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Towards Ubiquitous Intelligent Computing:
Heterogeneous Distributed Deep Neural

Networks
Zongpu Zhang, Tao Song, Member, IEEE, Liwei Lin, Yang Hua, Xufeng He, Zhengui Xue,

Ruhui Ma, Member, IEEE, and Haibing Guan, Member, IEEE

Abstract—For the pursuit of ubiquitous computing, distributed computing systems containing the cloud, edge devices, and
Internet-of-Things devices are highly demanded. However, existing distributed frameworks do not tailor for the fast development of
Deep Neural Network (DNN), which is the key technique behind many intelligent applications nowadays. Based on prior exploration on
distributed deep neural networks (DDNN), we propose Heterogeneous Distributed Deep Neural Network (HDDNN) over the distributed
hierarchy, targeting at ubiquitous intelligent computing. While being able to support basic functionalities of DNNs, our framework is
optimized for various types of heterogeneity, including heterogeneous computing nodes, heterogeneous neural networks, and
heterogeneous system tasks. Besides, our framework features parallel computing, privacy protection and robustness, with other
consideration for the combination of heterogeneous distributed system and DNN. Extensive experiments demonstrate that our
framework is capable of utilizing hierarchical distributed system better for DNN and tailoring DNN for real-world distributed system
properly, which is with low response time, high performance, and better user experience.

Index Terms—heterogeneous distributed deep neural network, HDDNN, deep neural network, DNN, Internet of Things, edge
computing, cloud computing

F

1 INTRODUCTION

IN recent years, thanks to the development of machine
learning, many intelligent applications have changed

people’s life unconsciously, e.g., voice assistant and biomet-
ric authentication. With the rapid advancement in Convolu-
tional Neural Networks (CNN) and Deep Neural Networks
(DNN), learning based artificial intelligence algorithms
have become the mainstream and have revolutionized many
research fields, for example, digital image processing [1], [2],
image classification [3], [4], speech translation [5], [6], speech
recognition [7], [8] and so on. Currently, the most common
solution to the well-known great need of computational re-
sources while using DNNs is to rely on powerful computing
units, e.g. GPU, or the cloud service. Despite much progress
on adapting DNNs to mobile devices, limited progress has
been made on exploring the collaboration of the mobile and
cloud computational power.

Ubiquitous computing involves spreading, or distribut-
ing the computational resources across multiple devices
which might be located in different places. One of the solu-
tions involves utilizing the hierarchical distributed system
containing the cloud, edge (fog), and end devices. In such
system, computation intensive services are packed and
processed mainly by the cloud. Meanwhile, edge and end
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devices share and distribute the service, making ubiquitous
computing powerful, but unperceivable to end users (like
the electricity in daily lives). In recent years, the hierarchical
scalable distributed computing system has made a fast
progress [9], [10], [11], which shows its importance. Along
with the development of Internet technologies, computing
nodes located in different places geographically are able to
form a cooperative system providing ubiquitous computing
services for users. Large number of end devices connected
together, forming an Internet of Things (IoT), has become
another hot topic in IT industry recently. With advantages
such as close to the data provider, sensors, distributed
system utilizing IoT devices is expected to be the next break-
through of ubiquitous computing for the daily applications.
As a type of well-organized framework, distributed systems
are generally expected to have other features, e.g., high
availability, high scalability and robustness over large scale
and heterogeneous devices, which is different from DNNs.
Such computing system has not yet adapted to the fast
progress of DNNs, for instance, the workload of a DNN-
based service is commonly treated the same as traditional
computational intensive cloud services.

In addition, current DNNs focus more on improving the
performance based on single device deployment, such as
MobileNet [12] and SqueezeNet [13]. Limited progress has
been observed on designing and reasoning DNNs for the
hierarchical distributed system. As an early attempt, Dis-
tributed Deep Neural Network (DDNN) [11] is proposed
as a DNN design pattern for better utilization of the dis-
tributed system hierarchy. Despite the great novelty, certain
limitations are observed, including: (a). they more focus on
the power eating training procedure on end devices, (b).
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they use DNNs with exactly the same structure on all kinds
of devices, and (c). they only validate their framework with
limited task-specific experiments. More sophisticated design
of DNNs should be made to fit the real-world distributed
computing system.

To this end, we propose a novel Heterogeneous Dis-
tributed Deep Neural Networks (HDDNN) framework, try-
ing to bridge the DNN and the hierarchical distributed
system by mutually optimization in two research fields. On
the one hand, we improve distribution computing frame-
work in order to better support DNNs, including (a). dis-
tributed computing node heterogeneity for better resource
utilization, (b). fully supported parallel computing with
a mapping based scheduling algorithm, and (c). privacy
protection routine and robustness. On the other hand, we
also fit DNNs to the real-world distributed computing
systems. Specifically, we design (a). distributed neural net-
work heterogeneity for better system performance, and (b).
system task heterogeneity for better user experience. The
contributions of this paper include:

1) We propose a novel Heterogeneous Distributed
Deep Neural Networks (HDDNN) over the cloud,
edge (fog) and end devices.

2) We improve distributed computing framework to
better support DNNs.

3) We build distributed-computing-systems-aware
DNNs in order to fully utilize ubiquitous computing
resources.

4) We conduct intensive evaluations to demonstrate
the advantages of our proposed framework, in-
cluding short response time, high accuracy, better
hardware usage, high scalability, privacy protection,
and fault tolerance.

The source code and pre-trained models are available at:
https://github.com/Maphist0/HDDNN.

The remaining parts of this paper are organized as
follows. We review recent researches related to distributed
computing hierarchy and neural networks in §2. We intro-
duce our proposed framework in §3. The evaluation of our
simulation framework is illustrated in §4. Finally, §5 is our
conclusion.

2 RELATED WORKS

In this section, we review recent research related to dis-
tributed computing hierarchy in §2.1, application of deep
neural networks to computer vision problems in §2.2, and
the framework of distributed deep neural networks in §2.3.

2.1 Distributed Computing Hierarchy

Cloud computing has long been one of the most popular
research directions in the IT industry since 2006 [14]. Its scal-
able infrastructure enables companies to run their business
models on various cloud computing platforms, for instance,
Amazon AWS [15], and Microsoft Azure [16]. With other
functionalities offered by clouding computing, e.g. resource
virtualization [17], software as a service (SaaS) [18], has
been widely used in our daily life. However, real-world
problems like high latency and sensitive data protection

[19], [20] may degrade the user experience, and they are
great challenges facing cloud computing researchers.

Driven by both the advancement of 5G communications
and network technologies, a paradigm shift in migrating
cloud computation to network edges has been seen [21].
The trend that more and more data are generated at the
network edge pushes the development of edge computing
[22], which involves processing data directly at edge de-
vices. Due to ongoing differences on the concept of edge
and fog, we use edge mainly in the following discussion
and do not explicitly distinguish them. Previous works [23],
[24] have been introduced to exploit edge computing. They
show the possibility to eliminate the drawback of long
propagation delays compared with cloud computing in real-
world applications. Other benefits are also provided by edge
computing, such as lower response time [25] and lower
energy consumption [26], using typical end devices like a
gateway, a micro data center, and the cloudlet [24].

With the rapidly increasing number of smart devices
deployed around us , the next wave in the era of computing
is predicted to be the Internet of Things (IoT) [19], [27], [28].
With the development of Internet technologies, sensor man-
ufacturing, and Near Field Communication technologies, a
significant boost in the number of sensors is observed in
recent years [29], [30]. One of the consequences of such
phenomenon lies in the fact that these sensors generate
huge amount of data, which can not be handled by cloud
computing alone. With the sensor network, which is a key
component of IoT, data can be quickly processed first on
local end devices [27]. The connection of IoT devices can
support many applications, including Healthcare system
[31], [32], [33], Smart city / Smart home [34], [35], [36],
Video surveillance [37], [38], [39] and so on. In terms of
mobile devices, though some researchers categorize them
into edge devices due to its computation power [40], [41],
[42], we consider their energy limitation and treat them as
end devices in the following discussion.

