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Abstract

Subgrouping facilitates the simultaneous manipulation of a number of audio tracks and

is a central aspect of mix engineering. However, the decision process of subgrouping is

a poorly documented technique. This research sheds light on this ubiquitous but poorly

defined mix practice, provides rules and constraints on how it should be approached as

well as demonstrates its benefit to an automatic mixing system.

I first explored the relationship that subgrouping has with perceived mix quality by

examining a number of mix projects. This was in order to decipher the actual process

of creating subgroups and to see if any of the decisions made were intrinsically linked

to mix quality. I found mix quality to be related to the number of subgroups and type

of subgroup processing used. This subsequently led me to interviewing distinguished

professionals in the audio engineering field, with the intention of gaining a deeper un-

derstanding of the process. The outcome of these interviews and the previous analyses

of mix projects allowed me to propose rules that could be used for real life mixing and

automatic mixing. Some of the rules I established were used to research and develop a

method for the automatic creation of subgroups using machine learning techniques.

I also investigated the relationship between music production quality and human emo-

tion. This was to see if music production quality had an emotional effect on a particular

type of listener. The results showed that the emotional impact of mixing only really mat-

tered to those with critical listening skills. This result is important for automatic mixing

systems in general, as it would imply that quality only really matters to a minority of

people.

I concluded my research on subgrouping by conducting an experiment to see if subgroup-

ing would benefit the perceived clarity and quality of a mix. The results of a subjective

listening test showed this to be true.
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Chapter 1

Introduction

Due to the advancements in computer processing power, we can now produce studio

quality music with very inexpensive software. An amateur producer can use their own

personal computer to get started quite easily. These advancements have lowered the bar

of entry into music production and have made it more cost efficient than approaching a

high-end studio to make a recording.

To use a studio, a musician is required to rent a studio space, pay for a qualified sound

engineer to make a recording and subsequently mix the audio. Getting from a musical

performance in a studio to a finished product that we can listen to at home is a lengthy

and involved process. Firstly, the performer needs to be recorded correctly. This involves

the recording engineer making sure to get a clean and balanced recording for all the

instrumentation. This also requires making sure all the recording equipment is setup

and working correctly. This is so that all recordings are free of artefacts such as hum,

clicks, distortion and broadband noise induced by improper recording.

Once the recording stage is complete, it is up to the engineer to make the recordings

sound as professional as possible through the mixing and editing of the audio tracks.

This stage is called post-production. This is where you need an engineer who is skilled

and experienced at what they do in order to get good results. Usually the greater the

skill of the engineer, the greater the cost to avail of their services. Due to the length

of time this process takes; consequently, it uses up most of the musicians production

budget and usually takes twice as long as any of the other processes [1]. As soon as

the engineer has achieved a final mix that they are happy with, the mixed audio is then

sent to a mastering engineer. They then prepare the audio recording, so that it can be

transferred to the desired media for mass distribution.

1
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Amateur producers normally assume all the previously described roles. This is because

the expensive equipment that would normally be found in a studio has been developed

into software that can be bought at a fraction of the cost. Also, many of the mixing

and editing processes can be learned from books and online tutorials. This has empow-

ered people to start making professional sounding music without the overhead normally

associated with a studio.

In recent years a number of systems have been developed to automate many of the pro-

cesses required to deliver a successful mix [2, 3]. Some of these systems are for dynamic

range compression, panning and equalisation [4–6]. These systems allow amateur pro-

ducers to create professional sounding recordings at a fraction of the cost of going to a

studio and could someday make the recording engineer redundant. However, not all the

decisions made by the recording engineer during the mixing and editing stage can be

automated as some of the decisions made are for artistic reasons.

It is these automatic mixing systems that are central to most of the research conducted

as part of this thesis. In my case the mix concept being explored is called subgrouping,

which is a mix technique used for control and effect processing [7]. This concept is

expanded on further in the next section.

1.1 Motivation

At the early stages of the mixing and editing process, the engineer will typically group

instrument tracks into subgroups depending on what family of instruments they belong

to. This means grouping guitar tracks with other guitar tracks or vocal tracks with other

vocal tracks. This is done, so that the engineer can treat each subgroup of instruments

separately [7]. For example, the engineer can compress just the drums without affecting

anything else in the mix or change the overall level of the drums without having to change

the level for each individual drum track. An example of what the subgrouping process

looks like can be seen in Figure 1.1. Typically, the producer groups these instruments

into subgroups based on rule of thumb [7]. As explained previously, this is done normally

based on instrument type.

In the literature reviewed as part of this thesis, there was currently no system that

attempted to automate the subgrouping process. Also, as part of this thesis a survey

interview was conducted on how professionals subgroup, this will be discussed in detail

in chapter 4. It showed that all the professionals interviewed use subgrouping when

mixing. A number of themes were also developed from the survey as to why they do so.
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Figure 1.1: This is a typical subgrouping setup you might find in a studio. Each of
the instrument types are summed together and processed as a group i.e. drums 1-4 are

processed in a drum group

The results indicated that subgrouping is an important step in the mixing process and

is something that is always done at a professional level.

If systems like these are designed to mimic the ability of a mix engineer to achieve a

good mix, it could be argued that subgrouping is needed in current automatic mixing

systems. In many of the papers looked at in the literature review based on automatic

mixing, the instrument tracks were never subgrouped together and were treated individ-

ually [2, 8, 9]. Also, as part of this thesis, data that was collected from a mix experiment

that showed a strong correlation between the number of subgroups used and mix quality.

