c
›

›

Lpptkăcď2kuXQdq
ďC22

›

›

›

c

2
ϕ2
p

´ c

2
, γ
¯

Bxi
cBxj

c
›

›

›

Lpptkăcď2kuXQdq

ďC22kϕ
2
ppk, dq }Bxi

c}L2pptkăcď2kuXQdq }Bxi
c}L2pptkăcď2kuXQdq

ďC22kϕ
2
ppk, dq }c}

2

W p1,2q,2pptkăcď2kuXQdq

ďC22k. (5.29)

Since the constant C22 doesn’t depend upon k, estimate (5.29) yields that
›

›Bc2Φppc, γqBxi
cBxj

c
›

›

Lpptcą0uXQdq

“
8
ÿ

i“0

›

›Bc2Φppc, γqBxi
cBxj

c
›

›

Lppt2´pi`1q}c}L8pp0,T qˆOqăcď2´i}c}L8pp0,T qˆOquXQdq

ďC22

8
ÿ

i“0

2´pi`1q

“C22. (5.30)

Finally, since Φppc, γq ” 0 on tc “ 0u and C22 doesn’t depend upon d, (5.30) implies that
›

›Bc2Φppc, γqBxi
cBxj

c
›

›

Lppp0,T qˆOq
ď C22.

Applying the chain rule to Φppc, γq in order to compute the required partial derivatives and treating other
resulting terms in a similar fashion leads to estimates (5.27) and (5.28).

5.6 Estimates for a transformation of solutions of the RPME (2.1)

Let p P p1,8q and let Φp be the smoothing transformation from Subsection 5.5. We now introduce yet
another transformation

Ψp : R`
0 ˆ

„

0,
1

4
diampOq



Ñ R
`
0 ,

Ψppk, dq :“

ż k

0

Φpps, dqβ1psq ds.

Due to assumption (4.2) and the properties of Φp, we have that

Ψp P C1

ˆ

R
`
0 ˆ

„

0,
1

4
diampOq

˙

, 0 ď BkΨppk, dq ď C25pp, kq. (5.31)

The continuity of BkΨp in R
`ˆ

“

0, 1
4
diampOq

‰

is a direct consequence of continuity of Φp and β. Moreover,
it holds with (5.26) and the properties of ϕp listed above that

0 ď Φppk, dqβ1pkq ďC22

k

2
ϕ2
p

ˆ

k

2
, d

˙

β1pkq

ďC26ppqkϕpβ
1pkq

ďC26ppqk “: C25pp, kq. (5.32)

Estimate (5.32) yields in particular that BkΨp is continuous in every point of the set t0uˆ
“

0, 1
4
diampOq

‰

,
as required.

Using estimates (5.6)-(5.8) and (5.31) and the chain rule, we obtain the following group of estimates:

a.s. in Ω

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

}Ψppc, γq}
L8pp0,T q;L8pOqq ď C27ppq

}∇Ψppc, γq}
L8pp0,T q;pL2pOqqN q ď C27ppq

}BtΨppc, γq}
L2pp0,T q;L2pOqq ď C27ppq,

}DrΨppc, γq}
L2ppr,T qˆOq ď C27ppq }Drc}L2ppr,T qˆOq ,

}Dr`h2
Ψppc, γq ´ DrΨppc, γq}

L2ppr,tqˆOq ď C27ppq }Dr`h2
c ´ Drc}L2ppr,tqˆOq .

(5.33a)

(5.33b)

(5.33c)

(5.33d)

(5.33e)

11
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Next, we use the chain and product rules in order to obtain the following representation for BtDrΨppc, γq:

BtDrΨppc, γq “ Φppc, γqBtDrβpcq ` BtΦppc, γqβ1pcqDrc. (5.34)

Let p ą max
 

N
2
, 2
(

. Then, W 2,p
0 pOq is closed under pointwise multiplication and

}uv}W 2,p
0

pOq ď C28ppq}u}W 2,p
0

pOq}v}W 2,p
0

pOq,

so that, due to the Sobolev inequality,

}uv}H2

0
pOq ď C29ppq}u}W 2,p

0
pOq}v}W 2,p

0
pOq. (5.35)

Using (5.35), we obtain the following estimate for the first summand on the right-hand side of (5.34):

}Φppc, γqBtDrβpcq}
H´2pOq ď C29ppq }Φppc, γq}

W 2,ppOq }BtDrβpcq}H´2pOq . (5.36)

For the second summand, the Hölder and Sobolev inequalities together with the properties of Φp yield
that

›

›BtΦppc, γqβ1pcqDrc
›

›

H´2pOq
ďC30ppq

›

›BtΦppc, γqβ1pcqDrc
›

›

L
2p

p`2 pOq

ďC30ppq
›

›BtΦppc, γqβ1pcq
›

›

LppOq
}Drc}L2pOq . (5.37)

Combining (5.27), (5.28), (5.34), (5.36), and (5.37), integrating over pr, T q and using the Hölder inequality,
we obtain that

}BtDrΨppc, γq}
L

2p
p`2 pr,T ;H´2ppr,T qˆOqq

ďC29ppq }Φppc, γq}
Lppr,T ;W 2,ppOqq }BtDrβpcq}L2pr,T ;H´2pOqq

` C30ppq
›

›BtΦppc, γqβ1pcq
›

›

Lpppr,T qˆOq
}Drc}L2ppr,T qˆOq

ďC31ppq
´

}BtDrβpcq}L2pr,T ;H´2pOqq ` }Drc}L2ppr,T qˆOq

¯

. (5.38)

Since p ą 2, C
1

2
´ 1

p Ă W 1,
2p

p`2 holds. This, together with (5.33d) and (5.38), finally yields that

}DrΨppc, γq}
C

1

2
´ 1

p prr,T s;H´2pOqq
ďC32ppq

´

}BtDrβpcq}L2pr,T ;H´2pOqq ` }Drc}L2ppr,T qˆOq

¯

a.s. in Ω.

