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Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental
and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging
results in the limit of zero temperature and are also not readily extended to nonequilibrium reservoirs, such
as dephasing baths. Aimed at filling this gap, in this paper we introduce a phase-space-entropy production
framework for quantifying the irreversibility of spin systems undergoing Lindblad dynamics. The theory is based
on the spin Husimi-Q function and its corresponding phase-space entropy, known as Wehrl entropy. Unlike the
von Neumann entropy production rate, we show that in our framework, the Wehrl entropy production rate remains
valid at any temperature and is also readily extended to arbitrary nonequilibrium baths. As an application, we
discuss the irreversibility associated with the interaction of a two-level system with a single-photon pulse, a
problem which cannot be treated using the conventional approach.
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I. INTRODUCTION

Irreversible processes undergone by an open system are
associated with a production of entropy that is fundamentally
different from any possible entropy flows between the system
and its environment. To separate the two contributions, we
usually write the rate of change of the entropy S of a system as

dS

dt
= � − �, (1)

where � is the entropy flux rate from the system to the
environment and � is the entropy production rate. According
to the second law of thermodynamics, we should have � � 0
and � = 0 if and only if the system is in equilibrium.
Hence, the entropy production rate may be used as a natural
quantifier of the degree of irreversibility of a process. For this
reason, a thorough understanding of the entropy production
rate is both fundamentally relevant and technologically
desirable. On the one hand, such understanding would
provide the much needed foundation for the emergence
of time-symmetry breaking entailed by irreversibility and
epitomized, for instance, by seminal results such as Onsager’s
theory of irreversible currents [1–4]. On the other hand, a
characterization of irreversible entropy could help us to design
thermodynamically efficient quantum technologies [5,6].

The description of entropy production in open quantum
systems is still an open question, despite substantial progress
[7–22]. Here we shall be interested in systems described by a
master equation of the form

dρ

dt
= −i[H,ρ] + D(ρ), (2)

*gtlandi@if.usp.br

where ρ is the system’s density matrix, H is the Hamiltonian,
and D(ρ) is the dissipator describing the effects of the bath.
In Refs. [23,24], Alicki suggested a relation for the entropy
production in terms of the dynamical semigroup {�t |t � 0}
generated by Eq. (2) and its corresponding invariant state
�tρ

∗ = ρ∗. The relation is given by

�vN = − d

dt
SvN(�tρ(0)||ρ∗), (3)

where SvN(ρ||σ ) = tr(ρ ln ρ − ρ ln σ ) is the von Neumann
relative entropy. Clearly, with this definition, �vN � 0, with
the equality holding only for ρ = ρ∗.

In the case of a thermal bath, the invariant state becomes
the Gibbs state, ρ∗ = ρeq = e−βH /Z. Using Eqs. (1) and (3),
one may then show that in this case, the entropy flux rate �vN

becomes

�vN = �E

T
= − 1

T
tr {HD(ρ)}, (4)

which is the familiar Clausius relation between entropy and
heat, therefore providing a more physical basis for Eq. (3).

However, Eqs. (3) and (4) both diverge in the limit T → 0,
even though dS/dt is well behaved. Equation (3), in particular,
diverges whenever the support of ρ∗ is not contained in the
support of ρ [15,16]. Such divergence has been the subject of
substantial investigation [13–18,25], but whether or not it is a
physical consequence of the third law of thermodynamics, or
merely a mathematical limitation, remains an open question.
This sets an immediate practical limitation since it renders
this approach inapplicable to any process whose invariant
state is pure, therefore excluding several situations typically
encountered in the laboratory. For instance, it excludes the
remarkably simple problem of spontaneous emission.
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Reference [10] has introduced the idea of using phase-
space-entropic measures as an alternative to describe
irreversibility in open quantum systems. As was shown, not
only does this fix the above-mentioned divergences for pure
states, but it also allows for a transparent way of extending
the framework to nonequilibrium reservoirs. Moreover, it
has the advantage of identifying quasiprobability currents in
phase space that represent the microscopic manifestations of
irreversibility. In Ref. [10], the focus was on Gaussian bosonic
states, for which the Wigner function was shown to be an ideal
choice, as it is also related to the Rényi-2 entropy. However,
the question of how this formalism could be extended to other
systems was not explored.

The goal of this work is to derive a theory of entropy
production that is applicable to spin systems subject to general
reservoirs. To achieve this goal, we shall follow a similar
approach as in [10] and use phase-space techniques based
on spin coherent states and the spin Husimi-Q function [26].
The Husimi function is a quasiprobability distribution com-
monly used to study the correspondence between quantum
and classical dynamics [27]. Among its properties, it is always
positive definite. This fact was used by Wehrl [28–31] to define
a phase-space version of the Shannon entropy. The Wehrl
entropy is not a measure of the purity of the wave function
as is the von Neumann entropy, but is directly related to the
uncertainty area of the Husimi function in phase space [32–34].
For any state, the Wehrl entropy provides an upper bound to
the von Neumann entropy, which is saturated only for the case
of a coherent state [30,35].