This experiment will be discussed in greater detail in chapter 3. The data also showed a

correlation between subgroup processing and mix quality, specifically EQ and compres-

sion. Leading us further to believe that subgrouping is a necessary and overlooked mix

process in the literature.

It is relatively easy to subgroup instrument tracks in the conventional sense. However,

through the analysis of the spectro-temporal features of a number of multitracks I dis-

covered that there are more intelligent ways to subgroup instrument tracks using state

of the art machine learning techniques. An example output of this process, would be
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that the more percussive instruments may be put in a subgroup together. In terms of

musical instruments, the subgroup may consist of your traditional drum instruments and

a bass guitar, but where the bass is played in a slapped style. Due to the subgroup now

consisting of only percussively played instruments, this will have an effect on how the

dynamic range compression for this subgroup will be applied and how the bass guitar

would have normally been subgrouped.

Another possible outcome of the analysis of a multitrack is that it may be found over

time that an instrument track may change and may become more similar to another

instrument track in another subgroup. An example of how this may occur would be

where the bass player suddenly switched from picking the bass guitar to playing in the

style of slap bass. What was once subgrouped with the bass instruments could now be

subgrouped with the percussive instruments. It may make sense at this point to split the

single bass guitar instrument track into two individual tracks and have them designated

to separate subgroups. How this could potentially be applied to the time series can be

seen in Figure 1.2.

Figure 1.2: This is a screen shot from a DAW project. This illustrates how some
instrument types might change their subgroup type over the course of a mix. In this

example, the bass guitar changes between subgroups 3 and 4.

As mentioned previously, the subgrouping will affect how different audio effects will be

applied to the subgroups such as dynamic range compression, panning and EQ [4–6].

These effects will have to adapt to the possibility of more spectrally diverse subgroups.

The knock-on effect of this may be the way the overall balance of the mix may change

and how the listener may perceive the emotional expression of the music. This might
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be due to mix now having more “punchines” due to the amount of dynamic range

compression being applied. The opposite and in most cases the undesired effect is that

the mix becomes “flat” sounding and the listener may not feel as emotionally engaged

by the music [7].

Another alternative subgrouping method could be that parts of the multitrack that are

more melodic and harmonious may also get subgrouped together. Now the producer has

some control of some of the more specifically emotive parts of the music and is free to

process this subgroup differently [10].

1.2 Aims and Objectives

In light of the above, the main aims and objectives of this thesis were as follows:

• Investigate why and how subgrouping is performed when mixing : This was to gain

a deeper understanding of the mix process, by examining the mix habits of pro-

fessional and amateur mix engineers. This involved examining mix setups, which

is detailed in chapter 3, interviewing professionals mix engineers which is detailed

in chapter 4 and further mining of related literature. This was to establish how

important the subgrouping process was when it came to mixing audio. It was

also to generate rules or guidelines that could be applied in an automatic mix

system, since they are so poorly defined in the literature. It involved finding what

subgrouping decisions were made to improve the mix and how much improvement

subgrouping meant, if any at all.

• Investigate how to automatically subgroup multitrack audio: The purpose of this

was to investigate methods and techniques for automatically generating the sub-

groups that humans would create, but by using machine learning techniques. This

involved performing feature selection using a Random Forest and then finally us-

ing agglomerative clustering to create the subgroups. I was interested to see what

kind of audio features were useful for this process and what subgroups would be

created based on these learned features. This is detailed in chapter 5.

• Investigate if music production quality has an emotional impact on the listener :

I performed exploratory research to see if music production quality could have

an impact on the perceived and induced emotions of a listener. I did this by

performing a listening test where 10 critical listeners and 10 non-critical listeners

evaluated 10 songs. There were two mixes of each song, the low quality mix

and the high quality mix. Each participants subjective experience was measured
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directly through questionnaire and indirectly by examining peripheral physiological

changes, change in facial expressions and the number of head nods and shakes they

made as they listened to each mix. The details of the experiment are provided in

chapter 6. This research is related to automatic mixing systems, since I believe

that current systems are not able to generate mixes that are on par with a human

most of the time. However, if I were able to prove that mix quality was only

important to those with critical listening skills then it further justifies the use of

automatic mixing systems.

• Determine if subgrouping can be used to improve automatic mixing systems: With

this aim I conducted an experiment in order to provide empirical evidence that

using subgroups in an automatic mixing system could improve mix quality, per-

ceived clarity as well as reduce mix complexity. I did this by creating automatic

mixes using subgroups and automatic mixes without. I then conducted a listening

test were the participants had to indicate which mix type they preferred as well as

indicate which mixes had less inter-channel auditory masking. The details of the

experiment are in chapter 7. The main purpose of this experiment was to test the

hypothesis that subgrouping can be beneficial for automatic mixing.

The overarching aim of this thesis was to document and understand how subgrouping is

used day to day in a studio since the literature on this widely used technique is sparse.

With this understanding in place, I then wanted to know if it was beneficial to use this

mix technique in an automatic mixing system.

