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Abstract

Compactness is one of the most versatile tools in the analysis of nonlinear PDEs and systems.
Usually, compactness is established by means of some embedding theorem between functional spaces.
Such theorems, in turn, rely on appropriate estimates for a function and its derivatives. While a
similar result based on simultaneous estimates for the Malliavin and weak Sobolev derivatives is
available for the Wiener-Sobolev spaces, it seems that it has not yet been widely used in the analysis
of highly nonlinear parabolic problems with stochasticity. In the present work we apply this result in
order to study compactness, existence of global solutions, and, as a by-product, the convergence of a
semi-discretisation scheme for a prototypical degenerate PDE-SDE coupling.
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1 Introduction

Compactness is one of the most versatile tools in the analysis of nonlinear equations and systems. Usually,
it is established by means of a compactness criterion for a particular functional space. Well-known exam-
ples include: the Rellich-Kondrachov theorem, the Lions-Aubin lemma, the Arzela-Ascoli and Fréchet-
Kolmogorov theorems. Such results rely on appropriate estimates of a function and its classical or weak
derivatives or, more generally, of its increments. These theorems are most helpful instruments in the
study of deterministic differential equations and systems in Holder and Sobolev spaces. A closely related
result was established for Wiener-Sobolev spaces by Bally and Saussereau [2]. It is based on simultaneous
estimates for the Malliavin and weak Sobolev derivatives. It seems, however, that this criterion has not
yvet been widely used in the analysis of highly nonlinear parabolic problems with stochasticity. Indeed,
standard approaches mostly rely on some monotonicity of the elliptic part (see [10, 13, 17] and references
therein) which often fails to hold for strongly coupled systems. The approach based on a priori estimates
and a compact embedding has several advantages. For instance, it allows to treat rather general classes
of complicated problems by approximating them with better-studied, more regular ones, following the
so-called compactness method [12]. In the present work we adopt this scheme. Namely, we apply the
result by Bally and Saussereau in order to study compactness and existence of global solutions for a
prototypical degenerate PDE-SDE coupling. The proof of existence is based on the semi-discretisation
method. As a by-product, it justifies the convergence of a semi-discretisation scheme for our problem.

This paper is organised as follows. First, we introduce our model system in Section 2, fix some
notations in Section 3, and state the main results in Section 4. We then establish in Sections 5-6 a set
of uniform a priori estimates for the solutions of our system. While estimates in Subsections 5.1-5.4 and
Section 6 are rather standard, those in Subsections 5.5-5.6 are new and more involved. The a priori
estimates lie at the core of the proof of compactness in Section 7. In Section 8 we introduce a spatial
discretisation scheme and study its convergence in the nondegenerate case. Finally, we use compactness
in order to prove the existence of global solutions to the original degenerate problem in Section 9.

Acknowledgment. The author expresses her thanks to Wolfgang Bock and Christina Surulescu
(Technische Universitat Kaiserslautern) for stimulating discussions. The idea to consider a model in the
form of a PDE-SDE coupling was proposed by Christina Surulescu in the context of [9].
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2 The model

Let T be a positive number and O be a smooth bounded domain in RY. Also, let (Q, F, (‘Ft)te[O,T] ,IP) be
a filtered probability space on which is defined a Wiener process (W (t)):e[o,7]. We assume that (]:t)te[O,T]
is the usual completion of the natural filtration of (W (t))scjo,r). In this setting, we consider the following
system of a random porous medium equation (random PME, RPME)

0:B(c) = Ac+ f(c,y) in (0,7] x O, (2.1a)
nQ<c=0 (0,c=0) in (0,7] x 00, (2.1b)
c=cp in {0} x O (2.1c)
and an It6 SDE
O {dy = a(y) dW + b(c,y) dt in (0,7] x £, (2.2a)
in
Y =1%o in {0} x Q. (2.2b)

Couplings of a PDE, however with a linear diffusion, with an SDE have lately emerged in the multiscale
tumor modelling [9]. In that work, the PDE- and SDE-variables represented, respectively, the intra-
and extracellular proton dynamics in a tumor. In the present case, the variables ¢ and y could be seen,
e.g., as the tumor density and concentration of the intracellular protons, respectively (see also [6, 7] for
models based on PDE-RODE-couplings). Thereby, the (one-dimensional) Wiener process in SDE (2.2a)
captures some stochastic fluctuations in the intracellular proton dynamics (see [9] and references therein).
Through the coupling terms f and b, these fluctuations influence indirectly the dynamics of the cancer
cells on the macroscale as well.

The class of functions 8 considered in the present study (see Assumptions 4.1 below) includes as a
particular case

B(c) = ¢ for some m > 1.
For such 3, we can transform the macroscopic PDE (2.1a) into the equation
Oru = Au™ + f(u™,y),
where
ui=cm.

Thus, switching to the new variable u, we regain a RPME with a source term, written in the conventional
form. Porous medium equations are standard examples of degenerate-diffusion equations. As in our
recently proposed deterministic models, [20, 21], degeneracy accounts for a finite speed of propagation of
a tumor. While in [20, 21] we assumed the diffusion coefficient to be degenerate not only in ¢, but also
in another variable, here we consider a simpler case, with the diffusion being of the porous medium type.

3 Basic notation and functional spaces

We denote R := (0, 00), R} := [0, o0).
For a Lebesgue measurable set F we denote by |E| its Lebesgue measure. The space dimension
depends on the context. The integral average of an integrable function f : E — R is defined via

L;f(z) dr 1= %L flx) da.

We assume a smooth bounded domain O — RY, N € N, to be given. The outward unit normal vector
on the boundary of O we denote by v.

The derivative of a function u of one real variable is denoted by u’. Partial derivatives in the classical
or distributional sense with respect to a variable z are denoted by ¢,. The variable z can, for example,
be the ’time’ variable ¢t € R} or a component of the ’spatial’ variable x € O. Further, V and A stand for
the spatial gradient and Laplace operator, respectively.

We assume the reader to be familiar with the standard LP, Sobolev, and Holder spaces and their
usual properties, as well as with the more general LP spaces of functions with values in general Banach
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spaces, and with anisotropic spaces. In particular, for relatively open w.r.t. (0,77] x O (not necessarily
cylindrical) sets @), we need the spaces

wt2a(Q) = {u=nu(t,z) e LYQ) : dyu,0p,u,0s,05,ue LYQ) fori,j=1,...,N}

with a norm defined via

N q
L@t 2 ||5riaij|qu(Q)> :

N
lulwam.aq) = (IUI‘iq(Q) 10l oy + X5 1001

i=1 ij=1
We recall that the Holder coefficient for a Holder exponent v € (0, 1) and a real-valued function w defined
in a set A c R*, keN, is given by

w(x) —w(y
o e ap 0O
z,y€A, x#y |z —y[”

By 0A we denote the topological boundary of a set A = R¥, ke N. For a set Q < [0,T] x O, we call

0Q\({T} x 0)

the parabolic boundary of Q.

Further, let a filtered probability space (Q,F, (Ft),5(,P) on which is defined a Wiener process
(W (t))i=0 be given. We assume that (F;),-, is the usual completion of the natural filtration of (W (£)):>0-
The corresponding It6 differential is denoted by dW. We presuppose that the reader is familiar with some
Ité and Malliavin calculi. In particular, we assume such standard results as: the It6 isometry (see, e.g.,
[14, Chapter 1 Theorem 7.1]) for p = 2), a version of the Burkholder-Gundy-Davis inequality as stated
in [14, Chapter 1 Theorem 7.1], as well as the Kolmogorov’s continuity criterion (see, e.g., [4, Chapter
1 Theorem 3.1] and the subsequent remark) to be known. For T' > 0, the Malliavin derivative of an
Fr-measurable ¢ is denoted by (D.c).e[o,r]- We make use of the following properties of the Malliavin
derivative: the chain rule [16, Proposition 1.2.3] and a result on the weak differentiability of solutions to
It6 SDEs (see, e.g., [16, Theorem 2.2.1] and the subsequent observation). We refer to [4, 14, 16] for more
details on the calculus for stochastic processes.