The paper is organized as follows. In Sec. II, we present the
framework for describing spin systems in phase space. We do
so using two equivalent approaches, one based on spin coherent
states and the other based on the Schwinger mapping to bosonic
systems. We thus obtain two definitions for the Husimi function
and for the corresponding Wehrl entropy. In Sec. III, we study
the Wehrl entropy production for the dephasing channel and
also discuss, as an application, the dynamics of a spin 1/2 in
a rotating magnetic field. In Sec. IV, we apply our formalism
to the finite-temperature amplitude damping channel and give
general expressions for the Wehrl entropy production rate and
entropy flux rate, which are valid for any temperature and spin
number. We also show the relation between the Wehrl entropy
flux rate and the energy flux rate. Explicit results for the spin-
1/2 case are given as well. In Sec. V, we apply these results
to the problems of spontaneous emission, thermal quenches,
and a spin 1/2 in an oscillating magnetic field. Finally, in Sec.
V D, we study the entropy production of a two-level system
interacting with a single-photon pulse. The conclusions are
summarized in Sec. VI.

II. SPIN-PHASE-SPACE DYNAMICS

A. Spin coherent state representation

In this paper, we shall focus on a single spin J with spin
operators Jx , Jy , and Jz. Instead of working with the density
matrix, we approach this problem from a phase-space perspec-
tive. The natural phase-space representation for spin systems
is through spin coherent states, which are defined as [36]

|�〉 = e−iφJze−iθJy e−iψJz |J,J 〉, (5)

where |J,J 〉 is the angular momentum state with largest
quantum number of Jz, and (θ,φ,ψ) are Euler angles. The
angle ψ is not actually necessary and is placed here only for
the sake of completeness.

We may define, as a phase-space distribution for this spin
system, the Husimi-Q function,

Q(�) = 〈�|ρ|�〉. (6)

In phase space, the dynamics of Eq. (2) can be recast into the
Fokker-Planck equation for Q,

∂tQ = U (Q) + D(Q), (7)

where U accounts for the unitary part of the evolution and
D for the dissipator. The phase-space differential operators
U (Q) and D(Q) may then be obtained from standard operator
correspondence tables. The most interesting correspondences
are those concerning commutators of the spin operators Ji ,
which translate into the usual orbital angular momentum
operators:

[J+,ρ] → J+(Q) = eiφ(∂θ + i cot θ∂φ)Q, (8)

[J−,ρ] → J−(Q) = −e−iφ(∂θ − i cot θ∂φ)Q, (9)

[Jz,ρ] → Jz(Q) = −i
∂

∂φ
Q. (10)

B. Takahashi-Shibata-Schwinger representation

Working with spin coherent states can eventually be cum-
bersome as they do not have the simplicity of standard
coherent states. Here we shall also use a different approach
put forth by Takahashi and Shibata [37], which consists of first
using the Schwinger operators to map the spin operators into
two bosonic modes and then defining standard phase-space
measures using bosonic coherent states. We shall thus refer to
this as the Takahashi-Shibata-Schwinger (TSS) approach. This
method gives the same result that would be obtained without
resorting to the mapping, but considerably simplifies the formal
approach to the problem.

We thus proceed by implementing Schwinger’s map that
transforms the spin operators into two bosonic operators a and
b according to

Jz = 1
2 (a†a − b†b), J+ = (J−)† = a†b. (11)

To fix the total spin J , we impose to work on the restricted
subspace where na + nb = 2J , with na,b the expectation value
of the number operators for the two Schwinger modes. We now
introduce standard bosonic coherent states |c〉 = |α,β〉 of such
modes and define the corresponding Husimi-Q function as

Q(α,β) = 1

π2
〈α,β|ρ|α,β〉. (12)

This Husimi function will also satisfy a quantum Fokker-
Planck equation of the form (7). The correspondence table
(8)–(10) now becomes

[J+,ρ] → J+(Q) = (α∗∂β∗ − β∂α)Q, (13)

[J−,ρ] → J−(Q) = (β∗∂α∗ − α∂β)Q, (14)

[Jz,ρ] → Jz(Q) = 1
2 (α∗∂α∗ + β∂β − c.c.)Q. (15)
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For a single spin-1/2 system, the most general density
matrix may be written as

ρ = 1
2 (1 + τ · σ ), (16)

where σi are the Pauli matrices and τi = tr(ρσi). In this case,
it follows that the corresponding Husimi-Q function is given
by the particularly simple form [38]

Q(α,β) = e−c†c

π2
c†

(1 + τ · σ )

2
c, (17)

where c = (α,β) is to be interpreted as a two-component
spinor. For an arbitrary spin, we write instead

Q(α,β) = e−c†c

π2
V (α,β), (18)

where

V (α,β) =
∑
m,m′

ρm,m′ (α∗)J+m(β∗)J−mαJ+m′
βJ−m′

√
(J + m)!(J − m)!(J + m′)!(J − m′)!