(5.39)

6 A priori estimates for SDE (2.2)

6.1 Basic estimate for y

We begin with an Lq-estimate for y as solution of the stochastic integral equation (4.14b). Thereby we
choose q ą 2 as in the Sobolev embedding theorem, i.e., such that H1pOq Ă LqpOq. Using assumptions
(4.8) and (4.9), estimate (5.6), and a version of the Burkholder-Gundy-Davis inequality [14, Chapter 1
Theorem 7.1], we obtain that

}yptq}q
LqpΩq ďC33

˜

|y0|q `

›

›

›

›

ż t

0

apyqpsq dW psq

›

›

›

›

q

LqpΩq

`

›

›

›

›

ż t

0

bpc, yqpsq ds

›

›

›

›

q

LqpΩq

¸

ďC33|y0|q ` t
q´2

2 C33

ż t

0

}apyqpsq}q
LqpΩq ds ` tq´1C33

ż t

0

}bpc, yqpsq}q
LqpΩq ds

ďC33|y0|q ` C34

ż t

0

}ypsq}q
LqpΩq ds ` C34

ż t

0

bqp0, 0q ` }cpsq}q
LqpΩq ` }ypsq}q

LqpΩq ds

ďC33|y0|q ` C35 ` C35

ż t

0

}ypsq}q
LqpΩq ds. (6.1)

Integrating (6.1) over O and using assumption (4.12), we conclude that

}yptq}q
LqpΩ;LqpOqq ďC33}y0}q

LqpOq ` C36 ` C35

ż t

0

}ypsq}q
LqpΩ;LqpOqq ds

ďC37 ` C35

ż t

0

}ypsq}q
LqpΩ;LqpOqq ds. (6.2)

Applying the Gronwall lemma to (6.2), we arrive at the estimate

}y}L8pp0,T q;LqpΩ;LqpOqqq ď C38. (6.3)
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6.2 Estimate for ∇y

Computing the spatial gradient on both sides of (4.14b), we obtain that ∇y satisfies the stochastic integral
equation

∇yptq “ ∇y0 `

ż t

0

a1pyq∇ypsq dW psq `

ż t

0

Bcbpc, yq∇cpsq ` Bybpc, yq∇ypsq ds. (6.4)

Using assumptions (4.8) and (4.9), estimates (5.6) and (5.7), and the Itô isometry, we obtain that

}∇yptq}2pL2pΩqqN ď4}∇y0}2pL2pΩqqN ` 4

ż t

0

}a1pyq∇ypsq}2pL2pΩqqN ds

` 4t

ż t

0

}Bcbpc, yq∇cpsq}2pL2pΩqqN ` }Bybpc, yq∇ypsq}2pL2pΩqqN ds

ď4}∇y0}2pL2pΩqqN ` C39

ż t

0

}∇cpsq}2pL2pΩqqN ` }∇ypsq}2pL2pΩqqN ds

ď4}∇y0}2pL2pΩqqN ` C40 ` C40

ż t

0

}∇ypsq}2pL2pΩqqN ds. (6.5)

Integrating (6.5) over O and using assumption (4.12), we conclude that

}∇yptq}2L2pΩ;pL2pOqqN q ď4}∇y0}2L2pOqqN ` C41 ` C40

ż t

0

}∇ypsq}2L2pΩ;pL2pOqqN q ds

ďC42 ` C40

ż t

0

}∇ypsq}2L2pΩ;pL2pOqqN q ds. (6.6)

Applying the Gronwall lemma to (6.6), we arrive at the estimate

}∇y}L8pp0,T q;L2pΩ;pL2pOqqN qq ď C43. (6.7)

6.3 Estimate for ypt ` h1q ´ yptq

The difference ypt ` h1q ´ yptq satisfies

ypt ` h1q ´ yptq “

ż t`h1

t

apyqpsq dW psq `

ż t`h1

t

bpc, yqpsq ds.

Using assumptions (4.8) and (4.9), estimate (5.6), and a version of the Burkholder-Gundy-Davis inequality
[14, Chapter 1 Theorem 7.1], we obtain that

}ypt ` h1q ´ yptq}q
LqpΩq

ďh
q´2

2

1 C44

ż t`h1

t

}apyqpsq}
q

LqpΩq ds ` h
q´1
1 C44

ż t`h1

t

}bpc, yqpsq}
q

LqpΩq ds

ďh
q´2

2

1 C45

ż t`h1

t

}ypsq}q
LqpΩq ds ` h

q´1
1 C45

ż t`h1

t

bqp0, 0q ` }cpsq}q
LqpΩq ` }ypsq}q

LqpΩq ds

ďh
q
1C46 ` h

q´2

2

1 C46

ż t`h1

t

}ypsq}q
LqpΩq ds. (6.8)

Integrating (6.8) over O and using estimate (6.3), we arrive at the estimate

}ypt ` h1q ´ yptq}LqpΩ;LqpOqq ď h
1

2

1 C47. (6.9)

6.4 Estimate for the Malliavin derivative Dry

Using the chain rule and the rule of the differentiation of an Itô SDE, we compute the Dr-derivative on
both sides of equation (4.14b). This leads to a stochastic integral equation for Dry:

Dryptq “ apyqprq `

ż t

r

a1pyqDrypsq dW psq `

ż t

r

Bcbpc, yqDrcpsq ` Bybpc, yqDrypsq ds. (6.10)