1.3 Contributions

• Chapter 3: I showed that the number of subgroups and subgroup effect processing

is correlated with mix quality. I was also able to observe some common mix decision

patterns, which I later used to infer mix decisions in chapter 4

• Chapter 4: I proposed a number of recommendations on how subgrouping should

be implemented in an automatic mixing system.

• Chapter 5: I determined a set of low level audio features that could be used to

automatically subgroup multitrack audio. I determined these audio features using

a Random Forest classifier for feature selection.

• Chapter 6: I present findings that suggest that having a high level of skill in mix

engineering only seems to matter in an emotional context to those with critical

listening skills.
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• Chapter 7: I showed that subgrouping is beneficial to an automatic mixing sys-

tem, which was an important result for this thesis.

1.4 Associated Publications

Conferences:

D. Ronan, B. De Man, H.Gunes and J. D. Reiss, “The impact of subgrouping practices

on the perception of multitrack music mixes”, in Audio Engineering Society Convention

139, September 2015. This is associated with chapter 3, where I examine common mix

decisions and show that the number of subgroups and subgroup processing is correlated

with mix quality.

D. Ronan, D. Moffat, H. Gunes, and J. D. Reiss, “Automatic subgrouping of multitrack

audio”, in Proc. 18th International Conference on Digital Audio Effects, DAFx-15,

November 2015. This is associated with chapter 5, where I determine a set of candidate

low level audio features to be used to automatically subgroup audio.

D. Ronan, H. Gunes, and J. D. Reiss, “Analysis of the subgrouping practices of profes-

sional mix engineers”, in Audio Engineering Society Convention 142, May 2017. This

is associated with chapter 4, where I analyse the survey responses of professional mix

engineers. I test nine assumptions related to subgrouping and propose a number of

recommendations on how subgrouping should be conducted.

Journals:

D. Ronan, J. D. Reiss and H. Gunes, “An empirical approach to the relationship be-

tween emotion and music production quality”, Journal of the Audio Engineering Society

(Under Review). This is associated with chapter 6, where I explore the relationship be-

tween music production quality and human emotion. I present findings that show mix

engineering skill only matters to those with critical listening skills.

D. Ronan, H. Gunes and J. D. Reiss, “Automatic Minimisation of Masking in Multitrack

Audio using Subgroups”, IEEE/ACM Transactions on Audio, Speech, and Language

Processing (Under Review). This is associated with chapter 7, where I prove that

subgrouping is beneficial to automatic mixing systems.

Other Contributions: These conference publications are not directly related to this

thesis, but are relevant to the fields of music information retrieval and sound synthesis.

D. Moffat, D. Ronan and J. D. Reiss, “An evaluation of audio feature extraction tool-

boxes”, in Proc. 18th International Conference on Digital Audio Effects (DAFx-15),
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November 2015. (Honourable mention for the best paper award). This is not related to

the thesis, however audio feature extraction is important to chapter 5.

D. Moffat, D. Ronan and J. D. Reiss, “Unsupervised Taxonomy of Sound Effects”,

in Proc. of the 20th International Conference on Digital Audio Effects (DAFx-17),

September 2017. This is an extension to the work carried out in chapter 5, but is

applied to sound effects.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 presents the background upon which this thesis will be developed. I

outline the mix process and where subgrouping belongs in this process. I look

at the physiology of the human ear, as well as critical bands, auditory filters and

auditory masking. I look at other automatic mixing systems in the context of the

main audio effects that are being automated. I also give an overview of emotion in

music, where I show what the difference between perceived and induced emotions

is, what the different psychological models of emotion are and how emotional

responses to music are measured. Finally, I detail how Random Forest classifiers

work and how they can be used for feature selection.

• Chapter 3 analyses the impact that subgrouping practices have on the perception

of quality in a dataset of multitrack mixes. I also analysed the multitracks in order

to see if any decision patterns emerged, which I later used to infer mix decisions

in chapter 4.

• Chapter 4 presents a study I performed where I interviewed ten award winning

mix engineers through an online questionnaire, where I asked questions related to

subgrouping of a qualitative and quantitative nature. This was done to build on

the data presented in chapter 3. I was able propose a number of recommendations

on how subgrouping should be implemented in an automatic mixing system and

this study gave us a deeper understanding of the mix process.

• Chapter 5 investigate methods and techniques to automatically generate the sub-

groups that a human would create, but by using machine learning. I determined a

set of low level audio features that could be used to automatically subgroup mul-

titrack audio. I determined these audio features using a Random Forest classifier

for feature selection.
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• Chapter 6 investigates if music production quality has an emotional impact on

the listener. The findings suggest that having a high level of skill in mix engineering

only seems to matter in an emotional context to those with critical listening skills.

This is important in the context of automatic mixing algorithms, in the sense that

the perceived quality of an automatically generated mix may not be that important

to those without critical listening skills. Suggesting that automatically generated

mixes may be good enough for the general public.

• Chapter 7 investigates whether or not using subgroups in an automatic mixing

system can improve the overall perceivable quality of a mix. I also investigated

if using subgroups can have an impact on the perceived emotional response of

a listener. I showed that participants always preferred the automatic mix that

utilised subgrouping.

• Chapter 8 concludes the thesis. Research findings are discussed and the prospects

for future research are considered.