.

(19)
One may verify that V (α,β) is a homogeneous function of
degree 2J in α and β. Thus, using Euler’s theorem for
homogeneous functions, we find that

(α∂α + β∂β)V (α,β) = 2JV (α,β), (20)

with an identical equation for α∗ and β∗.

C. Relation between the two approaches

Equation (18) can be related to the spin coherent state
function in Eq. (6) as follows. Define the angle-action variables
I, θ , φ, and ψ according to

α =
√
I cos

θ

2
e−i(φ+ψ)/2, β =

√
I sin

θ

2
ei(φ−ψ)/2. (21)

The integration measure changes as

d2αd2β = 1
8IdIdψd�. (22)

After integrating over ψ , we obtain

d2αd2β = π

4
IdId�, (23)

where d� = sin θdθdφ. One may then verify that the Husimi
functions (18) and (6) are related by

Q(α,β) = e−II2J

π2(2J )!
Q(�). (24)

Thus, one may move back and forth between the two repre-
sentations based on convenience. Comparing this result with
Eq. (18) also allows us to identify the relation

V (α,β) = I2J

(2J )!
Q(�). (25)

D. Wehrl entropy

The entropy associated to the Husimi function is known as
the Wehrl entropy [28,29,32,39–42],

S = − (2J + 1)

4π

∫
d� Q(�) lnQ(�), (26)

where the constant (2J + 1)/4π has been introduced only for
convenience.

In the TSS representation, the Wehrl entropy may be written
as

S = −
∫

d2αd2β Q(α,β) ln Q(α,β), (27)

where both integrals are over the entire complex plane. The
definitions (26) and (27) are not identical, but differ by an
additive constant. However, in view of Eq. (1), we will only be
interested in the general rate of change of the entropy so we
shall not differentiate between the two definitions.

Unlike the von Neumann entropy, the Wehrl entropy can
be affected by unitary transformations. This is related to the
coarse-graining aspect of the Husimi function. Hamiltonians
which are linear in Ji do not affect S, but in general nonlinear
Hamiltonians do [40]. Which classes of Hamiltonians affect
the unitary part is still an open question [29]. Here we shall not
consider this unitary contribution, as it simply adds a new term
to dS/dt , but rather concentrate on the dissipative contribution
to dS/dt , which from Eq. (7) is found to be

dS

dt

∣∣∣∣
diss

= − (2J + 1)

4π

∫
d� D(Q) lnQ. (28)

The goal is to separate this in the form of Eq. (1), i.e., to identify
terms that can be interpreted as an entropy production rate �

and an entropy flux rate �.

E. Information-theoretic aspects of the Wehrl entropy

The Wehrl entropy has long been used as an information-
theoretic tool when dealing with coherent states. Perhaps the
most well-developed approach is that of Refs. [32,33], where
the authors presented an operational interpretation of S in terms
of phase-space measurements subject to an additional filtering
device (called quantum ruler) that coarse grains the knowledge
acquired in the measurement. This then leads to the so-called
sampling entropies, with the Wehrl entropy representing a
special example for the case where the quantum ruler is a
coherent state. Other operational uses of the Wehrl entropy
include nontrivial measures of uncertainty [39,40], measures
of localization [42], and its relation to quantum chaos [41,43].

III. DEPHASING CHANNEL

A. General formulation

As a first example, we consider the dephasing channel with
Lindblad operator

D(ρ) = −λ

2
[Jz,[Jz,ρ]]. (29)

This channel does not induce any population changes in the Jz

basis, but only causes a loss of coherence. The corresponding
phase-space dissipator is simply

D(Q) = −λ

2
Jz(Jz(Q)), (30)

where Jz(Q) is given in Eq. (10).
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By replacing this in Eq. (28) and integrating by parts, we
arrive at

dS

dt
= � = λ

2

(
2J + 1

4π

)∫
d�

|Jz(Q)|2
Q , (31)

which has the typical form of an entropy production [10,44–
46]: It is always non-negative and zero iff Jz(Q) = 0. This
occurs only when Q is independent of the azimuthal angle φ,
which is the phase-space analog of requesting that ρ is diagonal
in the Jz basis. Hence, this result establishes Jz(Q) as the
current associated with the loss of coherence in the Jz basis.

Equation (31) also shows that a dephasing bath has no
associated entropy flux. This also appears in the context of
the von Neumann entropy production and the Wigner entropy
production for bosonic modes [10]. Moreover, it also agrees
with the definition of dephasing as a unital map, for which the
entropy can only increase [47] (whereas � � 0, the sign of
� is in general arbitrary and thus may lead to a reduction in
the entropy. But when � = 0, we ensure that the entropy can
never decrease).