13
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Using assumptions (4.8) and (4.9), estimate (5.6), and the Itô isometry, we obtain that

}Dryptq}2L2pΩq ď4}apyqprq}2L2pΩq ` 4

ż t

r

}a1pyqDrypsq}2L2pΩq ds

` 4pt ´ rq

ż t

r

}Bcbpc, yqDrcpsq}2L2pΩq ` }Bybpc, yqDrypsq}2L2pΩq ds

ďC48}yprq}2L2pΩq ` C48

ż t

r

}Drypsq}2L2pΩq ds ` C48

ż t

r

}Drcpsq}2L2pΩq ds. (6.11)

Integrating (6.11) over O and using estimate (6.3), we conclude that

}Dryptq}2L2pΩ;L2pOqq ďC48}yprq}2L2pΩ;L2pOqq ` C48

ż t

r

}Drypsq}2L2pΩ;L2pOqq ds

` C48

ż t

r

}Drcpsq}2L2pΩ;L2pOqq ds

ďC49 ` C48

ż t

r

}Drypsq}2L2pΩ;L2pOqq ds ` C48

ż t

r

}Drcpsq}2L2pΩ;L2pOqq ds. (6.12)

Applying the Gronwall lemma to (6.12), we arrive at the estimate

}Dryptq}
2

L2pΩ;L2pOqq ďC50 ` C50

ż t

r

}Drcpsq}
2

L2pΩ;L2pOqq ds. (6.13)

6.5 Estimate for Drypt ` h1q ´ Dryptq

Due to (6.10), the difference Drypt ` h1q ´ Dryptq satisfies

Drypt ` h1q ´ Dryptq “

ż t`h1

t

a1pypsqqDrypsq dW psq `

ż t`h1

t

Bcbpc, yqDrcpsq ` Bybpc, yqDrypsq ds.

Using assumptions (4.8) and (4.9), estimate (5.6), and the Itô isometry, we obtain that

}Drypt ` h1q ´ Dryptq}
2

L2pΩq

ď3

ż t`h1

t

›

›a1pypsqqDrypsq
›

›

2

L2pΩq
ds ` 3h1

ż t`h1

t

}Bcbpc, yqDrcpsq}2L2pΩq ` }Bybpc, yqDrypsq}2
L2pΩq ds

ďC51

ż t`h1

t

}Drypsq}
2

L2pΩq ds ` h1C51

ż t`h1

t

}Drcpsq}
2

L2pΩq ds. (6.14)

Integrating (6.11) over O and using estimate (6.13), we conclude that

}Drypt ` h1q ´ Dryptq}2L2pΩ;L2pOqq ďh1C52 ` h1C52

ż t`h1

r

}Drcpsq}2L2pΩ;L2pOqq ds. (6.15)

6.6 Estimate for Dr`h2
y ´ Dry

Due to (6.10), the difference Dr`h2
y ´ Dry satisfies (recall that Dt1F pt2q “ 0 for t2 ă t1 for F adapted)

Dr`h2
yptq ´ Dryptq “apyqpr ` h2q ´ apyqprq `

ż t

r

a1pyqpDr`h2
y ´ Dryqpsq dW psq

`

ż t

r

Bcbpc, yqpDr`h2
c ´ Drcqpsq ` Bybpc, yqpDr`h2

y ´ Dryqpsq ds (6.16)

Using assumptions (4.8) and (4.9), estimate (5.6), and the Itô isometry, we obtain that

}pDr`h2
y ´ Dryqptq}2L2pΩq

ď4}apyqpr ` h2q ´ apyqprq}2 ` 4

ż t

r

}a1pyqpDr`h2
y ´ Dryqpsq}2L2pΩq ds

` 4pt ´ rq

ż t

r

}Bcbpc, yqpDr`h2
c ´ Drcqpsq}2L2pΩq ` }Bybpc, yqpDr`h2

y ´ Dryqpsq}2L2pΩq ds

14
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ďC53}ypr ` h2q ´ yprq}2L2pΩq ` C53

ż t

r

}pDr`h2
c ´ Drcqpsq}2L2pΩq ` }pDr`h2

y ´ Dryqpsq}2L2pΩq ds. (6.17)

Integrating (6.17) over O and using estimate (6.13), we conclude that

}pDr`h2
y ´ Dryqptq}2L2pΩ;L2pOqq

ďC53}ypr ` h2q ´ yprq}2L2pΩ;L2pOqq

` C53

ż t

r

}pDr`h2
c ´ Drcqpsq}2L2pΩ;L2pOqq ` }pDr`h2

y ´ Dryqpsq}2L2pΩ;L2pOqq ds

ďh2C54 ` C53

ż t

r

}pDr`h2
c ´ Drcqpsq}2L2pΩ;L2pOqq ds `

ż t

r

}pDr`h2
y ´ Dryqpsq}2L2pΩ;L2pOqq ds. (6.18)

Applying the Gronwall lemma to (6.18), we arrive at the estimate

}pDr`h2
y ´ Dryqptq}2L2pΩ;L2pOqq ď h2C55 ` C55

ż t

r

}pDr`h2
c ´ Drcqpsq}2L2pΩ;L2pOqq ds. (6.19)

7 Proof of the compactness Theorem 4.5

In this section, we finally prove our main result, Theorem 4.5 on compactness. We begin with collecting
together estimates (5.6)-(5.8), (5.14), (5.20), (5.17), (6.7), (6.3), (6.9), (6.13), (6.19), (6.15) for c and y

which we obtained in Sections 5 and 6:

a.s. in Ω

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

}c}L8pp0,T q;L8pOqq ď C5,

}∇c}L8pp0,T q;pL2pOqqN q ď C5,

}Btc}L2pp0,T q;L2pOqq ď C5,
ż t

r

}Drcpsq}
2

L2pOq ds ď C13

ż t

r

}Drypsq}
2

L2pOq ds,

ż t

r

}pDr`h2
c ´ Drcqpsq}

2

L2pOq ds ď C18

ż t

r

}pDr`h2
y ´ Dryqpsq}

2

L2pOq ds,

ż t

r

}BtDrβpcqpsq}
2

H´2pOq ds ď C17

ż t

r

}Drypsq}
2

L2pOq ds

(7.1a)