The complexity of real-world applications and systems
grows tremendously in recent years, showing high demand
of joint ubiquitous computing models by the industry. With
that said, three layers of computational models, i.e. Cloud,
Edge, and End, forms a new hierarchical structure. Such
hierarchical structures are developed to meet various re-
quirements, e.g., fast response, low latency, high availability,
reliability, manageability, and low cost [9].

2.2 DNN for Computer Vision
As one of the most popular subjects in the computer science
society, computer vision problems such as image classifi-
cation have long been a test bed for DNNs. Many types
of DNN architecture have been proposed to meet different
real-world requirements, such as high performance, high
speed, and low utilization of computational and memory
resources. A milestone for the application of neural net-
works in computer vision problems was the introduction of
AlexNet [43], which considerably outperformed traditional
methods in the ImageNet Large Scale Visual Recognition
Challenge [44] in 2012. Later, CNNs with smaller convo-
lutional filters and deeper network architecture were pro-
posed, showing outstanding performance on many chal-
lenges, e.g., VGG Net [45]. Residual Network [3], and
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its successor Wide Residual Network (WRN) [46] ease the
difficulty of training much deeper DNNs by introducing
residual functions to solve the gradient vanishing problem.
However, typical high-performance DNNs can only work
with powerful hardware and a great amount of memory
resources, which is unrealistic for low power consumption,
portable and low-cost IoT devices or mobile devices.

Many attempts have been made to fit DNNs on mo-
bile devices [12], [47], [48], from the computation or the
storage aspect. Binarized neural network (BNN) [47] sim-
plifies weights in linear and convolutional layers to -1
and 1, for less memory and computation. MobileNet [12]
uses streamlined architecture with depthwise and pointwise
convolutional layers for fewer parameters and higher speed.
Extensive experiments for various tasks on several datasets,
e.g., MNIST [49] and CIFAR [50], show that they can achieve
acceptable performance with much less computation and
smaller model size compared with state-of-the-art struc-
tures.

2.3 Distributed DNN

Related work of applying large-scale DNNs on distributed
systems traditionally focuses on speeding up the training
phase. Some frameworks have proved the efficiency of dis-
tributing neural networks on large-scale computer clusters
with the help of both data and model parallelism. DistBelief
framework [51] employs an asynchronous stochastic gradi-
ent descent procedure, Downpour SGD and a distributed
batch optimization framework, Sandblaster. It has been
shown in [51] that the system can train up to 30x larger
networks for up to 12x speedup (on 81 machines) on a CPU
based computer cluster with state-of-the-art performance on
ImageNet dataset [43]. On the other hand, FireCaffe [52]
utilizes reduction tree based synchronous stochastic gra-
dient descent algorithm and at the same time implements
the framework on a large scale graphics processing unit
(GPU) cluster. It achieves up to 47x speedup (on 128 GPUs)
for a DNN with state-of-the-art performance on ImageNet.
Different optimization algorithms, specifically different SGD
algorithms (e.g., Gossiping SGD [53]) have also been pro-
posed for better performance and lower training time of
DNNs on distributed systems.

However, much less research has been done for distribut-
ing DNNs on a hierarchical distributed system, where the
hardware, location and network resources are dramatically
different for each type of computing nodes. Researchers
traditionally focus less on edge and end devices due to the
limitation of computational and memory resources. With the
development of IoT devices and mobile devices, it is now
possible to implement neural network algorithms on such
end devices.

In [11], a distributed framework was proposed to apply
DNNs on the cloud, the edge (fog) and end devices, where
the DNNs are partitioned and the shallow part is put on
less powerful computing nodes (edge/end devices) with
an algorithm determining the local exit point. The system
can scale both horizontally (for neural network size) and
vertically (for geographical span) with features, such as fault
tolerance and privacy protection. By testing on a multi-
view camera image classification dataset, it is shown that

the system can achieve high accuracy and at the same time
reduce the communication cost by over 20x.

3 THE FRAMEWORK OF HDDNN
As illustrated in Figure 1, our proposed framework consists
of three levels of heterogeneity: (a). distributed computing
node heterogeneity, (b). computing node neural network
heterogeneity, and (c). system task heterogeneity. Based on
the observation of real-world situations and the research on
related work, the following assumptions are made in our
discussion.

1) We focus on the testing phase of neural network
algorithms, rather than the training phase.

2) All tasks are assigned from end devices, in a bottom-
to-top way. For simplicity, we only consider the case
where one end device assigns tasks.

3) End devices cannot process for a long time due to
power limit. Edge devices are more powerful than
end devices, and the power limit is ignored on them.
The cloud doesn’t have limitation on computational
resources and power consumption.

4) To protect privacy, all end devices are considered
dependable, edge devices are considered partly de-
pendable and partly undependable. The cloud is
regarded as undependable.

Considering that nodes far away from end users might
not be more powerful than nodes close to end users in real-
world situations, we mainly separate cloud, edge and end
devices by their distances with end users in our proposed
system for the sake of generality. End devices stand for those
located relatively close to the end user. For example, mobile
phones owned by users, IoT devices inside a smart home,
and smart wearable devices on the end user are typical
end devices. Since end devices tend to suffer from low
performance, low throughput, and high device occupancy,
it is not a preferred methodology to simply process data at
end devices. Thus, it is more efficient to upload the data
that need to be processed or have been pre-processed by
end devices (e.g., encryption) to more powerful comput-
ing nodes for better results. The cloud represents devices
that are far away from the end user, which is generally
considered very powerful. A cluster of machines from a
service provider, or some powerful workstations in some
companies can be treated as cloud for their longer distance
to end users. Devices stay between end devices and the
cloud are called edge devices, such as routers and small
data centers located between users and the service provider.

3.1 Distributed Computing Node Heterogeneity
Our framework is built upon hierarchical distributed sys-
tems, including cloud, edge devices, and end devices. Exist-
ing ways for deep learning based service providers to han-
dle data from end users involves uploading all data to their
processing node, e.g. a cloud. However, such framework has
many disadvantages.

1) Long response delays are likely to be generated,
due to unpredictable network connection quality
between end users and the service provider.
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Fig. 1. Illustration of distributed deep neural network system over the cloud, edge devices and end devices. Traditionally, users have to upload all
data to the cloud for deep learning applications (part a). With the advancement in mobile computing, user’s data may first be pre-processed on one
(or multiple) end device(s) located close to the user for lower response time (part b and c). Hierarchical distributed DNN system (part d) utilizes
edge devices to bridge the computational power, network latency, etc. between end devices and the cloud. We evaluate our proposed HDDNN
framework on a system with 8 end devices, 4 edge devices, and 1 cloud (part e).

2) Large amount of data are generated every second
with the development of IoT devices, which is likely
to cause unacceptable long communication latency
by conventional computing, e.g. uploading all data
to the cloud.

3) The computational resources on other end devices
around the end user, and edge devices between the
end user and the cloud are wasted.

4) The privacy issue is likely to happen when upload-
ing sensitive data to the cloud.

Instead of relying on a cloud remotely, our framework
distributes the computing on different types of comput-
ing nodes. Since different types of nodes have their own
features, our framework tries to meet their requirements
and makes the best use of them. End devices are closer to
users, but they have many hardware restrictions, such as
the limitation in memory and power consumption. We set
relatively easier tasks for end devices to respond quickly.
Edge devices then are set for moderately difficult tasks to
compensate the low performance of end devices in slightly
longer time. Cloud is set for the most difficult tasks, hoping
to make full use of its powerful hardware and provide the
highest performance.