B. Spin-1/2 case

We can find an explicit formula for the integral (31) in the
case of spin-1/2 particles [cf. Eqs. (16) and (17)]; viz,

� = λ

4

(
τ 2
x + τ 2

y

){τ − (1 − τ 2) tanh−1(τ )

τ 3

}
, (32)

where τ =
√

τ 2
x + τ 2

y + τ 2
z . For a pure state (τ → 1), we get

the particularly simple result

� = λ

4

(
τ 2
x + τ 2

y

) = λ

4
sin2 θ. (33)

We can also compare this with the von Neumann formu-
lation in Eq. (3). For the case of a dephasing bath, given by
Eq. (29), the target state ρ∗ will be any diagonal state in the Jz

basis. The entropy production given by Eq. (3) is then readily
found to be

�vN = λ

2

(
τ 2
x + τ 2

y

) tanh−1(τ )

τ
. (34)

A comparison of this result for the case where τ 2
x + τ 2

y = τ 2

is shown in Fig. 1. As it can be seen, both the Wehrl and the
von Neumann entropy productions behave in a similar way.
However, as the system approaches a pure state (τ → 1), the
von Neumann entropy production diverges, whereas the Wehrl
entropy production rate remains finite.

C. Application: Spin in a rotating magnetic field

As an example, let us consider a spin-1/2 particle in the
presence of a rotating magnetic field. We take the system
Hamiltonian to be

H (t) = −b0

2
σz − b1

2
[σx cos(ωt) + σy sin(ωt)], (35)

and assume that the system is also subject to the dephasing
dissipator (29).

The trajectory of the system in the Bloch sphere is shown
in Fig. 2, together with a comparison of the Wehrl and von

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ

Π
/
λ

Wehrl

von Neumann

FIG. 1. The entropy production rate contribution of the dephasing
bath for a spin-1/2 particle, as a function of τ . In red we show the von
Neumann entropy production rate, given by Eq. (34), and in black the
corresponding Wehrl entropy production rate, given by Eq. (32). The
curves were computed assuming τ 2

x + τ 2
y = τ 2. The von Neumann

measure diverges for a pure state (τ → 1), whereas the Wehrl measure
remains finite.

Neumann entropy production rates. As can be appreciated, the
Wehrl entropy production rate is capable of capturing the same
features as its von Neumann counterpart, but remains finite
throughout the motion.

IV. AMPLITUDE DAMPING

A. Dissipator and relevant currents

Next we consider the amplitude damping dissipator, which
we define as

D(ρ) = γ (n̄ + 1)
[
J−ρJ+ − {J+J−,ρ}/2

]
+ γ n̄

[
J+ρJ− − {J−J+,ρ}/2

]
, (36)

where n̄ is the mean number of excitations in the environment.
This dissipator targets the thermal Gibbs state e−βH / tr[e−βH ]
of the Hamiltonian H = ωJz, provided n̄ = (eβω − 1)−1.
When T → 0, this state becomes the “south-pole” state |J,

− J 〉 when ω > 0, and the “north-pole” state |J,J 〉 when
ω < 0.

It is convenient to define the superoperator

f (ρ) = (n̄ + 1)ρJ+ − n̄J+ρ (37)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

λt

Π
/
λ

Wehrl

von Neumann

|z+

|x+

|x−

|z−

FIG. 2. Evolution of a spin-1/2 particle under a time-dependent
magnetic field [Eq. (35)] and a dephasing bath [Eq. (29)]. Left:
trajectory in the Bloch sphere. Right: Wehrl and von Neumann
entropy production rates. We assume the system initially starts in the
state |x−〉 = (|z+〉 − |z−〉)/√2 (with σz|z±〉 = ±|z±〉). The chosen
parameters were b0/λ = 5, b1/λ = 1, and ω/λ = 1.
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with which Eq. (36) can be written as

D(ρ) = γ

2
{[J−,f (ρ)] − [J+,f †(ρ)]}. (38)

The superoperator f (ρ) represents a current operator for the
density matrix, in the sense that Eq. (38) takes the form of a
continuity equation. Moreover, one may verify that f (e−βH ) =
0, which allows us to interpret the stationary state as the one
for which the current is itself zero. Moving to phase space, we
have

D(Q) = γ

2

{
J−(f (Q)) − J+(f ∗(Q))

}
, (39)

where

f (Q) = 1
2 [2JQ − Jz(Q)]eiφ sin θ

+ 1
2 [cos θ − (2n̄ + 1)]J+(Q) (40)

[see Eqs. (8) and (9) for the definition of the current operators
Ji]. Alternatively, in terms of the TSS bosonic representation,
the current f becomes

f (Q) = [α∗β + (n̄ + 1)β∂α − n̄α∗∂β∗ ]Q. (41)

B. Identification of the entropy production rate

To separate dS/dt into the form stated in Eq. (1), we recast
all phase-space variables in terms of the relevant current in
the problem, which in this case is f (Q). One then notes
that following standard thermodynamic arguments, the entropy
production should be an even function of the relevant currents,
whereas the entropy flux rate should be odd [48].