To ease the notation while dealing with purely PDE (SDE) properties which hold P-a.s. in Q (a.e. in
0), we sometimes drop the dependence upon variable w (variable x) and write, for example, ¢ instead of
c(+,w,-) (e(, -, z)). Moreover, for a stochastic process u : [0,T] x Q2 — V| where V is a space of functions
defined for = € D, we often write u(t) instead of u(t, -).

Finally, we make the following two useful conventions. Firstly, for all indices ¢, C; or a; denotes a
non-negative constant or, alternatively, a non-negative function, which is non-decreasing in each of its
arguments. Secondly, we assume that the reappearing numbers T',r,t, h1, and ho always satisfy

O0<r<t<T, 0<h <T-—t, O<hy<t—r.

4 Problem setting and main result
We make the following assumptions on the problem parameters.
Assumptions 4.1.

1. O is a smooth bounded domain in RN, N e N.

2. Function B : R — R{ satisfies for some constants mq > 1, ma > 1, and M, > 0 the conditions

B has an inverse function BV, B8(0) = 0, (4.1)
BeCHRY) N C(RY), B >0inRT, (4.2)
B is decreasing in RT, (4.3)
()" e 0177 (Rg), (44)
AmiB(c) < for ce (0, M]. (4.5)
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3. Functions f,b:R§ x R — R, and a : Rf — R satisfy the conditions

fley
feCHRE x RY), 0cf, 0y f € C(RE; Cu(RY)),
ae CHRY), a’ € Cyp(RY),
be CYRE x RY), 0cb, 0yb e C(RY; Cp(RY)).

Moreover, f,a, and b also satisfy

f(0,y) =0 for ally e RY, a(0) =0, b(c,0) =0 for all ce R} .

4. The initial data co,yo : O — RS satisfy

co € L*(0) n H(0),
Yo € Hl(o)a

as well as

co,% =0 a.e inO.

(4.6)

(4.13)

Definition 4.2_(Weak—strong solution). Let Assumptions 4.1 be satisfied. Let T > 0. We call a pair
(c,y) : [0,T] x O x Q- R x RY a weak-strong local solution of system (2.1)-(2.2) if it holds that:

1. (e,y) : [0,T] x Q@ — L?(O) is an adapted process;
ce L?(Q; L((0,T); L*(0))), die € L*(Q; L2((0,T); L*(0)));

ce L?(Q; L((0,T); HY(0))) (e e L*(Q; L*((0,T); H(0))));

Dyce L((r,T); L2(Q; L2(0))), 0:D,B(c) € L2((r, T) x Q; H~2(0)) for all r € [0,T];
ye L®((0,T); LA(; H'(0))) n C3 ([0, T]; L9(; L9(0))) for some g > 2;

D,y e L®((r,T); L*($; L2(0))) for all r € [0,T];

NS =t o e

(c,y) satisfies

= () 0)1210) €0) = | (B(0) (61,0120 (5} ds

0

== [ (e V0D 20 605) + (£ (€9) (51,0 0 €05)

0
for all ve H}(O) (ve HY(O)) for all ¢ € CF[0,T) a.s. in Q,

y(t) =yo + Jt t

0

0

If (c,y) is a local solution for all T > 0, then we call it a global solution.

(4.14a)

a(y)(s) dW (s) + f b(c,y)(s)ds in L*(O) for allt € [0,T] a.s. in Q. (4.14b)

Remark 4.3 (Weak-strong solution). We call a solution (¢,y) from Definition 4.2 a weak-strong solution

since it satisfies the PDE (2.1) in a weak PDE-sense and the SDE (2.2) in the strong SDE-sense.

Remark 4.4 (Continuity of sample paths).

1. Conditions c € L*(Q; L*((0,T); H(0))) and d;c € L®(; L?((0,T); L*(0))) imply that c(-,-,w) €
HY((0,T); L*(0)) a.s. in Q. Standard result [12, Chapter 1 Lemma 1.2] yields that c(-,-,w) €

C([0,T]; L*(0)) a.s. in Q.

2. Since ¢ > 2, condition y € C2 ([0, T]; L9(; L9(0))) implies that y(-,-,w) € C([0,T]; LY(O)) a.s. in
0. This is a direct consequence of the Kolmogorov’s continuity criterion (see [/, Chapter 1 Theorem
3.1] and the subsequent remark). Below we choose q as in the Sobolev embedding theorem, i.e., such

that H'(O) < L4(O).
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For arbitrary T' > 0 and R = (Ro, R1), Ro, R1 > 0, we introduce the parameter set
P(T,R)

:={(ﬂ, fra,b,co,v0)| as in Assumptions 4.1 and such that |cof -0y, sup M < R,
c,yeRJﬁ(c) +1

n—1 R
H (6 ) Hclf,,%l [O,RQ(T,RU)] ) 06(071321(2",}?,0)]0 2 6 (C), H(acf; ayfa acba ayb)HCb([O,Rz(T,RO)]X]RJ) < Rla

Il aiy» b(0:0), 1(co,90) 10y < Ba b,
where
Ro(T, Ry) := BV (eTFo(B(Ry) +1) — 1) (4.15)

is an upper bound for solution component ¢ if the parameters belong to P(T, R) (see estimate (5.4)
below). We define the corresponding sets of solutions and of their components via

U(T,R) :={(c,y)| (c,y) is a weak-strong solution corresponding to (8, f,a,b, co,yo) € P(T, R)},
C(T, R) == {c| (c,y) e U(T, R)},
Y(T, R) :={y| (c,y) e U(T, R)}.

Now we are ready to formulate our compactness result:

Theorem 4.5 (Compactness). Let Assumptions 4.1 1.-3. be satisfied. Then for all T > 0 and R =
(R(),Rl), Ro,Rl >0, it holds that

C(T,R) and Y(T, R) are precompact in L*((0,T) x O x Q).

We prove this theorem in Section 7 and then use it in Section 9 in order to establish the following result
which deals with the existence of solutions:

Theorem 4.6 (Existence of a weak-strong solution). Let Assumptions 4.1 be satisfied. Then there exists
a weak-strong global solution in terms of Definition 4.2 to system (2.1)-(2.2).

Remark 4.7 (Uniqueness). The uniqueness of solutions to (2.1)-(2.2) holds as well. It can be proved in
a standard way by exploiting the monotonicity of B without requiring the solutions to be differentiable in
the Malliavin sense.

Remark 4.8 (Notation). We make the following useful convention: the statement that a quantity (a
constant or a function) depends on the parameters of the problem means that it depends upon the space
dimension N, domain O, constants T', m1, ma, p, and q, and the structure of the initial values ¢y and
yo and of the coefficient functions B, f,a and b (the latter means their norms etc. which appear in the
definition of the parameter set P(T, R)).

Moreover, dependence upon these parameters is mostly not indicated in an explicit way.

5 A priori estimates for the RPME (2.1)

5.1 Standard PDE estimates for ¢

Equation (2.1a) is a.s. in ©Q a standard PME in (0,77 x O. This allows us to derive in a standard
way several basic estimates for ¢ which hold irrespectively of w. To begin with, we multiply (2.1a) by
p(B(c) + 1)P~t for an arbitrary p > 1 and integrate by parts over O using the boundary conditions. We
thus obtain with the help of assumptions (4.2) and (4.6) that

L18(0) 4 11300y =~ plp 1) fo ¢B(0)(B(c) + 1)P~2|Ve? da +p L Fley)(Be) + 1) da
<pCiB() + 12,0, (5.1)
where

fle,y)
C = Su —_—.
' c,ye]RI?(f B(C) +1
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Applying the Gronwall lemma to (5.1) and taking the %-power on both sides of the resulting inequality,
we obtain that

18(c)(t) + 10y < €"“*[B(co) + 1 r(0)- (5.2)
In the limit as p — o0 estimate (5.2) and the fact that 8 is increasing yield that

18(e)(t) + 1] o0y <€™*[B(co) + 1] (0
<™ (B (Jeollz=(oy) +1)- (5.3)

Consequently, we arrive with (5.3) and assumption (4.1) at the estimate

el oo,y xox) <BTY (7 (B (leollL=(0)) +1) = 1),
<Ry(T, Ry), (5.4)

where
RO = maX{Cl, HC()HLOO(O)},
and Ry was defined in (4.15).