(7.1b)

(7.1c)

(7.1d)

(7.1e)

(7.1f)

and

}y}
C

1

2 pr0,T s;LqpΩ;LqpOqqq
ď C47, (7.2a)

}∇y}L8pp0,T q;L2pΩ;pL2pOqqN qq ď C43, (7.2b)

}Dryptq}
2

L2pΩ;L2pOqq ď C50 ` C50

ż t

r

}Drcpsq}
2

L2pΩ;L2pOqq ds, (7.2c)

}pDr`h2
y ´ Dryqptq}

2

L2pΩ;L2pOqq ď h2C55 ` C55

ż t

r

}pDr`h2
c ´ Drcqpsq}

2

L2pΩ;L2pOqq ds, (7.2d)

}Drypt ` h1q ´ Dryptq}2L2pΩ;L2pOqq ď h1C52 ` h1C52

ż t`h1

r

}Drcpsq}2L2pΩ;L2pOqq ds. (7.2e)

Combining (7.1) and (7.2) and using the Gronwall lemma where necessary, we arrive at the following set
of estimates:

}c}L8pΩ;L8pp0,T q;L8pOqqq ď C5, (7.3a)

}∇c}L8pΩ;L8pp0,T q;pL2pOqqN qq ď C5, (7.3b)

}Btc}L8pΩ;L2pp0,T q;L2pOqqq ď C5, (7.3c)

}Drc}L2ppr,T qˆOˆΩq ď C56, (7.3d)
›

›

›
h

´ 1

2

2 pDr`h2
c ´ Drcq

›

›

›

L2ppr,T´h2qˆOˆΩq
ď C56, (7.3e)

}BtDrβpcq}L2ppr,T qˆΩ;H´2pOqq ď C56 (7.3f)
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and

}y}
C

1

2 pr0,T s;LqpΩ;LqpOqqq
ď C47, (7.4a)

}∇y}L8pp0,T q;L2pΩ;pL2pOqqN qq ď C43, (7.4b)

}Dry}L8pr,T ;L2pΩ;L2pOqqq ď C56, (7.4c)
›

›

›
h

´ 1

2

2 pDr`h2
y ´ Dryq

›

›

›

L8pr,T´h2;L2pΩ;L2pOqqq
ď C56 (7.4d)

›

›

›
h

´ 1

2

1 pDryp¨ ` h1q ´ Dryq
›

›

›

L8pr,T´h1;L2pΩ;L2pOqqq
ď C56. (7.4e)

Estimates (7.4) allow us to apply [2, Theorem 2] directly. It yields that

YpT,Rq is precompact in L2pp0, T q ˆ O ˆ Ωq.

Remark 7.1. Observe that our estimates, particularly those involving Dr, are in fact stronger than those
required by that theorem. Indeed, for instance, assumptions (2)-(4) from [2, Theorem 2] deal with the
regularised versions of the functions in the family.

Let us know prove the precompactness of CpT,Rq. First, we note that (7.3f) is an estimate for a
second derivative of βpcq, not for c. This precludes the direct application of [2, Theorem 2]. To overcome
this problem, we consider instead function Ψppc, γq. Combining the estimates (5.33) and (5.39), which
we derived in Subsection 5.6, with (7.3), we obtain that

}Ψppc, γq}
L8pΩ;L8pp0,T q;L8pOqqq ď C27ppq, (7.5a)

}∇Ψppc, γq}
L8pΩ;L8pp0,T q;pL2pOqqN qq ď C27ppq, (7.5b)

}BtΨppc, γq}
L8pΩ;L2pp0,T q;L2pOqqq ď C27ppq, (7.5c)

}DrΨppc, γq}
L2ppr,T qˆOˆΩq ď C57ppq, (7.5d)

›

›

›
h

´ 1

2

2 pDr`h2
Ψppc, γq ´ DrΨppc, γqq

›

›

›

L2ppr,T´h2qˆOˆΩq
ď C57ppq, (7.5e)

}DrΨppc, γq}
L2pΩ;C

1

2
´ 1

p prr,T s;H´2pOqqq
ď C57ppq. (7.5f)

With estimates (7.5) at hand we can know apply [2, Theorem 2] yielding that

ΨppCpT,Rq, γq is precompact in L2pp0, T q ˆ O ˆ Ωq. (7.6)

We observe that function Ψpp¨, γpt, xqq has, for each fixed pair pt, xq P p0, T s ˆO, the following properties:
it is defined on an interval, continuous, and strictly increasing. As to the latter, it is follows from the
definition of Ψp and the fact that β1pcq,Φppc, dq ą 0 for c, d ą 0 and γpt, xq ą 0 for pt, xq P p0, T s ˆ O.
Therefore, Ψpp¨, γpt, xqq is invertible, and its inverse has these three properties, too. Consequently, we
have the following implication:

tΨppcnpt, x, ωq, γpt, xqqu
nPN is convergent in R ñ tcnpt, x, ωqunPN is convergent in R. (7.7)

Combining (5.6) and (7.7) and using the dominated convergence theorem, we obtain that

tΨppcn, γqu
nPN is a.e. convergent in p0, T q ˆ O ˆ Ω ñ tcnunPN is convergent in L2pp0, T q ˆ O ˆ Ωq.