It is more convenient to use Eq. (18) in order to express Q

in terms of the function V since, it turns out, most differential
operators act trivially on the exponential prefactor e−c†c. The
dissipator then becomes

D(Q) = γ

2

e−c†c

π2
[J−(f (V )) − J+(f ∗(V ))], (42)

where

f (V ) = [(n̄ + 1)β∂α − n̄α∗∂β∗ ]V. (43)

Inserting these currents into Eq. (28), integrating by parts, and
writing everything in terms of V quantities, we get

dS

dt

∣∣∣∣
diss

= γ

2

∫
dc
V

e−c†c

π2
[f (V )J−(V ) − f (V )∗J+(V )],

(44)

where

f (V )J−(V ) − f (V )∗J+(V )

= − 2JV (f ∗α∗β + f αβ∗)

(n̄ + 1)|β|2 + n̄|α|2

+
(f ∗ f )W

(
f

f ∗

)

(n̄ + 1)2|β|4 − n̄2|α|4 , (45)

with

W =
(

(n̄ + 1)|β|4 − n̄|α|4 (α∗β)2

(αβ∗)2 (n̄ + 1)|β|4 − n̄|α|4
)

. (46)

The first term in Eq. (45) is linear in the relevant currents,
whereas the second one is quadratic. Hence, the first term
should naturally be associated with an entropy flux rate and
the latter with an entropy production rate. That is, we may
separate Eq. (44) as

� = γ

2

∫
dc
V

e−c†c

π2

(
f ∗ f

)
W

(
f

f ∗

)

(n̄ + 1)2|β|4 − n̄2|α|4 ,

� = γ J

∫
dc

e−c†c

π2

f (V )αβ∗ + f (V )∗α∗β
(n̄ + 1)|β|2 + n̄|α|2 . (47)

We can also express these formulas in terms of angular
variables. First, for the entropy flux, we use Eq. (40) and
integrate over I to get

� = (2J + 1)

4π
γJ

∫
d� sin θ

{
2JQ sin θ

(2n̄ + 1) − cos θ
− ∂θQ

}
.

(48)

Similarly, for the entropy production, we get

� = γ (2J + 1)

8π

∫
d�

Q

(f (Q)∗ f (Q))W̃
(

f (Q)
f (Q)∗

)

(n̄ + 1)2 sin4(θ/2) − n̄2 cos4(θ/2)
,

(49)

where W̃ = W/I2. As V is a homogeneous function
[Eq. (20)], one may relate the currents f (V ) and Jz(V )
according to

Jz(V ) = f (V )∗α∗β − f (V )αβ∗

(n̄ + 1)|β|2 − n̄|α|2 . (50)

Using this result and expanding the matrix W̃ , we then arrive
at

� = γ

2

(2J + 1)

4π

∫
d�

Q

{ {2JQ sin θ + [cos θ − (2n̄ + 1)]∂θQ}2

(2n̄ + 1) − cos θ
+ |Jz(Q)|2[(2n̄ + 1) cos θ − 1]

cos θ

sin2 θ

}
. (51)

The most striking feature about this result is the appearance
of the dephasing current |Jz(Q)|2 [Eq. (31)] as a part of
the entropy production. This means that the Wehrl entropy
production rate is able to capture the contribution of the
amplitude damping to the loss of coherence. Thus, not only
do we get a microscopic picture of the irreversible currents

responsible for the entropy production, but we are also able to
distinguish the different contributions related to the amplitude
damping current f and the dephasing current Jz. Moreover,
compared to Eq. (31), we also see a temperature-dependent
prefactor multiplying |Jz(Q)|2. This term introduces an an-
gular dependence of the dephasing and is a consequence of
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the fact that for the amplitude damping, decoherence is not
homogeneous over the Bloch sphere.