Remark 5.1. Due to estimate (5.4), it suffices to consider the coefficient functions for ¢ € [0, Ro(T, Ro)]
only.

Another standard estimate for ¢ as solution to the PME (2.1) is obtained by multiplying by d:c and
integrating by parts over O using the boundary conditions and then over [0, ¢] for ¢ € (0, T]. This implies
due to (5.4), assumptions (4.3) and (4.11), and the Young inequality that

t t
C2f0 [0cc(9)1 720y ds <8’ (\ICI\L°°<<c),T)xoxfz>)f0 [0ec()1 720y ds
t
gf J B'(¢)|0:c)? () dxds
o Jo
¢
= — ch(t)H?LZ(O))N + HVCOH%LQ(O))N + J;) J-O f(C, y)@tc(s) dxds
C t
<~ Ve Egz oy + 5 | 10:e(s)32(0) ds + C.
Consequently, we obtain that
t
L H(?tc(s)HiZ(O) ds, HVC(t)H%LQ(O))N < Cy for all t € [0,T7. (5.5)

Altogether, estimates (5.4) and (5.5) yield the first group of estimates for norms of ¢:

lell 0,7y x0y < Cs, (5.6)
a.s. in Q HVCHLI((O,T);(LZ(O))N) < C5, (57)
HatcHLz((QT);L?(O)) < C5. (58)

In particular, assumption (4.6) together with estimate (5.6) imply that

1£() ooy < Co as. in € (5.9)

5.2 Estimate for the Malliavin derivative D,.c

The next step is to apply the Malliavin derivative operator D, on both sides of the integrated form of
equation (2.1), the integro-differential equation (4.14a). Using the chain rule and the locality property
(Dy, F(t2) = 0 for t2 < t; for F adapted) of the operator D,, we compute that

ﬁ/(c)Drc(t) =DT6(C)(t)
:DTAJ c(s)ds + D, L fle,y)(s)ds

0
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=AJ D,.c(s)ds +J D, f(c,y)(s)ds. (5.10)

Multiplying (5.10) by D,c(t) and integrating by parts over O using the boundary conditions and then
over [r,t], we obtain using assumption (4.3), estimate (5.6), and the Young inequality that

t
c, f IDre(s) 220 ds

<[ t [ #@IDet(s) s
2

vf Dye(s) ds + f L Dye(s) J "Dy f(e,y)(7) drdads

_ 1 '
2 (L2(0)N

07 t t s
<G [ D)0 ds+ G | [ 1D o dris
Thus, we arrive at the inequality
t 5 t s 5
J |1Dre(s)] 720y ds <Cgf J |1Dr f (e, y)(7)] 720y drds. (5.11)

In order to estimate the term on the right hand side of (5.11), we use the chain rule and assumption
(4.7). We thus obtain that

| Dy £ (c, y)(t)Hiz(o) < Cyo HDTC(t)H2L2(O) + Co HDry(t)HiZ(o) : (5.12)
Combining (5.11) and (5.12) yields that
t 5 t s 5 t s 9
J |Dre(s)ll 720y ds <C’11J J |Dre(T) 120y drds + CUJ J 1Dry(7) |20y drds. (5.13)
Application of the Gronwall lemma to (5.13) yields that
t 5 t rs 9
[ 126130y ds <Ca | [ 1D, o) s
t
<013L IDy(s)| 720y ds  aus. in Q. (5.14)

Moreover, estimates (5.12) and (5.14) imply that

t t
J |Drf(e,9)(8) 720y ds < cMJ IDy(s)[ 720 ds  aus. in Q. (5.15)

5.3 Estimate for 0,D,((c)

Applying the differential operator D, to the original equation (2.1a), we have that
8,D,5(c) = ADyc + Dy f(cy) (5.16)
Combining estimates (5.14) and (5.15) with the Sobolev inequality, we conclude from (5.16) that
t t
| 10086 0y ds <Crs [ 1D 0y + 1D 7 ) 6) 0
t
<Cio || 1Dre(o) a0y + 1D He)(8) o)

t
<017J IDy(s)720y ds as. in Q. (5.17)
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5.4 Estimate for D, ,,c— D,c
Inserting r + he in place of r in (5.10), we have (recall that Dy, F'(t2) = 0 for ¢t < ¢; for F adapted) that

t t

B(e)Drinaclt) =A | Dypnac(s)ds + f Dy f (e y)(s) ds,

r+ho r+ho

=AJ D, yp,c(s)ds + J Dyin, fe,y)(s)ds. (5.18)

Subtracting (5.18) and (5.10), we obtain that

ﬁ/(c)(DT+hZC - DTC)(t) =AJ. (Dr+hzc - DTC)(S) ds + f (Dr+h2f(cvy) - DTf(c,y))(s) ds. (519)

T

Arguing for (5.19) as we just did for (5.10) above, we obtain that
' 2 ‘ 2
[ 1D = D)0 ds <Cus [ 1Dreny = D))oy b5 as im0 (5:20)

5.5 A regularising transformation for solutions of a PME

In this sequel, we deal with some purely PDE properties of (2.1a). It is well-known that solutions of a
PME like (2.1a) are, in general, only weak-strong solutions if ¢ £ 0 and is not strictly separated from zero.
In particular, Ac is generally not even L?-bounded. Still, it is well-understood [1, 3, 5, 8, 22] that under
reasonable assumptions on f the solution is at least locally Holder continuous. Following our idea from
[19], we show how the information on the (local) Holder continuity of a solution function can be used in
order to transform this function into a smooth one by means of a smooth and strictly increasing function
which depends only upon the parameters of the problem. We believe that this result is of interest by
itself. We then use this transformation for the compactness proof, see Section 7. Before we begin with a
construction for solutions of a PME, let us consider a simple motivating example.

Example 5.2. Denote by B,, r > 0, the closed ball of radius r in RN centred at the origin. Let

w: By — [0,1], w(x) = |x|” for some v € (0,1).
It is well-known that w € C?(B1\{0}) n C7(By), but w ¢ C*(By). Since

00,y w(w)| < (= Dlal"=? for all € By\{0}
and
{w>k} = B 1 forall ke (0,1],

we have that

0200l o (mayy < V(¥ = D)k for all k € (0, 1]. (5.21)
Set

e [0 >R, (k)= (- 1)k1*%)71 = ((y-1) kT

We define a regularising transformation for w by
ke 2 (2 1,
P :[0,1] - R, O(k) = J J p(s1)dsidsy = <’y('y —1)— (— + 1>> k5L,
0 Jo Y\
Then, we have that

d(w(z)) = <7(7 - 1)% (% + 1))1 |z|? for all v € By.

It is easy to see that ® has the following properties:
1. ®(w) € C?*(By);



Anna Zhigun

2. ® is a strictly increasing function, so that it allows to reconstruct back w from ®(w);
3. ® preserves the zero set of w and allows to reconstruct it back;

4. ® can be used to regularise a whole class of functions w which are smooth everywhere but for their
zero sets and satisfy (5.21). Thus, ® smooths down such a function w near its zero set.

Let us now apply the idea from Example 5.2 to solutions ¢ of (2.1a). In this general case, however,
we cannot hope for pointwise estimates like (5.21) to hold uniformly in w. This is because the source
term f depends upon y, which is, for each x, a solution of an SDE. Hence, instead of using the spaces
of functions which are differentiable in the classical sense, we work in anisotropic Sobolev spaces. The,
possibly, irregular behaviour of ¢ at the parabolic boundary of the cylinder (0, 7] x O presents yet enough
difficulty. Our regularising transformation should thus be able to smooth down ¢ not only near {¢ = 0},
where the equation has a degeneracy, but also at the parabolic boundary

I':=0((0,T] x O\N({T'} x O).
For this reason, we consider ¢ on the intersections of its level sets with a decreasing family of subcylinders
of (0,T] x O:
1
Qa:={(t,x) € (0,T] x O : dist((¢t,z),T) > d} for all d € (O, 1 diam(O)] .