(7.8)

Together, (7.6) and (7.8) finally yield that

CpT,Rq is precompact in L2pp0, T q ˆ O ˆ Ωq.

The proof of Theorem 4.5 is thus complete.

8 Spatial semi-discretization for a nondegenerate case

In this section we set up and study a spatial finite-difference scheme for system (2.1)-(2.2) under the
additional assumption

β P C2pR`
0 q (8.1)

which corresponds to a nondegenerate case. Our goal here is twofold. On one hand, we apply the semi-
discretisation method (see, e.g. [12, Chapter 4 §1] and references therein, particularly [18]) in order to
obtain the existence of solutions. At the same time, we illustrate thereby how one can use compactness in
order to rigorously prove the convergence of a numerical scheme for nonlinear systems with stochasticity.
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8.1 Spatial discretisation and interpolation

In this sequel we recall some concepts and ideas of the deterministic semi-discretisation method. We
refrain from the proofs of the properties listed here since they either exactly repeat or are slight modifica-
tions of results addressed in the literature. The interested reader is referred to [12, Chapter 4 §1], where
the method is described. The discretization is preformed only in O. To avoid some purely deterministic
technical difficulties which have to do with discretizing close to and on the boundary of O, we restrict
our exposition to the case when the spatial domain O is a unit cube:

O “ p0, 1qN .

However, we especially emphasise that this simplification is by no means essential: the present approach
can be used for more general domains.

We begin with some more notation. As usual, we denote by ek the k-th standard basis vector in R
N .

Let M P Nzt1u. For h :“ 1
M`1

we define the discrete sets

Oh :“ th, 2h, . . . , 1 ´ hu
N
, O

h
:“ t0, h, . . . , 1u

N
, BhOh :“ O

h
zOh

and the space-continuous set

Uh :“ p2h, 1 ´ 2hqN .

Clearly, it holds that

|OzUh| “ 1 ´ p1 ´ 4hqN Ñ
hÑ0

0.

Next, we introduce standard finite difference operators for a function u at a point m:

Bh
kupmq :“

1

h
pupm ` hekq ´ upmqq for k P t1, . . . , Nu, (8.2)

∇
h :“

`

Bh
1 , . . . , Bh

N

˘T
, (8.3)

∆hupmq :“
1

h2

N
ÿ

k“1

pupm ` hekq ´ 2upmq ` upm ´ hekqq , (8.4)

Bh
νupmq :“

1

h
pupmq ´ upmqq for m P BhOh (8.5)

where

mk :“

$

’

&

’

%

h if mk “ 0,

mk if mk P p0, 1q,

1 ´ h if mk “ 1.

for k P t1, . . . , Nu. (8.6)

We recall the discrete version of the Green’s first identity (i.e., summation by parts formula)

M
ÿ

i“1

pai`1 ´ 2ai ` ai´1qbi “ ´
M
ÿ

i“0

pai`1 ´ aiqpbi`1 ´ biq ` paM`1 ´ aM qbM`1 ´ pa1 ´ a0qb0, (8.7)

as well as the following relation

Bh
k pgpuqqpmq “ Bh

kupmq

ż 1

0

g1
`

upmq ` τhBh
kupmq

˘

dτ (8.8)

which serves as a sort of chain rule for the discrete case. Further, we make use of some discrete analogs
of several (semi-)norms and a scalar product which mimic the corresponding notions in connection with

the Lebesgue and Sobolev spaces: for u, v : O
h

Ñ R let

pu, vqL2pDh;hq :“ hN
ÿ

mPDh

uvpmq for Dh Ă O
h
,

}u}LppDh;hq :“

#

`

hN
ř

mPDh |upmq|p
˘

1

p for p P r1,8q,

maxmPDh |upmq| for p “ 8,
for Dh Ă O

h
,
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|u|
H1pO

h
;hq

:“

¨

˝hN´2
ÿ

m,m`hekPO
h

|upm ` hekq ´ upmq|2

˛

‚

1

2

,

}u}
H1pO

h
;hq

:“
´

|u|2
H1pO

h
;hq

` }u}2
L2pO

h
;hq

¯
1

2

}u}
H´2pO

h
;hq

:“ sup
vPH2

0
pO

h
;hqzt0u

pu, vqL2pOh;hq

}∆hv}L2pOh;hq

,

where

H2
0 pO

h
;hq :“

!

v : O
h

Ñ R : v “ Bh
νv “ 0 on BhOh

)

.

For a function u : O Ñ R we define its projection to the space of discrete functions via

P hupmq :“ -

ż

´

m`p´ h
2
,h
2 qN

¯

XO

upzq dz for m P O
h
.

In order to interpolate discrete functions u : O
h

Ñ R we use two types of splines: the piecewise constant

Πhupxq :“

#

upmq for x P
´

m `
`

´h
2
, h
2

˘N
¯

X O, m P Oh,

0 otherwise

and the piecewise polyaffine

Λhupxq :“
ÿ

iPpm`t0,huNqXOh

upiqL 1

h
pi´mq

ˆ

1

h
px ´ mq

˙

for x P
`

m ` r0, hsN
˘

X O, m P Oh,

where

∆hpzq :“
N
ź

j“1

βlj pzjq for z P r0, 1sN , l P t0, 1uN ,

β0prq :“ 1 ´ r, β1prq :“ r for r P r0, 1s.