Chapter 2

Background

I start by discussing subgrouping since it is central to this thesis. I then discuss the

machine learning methods I used in this thesis, where I discuss Random Forests, how

feature selection is performed and agglomerative clustering. I also give the background

of emotion in music, where I discuss the different types of musical emotions, the different

psychological measures of emotion and how they can be measured. Finally, I discuss the

physiology of the human hearing system with an emphasis on the concepts of masking,

critical bands and auditory filters. Several psychoacoustic-inspired loudness and masking

models as the perceptual basis of my intelligent mixing studies are then reviewed. I

finally provide a review of the state of the art in automatic mixing systems.

2.1 Subgrouping

As mentioned previously, at the early stages of the mixing and editing process of a

multitrack mix, the mix engineer will typically group instrument tracks into subgroups

[7]. An example of this would be grouping guitar tracks with other guitar tracks or

vocal tracks with other vocal tracks. Subgrouping can speed up the mix workflow by

allowing the mix engineer to manipulate a number of tracks at once, for example by

changing the level of all drums with one fader movement, instead of changing the level

of each drum track individually [7]. Note that this can also be achieved by a Voltage

Controlled Amplifier (VCA) group - a concept similar to a subgroup where a specified

set of faders are moved in unison by one ‘master fader’, without first summing each

of these channels into one bus. However, subgrouping also allows for processing that

cannot be achieved by manipulation of individual tracks. For instance, when nonlinear

processing such as dynamic range compression or harmonic distortion is applied to a

subgroup, the processor will affect the sum of the sources differently than when it would

10
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be applied to every track individually. An example of a typical subgrouping setup can

be seen in Figure 1.1.

Subgrouping historically comes from the days of two-, four- and eight track tape recorders,

when analogue recording and mixing devices were limited by the amount of inputs. Mix

engineers back then would have recorded and mixed six drums tracks separately. Once

the mix engineer was happy with the drum submix, they would then bounce it to stereo

thus allowing the remaining four tracks to be used for other instruments such as vocal,

guitars etc. to be mixed with the drums. This sounds like a tedious and potentially

unforgiving process in comparison to what is possible in today’s modern recording and

mixing equipment. Nowadays, it is possible to have hundreds of tracks processed and

mixed at the same time. However, it is not uncommon for mix engineers these days to

create submixes in order to conserve processing power [1, 7, 11].

Very little is known about how mix engineers choose to apply audio processing tech-

niques to a mix. There have been few studies looking at this problem and none of them

specifically looked at subgrouping [12–14]. Subgrouping was touched on briefly in [12]

when the authors tested the assumption “Gentle bus/mix compression helps blend things

better” and found this to be true, but it did not give much insight into how subgrouping

is generally used. In [15], the authors explored the potential of a hierarchical approach

to multitrack mixing using instrument class as a guide to processing techniques. How-

ever, providing a deeper understanding of subgrouping was not the aim of the paper.

Subgrouping was also used in [16], but similarly to [15] this was only applied to drums

and no other instrument types were explored. The technique of subgrouping is to the

best of my knowledge a poorly documented mix technique in audio engineering literature

[1, 7, 17].

Although subgrouping is not well documented, it is used extensively in all areas of

audio engineering and production. This would imply that there are basic unwritten

rules that are carried out when a mix engineer makes use of subgrouping. These rules

can be as simple as putting similar instruments together in the one subgroup [15, 16].

By investigating these practices I hope to develop these rules and generate constraints

that may someday be used in intelligent mixing systems such as those described in

[2, 3, 8, 15, 18].

One approach that already exists to subgrouping, is to subgroup by frequency bands.

This mixing approach was developed by a famous mixing engineer called Michael Brauer

(http://www.mbrauer.com/qna2.asp). In this approach, there are four subgroups, one

for bass, one for mid-range, one for treble and finally another for distortion. This

approach does not consider the traditional instrument approach and may be worth

investigating as an alternative method to automatically subgrouping. This could also

http://www.mbrauer.com/qna2.asp


Intelligent Subgrouping of Multitrack Audio 12

be utilised in spatialisation of audio tracks, whereby everything in the bass group stays

in the centre, vocals are used as the fourth group and everything else is split into the

other two groups. This could then allow us to pan everything automatically, so as to

minimise auditory masking.

2.2 The Physiology of the Human Hearing System

There are three main parts that constitute the human auditory system: the outer ear,

the middle ear, and the inner ear. The outer ear is the fleshy part of the ear that is

visible on the sides of the human head. This is known as the auricle. The purpose of

the auricle is sound collection and spectral shaping, so that we can localise sound. Once

sound reaches the auricle, it travels down the auditory canal to the eardrum. This is

where the middle ear begins. The middle ear is an air-filled central cavity that consists

of the three smallest bones in the body: malleus, incus and stapes (known collectively as

the ossicles) [19]. The ossicles transmit the vibrations picked up by the eardrum to the

inner ear. The inner ear consists of the cochlea and vestibular system. The cochlea is

responsible for taking sound pressure patterns and converting these to electrochemical

pulses that are passed to the auditory nerve. Inside the cochlea we also have the basilar

membrane, where different parts of it resonate with respect to frequency. The vestibular

system is responsible for providing balance [19].

2.3 Auditory Masking

Masking is a perceptual property of the human auditory system that occurs whenever

the presence of a strong audio signal makes the temporal or spectral neighbourhood of

weaker audio signals imperceptible [20, 21]. Frequency masking may occur when two or

more stimuli are simultaneously presented to the auditory system. The relative shapes

of the masker’s and maskee’s magnitude spectra determine to what extent the presence

of certain spectral energy will mask the presence of other spectral energy.