We recall that due to assumptions on 5 and estimates (5.6) and (5.9) it holds (see, e.g., [8, Theorem 2.1})
that

1
el oo (@) < Cro (d71) for all d € (0, 1 diam(O)] for some o € (0,1). (5.22)

Thus, the Holder constant may explode as d — 0, that is, as I" is approached. We next divide both sides
of (2.1a) by f’(c) and thus obtain an equation in a non-divergence form:

dre = (B'(e) " Ac+ (B'(c) 7 fley). (5.23)
Due to assumption (4.4) and estimates (5.6), (5.9), and (5.22), it holds that
H(ﬂ’(c))’lucal@d) < Oy (d71) for some oy € (0,1), (5.24)
[ () f e e, < o

In order to obtain (5.24), we used the well-known property of superpositions of Holder continuous func-
tions:

up € C"(D), ug € C"?(uy(D)) for some 1,72 € (0,1)

=ugouy € CM"? (D) and |u2 o U1|Cv1vz(D) < |uQ|CV2(ul(D))|u1|z,271(D).

Let us consider for any k € (0, Hc\|LOO((O7T)XO)), d € (0, diam(0)] the sets {¢ > k}nQq and {c¢ > %}ng.
Using the crucial property (5.22), we deduce the following: these two sets are relatively open w.r.t.
(0, T] x O and their parabolic boundaries do not intersect. Moreover, the estimate on the Holder norm
allows to estimate the distance between the parabolic boundaries from below by a positive number which
depends only upon d, k, and, of course, the parameters of the problem. Now, equation (5.23) is non-
degenerate in {c > %} Therefore, we can apply standard results on local regularity for linear parabolic
equations, see Theorems 9.1 and 10.1, and the remark on local estimates in Sobolev spaces at the end
of §10 in [11, Chapter IV]. Considering {¢ > k} n Q4 as a subdomain of {c > %} ) Qg, these regularity
results can be interpreted in the following way: for each p € (1, 0) there exists a function

1
op : RE x [0, 1 diarn(O)] — RS

with the properties

1. ¢, depends only upon p and the parameters of the problem;
2. ¢p(0,:) =0, ¢p(,0) =0 in RY, ¢, > 0 in RT x (0, 1 diam(0)];
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3. ¢p is uniformly bounded;

4. ¢, is increasing in each of the two variables;

5. for each k e (0, el oo 0.7 O)) and d e (0,1 diam(0)] it holds that
chw<1,2),2p({c>k}de) < ‘P;l(kad)? (5.25)

6. pp0 <1

Remark 5.3. Local estimates from [11] deal with cylindrical sets, which is generally not the case for a
set {c > k} n Qq. However, since the closure of such a set is a compact set, lies inside of a relatively
w.r.t. (0,T] x O open set {c > %} N Q%, and we have control upon the distance between the parabolic

boundaries, we can cover {c¢ > k}nQq by a finite number of sufficiently small cylinders which lie completely
mn {c > %} N Q% and such that their number and the distance between their parabolic boundaries and the

parabolic boundary of {c > %} N Q% is bounded from below by a positive number which depends only

upon d, k, and the parameters of the problem. Hence, we can apply the results from [11] to each of these
cylinders and subsequently sum together the resulting estimates in order to deduce (5.25) with ¢ satisfying
conditions 1.-4. from above.

Remark 5.4. Observe that if a function ¢, satisfies conditions 1.-5. from above, we can clearly satisfy
all six conditions by taking

(pp(ka d) = min{(ﬁp(k’ d)’ (ﬁ/(k))_l}

Estimate (5.25) together with properties 1.-4. convey that ¢ is well-behaved away from its zero set {¢ = 0}
and the parabolic boundary of (0,7] x O, may possibly have singularities on that parabolic boundary
and/ or {c = 0}, but, also, that we have some control on its behaviour near the singularities. Using ¢,
we are now able to produce our regularising transformation for c:

1
d, RS x [0, 1 diam(O)] — R,

k N S2 ¥) 51 9 51
O, (k,d) := 5 ¥ (?, zl) dz1 dsi dzo dss.
o Jo Jo Jo

Due to properties 2. and 4. of ¢,, we have for each k € (0, HCHLOO((O,T)xo)) and d € (0, 1 diam(O)] that

k

k
0 <otz d,(k,d) < 022590]29 <§,d) for ay, a0 € {0,1,2}, a1 + s < 2. (5.26)

Next, we recall that domain O has a smooth boundary. Consequently, there exists a function
v:[0,T] x O — [O, % diam(O)]
with the following properties:
1. y(t,z) > 01in (0,T] x O, v(t,z) = 0 in T}
2. v e C%([0,T] x O);
3. there exists a number dy € (0, i diam(O)], which depends only upon the domain O, such that

v < din Qg for all d e [0, dp].

Using the chain rule, (5.26) and the properties of ¢, and ~, one readily checks that for all p € (1, 0) it
holds that

1Dy (c; V) lwa2.e0,m)x0) < C23(p), (5.27)
10:®p (¢, 7)B' ()| Lr((0,1)x0) < Coa(p)- (5.28)

10
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Indeed, for each i,j5 € {1,...,N}, k € (0, HCHLQC((O’T)XO)) and d € (0,do], it holds due to the Holder

inequality that, for instance,

C 2 C
[0c2®p(e: 1)0ri002,] Lo 1oty ngn <Co2 H?”P (5’7) Oui 0, ¢ Lo ({k<c<2k}nQq)

<Cozkpp (k,d) |0s,¢] 2o gk <cxonyn@a) 105: €l Lon (h<c<anynn)
2
<Coskpy (K, d) clipa.2.em ((r<ecanyno)
<Cyok. (529)
Since the constant Cay doesn’t depend upon k, estimate (5.29) yields that

HaCZ Pp(c, W)azicaﬂﬂchLP({c>0}nQd)

[e¢]
— Z |02y (c, 7)6zic6zjc“m({27(i+l) H
i=0

0
<022 2 2—(i+1)
1=0
—Cas. (5.30)

ell oo (0,79 x 0y <e<2 el oo (0, 7y x 0) } Rt )

Finally, since ®,(c,7) = 0 on {c = 0} and Css doesn’t depend upon d, (5.30) implies that

HaCQ @P(cv V)azlcax )

JCHLP((O,T)XO) < CQQ.

Applying the chain rule to ®,(c,~) in order to compute the required partial derivatives and treating other
resulting terms in a similar fashion leads to estimates (5.27) and (5.28).

5.6 Estimates for a transformation of solutions of the RPME (2.1)

Let p € (1,0) and let ®, be the smoothing transformation from Subsection 5.5. We now introduce yet
another transformation

1
U, RE x [0, 1 diam(O)] — Ry,

k

U,(k,d) = J P, (s,d)B (s) ds.

0

Due to assumption (4.2) and the properties of ®,, we have that
1
v, e C! (Rar x [0, 1 diam(O)]) ) 0 < 0,¥,(k,d) < Cas(p, k). (5.31)

The continuity of 0y ¥, in RT x [0, i diam(O)] is a direct consequence of continuity of ®, and 5. Moreover,
it holds with (5.26) and the properties of ¢, listed above that

k

0< ®,(k,d)3 (k) <022§<P§ (55d> B (k)

<Cos(p)kppf’ (k)
<CQ6(p)k3 =: 025(]), k) (532)

Estimate (5.32) yields in particular that 0, ¥, is continuous in every point of the set {0} x [0, 1 diam(O)],
as required.
Using estimates (5.6)-(5.8) and (5.31) and the chain rule, we obtain the following group of estimates:

19061 o o mnie o < Cor0) (5.33)
IV, (e oo 0,7y (22 0)) ) < Cor(P) (5.33b)
a.s. in Q { [0:¥,(c, 7)‘|L2((0,T);L2(o)) < Cor(p), (5.33c)
HDT\IIP(Cv/V)HL2((T7T)XO) < Cor(p) HDTCHL2((T,T)XO) 5 (5.33d)
IDr (1) = Do) oy oy < Car(®) [ Drsnat = Doclpopncy - (5:33¢)