Besides hardware, distributing computing node hetero-
geneity also requires considering the network latency for
different types of devices. Based on the assumption that all
tasks are generated from end devices, the hierarchy of end
devices, edge devices, and the cloud naturally represents the
network latency for them. Other end devices located in the
same network, or close to the task assigner have the lowest
network latency. Edge devices then have moderate network
latency, and the cloud has the highest latency. By setting
tasks for end devices and edge devices, our framework
can be adaptable to different network configurations and
efficiently process the data.

3.2 Neural Network Heterogeneity

Instead of loading neural networks with the same structure
on all types of devices in the distributed system hierarchy,
as in DDNN [11], devices in our proposed framework are
loaded with different neural networks. It is straightforward
that loading a binary network on the cloud like DDNN is a
waste of computing resources. On the other hand, loading
a typical DNN with several hundreds of layers on end
devices is unrealistic. The goal of enabling neural network
heterogeneity is to fully utilize the features of each device,
including memory limitation, computational capability, and
network status, etc.

For three types of devices (i.e., cloud, edge device,
and end device), different factors should be emphasized
when we choose the neural networks for it. The cloud has
the most powerful hardware in the distributed hierarchy.
Therefore, the primary metric for choosing neural networks
on the cloud is the performance, e.g., the lowest error rate
for image classification. Edge devices have the medium
computational capability meanwhile they are significantly
closer to end users. DNNs which balance between the
performance and time delay (including processing time on
edge devices, and communication overhead) are chosen for
them. End devices have the most restricted condition, where
choices of neural networks could be limited by memory size
and computational capability. A shallow or more optimized
neural network should be chosen for end devices. Factors
including less response time, low power consumption, and
low memory usage should be considered ahead of the
performance of neural networks.

As discussed in §3.1, tasks issued from end users are first
processed in computing nodes which stay close to the end
users. With a fast neural network loaded on the end devices,
the response time is dramatically reduced compared with
uploading the task to the cloud. It is understandable that
the performance of the first response may not be ideal due
to the shallow model on the end devices.
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3.3 System Task Heterogeneity

We propose a heterogeneous system task for the consider-
ation of real-world situations. Sometimes a coarse-grained
result is enough for the user to draw a conclusion, or
react correspondingly, e.g. knowing certain object as one
kind of ‘fruit’ may be enough instead of identifying the
exact category, e.g., ‘apple’. With system task heterogeneity,
neural networks that are loaded on devices with fewer
computational resources can be modified to output a coarse-
grained response. By doing so, instead of forcing the neural
network to output a more meaningful but computationally
expensive fine-grained response, the calculation time of
such devices can be improved to a usable level. Combined
with distributed computing node heterogeneity (§3.1) and
neural network heterogeneity (§3.2), our framework is de-
signed to load different neural networks for different tasks
on different types of machines in the distributed hierarchy.
Relatively shallow networks for coarse-grained tasks are
loaded on end devices for fast response time, low memory
requirement and low power consumption. DNNs for fine-
grained tasks are loaded on edge devices, which produce
much better results than the end devices. Even stronger
DNNs are loaded on the cloud for the highest possible
performance of fine-grained tasks. Resources on each type
of computing nodes are fully utilized and optimized, and
the overall system outperforms the individual device in
different ways, such as the response time and the accuracy.

Comparing side-by-side to DDNN, besides the afore-
mentioned advantages, system task heterogeneity enables
better resource usage, better user experience and more flexi-
ble system design approach for a heterogeneous distributed
computing system. We present an example of applying
system task heterogeneity to the DDNN framework. Instead
of performing 3-class classification tasks (person/bus/car)
in both local exit and cloud exit, end devices may perform
the classification tasks like before and output via the local
exit, while the cloud can perform anomaly detection using
the pre-processed data from end devices to detect abnormal
behavior of objects and output via the cloud exit. It is highly
flexible while designing the task for various types of de-
vices, so that each device’s features such as the performance,
power limit, and network situation get fully exploited.

3.4 Scheduling Algorithm and Scalability

The scheduling algorithm is important for optimizing the
performance of the proposed system with data intensive
jobs. To formulate and compare several types of scheduling
algorithms, we present four schemes representative for
different real-world situations. Following the assumptions
at the beginning of §3, tasks to be processed in our frame-
work are first sent to weaker nodes for encryption, then
to stronger nodes for better results. For simplicity, suppose
each task is processed on no more than two types of de-
vices in the distributed hierarchy, and the first destination
is an end device. Also assume that the speed of the job
is determined by the scheduling scheme, processing time,
and communication time. Other factors, e.g., the speed of
assigning tasks to other devices, and the encryption time
are not taken into consideration in this section.

As a baseline, ‘End’ scheme involves sending tasks to all
end devices in a sequential order. For example, iterate from
end device 1, to end device 2, all the way to end device
Nend, then back to end device 1. In ideal cases, the time to
complete this job is expressed in eq. 1.

TEnd =
Nt

Nend
× (tcend + tpend) (1)

where TEnd is the total time required in the ‘End’ scheme,
Nt is the total number of tasks in the job,Nend is the number
of end devices, tcend and tpend are the average communication
time (between two end devices) and processing time of each
task on end devices, respectively; The sum of tcend and tpend
represents the average time of each task on an end device;
The product of the average number of tasks received by each
end device, Nt/Nend, and the time for each task forms the
total required time of the ‘End’ scheme. Since end devices
are generally close to the user, the communication time,
tcend for end devices is considerably low, which means the
time to finish the job, TEnd, is mainly controlled by the
number of end devices Nend and the processing time on end
devices tpend, i.e. more end devices and shorter processing
time contribute to lower overall complete time. However,
this ‘End’ scheme has the worst overall precision because
only shallow neural networks on end devices are used for
evaluation. The overall precision PEnd can be treated as the
average precision of neural networks on end devices (pend).

PEnd = pend (2)

‘End-Cloud’ scheme is an extension of the ‘End’ scheme,
where all tasks are first processed on end devices, then sent
to the cloud for further processing. In ideal cases, tasks for
the cloud are assigned also in a sequential order, thus the
time to complete this job is expressed as the combination of
total time on end devices and the cloud.

TEnd−Cloud = TEnd +
Nt

Ncloud
× (tccloud + tpcloud) (3)

Tend follows eq. 1, Ncloud for the number of cloud nodes,
tccloud and tpcloud for average communication time (between
an end device and a cloud) and processing time of each
task on cloud respectively. Since tccloud is generally con-
sidered large and unstable, the communication overhead
then becomes the bottleneck of the ‘End-Cloud’ scheme
in practice, instead of TEnd or tpcloud (normally given the
constant Ncloud). The overall precision PEnd−Cloud for this
scheme is considered the best, mainly depending on the
average precision of neural networks on the cloud (pcloud).

PEnd−Cloud = max{pend, pcloud} = pcloud (4)

’End-Edge’ scheme is a trade-off between processing
time and performance. In ideal cases, TEnd and the overall
time spent on edge devices determine the total finish time,
and the average precision on edge devices determines the
overall precision.

TEnd−Edge = TEnd +
Nt

Nedge
× (tcedge + tpedge) (5)

PEnd−Edge = pedge (6)

With moderate network latency, the communication over-
head is generally no longer the bottleneck of the entire
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system. Also, since memory and computational resources on
edge devices are considered much better than end devices,
it is both affordable and effective to adopt relatively deeper
neural networks on edge devices to balance the processing
time and performance.

However, the above three schemes cannot fully utilize
the distributed hierarchy, because at most two types of
devices are used while processing the job. It is worth noting
that devices in a higher hierarchy (e.g., edge devices com-
pared to end devices) generally require longer time for each
task due to higher network latency and longer processing
time . Thus we propose a novel ‘Mapping’ scheme as a
scheduling method in our framework. It considers the ratio
of the total processing time between end devices and edge
devices, and assign the upper-level processing unit for each
end devices instead of assigning sequentially. Intuitively, the
number of end devices mapped to one edge device can be
calculated by the ratio of the average time for each task on
two types of devices.