C. spin-1/2 case

We now consider the case of spin 1/2, where all formulas
become much simpler. We express all results in terms of the
bath-induced magnetization τ̄z = −1/(2n̄ + 1). The energy
flux (62) simplifies to

�E = γω

2τ̄z

(τ̄z − τz). (52)

The entropy flux (48), on the other hand, simplifies to

� =
γ/2

τ̄ 3
z

[
τ̄z + (

τ̄ 2
z − 1

)
tanh−1(τ̄z)

]
(τz − τ̄z). (53)

They are related by

� =
[(

1 − τ̄ 2
z

)
tanh−1(τ̄z) − τ̄z

τ̄ 2
z ω

]
�E. (54)

In the limit T � ω, this becomes approximately

� 	 1

3

�E

T
, (55)

which is a particular case of Eq. (63).
Finally, we present the result for the entropy production

rate, given by Eq. (51):

� = � + γ

2

2τ̄zτz − (
τ 2 + τ 2

z

)
2τ̄z

{
τ − (1 − τ 2) tanh−1(τ )

τ 3

}
,

(56)

where � is given by Eq. (53).
For comparison, the von Neumann entropy flux rate

[Eq. (4)] is

�vN = γ
tanh−1(τ̄z)

τ̄z

(τz − τ̄z), (57)

whereas the entropy production rate (3) reads

�vN = �vN − γ

2

tanh−1(τ )

τ τ̄z

[τ 2 + τz(τz − 2τ̄z)]. (58)

Note how �vN diverges in the limit τ̄z → −1, in agreement
with Eq. (4). In fact, these measures diverge both when the
bath is at zero temperature and when the state of the system
is pure. A comparison between the von Neumann and Wehrl
entropy production rates for the amplitude damping is shown
in Fig. 3. In the limit T → 0 (τ̄z → −1), the Wehrl entropy
production and fluxes become

� = γ

2
(1 + τz), (59)

� = � + γ
τ 2 + τz(2 + τz)

4τ 3
[τ + (τ 2 − 1) tanh−1(τ )]. (60)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

τ

Π
/
γ

Wehrl

von Neumann

FIG. 3. The entropy production rate [von Neumann given by
Eq. (58) and Wehrl given by Eq. (56)] contribution of the amplitude
bath for a spin-1/2 particle, as a function of τ = τz for τ̄z = −1/2.

The behavior of the entropy production � in the limit T → 0
is shown in Fig. 4.

D. Wehrl entropy flux for a general spin

In the Appendix, we compute the entropy flux given by
Eq. (48) exactly for a general spin. We also show that the
Wehrl entropy flux for T → 0 simplifies to

� = 2γ J [J + 〈Jz〉], (61)

which is valid for any J .
Thus, as with the dephasing noise, with the Wehrl formal-

ism, we obtain a well-behaved result even at zero temperature.
The structure of this expression is also surprisingly similar
to the structure found for bosonic systems in Ref. [10]. It
shows that the flux is related to the difference between the
instantaneous value of 〈Jz〉 and the bath-induced value −J

(which is the target state of the amplitude damping at T → 0).

E. Energy flux vs entropy flux

We can also relate the entropy flux with the energy flux,
assuming a Hamiltonian H = ωJz. The energy flux is given

0 π/4 π/2 3π/4 π0

0.5

1

1.5

2

θ

Π
/
γ

τ = 0

τ = 0.2

τ = 0.4

τ = 0.6

τ = 0.8

τ = 1

FIG. 4. The Wehrl entropy production rate (60) at T = 0 as a
function of θ , where we parametrize τ = (τ sin θ,0,τ cos θ ). The
curves correspond to different values of τ and therefore illustrate
the behavior as one goes from a maximally mixed state (τ = 0) to a
pure state (τ = 1).
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/
γ
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0
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10

T/ω

Σ
/
γ

(a) (b) (c)

FIG. 5. Entropy produced during spontaneous emission of an atom starting in the excited state and subject to the amplitude damping
dissipator. (a) T/ω = 1.0 and (b) T/ω = 0.2. (c) The total entropy production (64) as a function of temperature.

by �E = − tr[HD(ρ)], which may be written as

�E = γω

τ̄z

{
τ̄z

[
J (J + 1) − 〈

J 2
z

〉] − 〈Jz〉
}
. (62)

In general, even though both � and �E only depend on the
diagonal entries of ρ, they are not directly proportional to
each other. However, taking the limit where T � ω, we may
approximate Eq. (A1) to

� 	 1

(1 + 1/J )

�E

T
. (63)

If we then take both T � ω and J → ∞, we recover the von
Neumann result (4). Thus, in the classical limit, we recover the
usual thermodynamic results of the von Neumann framework,
which is a key consistency requirement of such a theory.

V. APPLICATIONS

A. Spontaneous emission

We now present several applications of the amplitude
damping results, focusing on the case of spin-1/2 particle.
We start with the case of spontaneous emission. In Figs. 5(a)
and 5(b), we show the entropy production as a function
of time for a system starting in the excited state, for two
different temperatures. As can be seen, as the temperature goes
down, the von Neumann entropy production gradually starts
to diverge, whereas the Wehrl entropy production rate remains
well behaved. We also study the total entropy produced in the
process, defined as

� =
∫ ∞

0
�(t)dt. (64)

Results as a function of temperature are shown in Fig. 5(c).