11
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Next, we use the chain and product rules in order to obtain the following representation for ¢,D, ¥, (c,¥):
0eDy Wy (c,y) = ®,(c,7)0rD,B(c) + 0:®,(c,v)B (¢) Dyc. (5.34)
Let p > max {£,2}. Then, WZP(0) is closed under pointwise multiplication and

luvllyzr o) < Cas(P)|ullwzr o) lvlwze o),

so that, due to the Sobolev inequality,

Juvlnzco) < oo ulyznio ol o) (5.35)
Using (5.35), we obtain the following estimate for the first summand on the right-hand side of (5.34):
H‘I)p(c, 'Y)atDTB(C)HHfZ(o) < 029(17) H(I)p(ca'V)sz,p(o) HatDTﬁ(C)HH%(o) . (5-36)

For the second summand, the Hélder and Sobolev inequalities together with the properties of ®, yield
that

Hatq)p(ca V)ﬂ/ (C)DTCHH72(O) <C’30 (p) Hatq)p(cv V)ﬂ/(c)DTCHLp_a% ©0)

<C3g (p) Hatq)p(cv V)ﬂ/(c)"Lp(o) ”DTCHLZ(o) . (5'37)

Combining (5.27), (5.28), (5.34), (5.36), and (5.37), integrating over (r, T') and using the Holder inequality,
we obtain that

|0: Dy W (c, 7)|‘L%(T,T;H72((T7T)XO)) <C(p) [Pp(c, ’Y)HLP(T,T;Wz,p(O)) H&:Drﬁ(c)HL?(T,T;H*Z(O))

+ 030(17) Hatq)p(ca V)ﬁ/(c)||Lp((T7T)Xo) HDTCHLQ((T,T)XO)
<Cs1(p) (HatDrﬁ(C)\|L2(T,T;H—2(O)) + HDTCHLZ((T,T)XO)) - (5:38)
Since p > 2, C*~# < W72 holds. This, together with (5.33d) and (5.38), finally yields that

HDr\pp(Ca 'Y) H

<Cs2(p) (HatDTﬂ(c)HLQ(T,T;H*2(O)) + HDTCHL2((7~,T)><O)) a.s. in €.
(5.39)

11
¢z »([r,TH=2(0))

6 A priori estimates for SDE (2.2)

6.1 Basic estimate for y

We begin with an L%-estimate for y as solution of the stochastic integral equation (4.14b). Thereby we
choose ¢ > 2 as in the Sobolev embedding theorem, i.e., such that H*(O) ¢ L9(0). Using assumptions
(4.8) and (4.9), estimate (5.6), and a version of the Burkholder-Gundy-Davis inequality [14, Chapter 1
Theorem 7.1], we obtain that

q

Lq(@)

t t
<Caalyol* + £ Can [ w)(5)| %y + 77 Cia [ 1b(e.0)(6) s
0 0

q

+
La(Q)

[ ey as

0

f a(y)(s) W (s)

Hy(t)H%q(Q) <Css3 <|yo|q + .

t

t
<Cialyol? + Caa f [9(5)]% 1y ds + C f b9(0,0) + e(s)% 0y + [5() Ly s

¢
<Caalyol" + Cas + Cas [ (94 oy . (6.1)
0
Integrating (6.1) over O and using assumption (4.12), we conclude that
¢
Hy(t)H%q(Q-Lq(O)) <Cs3 HyOHqu(O) + C36 + Cs Hy(S)HqL"(Q'L"(O)) ds
; 0 ;

t
R WO (6.2)

Applying the Gronwall lemma to (6.2), we arrive at the estimate

|yl o (0, 1); L9 (029 (0))) < Css- (6.3)

12
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6.2 Estimate for Vy

Computing the spatial gradient on both sides of (4.14b), we obtain that Vy satisfies the stochastic integral
equation

t

vmw::v%+‘La%wa<wﬂv J'abcynm<)+abwz»vm>d (6.4)

Using assumptions (4.8) and (4.9), estimates (5.6) and (5.7), and the It isometry, we obtain that

\IVy(t)H?Lz Q)N \4HVy0H(L2 Q)N +4J la’(y)Vy(s )H(Lz(n ~ ds
40 10006, Vo) oy + 100000 ) 06y s
<4|Vyol {12y~ + Cso Lt [Ve($) 2 @yyn + IVu(8)| ey~ ds
<4 Vyol {12y~ + Cao + Cao Lt IV ()| 722 0~ ds. (6.5)

Integrating (6.5) over O and using assumption (4.12), we conclude that

VYOI 2200))v) <4UVY0l72(0))~ + Car + Cao Lt IVy($)I 22 220y ) 48
<Ci2 + Cyo f: HVy(S)H%?(Q;(L?(O))N) ds. (6.6)
Applying the Gronwall lemma to (6.6), we arrive at the estimate
VUl e 0.1 22(0:012(0))v)) < Cas: (6.7)
6.3 Estimate for y(t + hy) — y(t)

The difference y(t + h1) — y(t) satisfies

t+h1 t+hy
y@+hn—mw=£ wmwnmqﬁ+ﬁ (e y)(s) ds.

Using assumptions (4.8) and (4.9), estimate (5.6), and a version of the Burkholder-Gundy-Davis inequality
[14, Chapter 1 Theorem 7.1], we obtain that

ly(t +hy) - @mﬂm

t+hy L t+hy
[ )y b+ 17w [ e

t+h1 t+h
7 [ gy a5 40O [ 0900,0) 169 gy + 16 ey

t+h1
<hiCis + 1T Cug f 9(5) %0 - (6.8)
Integrating (6.8) over O and using estimate (6.3), we arrive at the estimate
1
ly(t + h1) — y(t)HLq(Q;Lq(o)) < hiClyr. (6.9)

6.4 Estimate for the Malliavin derivative D,y

Using the chain rule and the rule of the differentiation of an It6 SDE, we compute the D,-derivative on
both sides of equation (4.14b). This leads to a stochastic integral equation for D,y:

t

Day(t) = al)e) + [ D) W) + [ ben)Drels) + e Dae)as. (610

T

13
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Using assumptions (4.8) and (4.9), estimate (5.6), and the Itd isometry, we obtain that
t
|Dry()]720) <4la)(r)[720) + 4J la'(y) Dry(s) 72 ds
t
+4(t - T)J [0cb(e, y) Dre(s) 720y + 104(c, y) Dry(s)]1Z2(q) ds

t t
<Cusly(r)|2(g + Cs f 1Dyy(s) 20 ds + Cas f IDye(s)2aqds. (6.11)

Integrating (6.11) over O and using estimate (6.3), we conclude that
¢
HDry(t)HQL2(Q;L2(O)) <C48Hy(r)”2L2(Q;L2(O)) + C48J HDTy(S)H%Z(Q;Lz(O)) ds
¢
+ Cus f | Dre(s)72(.12(0)) 48

t t
<Cio + Cis f uDry(s)Hizm;m))ds+c48f 1Dre(s) Baourzon ds- (6.12)

Applying the Gronwall lemma to (6.12), we arrive at the estimate
2 ’ 2
HDTy(t)HL2(Q;L2(O)) <Cs0 + C5OJ HDTC(S)HL2(Q;L2(O)) ds. (6.13)

6.5 Estimate for D,y(t+ hy) — D,y(t)
Due to (6.10), the difference D,y(t + hy) — D,y(t) satisfies

t+h1 t+hy

o (y()) Dyy(s) VW (s) + f 0eb(c,y)Drc(s) + 0,b(c, ) Dry(s) ds.