The constructed splines have the following useful properties: for all u : O
h

Ñ R it holds that

Πhu P L8pOq,

pΠhu,ΠhvqL2pOq “ pu, vq
L2pO

h
;hq

for v P H2
0 pO

h
;hq, (8.9)

ϕpΠhuq “ Πhϕpuq a.e. in O for any ϕ : R Ñ R, (8.10)

Λhu P W 1,8pOq,

Λhupmq “ upmq for m P O
h
,

and

u “ 0 in BhOh ñ Λhu “ 0 in BO, (8.11)

Bh
νu “ 0 in BhOh ñ BνΛ

hu “ 0 a.e. in BO. (8.12)

Moreover, both interpolation operators preserve positivity:

u ě 0 in O
h

ñ Λhu,Πhu ě 0 in O. (8.13)

Finally, the projection and interpolations enjoy the following estimates:

›

›P hu
›

›

LppO
h
;hq

ď C58}u}LppOq for u P LppOq, p P r1,8s, (8.14)
ˇ

ˇP hu
ˇ

ˇ

H1pO
h
;hq

ď C58}∇u}L2pOq for u P H1pOq, (8.15)
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›

›ΠhP hu ´ u
›

›

L2pOq
ď hC58}∇u}L2pOq for u P H1pOq, (8.16)

›

›Λhu
›

›

LppOq
ď C58}u}

LppO
h
;hq

for u : O
h

Ñ R, p P r1,8s, (8.17)

›

›∇Λhu
›

›

L2pOq
ď C58|u|

H1pO
h
;hq

for u : O
h

Ñ R, (8.18)

›

›Λhu
›

›

H´2pUhq
ď C58 }u}

H´2pO
h
;hq

for u : O
h

Ñ R, (8.19)
›

›Πhu ´ Λhu
›

›

L2pOq
ď hC58

ˇ

ˇ∇hu
ˇ

ˇ

H1pO
h
;hq

for u : O
h

Ñ R, (8.20)
›

›Πh∆hu ´ u
›

›

L8pOq
ď hC58 for u P W 3,8pOq. (8.21)

8.2 Approximation via semi-discretization

We start with the following semi-discretization of the RPDE-SDE system (2.1)-(2.2):

in Ω

$

’

’

&

’

’

%

Btβ
`

ch
˘

“ ∆hch ` f
`

ch, yh
˘

in p0, T s ˆ Oh,

ch “ 0 pBh
ν c

h “ 0q in p0, T s ˆ BhOh,

ch “ ch0 in t0u ˆ Oh,

(8.22a)

(8.22b)

(8.22c)

in O
h

#

dyh “ a
`

yh
˘

dW ` b
`

ch, yh
˘

dt in p0, T s ˆ Ω,

yh “ yh0 in t0u ˆ Ω

(8.23a)

(8.23b)

where the spatially discretized initial data
`

ch0 , y
h
0

˘

: O
h

Ñ R
`
0 is defined via

`

ch0 , y
h
0

˘

:“
`

P hc0, P
hy0

˘

in O
h
.

Observe that equation (8.22a) can be rewritten in the conventional form of a RODE:

Btc
h “

`

β1
`

ch
˘˘´1

∆hch `
`

β1
`

ch
˘˘´1

f
`

ch, yh
˘

. (8.24)

Using the boundary conditions (8.22b) one can eliminate
`

chp¨,m, ¨q
˘

mPBhOh from (8.22a). Then, system
(8.22)-(8.23) can be considered as a RODE-SDE system with respect to

``

chp¨,m, ¨q
˘

mPOh ,
`

yhp¨,m, ¨q
˘

mPO
h

˘

: r0, T s ˆ Ω Ñ pR`
0 qM

N

ˆ pR`
0 qpM`2qN .

A solution can then be understood in the usual strong SDE-sense. Observe that not only the coefficient

functions f, a, b, but also pβ1q´1 and ∆h : O
h

Ñ Oh in equations (8.24) and (8.23a) are continuously
differentiable in R

`
0 . For β this holds since pβ1q´1, β2 P CpR`

0 q, the latter due to our additional assumption
(8.1), while ∆h is simply linear. Therefore, the RODE-SDE is uniquely solvable and its solutions possess
square integrable Malliavin derivatives due to well-known results [16, Corollary 2.2.1, Theorem 2.2.1].
The nonnegativity of solution components is a consequence of a general result on the invariance for SDE
systems with smooth coefficients [15] and assumptions (4.10) and (4.13).

Multiplying (8.22a) by ξvh for arbitrary ξ P C8
0 r0, T q and vh P H2

0 pO
h
;hq, summing over Oh thereby

using (8.7) twice, and integrating over p0, T q we obtain the following weak formulation:

´
`

β
`

ch0
˘

, vh
˘

L2pOh;hq
ξp0q ´

ż T

0

`

β
`

ch
˘

psq, vh
˘

L2pOh;hq

dξ

dt
psq ds

“

ż T

0

`

chpsq,∆hvh
˘

L2pOh;hq
ξpsq `

`

f
`

ch, yh
˘

psq, vh
˘

L2pOh;hq
ξpsq ds. (8.25)

In particular, one can take vh :“ v|
O

h for any v P C8
0 pUhq as a test function in (8.25). Thus, using

the interpolation operators and properties (8.9), (8.10), and (8.11) ((8.12)) one deduces from the space-
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discrete problem (8.22)-(8.23) an approximation to the original space-continuous system (2.1)-(2.2):

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
`

β
`

ΠhP hc0
˘

,Πhv
˘

L2pOq
ξp0q ´

ż T

0

`

β
`

Πhch
˘

psq,Πhv
˘

L2pOq

dξ

dt
psq ds

“

ż T

0

`

Πhchpsq,Πh∆hv
˘

L2pOq
ξpsq `

`

f
`

Πhch,Πhyh
˘

psq,Πhv
˘

L2pOq
ξpsq ds,

for all v P C8
0 pUhq, ξ P C8

0 r0, T q a.s. in Ω,

Λhch “ 0 in p0, T q ˆ BO pBνΛ
hch “ 0 a.e. in p0, T q ˆ BOq a.s. in Ω,

Πhyhpsq “ ΠhP hy0 `

ż t

0

a
`

Πhyh
˘

psq dW psq `

ż t

0

b
`

Πhch,Πhyh
˘

psq ds

in L2pOq for all t P r0, T s a.s. in Ω.