B. A thermal quench

Now we consider a thermal quench. We assume the bath
temperature is T , but the system begins in a different temper-
ature T0. The exact solution of the Lindblad master equation
will continue to be a thermal Gibbs state, but with a time-
dependent temperature β(t). It is more convenient to work
with τz(t) = − tanh[ωβ(t)/2]. Since τz(t) = 〈σz〉t , it follows
that this quantity satisfies the differential equation

dτz(t)

dt
= γ

τ̄z

[τz(t) − τ̄z], (65)

whose solution is

τz(t) = τ̄z + e−γ t/|τ̄z|[τz(0) − τ̄z]. (66)

Thus, we may readily apply Eqs. (53) and (56) to compute
the entropy productions and fluxes for both the von Neumann
and the Wehrl entropies. Examples of these curves are shown
in Fig. 6.

C. Spin 1/2 in an oscillating magnetic field

Here we consider again the problem defined by the Hamil-
tonian [Eq. (35)], but now subject to the amplitude damping
dissipator. We assume that the system starts initially in the
eigenstate of σx with eigenvalue +1. To illustrate the physics
of the problem, in Fig. 7 we show the dynamics of the spin
using the Bloch sphere.

In the long-time limit, the system tends to its stationary state
where dS/dt = 0 so � = �. For the von Neumann case, we
get, in the steady state,

�vN = �vN = − 2γ b2
1 τ̄

2
z tanh−1(τ̄z)

γ 2 + 2τ̄ 2
z

[
b2

1 + 2(b0 + ω)2
] . (67)

For the Wehr entropy, we have instead

� = � = −γ b2
1

[
τ̄z + (

τ̄ 2
z − 1

)
tanh−1(τ̄z)

]
γ 2 + 2τ̄ 2

z

[
b2

1 + 2(b0 + ω)2
] . (68)

In the limit T → 0 the former diverges, whereas the latter
tends to

� = γ b2
1

γ 2 + 2b2
1 + 4(b0 + ω)2

. (69)

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

γt

Π/γ

Φ/γ

∂tS/γ

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

γt

(a) (b)

FIG. 6. The Wehrl entropy production rate [Eq. (56)], the entropy
flux rate [Eq. (53)], and the total rate of change of the entropy [Eq. (1)],
for a thermal quench, computed using Eq. (66) for (a) T/ω = 1,
T0/ω = 2 and (b) the inverse.
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|z+

|x+

|x−

|z−
0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

γt

Π
/
γ

Wehrl

von Neumann

FIG. 7. Evolution of a system under a time-dependent magnetic
field [Eq. (35)] and subject to the amplitude damping dissipator
[Eq. (36)]. Left: evolution of the spin in the Bloch sphere, starting in
the x direction. Right: Wehrl and von Neumann entropy production
rates. In this example, we are considering b0/γ = 5, b1/γ = 10,
ω/γ = 5, and τ̄z = −1/3.

D. Excitation of a two-level atom by a single photon

Finally, we consider the interaction of a two-level atom with
a quantized propagating pulse in free space. The Hamiltonian
in this case can be written as (in the interaction picture)

H = −i
∑

n

[gnσ+ane
+i�nt − g∗

nσ−a†
ne

−i�nt ], (70)

with �n = (ω0 − ωn). Here, ω0 is the atom frequency, ωn is the
mode frequency, and gn is the coupling constant. The dynamics
restricted to the one excitation in the system is described by
the state vector

|ψ(t)〉 = a(t)|e,0〉 +
∑

n

bn(t)|g,1n〉. (71)

Here, |e〉 (|g〉) is the excited (ground) state of the atom. Let
us consider the pulse mode to be a single-photon wave packet,
which can be written as [49,50]

|1p〉 =
∑

n

g∗
nf (ωn)|1n〉. (72)

From the Schrödinger equation ∂t |ψ(t)〉 = −iH |ψ(t)〉, we
obtain

∂ta(t) = −
∑

n

gnbn(t)e−i�nt , (73)

∂tbn(t) = g∗
na(t)ei�nt . (74)

By formally integrating bn(t), substituting it in the equation
for a(t), and doing a Wigner-Weisskopf approximation in the
continuum limit [49,50], we obtain

a(t) = a(t0)e−γ0(t−t0)/2

− √
γ0e

−γ0t/2
∫ t

t0

dt ′ξ (t ′)e[γ0/2+i(ω0−ωp)]t ′ , (75)

where ξ (t) is the wave function for the pulse bandwidth,

ξ (t) =
√

γ0

2π

∫
dωkf (ωk)e−i(ωk−ωp)t , (76)

with ωp being the central pulse frequency and γ0 the standard
spontaneous decay rate in free space.