Dyy(t + hy) — Dyy(t) =f )

t
Using assumptions (4.8) and (4.9), estimate (5.6), and the Itd isometry, we obtain that
2
IDyy(t + h1) = Dry(t)] 12 (q)

t+hq t+hy
2
< [ DDA ey s+ 30 [ 1o )Pl + b D) s

t+hy 9 t+hy 9
<Cst | D) ey ds+mCor [ 1Dl ooy s (6.14)
t t

Integrating (6.11) over O and using estimate (6.13), we conclude that

t+h1
|Dyy(t + ha) = Doy (1) 720 12(0y) <hiCsa + h1052f | Dre(s)720:22(0y) @5 (6.15)

T

6.6 Estimate for D, .,y — D,y
Due to (6.10), the difference D, p,y — D,y satisfies (recall that Dy, F(t2) = 0 for to < t; for F adapted)

t

Dy n,y(t) — Dyy(t) =a(y)(r + ha) —a(y)(r) + f a' (Y)(Drynyy — Dry)(s) dW (s)

t
+ J 0cb(e, y)(Dyshyc — Drc)(s) + dyble, y)(Drin,y — Dry)(s) ds (6.16)
Using assumptions (4.8) and (4.9), estimate (5.6), and the Itd isometry, we obtain that
I(Dr+ny — Dry) (t)HiZ(Q)

<4la(y)(r + ha) = a(y)(r)|* + 4f la' () (Dr4hay = Dry)(s)[72(q) ds

t
+at—r) J [0cb(e; y)(Drsnac — Dre)(s) L) + 10b(c; y) (Drsnoy — Dry) ()12 ds

14
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t
<Cssy(r + h2) = y(r)|72q) + Css f |(Drtnoe = Dre)(s)[72() + | (Drsnay = Dry)(5)[ 120y ds. (6.17)

Integrating (6.17) over O and using estimate (6.13), we conclude that

|(Drthoy = Day) ()17 (:20)
<Cs3y(r + ha) — y(r)Hiz(Q;Lz(O))

t
+ C53f I(Dy4nyc — DTC)(S)H%Q(Q;LQ(O)) + [ (Drsnay — Dry)(s)H%Z(Q;LZ(O)) ds

t t
<heCsq + Cs3 f [(Drshac = Dre)(s) 720,120y d5 + J |(Drshay = Do) (8)| 720220y ds-

Applying the Gronwall lemma to (6.18), we arrive at the estimate

t
2 2
[(Drsnoy = Dry) (Ol 7200 12(0)) < h2Cs5 + Css | [[(Drany¢ — Dre) ()12 (a.z2(0)) @8-
( (0)) . (

7 Proof of the compactness Theorem 4.5

(6.18)

(6.19)

In this section, we finally prove our main result, Theorem 4.5 on compactness. We begin with collecting
together estimates (5.6)-(5.8), (5.14), (5.20), (5.17), (6.7), (6.3), (6.9), (6.13), (6.19), (6.15) for ¢ and y

which we obtained in Sections 5 and 6:

el oo 0,1):L20)) < Css
HVCHLOO((O,T);(H(O))N) < G,

|0sel p2 0,y 12(0)) < s

t t
as.in € ) f IDye(s) 20 ds < Crs f IDsy() 2oy s,

t t
f |(Drtnse = Drc)(8) 720y ds < Cl8f |(Drhsy = Dry)(8) 720y ds,

t t
| 18800y ds < Cur | 1D(6) 30y ds

and

1Wle% o z00sz000y < €27

IVYll Lo (0,1);22(0:(22(0))v)) < Cas,

t
2 2
| Dry ()22 (022 (0)) < Cs0 + C50f | Dre($) 2220y @5

t
[(Drsnaty = D) Ol 32(g20y) < h2Css + Css | [(Drsnae = Dr)(5)lF2gqizz(oy 45
( (0)) ,

t+hi
HDry(t + hl) - Dry(t)Hiz(Q;LZ(o)) < hiCso + h1052f HDTC(S)HiQ(Q;LQ(O)) ds.

T

(7.1a)
(7.1b)
(7.1c)

(7.1d)
(7.1e)

(7.1f)

(7.2d)

(7.2¢)

Combining (7.1) and (7.2) and using the Gronwall lemma where necessary, we arrive at the following set

of estimates:

HCHLw(Q;Lw((O,T);LOO(O))) <G,
HVCHLOO(Q;Lw((o,T);(LZ(O))N)) <G,
[0:e] Lo 0.2 ((0.1y:22(0)) < s
IDrell L2 (v ryxoxa) < Cses

_1
th > (Dyynyc— Dye) Cs6,

<
L2((r,T—h2)xOx0Q)

HatDTﬁ(c) HLZ((T,T) xQH=2(0)) S 056

15
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and

HyHC% ([0,T];Le(Q;La(O

") < Clyr, (7.4a
(7.4b

VYl e 0,7y p2(0:(22(0)) ™)) < Cas,
| Dryll oo (v, L2(02:22(0))) < C565 (7.4c

th_% (Drsnoy — Dry)H Cse (7.4d

<
L*(r,T—hs;L%(2;L2(0)))

th%(Dry(- + h1) — Dyy)

< 056' (746)
L (r,T—h1;L2(Q4L2(0)))

Estimates (7.4) allow us to apply [2, Theorem 2] directly. It yields that
Y(T, R) is precompact in L?((0,T) x O x Q).

Remark 7.1. Observe that our estimates, particularly those involving D,., are in fact stronger than those
required by that theorem. Indeed, for instance, assumptions (2)-(4) from [2, Theorem 2] deal with the
regularised versions of the functions in the family.

Let us know prove the precompactness of C(T, R). First, we note that (7.3f) is an estimate for a
second derivative of 3(c), not for ¢. This precludes the direct application of [2, Theorem 2]. To overcome
this problem, we consider instead function ¥,(c,y). Combining the estimates (5.33) and (5.39), which
we derived in Subsection 5.6, with (7.3), we obtain that

9 e: 1) e o o < Cor(o), (7.50)
IV (e, N oo (.10 (0,722 (0)) v ) < Cor(P); (7.5b)
106 o s yseon < Coro), (7.50)
DAYy (e gy oy < Co(®), (7.50)
5t (DrinaWy(e,7) = Doty (e,7)| )

)

HDr\pp(Ca 'Y) H

< Cs1(p),
L2((r,T—h2)xOx8) 57(]7)

(
< Cs7(p). (7.5¢

LE(@02 3 ([ TH2(0)))
With estimates (7.5) at hand we can know apply [2, Theorem 2] yielding that
U, (C(T, R),) is precompact in L*((0,T) x O x Q). (7.6)

We observe that function ¥, (-, (¢, z)) has, for each fixed pair (¢, z) € (0,7 x O, the following properties:
it is defined on an interval, continuous, and strictly increasing. As to the latter, it is follows from the
definition of ¥, and the fact that 5'(c), ®,(c,d) > 0 for ¢,d > 0 and ~(t,z) > 0 for (¢,x) € (0,T] x O.
Therefore, U,(-,v(t,z)) is invertible, and its inverse has these three properties, too. Consequently, we
have the following implication:

{Wp(cn(t,z,w),v(t, )}, oy is convergent in R = {c,(t,7,w)}en is convergent in R. (7.7)
Combining (5.6) and (7.7) and using the dominated convergence theorem, we obtain that

{Up(cn, )}, i a.e. convergent in (0,7) x O x Q = {c, }nen is convergent in L*((0,7) x O x Q).
(7.8)

Together, (7.6) and (7.8) finally yield that
C(T, R) is precompact in L?((0,T) x O x Q).
The proof of Theorem 4.5 is thus complete.

8 Spatial semi-discretization for a nondegenerate case

In this section we set up and study a spatial finite-difference scheme for system (2.1)-(2.2) under the
additional assumption

B e C*(Ry) (8.1)

which corresponds to a nondegenerate case. Our goal here is twofold. On one hand, we apply the semi-
discretisation method (see, e.g. [12, Chapter 4 §1] and references therein, particularly [18]) in order to
obtain the existence of solutions. At the same time, we illustrate thereby how one can use compactness in
order to rigorously prove the convergence of a numerical scheme for nonlinear systems with stochasticity.
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8.1 Spatial discretisation and interpolation

In this sequel we recall some concepts and ideas of the deterministic semi-discretisation method. We
refrain from the proofs of the properties listed here since they either exactly repeat or are slight modifica-
tions of results addressed in the literature. The interested reader is referred to [12, Chapter 4 §1], where
the method is described. The discretization is preformed only in O. To avoid some purely deterministic
technical difficulties which have to do with discretizing close to and on the boundary of O, we restrict
our exposition to the case when the spatial domain O is a unit cube:

0= (0,1)¥

However, we especially emphasise that this simplification is by no means essential: the present approach
can be used for more general domains.
We begin with some more notation. As usual, we denote by e the k-th standard basis vector in R¥.