Nmap = d
tcedge + tpedge
tcend + tpend

e (7)

It means that each subset of Nmap end devices sends the
workload to one edge device, so that the total time for
Nmap end devices to process the next batch of input data
is no less than the time for one edge device to process.
When all edge devices have been assigned to a certain
number of end devices, the rest end devices are applied
the same algorithm and mapped to the cloud. Tasks for end
devices are still scheduled in sequential order for the highest
usage of computational resources on end devices. The ratio
of tasks sent to the cloud is calculated by the number of
remaining end devices divided by the total number of end
devices.

θcloud =
Nend −Nedge ×Nmap

Nend
(8)

The overall performance is the weighted sum of the per-
formance from edge devices and the cloud. The processing
time for ‘Mapping’ scheme TMapping is also a weighted sum
of the total time for ‘End-Cloud’ scheme and ‘End-Edge’
scheme, which stays between TEnd−Cloud and TEnd−Edge.

θedge = 1− θcloud (9)
PMapping = θcloud × pcloud + θedge × pedge (10)
TMapping = θcloud × TEnd−Cloud + θedge × TEnd−Edge

(11)

Two advantages of applying the ‘Mapping’ scheme are
straightforward: (a). by offloading certain ratio of tasks to
the cloud, the precision can be improved from the ‘End-
Edge’ scheme with controllable processing time overhead
from the ‘End-Cloud’ scheme, and (b). higher utilization of
devices in the distributed hierarchy. Since the main problem
for the ‘End-Cloud’ scheme in practice is the bottleneck
of high network delay in the cloud side, the ‘Mapping’
scheme reduces such effect by assigning part of the job to
cloud, and the rest to edge devices for lower response time.
On the other hand, those tasks that are assigned to cloud
enjoy higher performance than that on the edge devices.
This makes the scheduling of specific tasks according to
their importance possible. We will discuss it in this paper.

The scalability of the ‘End’ scheme and the ‘End-Edge’
scheme is theoretically better than the ‘End-Cloud’ due to
the communication bottleneck of the ‘End-Cloud’. However,
we observe in practice that other factors, e.g., the speed of
assigning tasks, become the bottleneck of the ‘End’ scheme,
because the total time for the ‘End’ is relatively small. The
scalability of ‘Mapping’ is more complex: (a). it is closer to
‘End-Edge’ when the number of end devices cannot satisfy
the requirement of edge devices, but (b). it is closer to the
‘End-Cloud’ when the number of end devices are too large.

3.5 Privacy Protection

Privacy issue could happen when sensitive data are trans-
ferred to untrusted devices, or to a cloud. For example,
hackers may intercept the transmitted data while being
transferred to another device through an open network, or
attack the cloud service provider to steal users’ private data.
Our framework prevents such cases from happening by
encrypting sensitive data with a single layer neural network
stripped from the neural network in a higher device hier-
archy. The first convolutional layer of the neural network
in the cloud (or edge) is downloaded on the end device as
a light-weight encryption module. Instead of sending the
source data, the output data from the encryption module,
which is a multi-dimensional matrix containing floating
point numbers, is sent to untrusted devices if necessary.

We show the privacy is protected by introducing the
calculation of different typical layers in a CNN. The con-
volutional layer output y for a N × N input x, with one
M ×M filter ω, and without padding and strides has the
form of eq. 12.

yli,j =

M−1∑
a=0

M−1∑
b=0

ωa,b × xl(i+a),(j+b) (12)

l denotes the current depth of model. Calculating reversely
from an output y to the input image x involves finding the
inverse function F−1 of the above convolution operation.

x̂li,j = F−1(yli,j) (13)

It is clearly impossible to find the inverse function F−1 with-
out knowing the exact weight in all filters. Even if all Nf

filters are obtained by the attacker, calculating the original
image data involves solving a M ×M linear equation for
N2 times, which is unrealistic in practice.

One of the concerns of using convolutional layers to
encrypt the source data is the computational overhead.
Using the encryption module on end devices, firstly, the
time to feed-forward the encryption neural network is taken
into consideration for each task. Denote the time of using
the encryption module from different devices as te, for
instance, teedge for using the encryption module from the
edge device, and tecloud from the cloud. Notice teend = 0 due
to the assumption that all end devices are dependable, i.e.
no encryption is needed between two end devices. Secondly,
since the amount of data transferred between two devices
have changed from the raw image to the encrypted data, we
denote the new transferring time as t̂c (the subscript for the
device type is hidden for a clearer look). Given a specific
task, the processing time without encryption, Traw, on any
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type of devices is the sum of the communication latency
and the processing time, as is discussed in §3.4. The time
with encryption, Tencrypt, is the sum of the new communi-
cation latency, the processing time, and the encryption time.
Thus the processing time overhead, ∆T , introduced by the
encryption is the difference of Tencrypt and Traw.

Traw = tc + tp (14)

Tencrypt = t̂c + tp + te (15)

∆T = Tencrypt − Traw = (t̂c − tc) + te (16)

te can be reduced by offloading the calculation of encryption
module on more powerful computing nodes (e.g., switching
from end devices to edge devices). (t̂c−tc) can be reduced by
changing the output size of encryption module. In practice,
given the computational capability of each device, it is also
possible to find a best route for encryption with the least
overhead. Due to the space limitation, we do not discuss
this in this paper.

We further introduce the concept of dependable and
undependable devices in our proposed framework. A de-
pendable device is a computing node which is safe for
user to upload the source data for calculation, while an
undependable device is not safe. With the assumptions
listed at the beginning of §3, all end devices and part of edge
devices are treated as dependable devices, the rest of edge
devices and the cloud are treated as undependable devices.
Only dependable devices can receive the source data from
users, and undependable devices can only receive encrypted
data from the output of encryption module.

3.6 Fault Tolerance

To recover from device failure, we consider two methods,
Reassign and Monitor, which gives fault tolerance to the
system. In Reassign, after all tasks have been assigned at
least once, unfinished tasks are reassigned to all devices re-
gardless of their current state. This method is relatively easy
to implement, but it lacks flexibility in dealing with device
failures. Communication time overhead is generated when-
ever a task is assigned to a failed device, which triggers
the timeout limit of the communication module. Specifically,
with Nt tasks sent to failed devices and the communica-
tion timeout ttimeout the overhead of communication time,
OV TReassign, is expressed in eq. 17. OV TReassign becomes
unacceptably large when many devices have failed.

OV TReassign = Nt × ttimeout (17)

To tackle the communication overhead, we propose another
method, Monitor, which dynamically monitors the state of
each device. Another process on the device responsible for
sending tasks is started to query all available devices in a
device list. Any device that does not respond to the query, or
trigger a communication timeout is deleted from the device
list. Only devices in the list can receive tasks, so that the
number of communication timeout is significantly reduced.

The interval of queries is important for end devices due
to their limited computation and network resources. With a
small query interval, the list of available devices is updated
quickly so that communication timeout is less likely to
happen. However, the computation involved in computing

and communicating may slow down other parts of the end
devices. Thus a balanced query interval should be chosen
according to real-world situations.