Temporal masking is the characteristic of the auditory system where sounds are hidden

due to a masking signal occurring before (pre-masking) or after (post-masking) a masked

signal. The effectiveness of temporal masking attenuates exponentially from the onset

and offset of the masker [22].

A simplified explanation of masking phenomena is when a strong noise or tone masker

creates an excitation of sufficient strength on the basilar membrane. An excitation

pattern is a neural representation of the pattern of resonance on the basilar membrane,
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caused by a given sound [23]. The area around the characteristic frequency (referred to

as the frequency bandwidth of the “overlapping bandpass filter” created by the cochlea)

of the masker’s signal location effectively blocks the detection of weaker signals [22].

Examples of frequency and temporal masking are shown in Figure 2.1 and Figure 2.2

respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

 
Abstract—The iterative process of masking minimization when 
mixing multitrack audio is a challenging optimization problem, 
in part due to the complexity and nonlinearity of auditory 
perception. In this article, we first propose several multitrack 
masking metrics inspired by psychoacoustic models. We then 
investigate different audio processing techniques to manipulate 
the frequency and dynamic characteristics of the signal in order 
to reduce masking. We introduce a general frequency and 
dynamic processor as an inclusive superset of equalizers and 
dynamics processors, that can modify the boost and/or cut of an 
equalizer stage over time following a dynamics curve. Different 
masking metrics and audio techniques are then integrated into 
an optimization framework, where the parameters of the audio 
effects are optimized interactively, forming an automatic 
masking minimization system for multitrack audio. Various 
implementations of the system are explored and evaluated 
objectively and subjectively through a listening experiment. 
Evaluation results show that our best algorithm can compete 
with the mixes produced by professional engineers in terms of 
masking reduction and overall preference. 
 
Index Terms— Masking; multitrack mixing; MPEG; 
loudness model; equalization; dynamic range processing; 
optimization 
 
 

I.! INTRODUCTION 
 
Masking is a perceptual property of the human auditory system 
that occurs whenever the presence of a strong audio signal 
makes a temporal or spectral neighborhood of weaker audio 
signals imperceptible [1, 2]. Simultaneous or frequency 
masking may occur when two or more stimuli are 
simultaneously presented to the auditory system. The relative 
shapes of the masker and maskee magnitude spectra determine 
to what extent the presence of certain spectral energy will mask 
the presence of other spectral energy. Temporal masking is the 
characteristic of the auditory system where sounds are hidden 
due to maskers before (pre-masking) or even after 
(post-masking) the presence of the signal.  The effectiveness of 
temporal masking attenuates exponentially from the onset and 
offset of the masker. A simplified explanation of the 
mechanism underlying masking phenomena is that the presence 
of a strong noise or tone masker creates an excitation of 
sufficient strength on the basilar membrane around the 
characteristic frequency of the signal (referred as the frequency 

bandwidth of the "overlapping bandpass filter" created by the 
cochlea) location to effectively block detection of a weaker 
signal [3]. Examples of frequency and temporal masking are 
shown in Figure 1 and Figure 2 respectively.  

 

Figure 1 Frequency masking example of a 150 Hz tone signal 
masking an adjacent frequency tone by increasing the threshold 
of audibility around 150 Hz. 

 

Figure 2 Schematic drawing to illustrate and characterize the 
regions within which pre-masking, simultaneous masking and 
post masking occur. Note that post-masking uses a different 
time origin than pre-masking and simultaneous masking.[3]  

Mixing is a process in which multitrack material – whether 
recorded, sampled or synthesized – is balanced, treated and 
combined into an output format, most commonly two channel 
stereo [4]. In the process of mixing, sound sources inevitably 
mask one another, which reduces the ability to fully hear and 
distinguish each sound source. Partial masking occurs 
whenever the audibility of a sound is degraded due to the 
presence of other content, but the sound may still be perceived.  
Often partial masking happens within the mix. The mix can 
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Figure 2.1: Frequency masking example of a 150 Hz tone signal masking an adjacent
frequency tone by increasing the threshold of audibility around 150 Hz. pre-masking

and simultaneous masking [22].

In the process of mixing, sound sources inevitably mask one another, which reduces the

ability to fully hear and distinguish each sound source. Partial masking occurs whenever

the audibility of a sound is degraded due to the presence of other content, but the sound

may still be perceived. It is often partial masking that occurs within a mix. The mix

can sound poorly produced or underwhelming, and have a lack of clarity as a result [24].

Masking reduction in a mix involves a trial and error adjustment of the relative lev-

els, spatial positioning, frequency and dynamic characteristics of each of the individual

audio tracks. In practice, the masking reduction process embodies an iterative search

process similar to that of numerical optimisation theory [25, 26]. Masking reduction

therefore can be thought of as an optimisation problem, which provides some insight

to the methodology of automatic mixing in order to reduce masking. Given a certain

set of controls for a multitrack, the final mix output can be thought of as the optimal

solution to a system of equations that describe the masking relationship between the

audio tracks in a multitrack recording.
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Figure 2.2: Schematic drawing to illustrate and characterise the regions within which
pre-masking, simultaneous masking and post masking occur. Note that post-masking

uses a different time origin than pre-masking and simultaneous masking [22].