The nonunitary time evolution of the atom can also be
approached by using a master equation. Considering the atomic
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Ω/γ0 = 20
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0
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0
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4
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0
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3

4

5

γ0t

Φ
/
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FIG. 8. Two-level atom interacting with a single-photon pulse
for different values for �/γ0. Here we are considering a(0) = √

0.5.
(a) Excitation probability |a(t)|2 = tr{ρ(t)|e〉〈e|}. (b) Effective decay
constant �t . (c) Wehrl entropy production. (d) Wehrl entropy flux.

density operator ρ(t) = trfield{|ψ(t)〉〈ψ(t)|}, we can write the
master equation for the atom in the form [51,52]

∂tρ = −i[H,ρ] + �t [σ−ρσ+ − {σ+σ−,ρ}/2], (77)

where H = ωtσz/2 with

ωt = − Im

[
∂ta(t)

a(t)

]
, (78)

�t = −2 Re

[
∂ta(t)

a(t)

]
. (79)

By using Eq. (75), we can write �t as

�t = γ0 + 1

2

√
γ0

|a(t)|2 Re{a∗(t)ξ (t)ei(ω0−ωp)t }. (80)

Note now that we can apply the formalism established in
Sec. IV in order to quantify the Wehrl entropy production for
the dynamics given by Eq. (77). As an example, let us consider
a exponentially decaying pulse,

ξ (t) =
{
N

√
� exp(−�t/2) for t > 0

0 for t < 0,
(81)

with normalization N =
√

1 − |a(t0)|2. Here, � is the pulse
bandwidth [49]. If we consider ωp = ω0 and � > γ0, it is
possible to show that the condition

a(0) �
√

δ

1 + δ
, with δ = 4�/γ0

(1 − �/γ0)2
, (82)

ensures �t � 0. This way the dynamics will always be Marko-
vian [53]. Thus, we may readily apply Eqs. (53) and (56)
to compute the entropy productions and fluxes for the Wehrl
entropy [note here that τ̄z = −1, τ = τz = 2|a(t)|2 − 1, and
γ → �t ]. Examples of these curves are shown in Fig. 8.
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VI. CONCLUSIONS

We have put forward a theory for the entropy production of
a open quantum spin system based on the Wehrl entropy. To
date, there is no self-consistent theory of entropy production
formulated for arbitrarily dimensional Hilbert spaces. With
the proposed theory, we take a step to fill this gap. The
applications that we have discussed, including dephasing and
amplitude damping baths, show both the potential of the
proposed approach and the breath of the physically relevant
situation that it is able to address. We have made the connection
between the Wehrl entropy flux rate [Eq. (A1)] and the Clausius
relation between entropy and heat [Eq. (4)], and verified
that the former tends to the latter in the classical limit [see
Eq. (63)]. Looking ahead, we hope that the methods presented
here can be used and extended to study entropy produc-
tion in other physical models involving, for instance, quan-

tum chaos and equilibration for unitary quantum dynamics
[43,54].
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APPENDIX: EXACT FORMULA FOR THE ENTROPY FLUX

The integrals in Eqs. (48) and (51) must be computed numerically. Fortunately, though, Eq. (48) for the entropy flux can be
computed exactly for general spin and expressed in terms of an arbitrary density matrix ρ = ∑

m,m′ ρm,m′ |m〉〈m′|. The result reads

� = γ J

{
1 + τ̄z

τ̄z

+ 2(J + 〈Jz〉) − 1

2

(
1 + τ̄z

1 + J

) J∑
m=−J

ρm,m

[(
1 + J − m

τ̄z

)
2F

(
1,1 + J + m ; 3 + 2J ;

2τ̄z

τ̄z − 1

)

+ (1 + J + m)(1 + 4J + 1/τ̄z)

1 − τ̄z
2F

(
1,2 + J + m ; 3 + 2J ;

2τ̄z

τ̄z − 1

)]}
, (A1)

where 2F (·) is the Gauss hypergeometric function and we have defined

τ̄z = − 1

(2n̄ + 1)
. (A2)

This is the bath-induced magnetization for a spin-1/2 system [although Eq. (A1) holds for arbitrary spin]. Note how the entropy
flux depends only on the diagonal elements of the density matrix.

When T → 0 (τ̄z → −1), this result simplifies dramatically to

� = 2γ J [J + 〈Jz〉], (A3)

which is valid for any J .
Equation (A1) can also be simplified for the case where J is large and/or τ̄z is small. In this case, using the asymptotic expansion

of Ref. [55], we get

� ≈ 2γ J

{
J + 〈Jz〉 + 1 + τ̄z

2τ̄z

[
1 − 3 + 2J

2(1 + J )

〈
(1 + J + 〈Jz〉)[1 + (1 + 4J )τ̄z]

3 + 2J + (2〈Jz〉 + 1)τ̄z

− (1 + J − 〈Jz〉)(τ̄z − 1)

3 + 2J + (2〈Jz〉 − 1)τ̄z

〉]}
, (A4)

which becomes exact in the limit J → ∞ and/or τ̄z → 0. Notwithstanding, we find that it gives a remarkably good approximation
also for moderately small J .
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