3.7 Communication Cost

The communication cost, or its quantization: the communi-
cation time tc, for different devices to transfer data such as
a batch of test images, encrypted data, and the result can be
expressed, in ideal cases, as the sum of three parts: the cost
for data transferred, the cost for communication protocol,
and the cost for meta data. Suppose the bandwidth of a
network link is b, then the communication time tc can be
expressed, for simplicity, by dividing the total number of
bytes B to be transferred by the bandwidth.

tc = (Bdata +Bproto +Bmeta)/b (18)
Bdata ∝ (Bdtype ×BS ×W ×H × Ch) (19)

where Bdtype is the number of bytes for a specific data
type, e.g., 4 bytes for a float32 number; BS stands for
the batch size; W (width), H (height), and Ch (channel)
represent the dimension of data to be transferred; Bproto is
the additional bytes from the communication protocol, e.g.,
header information in TCP/IP protocol; Bmeta denotes the
bytes of the meta data, i.e., the information of the current
task. In our proposed framework, mainly three types of data
are transferred among devices:

1) The source image provided by one of the end de-
vices, consumed by any dependable device, where
W and H are exactly the size of images, Ch is 3
for RGB images (or 1 for grayscale images ), and
Bdtype = 1 for regular uint8 colored images.

2) The encrypted data generated by the encryption
module , where W , H and Ch are the output size
(i.e., width, height, and the number of filters) of
the encryption convolutional layer in the module.
Bdtype is generally set to 4 bytes for float32 numbers.

3) The inference result from computing nodes. W =
H = 1, and Bdtype = 1 for uint8 integers.

The cost of transferring the meta data , Bmeta, mainly con-
sists of three parts: the information of the source data (e.g.,
dimension, data type, with/without encryption, encryption
device, etc.), the data transferring path for the current job,
and the timestamp in each step (to evaluate the system
performance).

4 SYSTEM EVALUATION

In this section, we evaluate our system on a setup with mul-
tiple types of distributed deices. We demonstrate various
advantages of our framework, including but not limited to
the following aspects:

1) Our framework works on heterogeneous dis-
tributed computing systems and provides better
performance, lower response time, and better re-
source usage.

2) Our framework loads different neural networks on
each device to balance among the performance,
response time, and resource usage.
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3) Our framework takes advantage of heterogeneous
computation tasks to efficiently offload easier tasks
to devices with less computational ability for better
user experience.

4) Our framework utilizes mapping based scheduling
algorithm for balanced response time and perfor-
mance.

5) Our framework achieves privacy protection by us-
ing a single-layer neural network for encryption and
separating dependable and undependable devices.

6) Our framework features fault tolerance by monitor-
ing the state of each device and maintaining a list of
available devices.

Combining the distributed computing node heterogene-
ity with the neural network heterogeneity, we demonstrate
the actual workflow of our evaluation system as below.

1) Test images are first distributed to end devices for a
quick, coarse-grained response.

2) Sensitive data is encrypted to protect the privacy of
users if sending to undependable computing nodes,
as discussed in §3.5.

3) According to the scheduling algorithm in §3.4, data
is further sent to edge devices or the cloud for a
slower, fine-grained response.

We first introduce the neural networks used in the our
evaluation system in §4.1. Then the evaluation system archi-
tecture is presented in §4.2. §4.3 introduces the evaluation
dataset, and §4.4 to §4.6 presents the impact of three types
of heterogeneities. §4.7 to §4.9 presents our results regarding
to scheduling algorithm and scalability, privacy protection,
and fault tolerance.

4.1 Neural Networks In The Evaluation System
Instead of loading the same model on all types of de-
vices [11], our framework introduces an approach to load
different neural networks on different types of devices to
better accommodate their features and restrictions. For end
devices, which has very limited memory and computational
resources, we adopt a tiny but powerful neural network,
MobileNet [12]. Since the restriction of hardware is rela-
tively loosen for edge devices, we adopt a much deeper,
much stronger, and widely used DNN structure, Residual
Network (ResNet) [3]. . The choice for cloud devices is
all about performance, i.e., the accuracy of classification
for our evaluation dataset. We choose a variant of Resid-
ual Network, the Wide Residual Network [46], which is
both larger in model size and deeper than typical ResNet
configurations. All models are trained off-line on the test
server with the entire CIFAR100 training set. The detailed
structures of aforementioned neural networks are shown in
Figure 2.

We use MobileNet on end devices for its small memory
size and fast inference speed. The network structure follows
the original setup reported in the paper of MobileNet, with
two global hyper-parameters: width multiplier α = 0.5, and
depth multiplier β = 1. The input size of MobileNet is
changed to the dimension of images in CIFAR100 dataset,
which is [32× 32× 3], and the output size is changed to 20
for exactly 20 classes of coarse labels. The model is trained

Fig. 2. Network structure of MobileNet [12], Residual Network (ResNet)
[3], and Wide Residual Network (WRN) [46]. Red block and green
block represents the Pointwise layer and Depthwise layer proposed
in MobileNet, respectively. Yellow block represents the residual block
proposed in ResNet, and blue block represents the wide residual block
proposed in WRN. Best viewed in color.

with batch size of 32 for 100 epochs. We follow the training
data augmentation methods reported in the original paper,
and use Adam [54] as the optimizer with an initial learning
rate of 0.01.

On edge devices, we use ResNet with a 34-layer config-
uration to balance the speed and accuracy. The input size
of ResNet is changed to fit the training images, and the
output layer can produce classification for 100 labels, which
is the number of fine-grained labels. The ResNet is trained
with batch size of 32 for up to 500 epochs, and the model
with the best performance (i.e., the lowest loss) is saved as
the final model. The training data augmentation includes
feature-wise mean subtraction, squeezing and randomly
horizontally flip. We use Adam as the optimizer.

We adopt Wide Residual Network (WRN) on the cloud
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Fig. 3. Illustration of fine and coarse labels introduced in CIFAR100 [50].

for the best accuracy among all types of devices. Like
ResNet, the WRN is trained for classification of 100 labels.
We use the variant with depth parameter of 28, and width
parameter of 10 in the model. It is trained with Stochastic
Gradient Descent with Momentum of 0.9 and Nesterov
method enabled. The learning rate starts from 0.1, and
decays by a factor of 0.2 when the number of epochs reaches
60, 120, and 160. The training data is augmented by feature-
wise centering, standard deviation normalization, and ZCA
whitening. The best model trained for 200 epochs, with
batch size of 128 is chosen as the final model for testing.

4.2 Evaluation System Architecture
The evaluation system architecture is illustrated in Figure
1. (e), which contains 8 end devices, 4 edge devices, and
1 cloud. We simulate the system using the combination of
virtual machines (VMs), rather than a piece of program
running locally on one machine as in DDNN, so that the
communication between computing nodes are actually sent
via network requests. We use 8 separate VMs each with one
virtual CPU core running Ubuntu 16.04 as test machines
for 8 end devices, 4 VMs each having 4 CPU cores for
4 edge devices and 1 terminal on the host machine with
GPU acceleration enabled for the cloud. The host machine is
equipped with dual Intel Xeon CPUs @2.4GHz and NVIDIA
Tesla K80 graphics cards running on Ubuntu 16.04.

The communication between devices are implemented
by HTTP requests, through a virtual network interface. In
our simulation system, we manually set the process waiting
time in each communication between two devices according
to their types. Notice we only put restriction on the total
communication time tc in the evaluation system to discuss
its impact (more can be found in §3.7). In the following
sections, if not specified, the simulated tc for the cloud is
1 second, and 0.5 seconds for edge devices.

4.3 Evaluation Dataset
We evaluate our system on CIFAR100 [50], which is a chal-
lenging image classification dataset containing 60K 32x32
colored natural images in total. There are originally 100
fine-grained labels in this dataset, representing 100 types
of objects appeared in all images (e.g. apples, crab, and
fox). 20 classes are proposed as the abstraction of those

100 classes, which are called superclasses, or coarse-grained
classes. Some examples showing the relationship between
coarse-grained classes and the fine-grained are illustrated
in Figure 3. Images in each fine-grained class are separated
into two parts, 500 images for training and 100 images for
testing, which in total sums up to 50K training samples and
10K testing samples. Top-1 accuracy is chosen as the metric
for evaluating the performance, which is the ratio of correct
predictions among all test cases.