Frequency processing, dynamics processing and subgrouping are the three main aspects

of my masking minimisation investigation. Equalisation can effectively reduce masking

by manipulating the spectral contour of different instruments so that there is less fre-

quency domain interference between each audio track. Dynamic range processing is a

nonlinear audio effect that can alter the dynamic contour of a signal in order to reduce

masking over time. The classic operations of dynamics processing and equalisation con-

trol are two separate domains of an audio signal. The combined use of both filtering

and dynamics processing implies a larger control space, and can reduce masking much

more precisely and effectively in both frequency and time aspects than using either pro-

cessor alone [7, 27]. Subgrouping allows us to localise the application of the frequency

and dynamics processing to specific instrument types that would typically share similar

timbre, dynamic range and spectral content.

The two principle aspects of automating a masking reduction process are the creation of

a model of masking in multitrack audio that correlates well with human perception, and

the development of audio techniques and algorithms to reduce masking without causing

unpleasant audio artefacts.
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2.3.1 Perceptual Models

Perceptual models capable of predicting masking behaviour have received much atten-

tion over the years, particularly in fields such as audio coding [28–32], where the masked

threshold of a signal is approximated to inform a bit-allocation algorithm. [33] proposes

a method for adjusting the masking threshold in audio coding to make the decoded signal

robust to quantisation noise unmasking. Masking models are also often used in image

and audio watermarking [34, 35]. Similar models are used in distortion measurement

[36] and sound quality assessment [37–39], where nonlinear time-domain filter banks are

used to allow for excitation pattern calculation whilst maintaining good temporal reso-

lution. Another simple masking model is used in [40] to remove perceptually irrelevant

time-frequency components. More advanced signal processing masking models that lie

closer to the physiology of the human ear include a single-band model that accounts for

a number of frequency and temporal masking experiments. A number of experiments

were based on providing an internal Gaussian noise in order to model the nonlinear

processing of the auditory system and to describe non-simultaneous masking [41]. In

subsequent work, a ‘modulation filter bank’ was added to the previous model in order

to analyse the temporal envelope at the output of a gammatone filter whose output is

half-rectified and low pass filtered at 1kHz. This was to simulate the frequency to place

transform across the basilar membrane, and receptor potentials of the inner hair cells

[42]. Building upon the proposed ‘modulation filter bank’, a more complete masking

model called the Computational Auditory Signal-Processing and Perception (CASP)

model was presented that accounts for various aspects of masking and modulation de-

tection. The experiments performed included intensity discrimination with pure tones

and broadband noise, tone-in-noise detection, spectral masking with narrow-band sig-

nals and maskers, forward masking with tone signals and tone or noise maskers, and

amplitude-modulation detection with narrow- and wideband noise carriers [43]. These

account for various aspects of simultaneous and non-simultaneous masking in human

listeners.

However, all mentioned models only output masked threshold as a measurement of

masking, and only considered the situation when a signal (usually a test-tone signal)

was fully masked. [44] explored partial loudness of mobile telephone ring tones in a

variety of everyday background sounds e.g. traffic, based on the psychoacoustic loudness

models proposed in [45, 46]. By comparing the excitation patterns (computed based

on [45, 46]) between maskee and masker, [47] introduced a quantitative measure of

masking in multitrack recording. Similarly, a Masked-to-Unmasked Ratio which related

the original loudness of an instrument to its loudness in the mix was proposed in [48].
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Previous attempts to perform masking reduction in audio mixing include [9, 18, 49, 50].

[49] aimed to achieve equal average perceptual loudness on all frequencies amongst all

multitrack channels, based on the assumption that the individual tracks and overall mix

should have equal loudness across frequency bands. However, this assumption may not

be valid, and their approach does not directly address spectral masking. [18] designed

a simplified measure of masking based on best practices in sound engineering and in-

troduced an automatic multitrack equalisation system. However the simple masking

measure in [18] might not correlate well with the perception of human hearing, as is

evident in the evaluation. [50] applied a partial loudness model and [44] adjusts the

levels of tracks within a multitrack in order to counteract masking. Similar techniques

were investigated through an optimisation framework in [9]. However both [50] and [9]

only performed basic level adjustment to tackle masking, which may have additional

detrimental effects on the relative balance of sources in the mix [27].

2.3.2 Masking Metrics

There are a number of different multitrack masking metrics available that can be com-

bined to perform a cross-analysis on multitracks. We can quantify the amount of mask-

ing by investigating the interaction between the excitation patterns of a maskee and a

masker, where the maskee is an individual track and the masker is the combination of

all the other tracks in a multitrack. This is done utilising the cross-adaptive architecture

proposed in [2, 51]. All the masking metrics I discuss make use of this cross adaptive

architecture. However, the first two masking metrics I will discuss are based on the

perceptual loudness work of Moore [52, 53] and the final masking metric I discuss is

based on spectral magnitude.