Let M € N\{1}. For h := /A5 we define the discrete sets

Moe{h2h,... 1m0 i={0,h,...,1}" oot .= oM o"

and the space-continuous set
U= (2h,1 - 2n)N
Clearly, it holds that

IO\U"| =1-(1—4h)N — 0.

h—0

Next, we introduce standard finite difference operators for a function u at a point m:

Ru(m) = %(u(m + heg) —u(m)) for ke {l,...,N}, (8.2)
V= (of,. .., a’;v) , (8.3)
| N
Aly =3 Z (m + heg) — 2u(m) + u(m — heg)), (8.4)
Mu(m) = %(u(m) —u(m)) for me o"O" (8.5)
where
h if my = 0,
g = dmy  ifmpe(0,1), forke{l,..., N} (8.6)

1—h ifmy =1

We recall the discrete version of the Green’s first identity (i.e., summation by parts formula)

M M
Diaisr = 2a; + ai1)by = = Y (aip1 — a;)(big1 — bi) + (anrs1 — anr)bar1 — (a1 — ao)bo, (8.7)
i=1 i=0

as well as the following relation

1

R (g(w))(m) = 3Zu(m)f g (u(m) + Th@,}gu(m)) dr (8.8)

0

which serves as a sort of chain rule for the discrete case. Further, we make use of some discrete analogs
of several (semi-)norms and a scalar product which mimic the corresponding notions in connection with

the Lebesgue and Sobolev spaces: for u, v : 5h — R let

(u,0) 2 (phapy i= AN Z uv(m) for D" 6h,

meDn
1
N P)p ‘ —
gy o= | O Zmepn [um) T for pE [0 i 5
max,,cpr |u(m)] for p = oo,
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N[

lul iy = | B2 Y lulm+ her) —u(m)? ]
m,m+hek€6h
1

2
[l 2 5y = (12 vy + 100 )

(’U,, U)L2(Oh;h)

Jul sup

N TR
T ez @ oy 1Az 0nshy

where
—h —h
HZ(O";h) = {’U:O —-R: vzaﬁvz()on@hOh}.
For a function u : O — R we define its projection to the space of discrete functions via

Phu(m) := J-( o)) Ou(z) dz forme O

. . . —h . . .
In order to interpolate discrete functions u : O — R we use two types of splines: the piecewise constant

Mu(z) := u(m)  forz € (m + (=3 %)N) n O, me Oy,
0 otherwise

and the piecewise polyaffine

Aru(z) = 2 w(i) L1

1 — —
(i—m) <E(xm)> for z € (m + [0,h]Y) N O, m € Oy,
ie(m+{0,h}N)nO,

where

N
AM(z) =[] By, (z) for ze[0,1]N, 1€ {0, 1}V,
j=1

J

Bo(r):=1—r, pi(r):=r forrel0,1].

The constructed splines have the following useful properties: for all w : 6h — R it holds that

M"u e L*(0),

—h
(", ") 120y = (u,v)LQ@h;h) for ve HZ(O";h), (8.9)
o(IT"u) = IM"p(u) a.e. in O for any ¢ : R — R, (8.10)

Ay e WH*(0),
Aru(m) = u(m) forme 5h,
and

u=0 ind0" = Awu=0 in 00, (8.11)
Mu=0 ind"O" = 0,Au=0 ae indo0. (8.12)

Moreover, both interpolation operators preserve positivity:

u=0 m0' = AwI'u>0 inO. (8.13)
Finally, the projection and interpolations enjoy the following estimates:

HPhuHLP@h;h) < Cssllu] Lroy for uwe LP(0), pe[1,x],

—~

8.14)

\Phu\m@h;h) < Css| V120 for ue H'(0), 8.15)

—~~
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|11 PPy — ull 120y < hCss|Vul L2(0) for we H'(0), (8.16)
—h
HAhuHLP(O) < Cssllull om0 foru:0 — R, pe[l,x], (8.17)
—h
HVAhu||L2(O) < O58|U|Hl(6h;h) foru: 0 — R, (8.18)
—h
A", wny < Oss lully o foru:0 — R, (8.19)
h h h .o
[T = A, o) < AC53 [Vl gy, foru: 07 - R, (8.20)
11" APy — uHLO@(O) < hCsg for u e W*%(0). (8.21)
8.2 Approximation via semi-discretization
We start with the following semi-discretization of the RPDE-SDE system (2.1)-(2.2):
0B () = Al + f (") in (0,7] x O", (8.22a)
nQ <=0 (o =0) in (0,7] x &"O", (8.22b)
=t in {0} x O", (8.22¢)
e dy" =a(y") dW +b (", y") dt in (0,7] x Q, (8.23a)
in
Y=yl in {0} x © (8.23b)
where the spatially discretized initial data (cg, yg) : 5h — RBL is defined via
. —=h
(cg,yg) = (Phco,Phyo) in O .
Observe that equation (8.22a) can be rewritten in the conventional form of a RODE:
-1 -1
O = (ﬂ’ (ch)) Alel 4 (ﬂ’ (ch)) I (ch,yh) . (8.24)

Using the boundary conditions (8.22b) one can eliminate (ch(~, m, '))meahoh from (8.22a). Then, system
(8.22)-(8.23) can be considered as a RODE-SDE system with respect to

((ch(-,m, '))meoh , (yh(-,m, '))mEEh) [0, T] x Q — (RJ)MN X (Rar)(M’LQ)N.

A solution can then be understood in the usual strong SDE-sense. Observe that not only the coefficient

functions f,a,b, but also (8)~! and A" : 0" - O"in equations (8.24) and (8.23a) are continuously
differentiable in R . For 3 this holds since (8') 7!, 8” € C(R{), the latter due to our additional assumption
(8.1), while A" is simply linear. Therefore, the RODE-SDE is uniquely solvable and its solutions possess
square integrable Malliavin derivatives due to well-known results [16, Corollary 2.2.1, Theorem 2.2.1].
The nonnegativity of solution components is a consequence of a general result on the invariance for SDE
systems with smooth coefficients [15] and assumptions (4.10) and (4.13).

Multiplying (8.22a) by £v” for arbitrary ¢ € CF[0,T) and v € H? (5h; h), summing over O" thereby
using (8.7) twice, and integrating over (0,7") we obtain the following weak formulation:

T
dg
- (ﬂ (C}&) 7vh)L2(Oh;h) 5(0) - J;) (ﬂ (ch) (S)vvh)Lz(Oh;h) a(s) ds
T
=J-O (ch(s),Ahvh)p(oh;h)E(s) + (f (" y") (s),vh)LQ(Oh;h)f(s) ds. (8.25)
In particular, one can take v := v|5h for any v € CF(U") as a test function in (8.25). Thus, using

the interpolation operators and properties (8.9), (8.10), and (8.11) ((8.12)) one deduces from the space-
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discrete problem (8.22)-(8.23) an approximation to the original space-continuous system (2.1)-(2.2):

T
d
— (B (HhPhco) ,Hhv) L2(0) £(0) — L (B (Hhch) (s), Hhv)LZ(O) d—f(s) ds
T
= J;) (Hhch (S)v HhAhv)L2(O) 5(5) + (f (Hhcha thh) (S)a Hhv) LZ(O) 5(5) dSv
for all v e C(UM), € € CP[0,T) as. in €, (8.26a)
A =0 i (0,T)x 30  (0,A"c" =0 ae. in(0,T)xd0) as. inQ, (8.26b)

t t

" yh(s) = 1" Phyy + f a (I"y") (s)dW (s) + f b (I1" e 11"y (s) ds
0 0
in L?(0) for all te [0,T] a.s. in Q. (8.26¢)

This system will be analysed in the subsequent subsections.