(8.26a)

(8.26b)

(8.26c)

This system will be analysed in the subsequent subsections.

8.3 A priori estimates

It is easy to see that for solutions of the semi-discrete system (8.22)-(8.23) one has a set of uniform
in h estimates which is very similar to estimates (7.3)-(7.4) for the original space-continuous system
(2.1)-(2.2). Indeed, one just needs to replace the spatial differential operators by their discrete versions
(8.2)-(8.6), integration over O by summation over Oh, and the LppOq norms by their discrete analogies
LppOh;hq and to use (8.14)-(8.15) in order to estimate

`

ch0 , y
h
0

˘

, the discrete version of the Green’s first
identity (8.7), the boundary conditions (8.22b), as well as relation (8.8) instead of the chain rule while
dealing with spatial derivatives. Moreover, since we assumed that β P C1pR`

0 q, the uniform estimates for
ch can be directly transformed into the corresponding uniform estimates for βpchq. This spares the need
of constructing more complicated transformations such as those derived in Subsections 5.5-5.6. We thus
get the following sets of estimates:

›

›β
`

ch
˘›

›

L8pΩ;L8pp0,T q;L8pO
h
;hqqq

ď C59, (8.27a)
›

›β
`

ch
˘›

›

L8pΩ;L8pp0,T q;H1pO
h
;hqqq

ď C59, (8.27b)
›

›Btβ
`

ch
˘›

›

L8pΩ;L2pp0,T q;L2pO
h
;hqqq

ď C59, (8.27c)
›

›Drβ
`

ch
˘›

›

L2pr,T ;L2pΩ;L2pO
h
;hqqq

ď C59, (8.27d)
›

›

›
h

´ 1

2

2

`

Dr`h2
β
`

ch
˘

´ Drβ
`

ch
˘˘

›

›

›

L2ppr,T´h2qˆΩ;L2pO
h
;hqq

ď C59, (8.27e)

›

›BtDrβ
`

ch
˘›

›

L2ppr,T qˆΩ;H´2pO
h
;hqq

ď C59 (8.27f)

and

›

›yh
›

›

C
1

2 pr0,T s;LqpΩ;LqpO
h
;hqqq

ď C59, (8.28a)
›

›yh
›

›

L8pp0,T q;L2pΩ;H1pO
h
;hqqq

ď C59, (8.28b)
›

›Dry
h
›

›

L8pr,T ;L2pΩ;L2pO
h
;hqqq

ď C59, (8.28c)
›

›

›
h

´ 1

2

2 pDr`h2
yh ´ Dry

hq
›

›

›

L8pr,T´h2;L2pΩ;L2pO
h
;hqqq

ď C59 (8.28d)

›

›

›
h

´ 1

2

1 pDry
hp¨ ` h1q ´ Dry

hq
›

›

›

L8pr,T´h1;L2pΩ;L2pO
h
;hqqq

ď C59. (8.28e)

Combining (8.27)-(8.28) with (8.17)-(8.19) we conclude that the pair
`

Λhβ
`

ch
˘

,Λh
`

yh
˘˘

satisfies

›

›Λhβ
`

ch
˘›

›

L8pΩ;L8pp0,T q;L8pOqqq
ď C60, (8.29a)

›

›Λhβ
`

ch
˘›

›

L8pΩ;L8pp0,T q;H1pOqqq
ď C60, (8.29b)

›

›BtΛ
hβ

`

ch
˘›

›

L8pΩ;L2pp0,T q;L2pOqqq
ď C60, (8.29c)

›

›DrΛ
hβ

`

ch
˘›

›

L2pr,T ;L2pΩ;L2pOqqq
ď C60, (8.29d)

›

›

›
h

´ 1

2

2

`

Dr`h2
Λhβ

`

ch
˘

´ DrΛ
hβ

`

ch
˘˘

›

›

›

L2ppr,T´h2qˆΩ;L2pOqq
ď C60, (8.29e)
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›

›BtDrΛ
hβ

`

ch
˘›

›

L2ppr,T qˆΩ;H´2pUhqq
ď C60, (8.29f)

›

›Λhyh
›

›

C
1

2 pr0,T s;LqpΩ;LqpOqqq
ď C60, (8.30a)

›

›Λhyh
›

›

L8pp0,T q;L2pΩ;H1pOqqq
ď C60, (8.30b)

›

›DrΛ
hyh

›

›

L8pr,T ;L2pΩ;L2pOqqq
ď C60, (8.30c)

›

›

›
h

´ 1

2

2 pDr`h2
Λhyh ´ DrΛ

hyhq
›

›

›

L8pr,T´h2;L2pΩ;L2pOqqq
ď C60 (8.30d)

›

›

›
h

´ 1

2

1 pDrΛ
hyhp¨ ` h1q ´ DrΛ

hyhq
›

›

›

L8pr,T´h1;L2pΩ;L2pOqqq
ď C60. (8.30e)

Further, (8.27b) and (8.28b) together with (8.20) and assumption β´1 P C1pR`
0 q (compare (4.4)), yield

that

›

›Πhch ´ Λhch
›

›

L8pΩ;L8pp0,T q;L2pOqqq
ď hC61, (8.31)