The procedure to derive loudness and partial loudness of each track in a multitrack is

summarised as follows [50]. A multitrack consists of N sources that have been pre-

recorded onto N tracks. Track n therefore contains the audio signal from source n,

given by sn. The transformation of sn through the outer and middle ear to the inner

ear (cochlea) is simulated by a fixed linear filter. A multi-resolution Short Time Fourier

Transform (STFT), comprising 6 parallel FFTs, performs the spectral analysis of the

input signal. Each spectral frame is filtered by a bank of level-dependent Roex filters

whose centre frequencies range from 50Hz to 15kHz. A Roex filter is used to represent

the magnitude response of the auditory filter found in the human ear [54]. Such auditory

filtering represents the displacement distribution and tuning characteristics across the

human basilar membrane.
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Adaptive

Figure 2.3: Flowchart of multitrack loudness model for N input signals. This illus-
trates all the transformations applied to the audio and how each individual input signal
is considered a maskee and the sum of all the other remaining tracks are the maskers.

The excitation pattern E is calculated as the output of the auditory filters as a function

of the centre frequency spaced at 0.25 equivalent rectangular bandwidth (ERB) intervals.

ERB gives a measure of auditory filter width. The mapping between frequency, f (Hz),

and ERB (Hz) is shown in Equation 2.1.

ERB = 24.7(0.0437f + 1) (2.1)

To account for masking, two excitation patterns, the target track (maskee) Et,n and the

masker Em,n, with respect to sn are calculated as described in [45, 46]. The masker

here is the supplementary sum of the accompanying tracks related to the target track,

as given by [48]
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s′(n) =
N∑

i=1,i 6=1

si (2.2)

For a sound heard in isolation, the intensity represented in the excitation pattern is

converted into specific loudness N ′n, which represents the loudness at the output of each

auditory filter. In a partial masking scenario with concurrent masker Em,n, partial spe-

cific loudness N ′p,n is calculated. The detailed mathematical transformations to obtain

specific and partial specific loudness can be found in [45].

The summation of N ′n, and N ′p,n across the whole ERB scale produces the total unmasked

and masked instantaneous loudness. All instantaneous loudness frames are smoothed to

reflect the time-response of the auditory system, as described in [46], and then averaged

into scalar perceptual loudness measures, loudness Ln and partial loudness Pn. This is

illustrated in Figure 2.3

Adapting the method of Vega et al [47], the masking measurement Mn can be defined

as the masker-to-signal ratio (MSR) based on an excitation pattern integrated across

ERB scale and time. This is given by

Mn = MSR(n) = 10 log10

∑
ERBEm,n∑
ERBEt,n

(2.3)

Wichern et al. [55] used a model based on loudness loss, Lloss, to measure masking.

This can be defined as,

Lloss = Lphon − PLphon (2.4)

where Lphon is the loudness of the maskee in isolation and PLphon is the partial loudness

of the maskee when masked by the rest of the mix. The loudness unit here is phon

as opposed to sones, which was used in Moore’s original loudness model I discussed

initially. The authors subsequently use a gating procedure to only measure masking

when an instrument is actively playing.

In the work by Sina et al. [18], the authors do not use an auditory model to measure

masking. They based their measurement on spectral magnitude. Where the amount of

masking that track A (masker) at frequency f and time t causes on track B (maskee)



Intelligent Subgrouping of Multitrack Audio 19

at the same frequency and time is given by

MA,B(f, t) =


XA(f, t)XB(f, t) if

RB(f, t) ≤ RT < RA(f, t)

0 else

(2.5)

where XN (f, t) and RN (f, t) are respectively the magnitude in decibels and the rank of

frequency f , at time t for track N . RT is the maximum rank for a frequency region to

be considered essential.

The work discussed here provided the framework and inspiration on how to reduce

masking in the system proposed in Chapter 7. It was decided that by measuring how

much masking occurs cross-adaptively as used in [18, 50] and using this as a basis for

optimisation was a sensible approach. However, the work in Chapter 7 uses a different

masking metric than the approaches discussed here and uses subgrouping. This was

what made it a novel approach.

2.4 Automatic Mixing Systems

In recent years a number of systems have been developed to automate many of the

processes required to deliver a successful mix [2, 3]. These systems empower amateur

producers to create professional sounding recordings at a fraction of the cost of going to a

studio and in a sense make a professional recording engineer’s skill somewhat redundant.

These systems can give an amateur producer a good starting point when it comes to

mixing, however they may never be able to provide the level of polish a professional

can. In this section I will explore some of the existing work published around automatic

mixing systems. These systems are essentially an extension of the research area of

adaptive digital audio effects [56].

2.4.1 Level

There have been a number of systems proposed where the parameters being adjusted to

achieve a desirable mix are the individual levels of each instrument track in a multitrack.

This is not something I looked at automating directly, but is important to my proposed

automatic mixing framework in Chapter 7.

In [49], the authors developed a real-time cross-adaptive mixing system for live music,

where they optimised the loudness levels of each audio channel based on accumulated
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loudness over time. Similarly in [50], the authors developed a cross-adaptive system, but

it was offline. They used a psychoacoustic measure for loudness and partial loudness in

order to optimise the gain settings for each track, with the aim of reducing inter-channel

masking. Furthermore, they measured the loudness of each track when mixed with the

combination of the other tracks in the multitrack. This is similar to the approach I took

in Chapter 7.

[57] took a cross-adaptive approach similar to literature I have just discussed, however

they used the EBU R-128 loudness measure. This is also a measure I have utilised in

Chapter 7 as part of my mixing system. [9] developed an optimisation framework in

order to adjust the levels of each audio track, which is an approach that influenced my

work in Chapter 7.