There are three main reasons why we choose this dataset
in the evaluation system: (a). the image size is relatively
small, which makes the simulation of computing on end
devices possible, (b). the hierarchy structure of labels in this
dataset meets our requirement of system task heterogeneity,
and (c). the dataset is widely used for testing image classifi-
cation algorithms.

In the following discussion, if it is not explicitly ex-
plained, we test our proposed framework for the classifi-
cation job on the entire test set. The default batch size is 50,
which means that each communication transfers 50 images
sampled from the test set or 50 results correspondingly. Data
pre-processing is implemented in the module of each neural
network, and no global data pre-processing is done for test
images. By default, we average the performance concerning
accuracy or time through all tasks, more specifically 10K/50
= 200 tasks.The accuracy of coarse labels and fine labels are
reported separately.

4.4 Impact of Distributed Computing Node Heterogene-
ity
To illustrate the impact of distributed computing node het-
erogeneity, we setup a baseline where the theoretical infer-
ence time, the classification accuracy for fine-grained and
coarse-grained labels and the size of models are reported
in Table 1. The inference time (prediction speed) in Table 1
is the theoretical upper bound for each type of neural net-
work, on different devices. It is measured by continuously
feeding the neural network with batched images without
considering the overhead from communication functionality
(different from the inference time in Table 2). The difference
of time-stamp when each task starts and when it is finished
is treated as the theoretical inference time for such neural
network on a typical type of device for a single batch of
images. It is then averaged over 200 runs, as explained at
the end of §4.3. Without distributed computing node hetero-
geneity, mainstream solutions involve loading a powerful
neural network on the cloud. The computational resources
on edge and end devices are then wasted because they
only take charge of generating source data or transferring
those data. By distributing neural networks on end and edge
devices, they can produce classification result together with
the cloud. For example, suppose that we load MobileNet
on end devices, ResNet on edge devices, and WRN on the
cloud. Theoretical inference time for the three networks
are relatively close to each other, with up to only 34%
differences for the comparison between Cloud+WRN and
End device+MobileNet. It shows that instead of uploading
all data to the cloud for computing, making use of the
distributed hierarchy is fully functional.

Another important factor with respect to the impact
of computing node heterogeneity is the network latency.
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TABLE 1
The comparison of the theoretical inference time, accuracy and model
size for different neural networks on various types of computing nodes.
The wall time to finish each task, divided by the batch size (we use 50

in practice) is referred to the inference time for each image (ms/image).
The accuracy with coarse and fine labels, 20 and 100 labels

respectively, are reported separately.

Inference time (ms/image) MobileNet ResNet WRN

Deploy on the Cloud 0.25 0.79 6.99

Deploy on Edge devices 2.03 5.53 227

Deploy on End devices 5.20 15.7 1.17K

Testing accuracy

Coarse labels 0.50 0.73 0.83

Fine labels / 0.61 0.73

Model size

Parameters (M) 0.84 21.4 40.6

Weights file (MB) 10.3 85.7 324.9

We test the system inference speed on various devices with
or without network latency, and with various latencies, in
the actual distributed system, and the result is illustrated
in Table 2. Notice, compared with Table 1, due to the
computational overhead from other parts of the program,
such as HTTP server, data packing and unpacking, and
process synchronization, the actual inference time is slightly
larger than theoretical inference time. With computing node
heterogeneity, the system inference time has decreased a lot,
from 31.0 (ms/image) to 10.4 (for end devices) or 18.3 (for
edge devices). The advantage mainly comes from avoiding
the long network latency that is probably unavoidable in
traditional framework with only the cloud.

4.5 Impact of Neural Network Heterogeneity

One of the motivations for adopting neural network het-
erogeneity is to speed up the inference time on computing
nodes with low computational resources, e.g., IoT devices.
To demonstrate the impact of neural network heterogeneity,
we also systematically compare the inference time, model
size, and inference speed of each neural network on differ-
ent types of devices, as illustrated in Table 1.

The model size is very important for end devices, es-
pecially with the rapidly growing depth of modern neural
networks. Instead of loading giant neural networks on end
devices, neural network heterogeneity allows us to put a
compact neural networks with much fewer parameters and
a much smaller weight file. As shown in the last two rows in
Table 1, we can squeeze a neural network to an end device,
which has up to 48x fewer parameters, and up to 32x smaller
in terms of the size of weights file by comparing MobileNet
with WRN. The benefit of smaller models on end devices is
straightforward in terms of speed, where we achieve 3x and
225x less inference time compared with neural networks on
edge devices and the cloud if they are tested on the same
end device. On the other hand, if WRN is loaded on an end
device, the inference time of 1.17(s) per image is going to

TABLE 2
The inference time of neural networks on different types of devices, with
various simulated communication latency in the distributed framework.
‘Comm. latency’ (short for communication latency) includes both the
sending latency time and the receiving latency time. ‘N/A’ means the
communication module is shut down, in the hope of comparing with

zero latency to show the overhead of communication module.

Device Comm. latency (s) Inference time (ms/image)

End device
N/A 7.4

0.0 10.4

Edge device

N/A 6.0

0.0 8.4

0.5 18.3

Cloud

N/A 7.4

0.0 10.8

1.0 31.0

block all other processes on the end device, making it totally
unusable. The drawback in accuracy is less important for
end devices, since one of the goals of distributing tasks on
end devices is the low response time.

On the other hand, loading much deeper and stronger
neural networks on edge devices or the cloud enables
them to perform much better than end devices. Specifically,
ResNet on edge devices is 46% better in terms of coarse
label accuracy compared with MobileNet on end devices,
and WRN on the cloud is 20% better regarding fine label
accuracy compared with ResNet on edge devices. Since
edge devices and the cloud do not have limitations on
power consumption and moreover the cloud has no lim-
ited computational resources, they can deal with complex
computation quickly. With more CPU cores enabled on edge
devices (compared with end devices, where 4 vCPUs V.S.
1 vCPU in our simulation), edge devices can handle the
inference of ResNet, which is 25x larger than MobileNet
in terms of the number of parameters and with 2.8x less
inference time than on end devices. The cloud, which is
equipped with GPU produces even better speedup for larger
and deeper neural networks. The inference time of WRN
on edge devices is 32x more than that on the cloud, but
the inference time of MobileNet on edge devices is only 8x
more than that on the cloud, meaning that the cloud is even
more suitable for a large scale DNN. In summary, with the
help of neural network heterogeneity, all the three types
of devices are better utilized according to their features,
and the performance and response time for the system are
enhanced.

4.6 Impact of System Task Heterogeneity

System task heterogeneity actually makes the neural net-
works on end devices realistically. It enhances user expe-
rience by generating a coarse response for less response
time on a less powerful computing node. The accuracy of
MobileNet for coarse labels is relatively usable, considering
its fast inference speed. However, since the performance
of coarse labels and fine labels cannot be compared head-
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Fig. 4. The time to finish the classification task in different situations
with various numbers of end devices. In all 4 schemes, end devices first
produce a coarse response given the source image. In the End-Cloud
and End-Edge scheme, the data is sent to the cloud and edge devices
for further process. In the End-Edge Mapping scheme, the first 4 end
devices send data to 4 edge devices correspondingly, and the rest of
end devices send data to the cloud.

to-head, we emphasize the advantage with (and without)
system task heterogeneity.

4.7 Evaluation for Scheduling and Scalability

Based on the discussion in §3.4, we test the impact of
various scheduling algorithms and the scalability of pro-
posed framework. The encryption module is enabled in this
section for more realistic simulation. The detailed workflow
of four scheduling algorithms are listed below.

1) End: Only process the data on end devices. All tasks
are assigned sequentially through all possible end
devices.

2) End-Cloud: Process the source image first on end
devices for a coarse-grained result. Then encrypt
and send to the cloud for a fine-grained result.

3) End-Edge: Process the source image first on end de-
vices. Then send encrypted data to all edge devices
(4 edge devices) for a fine-grained result.