8.3 A priori estimates

It is easy to see that for solutions of the semi-discrete system (8.22)-(8.23) one has a set of uniform
in h estimates which is very similar to estimates (7.3)-(7.4) for the original space-continuous system
(2.1)-(2.2). Indeed, one just needs to replace the spatial differential operators by their discrete versions
(8.2)-(8.6), integration over O by summation over O", and the LP(0O) norms by their discrete analogies
LP(O"; h) and to use (8.14)-(8.15) in order to estimate (cfj,yh), the discrete version of the Green’s first
identity (8.7), the boundary conditions (8.22b), as well as relation (8.8) instead of the chain rule while
dealing with spatial derivatives. Moreover, since we assumed that 3 € C* (R(’,L ), the uniform estimates for
c¢p, can be directly transformed into the corresponding uniform estimates for 3(cp,). This spares the need
of constructing more complicated transformations such as those derived in Subsections 5.5-5.6. We thus
get the following sets of estimates:

“6 (Ch)“LOO(Q;Loo((QT);Lx(ah;h))) < Oy, (8.27a)
HB (Ch)HLoo(Q;Loo((QT);Hl(5h;h))) < Oy, (8.27b)
Hatﬁ (Ch)HLoo(Q;L2((07T);L2(5h;h))) < O, (8.27¢)
HD’I‘/B (Ch)||L2(T7T;L2(Q;L2(5h;h))) < CV59; (827(21)
—32 h h
th FDransB (M) = DB ()] i, < O (8.27¢)
HatDTﬁ (Ch)HL2((7~,T)><(2;H*2(5h;h)) < Cso (8.27)
and
h
Hy Hcé([O,T];LQ(Q;LQ(Eh;h))) < 059) (828&)
Hyh“LOO((O,T);LZ(Q;Hl(ah;h))) < C597 (828b)
HDTyh||LOO(T7T;L2(Q;L2(5h;h))) < C5Qa (828C)
-3 h_ h
th T Dy’ = Deyn)| L e @y S O (8.28d)
-3 hy. _ h
1 (D (4 ) = Dy P ey S O (8.28¢)

Combining (8.27)-(8.28) with (8.17)-(8.19) we conclude that the pair (A"3 (c"), A" (y")) satisfies

HAhﬂ (ch)HLOO(Q;LOO((QT);Lx(O))) < C’607 (8.29&)

HAhB (ch)HLOO(Q;LOO((QT);Hl(O))) < CﬁOa (829]:))

[06A" B (™) Lo 22012200y < Co05 (8.29¢)

[ DA B () 12 22 (0yy) < Coos (8.29d)
_1

th 5 (Dyena A8 (") — DARB (7)) et ey < GO0 (8.29¢)
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HatDTAhﬁ (Ch) )) < C‘60a (829f)

HLQ((T,T)XQ;H*Z(U’”

h, h
HA Y HC%([O,T];LLI(Q;LQ(O))) < CGOa (830&)
h, h
HA Yy HLOO((O,T);LZ(Q;Hl (0))) < CﬁOa (830]:))
HDTAhyh“Loo(nT;Lz(Q;Lz(O))) < Cv607 (830C)
hié(D Ah h_D Ah h
5 2 (Dran, Ay PAy") < Cgo (8.30d)

L (rT—h; L2(L2(0)))

B (DAY (4 ) = DoAY

< Cep. 8.30
Lo (r T—his L2 (L2(0)) 0 (8:30¢)

Further, (8.27b) and (8.28b) together with (8.20) and assumption 37! € C*(R{) (compare (4.4)), yield
that

[ = AP e (o2 oy < PC61s (8.31)
HHhﬂ (Ch) - Ahﬂ (ch)|‘LOO(Q;LOO((07T);L2(O))) < h'CGI (832)

and
[0y = A" omyene oz oy < ACo1- (8.33)

Finally, due to (8.16) we also have for the approximations of the initial data the estimates
h ph h
HH P Cy — COHLQ(O) < hCsga, (834)

[T PPy = yo 20y < 7C2- (8.35)

8.4 Compactness and convergence

Thanks to estimates (8.29)-(8.30) we are once again in the position when we can directly apply [2,
Theorem 2]. Tt yields that

{(Ahﬂ (ch) ,Ahyh) : h= TSR Me N} is precompact in (L*((0,T) x O x Q))2 (8.36)

Together with estimates (8.32)-(8.33) this leads to

1
M+1

{(Hhﬂ (M), "y") . b= M e N} is precompact in (L*((0,7) x O x Q))2 (8.37)

Further, using 3~ € C1(R{) and property (8.10) for ¢ := 3, we conclude with (8.37) that

{(Hhch,thh) : h Me N} is precompact in (L*((0,7) x O x Q))2 (8.38)

T M+1
Combining estimates (8.29)-(8.30), and (8.31), (8.33) with the compactness results (8.36) and (8.38) and

using assumption 8~ € C1(R{) we deduce that there exists a pair of functions (c,y) : [0,7] x O x Q —
RS x R which satisfies conditions 1-6 from Definition 4.2 and a sequence h,, — 0 such that

n—o0
(IThm el 11yt - (cy) in L*((0,T) x O x ), in L*((0,T) x O) a.s. in (8.39)
and
AP A ¢ in L®(Q; L*((0,T); HY(0))). (8.40)
n—o0

Due to (8.34)-(8.35) it holds also that

(e Phece T Pl ) (co,p0)  in (L2(0))*. (8.41)
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Using (8.39) and (8.41), assumption 3, f,a,b € C!, and the fact that

Ay — Av  in L?(0)
n—0o0
due to (8.21), we can pass to the limit in the weak formulation (8.26a) and the SDE (8.26¢). Finally,
combining (8.40) with the boundary conditions (8.26b) and the trace theorem, we conclude that ¢ satisfies
either of the boundary conditions. Altogether, this means that (¢, v) is a weak solution to the PDE (2.1)
and a strong solution to the SDE (2.2), and it has the desired regularity. Thus, we proved the following
Lemma:

Lemma 8.1 (Existence for a nondegenerate case). Let Assumptions 4.1 be satisfied. Assume in addition
that B € CQ(R[{) Then there exists a weak-strong global solution in terms of Definition 4.2 to system
(2.1)-(2.2).

9 Proof of the existence Theorem 4.6

In this final section we discuss how our compactness Theorem 4.5 can be used in order to prove the
existence of solutions to the original degenerate system (2.1)-(2.2). Let T' > 0 be arbitrary. Choose
Ry, R1 > 0 large enough so that (8, f,a,b, co,y0) € P(T, (Ro/2,R1/2)). For each ¢ € (0,1) let 8. be such
that

(687f7a/5b7007y0) EP(T7 (R07R1))) (91)
B: € C*(Ry),
Be — B inC[0, Ry,

e—0

where Ry is an upper bound for the L*-norm of ¢, compare (4.15). We introduce a family of approximating
problems

0tBe(ce) = Ace + f(ce,ye) in (0,7] x O, (9.2a)
n<{c=0 (Opce =0) in (0,7] x 00, (9.2b)

Ce = Co in {0} x O, (9.2¢)
O {cly8 = a(y:) dW + b(ce,ye) dt in (0,7] x £, (9.3a)
in

Ye = Yo in {0} x . (9.3b)

The existence of a solution (c.,ye) in terms of Definition 4.2 to system (9.2)-(9.3) follows from Lemma
8.1 of the previous section. Moreover, due to assumption (9.1) and the compactness Theorem 4.5 family
{(ce¥e)}e(o,1) 18 precompact in (L*((0,T) x O x Q))2 Standard compactness arguments and a limit
procedure then yield the existence of a solution in terms of Definition 4.2 to the original degenerate
system (2.1)-(2.2) for any T > 0.

Finally, we observe that the particular choice of the zero starting time was not essential for our
arguments heretofore. Indeed, all previous results continue to hold if we replace the interval [0,T] by
[to,to + T for any ¢ty > 0 and consider the ’shifted’ in time filtration (Fiit,):=0 instead of the original
one. Thus, we obtain a solution defined for all times by defining it successively in [0,T], [T, 27, and so
on. The proof of Theorem 4.6 is thus complete.

Remark 9.1 (Numerical schema). As a by-product of the constructions from this Section and the previous
Section 8 we have a numerical schema for (2.1)-(2.2) which is, at least theoretically, converging.
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