›

›Πhβ
`

ch
˘

´ Λhβ
`

ch
˘›

›

L8pΩ;L8pp0,T q;L2pOqqq
ď hC61 (8.32)

and

›

›Πhyh ´ Λhyh
›

›

L8pp0,T q;L2pΩ;L2pOqqq
ď hC61. (8.33)

Finally, due to (8.16) we also have for the approximations of the initial data the estimates

›

›ΠhP hch0 ´ c0
›

›

L2pOq
ď hC62, (8.34)

›

›ΠhP hyh0 ´ y0
›

›

L2pOq
ď hC62. (8.35)

8.4 Compactness and convergence

Thanks to estimates (8.29)-(8.30) we are once again in the position when we can directly apply [2,
Theorem 2]. It yields that

"

`

Λhβ
`

ch
˘

,Λhyh
˘

: h “
1

M ` 1
, M P N

*

is precompact in
`

L2pp0, T q ˆ O ˆ Ωq
˘2

. (8.36)

Together with estimates (8.32)-(8.33) this leads to

"

`

Πhβ
`

ch
˘

,Πhyh
˘

: h “
1

M ` 1
, M P N

*

is precompact in
`

L2pp0, T q ˆ O ˆ Ωq
˘2

. (8.37)

Further, using β´1 P C1pR`
0 q and property (8.10) for ϕ :“ β, we conclude with (8.37) that

"

`

Πhch,Πhyh
˘

: h “
1

M ` 1
, M P N

*

is precompact in
`

L2pp0, T q ˆ O ˆ Ωq
˘2

. (8.38)

Combining estimates (8.29)-(8.30), and (8.31), (8.33) with the compactness results (8.36) and (8.38) and
using assumption β´1 P C1pR`

0 q we deduce that there exists a pair of functions pc, yq : r0, T s ˆ O ˆ Ω Ñ
R

`
0 ˆ R

`
0 which satisfies conditions 1-6 from Definition 4.2 and a sequence hn Ñ

nÑ8
0 such that

`

Πhnchn ,Πhnyhn
˘

Ñ
nÑ8

pc, yq in L2pp0, T q ˆ O ˆ Ωq, in L2pp0, T q ˆ Oq a.s. in Ω (8.39)

and

Λhnchn ˚
á

nÑ8
c in L8pΩ;L8pp0, T q;H1pOqqq. (8.40)

Due to (8.34)-(8.35) it holds also that

´

ΠhnP hnchn

0 ,ΠhnP hnyhn

0

¯

Ñ
nÑ8

pc0, y0q in pL2pOqq2. (8.41)
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Using (8.39) and (8.41), assumption β, f, a, b P C1, and the fact that

Πhn∆hnv Ñ
nÑ8

∆v in L2pOq

due to (8.21), we can pass to the limit in the weak formulation (8.26a) and the SDE (8.26c). Finally,
combining (8.40) with the boundary conditions (8.26b) and the trace theorem, we conclude that c satisfies
either of the boundary conditions. Altogether, this means that pc, vq is a weak solution to the PDE (2.1)
and a strong solution to the SDE (2.2), and it has the desired regularity. Thus, we proved the following
Lemma:

Lemma 8.1 (Existence for a nondegenerate case). Let Assumptions 4.1 be satisfied. Assume in addition
that β P C2pR`

0 q Then there exists a weak-strong global solution in terms of Definition 4.2 to system
(2.1)-(2.2).

9 Proof of the existence Theorem 4.6

In this final section we discuss how our compactness Theorem 4.5 can be used in order to prove the
existence of solutions to the original degenerate system (2.1)-(2.2). Let T ą 0 be arbitrary. Choose
R0, R1 ą 0 large enough so that pβ, f, a, b, c0, y0q P PpT, pR0{2, R1{2qq. For each ε P p0, 1q let βε be such
that

pβε, f, a, b, c0, y0q P PpT, pR0, R1qq, (9.1)

βε P C2pR`
0 q,

βε Ñ
εÑ0

β in Cr0, R2s,

whereR2 is an upper bound for the L8-norm of c, compare (4.15). We introduce a family of approximating
problems

in Ω

$

’

&

’

%

Btβεpcεq “ ∆cε ` fpcε, yεq in p0, T s ˆ O,

cε “ 0 pBνcε “ 0q in p0, T s ˆ BO,

cε “ c0 in t0u ˆ O,

(9.2a)

(9.2b)

(9.2c)

in O

"

dyε “ apyεq dW ` bpcε, yεq dt in p0, T s ˆ Ω,

yε “ y0 in t0u ˆ Ω.

(9.3a)

(9.3b)

The existence of a solution pcε, yεq in terms of Definition 4.2 to system (9.2)-(9.3) follows from Lemma
8.1 of the previous section. Moreover, due to assumption (9.1) and the compactness Theorem 4.5 family

tpcε, yεquεPp0,1q is precompact in
`

L2pp0, T q ˆ O ˆ Ωq
˘2
. Standard compactness arguments and a limit

procedure then yield the existence of a solution in terms of Definition 4.2 to the original degenerate
system (2.1)-(2.2) for any T ą 0.

Finally, we observe that the particular choice of the zero starting time was not essential for our
arguments heretofore. Indeed, all previous results continue to hold if we replace the interval r0, T s by
rt0, t0 ` T s for any t0 ą 0 and consider the ’shifted’ in time filtration pFt`t0qtě0 instead of the original
one. Thus, we obtain a solution defined for all times by defining it successively in r0, T s, rT, 2T s, and so
on. The proof of Theorem 4.6 is thus complete.

Remark 9.1 (Numerical schema). As a by-product of the constructions from this Section and the previous
Section 8 we have a numerical schema for (2.1)-(2.2) which is, at least theoretically, converging.
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