4) Mapping: Use mapping scheduling scheme for end
devices and edge devices. Send encrypted data from
the rest of end devices to the cloud.

The comparison of the time to finish the task with
four schemes (TEnd, TEnd−Cloud, TEnd−Edge, and TMapping)
with respect to the number of end devices is illustrated
in Figure 4. It is observed that both End-Cloud and End
situations have relatively poor scalability. In practice, as
the number of end devices increases, the network delay
between end devices and the cloud becomes the bottleneck
for the End-Cloud scheme. All tasks are quickly processed on
end devices, and encrypted data begins to stuck on the way
to the cloud, waiting to be transferred. For the End scheme,
the speed of assigning tasks becomes the bottleneck as the
number of end devices becomes larger. The response time
for each end device, for each task is faster than assigning

TABLE 3
The testing accuracy with fine-grained labels, i.e. 100 classes, of
End-Edge (EE), Mapping (Map.), and End-Cloud (EC) scheduling

schemes with respect to the number of end devices.

Accuracy Number of end devices

1 2 3 4 5 6 7 8

EE 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61

Map. 0.61 0.61 0.61 0.61 0.63 0.65 0.66 0.67

EC 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

Nend − 1 tasks, where Nend is the number of end devices.
The next time when an end device receives its task, the
previous one is already finished. The speed of assigning
tasks then becomes the bottleneck, instead of the processing
speed on end devices or the communication delay.

For the End-Edge and the Mapping scheme, the usage
of edge device improves the scalability of distributed sys-
tems, compared with the End and End-Cloud scheme. There
are mainly three reasons contributing to such advantages:
(a). accessible multiple edge devices, which increase the
throughput compared with one cloud device in End-Cloud
scheme, (b). relatively lower network delay (0.5(s) for edge
devices rather than 1(s) for the cloud), compared with End-
Cloud scheme, and (c). relatively higher inference speed than
end devices, which makes the total processing time become
closer and closer to the End scheme with more and more
end devices. For the End-Edge Mapping scheme, Nmap is set
to 1 according to our evaluation system setup. The minor
difference between the Mapping and the End-Edge scheme
with 1-4 end devices in Figure 4 shows the efficiency of
mapping end devices to edge devices according to their rel-
ative ratio of processing time. However, the communication
time for the cloud restricts the scalability when more than 4
end devices are used in the Mapping scheme.

The comparison of overall accuracy for these scheduling
schemes are listed in Table 3. The End scheme has the least
preferred accuracy because of coarse-grained labels (0.50),
while End-Cloud scheme has the highest accuracy. End-
Edge scheme stays between them because the performance
of neural networks on edge devices are naturally located
between end devices and the cloud. The key feature of
Mapping scheme is its changeable accuracy, according to the
number of end devices. Its accuracy is exactly the same as
End-Edge scheme when no more than 4 end devices are used,
and gently becomes larger when more end devices are used.

TABLE 4
The specification of encryption modules for ResNet and WRN,

including the output shape, the number of parameters, and the size of
weights file. Encryption modules for ResNet and WRN are deployed on

edge devices and the cloud respectively.

ResNet WRN

Output shape (H x W x Ch) 16× 16× 64 32× 32× 16

Parameters 9472 432

Weights file (KB) 50.1 11.9
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With that said, further scheduling can be done with more
information about the expected accuracy of the system.

4.8 Additional Cost for Privacy Protection
We use a single layer of convolutional layer stripped from
the deeper neural network in the cloud or the edge device
as the encryption module in the evaluation system. Table 4
illustrates the output size, the number of parameters, and
the size of weight file of the encryption module for two
types of DNNs on edge devices and the cloud. For compar-
ison, the number of parameters in encryption modules for
ResNet and WRN is only 1.1% and 0.05% of parameters in
MobileNet, showing subtle computational overhead .

In the evaluation system, we have tested the overhead
with and without encryption module, with different simu-
lated values of network delay. Table 5 illustrates the over-
head of processing time for each task (explained in §4.3)
in two situations: (a). encrypt the data on an end device,
then send to the cloud, and (b). encrypt the data on an
edge device, then send to the cloud. It is observed that
the difference of communication time (t̂c − tc) is subtle
compared with the encryption time te. By encrypting on
a stronger node, the overhead can be reduced from 13.1%
(at 2(s) latency) to 29.8% (at 0.5(s) latency). Besides, the
time overhead is less significant as the network latency
goes higher (e.g., the overhead drops from 57.1% at 0.5(s)
latency to 17.9% at 2(s) latency for end-cloud scheme). Since
the network latency in real world is generally large and
unstable, the experiment result suggests that the overhead
in real system is considerably small. Further optimization on
scheduling algorithm can be done for less overhead given
the latency and computational capacity of each device.

4.9 Showcase of Fault Tolerance
Three methods with respect to the requirement of fault tol-
erance are tested in our evaluation system: (a). without any
functionality dealing with device failure, (b). the Reassign
method, and (c). the Monitor method. The duration from
the beginning of assigning tasks to the time when all tasks
are finished is recorded and averaged over five runs. We
only consider end devices for simplicity, and we use all
8 end devices by default. We simulate device failures by
letting them automatically shutdown after processing half
the number of tasks that a worker is going to process, which
is 12 in our case. The timeout of transferring data to another
device, ttimeout, is set to 0.5 (s), which means at most 0.5
(s) delay is generated for each communication with end

TABLE 5
The time overhead with different simulation values of network latency.

The overhead is the percentage of additional time used with encryption
module, compared with no encryption module used. In both cases, the

encrypted/unencrypted is finally sent to the cloud for calculation.

Speed overhead Simulated network latency (s)

0.5 1 1.5 2

Encrypt on End devices 57.1% 33.2% 24.7% 17.9%

Encrypt on Edge devices 44.0% 27.2% 20.6% 15.9%

Fig. 5. The time to finish the classification task with different methods for
fault tolerance, with different number of device failures.

devices. Since the timeout is a simulated value, the interval
of queries is set according to the timeout in the evaluation
system. The curve of averaged duration time with respect to
the number of device failure is illustrated in Figure 5, and
the raw time data is listed in Table 6.

Without any functionality dealing with device failure,
the task can not be done if any device fails, which is labeled
as ∞ in Table 6. With the functionality of reassigning sub-
tasks enabled, the system is able to finish the entire task
even if some devices fail, but for longer time than that with
no device failure. Method two directly reassign any unfin-
ished task to next end device in the original list, without
considering and testing whether the device is available or
not. The drawback is that for each communication to the
failed device, the time for waiting the network timeout is
wasted, causing an unacceptable increasing duration curve.
With further consideration of fault tolerance in this system,
we notice that each sub-task in this specific task is separable
from each other, which means the order of assigning each
sub-task is not important. To avoid the timeout overhead in
method two, we have tested method three in our evaluation
system, which has a separate sub-process periodically query
each end device to check their availability. A global device
list is maintained, containing devices which is available
currently. When assigning a sub-task, the next device in the
global device list is chosen as the worker. From Table 6, it is
observed that this method generates considerably less over-

TABLE 6
The time to finish the classification task with different fault recovering

methods, with different number of end device failures.

Finish time (s) Number of end device failures

0 1 2 3 4 5 6

N/A 24.9 ∞ ∞ ∞ ∞ ∞ ∞
Reassign 25.7 33.7 43.2 65.2 92.8 138 226

Monitor 26.4 27.2 27.3 27.7 28.0 30.7 38.3
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head especially for large number of devices failures, e.g.,
5.9x faster with 6 device failures compared with previous
method. It is also observed that subtle overhead is generated
by applying method two and three, 3.2% and 6.0% longer
than method one respectively. However, considering their
advantages of enabling fault tolerance for the system, the
overhead is acceptable.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Heterogeneous Dis-
tributed Deep Neural Network (HDDNN) framework that
is developed on hierarchical distributed systems, including
the cloud, the edge (fog) devices and the end devices. We
propose three types of heterogeneity based on a deeper
observation on real-world distributed systems, with (a).
distributed computing node heterogeneity, (b). neural net-
work heterogeneity, and (c). system task heterogeneity. A
simulated system of proposed framework is being tested
on image classification jobs, showing that our framework
is able to provide rich features on a highly heterogeneous
distributed system. Illustrated by elaborately designed ex-
periments, our proposed HDDNN framework offers low
response time, optimized resource usage, high performance,
better user experience, privacy protection and robustness.

Future works include (a). deploying our framework on
heterogeneous hardwares, (b). testing for a real-world, task-
specific dataset, (c). arguing and discussing about bottle-
necks in the system under real-world situations, etc.
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case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[25] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan, “Towards wearable cognitive assistance,” in The 12th
Annual International Conference on Mobile Systems, Applications, and
Services, 2014.

[26] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings
of the Sixth European conference on Computer systems, 2011.

[27] C. Perera, A. B. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Context aware computing for the internet of things: A survey,”
IEEE Communications Surveys and Tutorials, vol. 16, no. 1, pp. 414–
454, 2014.

[28] A. Whitmore, A. Agarwal, and L. D. Xu, “The internet of things - A
survey of topics and trends,” Information Systems Frontiers, vol. 17,
no. 2, pp. 261–274, 2015.

[29] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a
service and big data,” arXiv preprint arXiv:1301.0159, 2013.

[30] L. W. F. Chaves and C. Decker, “A survey on organic smart labels
for the internet-of-things,” in Seventh International Conference on
Networked Sensing Systems, 2010.

[31] A. M.-H. Kuo, “Opportunities and challenges of cloud computing
to improve health care services,” Journal of medical Internet research,
vol. 13, no. 3, 2011.

[32] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A
survey,” IEEE Trans. Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.



IEEE TRANSACTION ON BIG DATA, VOL. XX, NO. XX, XX XX 14

[33] M. S. Hossain and G. Muhammad, “Cloud-assisted industrial in-
ternet of things (iiot) - enabled framework for health monitoring,”
Computer Networks, vol. 101, pp. 192–202, 2016.

[34] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, “Urban planning
and building smart cities based on the internet of things using big
data analytics,” Computer Networks, vol. 101, pp. 63–80, 2016.

[35] S. Chen, C. Lai, Y. Huang, and Y. Jeng, “Intelligent home-appliance
recognition over iot cloud network,” in the 9th International Wireless
Communications and Mobile Computing Conference, 2013.

[36] F. Ding, A. Song, D. Zhang, E. Tong, Z. Pan, and X. You,
“Interference-aware wireless networks for home monitoring and
performance evaluation,” IEEE Transactions on Automation Science
and Engineering, vol. 99, pp. 1–12, 2017.

[37] F. Gao, “Vsaas model on dragon-lab,” International Journal of
Multimedia & Ubiquitous Engineering, vol. 8, no. 4, 2013.

[38] A. Prati, R. Vezzani, M. Fornaciari, and R. Cucchiara, “Intelligent
video surveillance as a service,” in Intelligent multimedia surveil-
lance, 2013, pp. 1–16.

[39] C.-T. Fan, Y.-K. Wang, and C.-R. Huang, “Heterogeneous infor-
mation fusion and visualization for a large-scale intelligent video
surveillance system,” IEEE transactions on systems, man, and cyber-
netics: systems, vol. 47, no. 4, pp. 593–604, 2017.

[40] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile
edge computing: Survey and research outlook,” arXiv preprint
arXiv:1701.01090, 2017.

[41] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges,”
Future Generation Comp. Syst., vol. 78, pp. 680–698, 2018.

[42] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenar-
ios, and challenges,” IEEE Communications Magazine, vol. 55, no. 4,
pp. 54–61, 2017.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg,
and F. Li, “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, pp. 211–252, 2015.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proceedings of the
International Conference on Learning Representations, 2015.

[46] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in
Proceedings of the British Machine Vision Conference 2016, 2016.

[47] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information
Processing Systems, 2016.

[48] B. McDanel, S. Teerapittayanon, and H. T. Kung, “Embedded
binarized neural networks,” in Proceedings of the 2017 International
Conference on Embedded Wireless Systems and Networks, 2017.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[50] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” Technical Report, University of Toronto,
2009.

[51] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Se-
nior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems,
2012.

[52] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Fire-
caffe: Near-linear acceleration of deep neural network training
on compute clusters,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[53] P. H. Jin, Q. Yuan, F. N. Iandola, and K. Keutzer, “How to scale
distributed deep learning?” in Machine Learning Systems Workshop
on Advances in Neural Information Processing Systems, 2016.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

Zongpu Zhang is presently a senior student in
the School of Electronic Information and Electri-
cal Engineering at Shanghai Jiao Tong Univer-
sity. His research area includes machine learn-
ing application for image and video understand-
ing and distributed computing.

Tao Song received his M.Eng. degree on Soft-
ware Engineering major from Shanghai Jiao
Tong University and B.Eng. degree on Automa-
tion from China University of Mining and Tech-
nology. He is currently a Ph.D. candidate in
Shanghai Jiao Tong University in China. His re-
search area includes data center networking,
cloud computing and artificial intelligence.

Liwei Lin received the B.S. and M.S. degree
from Fujian Normal University, China, in 2006
and 2010 repectively. He is currently pursuing
the Ph.D. degree in computer science and en-
gineering with Shanghai Jiao Tong University,
China. His research interests include data cen-
ter network, mobile computing, cloud computing
and fog computing.

Yang Hua received the Ph.D. degree from
Universit Grenoble Alpes/Inria Grenoble Rhne-
Alpes, France, funded by the Microsoft Research
Inria Joint Center. He is currently a Lecturer
with the Queens University of Belfast, U.K. He
holds three U.S. patents and one China patent.
His research interests include machine learning
methods for image and video understanding.
He was a winner of the PASCAL Visual Object
Classes Challenge Classification Competition in
2010, 2011, and 2012, and the Thermal Imagery

Visual Object Tracking Competition in 2015.

Xufeng He received the Bachelor’s degree in
Microelectronics from Northwestern Polytechni-
cal University, Xi’an, China in 2016. He is cur-
rently pursuing Msc in Computer Science from
the Graduate School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong
University. His research interests include deep
learning and distributed computing.



IEEE TRANSACTION ON BIG DATA, VOL. XX, NO. XX, XX XX 15

Zhengui Xue received her Ph.D. degree from
the NUS Graduate School for Integrative Sci-
ences and Engineering, National University of
Singapore in 2013. She held a postdoctoral po-
sition at the Ecole Nationale des Travaux Publics
de l’Etat from 2014 to 2015. She is currently an
adjunct researcher in the Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University. Her research interests include
adaptive systems, knowledge-based intelligent
control, optimal control, and machine learning.

Ruhui Ma received the Ph.D. degree in com-
puter science from Shanghai Jiao Tong Univer-
sity (SJTU), China, in 2011. He held postdoctoral
positions with SJTU (2012 and 2013) and McGill
University, Canada (2014), respectively. He is
currently an Associate Professor with the De-
partment of Computer Science and Engineering,
SJTU. His main research interests are in virtual
machines, computer architecture, network virtu-
alization and artificial intelligence.

Haibing Guan received his Ph.D. degree in
computer science from the Tongji University
(China), in 1999. He is currently a professor
with the Faculty of Computer Science, Shang-
hai Jiao Tong University, Shanghai, China. He
is the founder of Shanghai Key Laboratory of
Scalable Computing and Systems. He also is a
member of IEEE and CCF. His current research
interests include, but are not limited to, computer
architecture, parallel computing, compiling and
virtualization.