The advantages of using just level based mixing are you that can get a relatively satis-

factory mix using very little simplistic audio signal processing. However, inter-channel

auditory masking may still be significant as this process does not allow for the spectral

shaping of audio tracks that would be provided by tools such as equalisation and dynamic

range compression. The optimisation framework used in [9] was used as an inspiration

for the study performed in Chapter 7, where I used particle swarm optimisation to arrive

at an optimal solution.

2.4.2 Equalisation

As well as looking at level adjustment, some other approaches to automatic mixing

have been to adjust equalisation settings cross-adaptively. This is done to adjust the

frequency content of each track, usually with the aim of reducing masking.

In [58], the authors proposed a system to automatically adjust equalisation settings

with the aim of having equal average perceptual loudness on all frequencies amongst all

multitrack audio channels. This system was designed to be used in a live context, which

is not how my proposed system is designed to be used. However, this approach is still

relevant.

In [59], the authors proposed a system where there was a target frequency spectrum and

recursive IIR filters were set in order match an input signal to a desired target signal.

This was done using the Yule-Walker algorithms [60]. In my work, I did not have a

desired target frequency spectrum, but I did use an optimisation procedure in my work.

The paper that had the most similar implementation to the system I propose in Chap-

ter 7 is [18]. They proposed a system for reducing inter-channel masking by using just

equalisation, but they did not use an auditory model and instead based their measure
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on spectral magnitude. I found the approach to inter-channel masking to be a useful

approach as it allowed me to measure how much each individual track was being masked

by all the other tracks in a multitrack.

2.4.3 Dynamic Range Compression

Dynamic range compression (DRC) while being an important tool in the arsenal of a

mix engineer is also very useful for controlling the dynamic contour of audio over time.

There have been a few publications that have used it an automatic mixing context.

Although, [61] and [6] do not describe how DRC could be used as part of a complete

automatic mixing system. These publications are important with regard to how dynamic

range compression works and how it can be used adaptively in the wider framework of

automatic mixing.

In [5], the authors cross-adaptively set the parameters for DRC in a multitrack. The

parameters were set based on loudness as well as loudness range (LRA). This was an

interesting approach, but their motivation was to maintain equal loudness range between

each of the audio tracks, where in my work I was looking at inter-channel auditory

masking.

[8] proposed a system where DRC is applied based on audio features extracted from the

sidechain, where the feature extraction process approach was derived from [6]. It was

the first fully automated multitrack dynamic range compressor where all the parameters

of a typical compressor were dynamically adjusted depending on extracted features and

control rules. In relation to my work, I automated the DRC parameters differently and

had no side chain feature extraction other than level. I also used optimisation with the

intention of reducing masking.

2.4.4 Panning

Although I did not consider panning in my proposed automatic mixing system. It is still

a very important part of the mix process and can be very effective at reducing auditory

masking. Panning is useful as it allows a engineer to place instrument tracks at different

points in a stereo field i.e. different instrument types can be placed left and right of the

centre point of a mix. This is very useful especially if the different instruments types

live in the same frequency range as each other. Some typical panning rules are to place

bass instruments and lead vocals at the center of a mix [1, 7].
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[4] proposed an adaptive digital audio effect for panning where a source is panned be-

tween two desired points based on the RMS of the signal. This is interesting, however

it does require some user input and is not based on any spectral properties.

In [62], the authors propose a fully automated cross-adaptive system where each audio

channel is panned based on loudness, spectral properties and is constrained based by

typical panning rules. The audio channel pan positions are also updated over time, so

the system is designed to work in real time.

In [63], the authors also had a fully automated cross-adaptive system, where the azimuth

positions of the time frequency bins of each track are dynamically spread out with the

aim of reducing auditory masking. They found that this approach reduces masking and

could compete with a professional mix. This is an approach that I would like to explore

in future work in conjunction with what is presented in Chapter 7.

2.5 Emotion in Music

2.5.1 Musically Induced vs. Perceived Emotions

In the study of emotion and music listening, induced emotions are those experienced by

the listener and perceived emotions are those conveyed in the music, though perceived

emotions may also be induced [64–66]. A listener’s perception of emotional expression

is mainly related to how they perceive and think about a musical process, in contrast to

their emotional response to the music where someone experiences an emotion [66].

Perceived emotion in music can be provoked in a number of ways. It can be associated

with the metrical structure of the music, or how a certain song might be perceived as

happy or sad (valence) because of the chords being played [64]. Numerous studies have

shown that any increase in tempo/speed, intensity/loudness or spectral centroid causes

higher arousal. These studies have been summarised in [67]. In [67], tempo, loudness

and timbre were shown to have an impact on how other typical ‘musical’ variables such

as pitch and the major-happy minor-sad chord associations are perceived. Valence and

arousal are two typical scales for measuring emotion in music. I discuss these scales in

more detail further on in Section 2.5.2.

The most complete framework of psychological mechanisms for emotional induction is

in [68] and its extensions [69, 70]. Until that point, most research in that area had been

exploratory, but Juslin et al. posited a theoretical framework of eight different cognitive

mechanisms known as BRECVEMA.
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How both perceived and induced emotions in music relate to music production quality is

an area of music and emotion that has not yet been explored. For both induced and per-

ceived musical emotions I have proposed a number of ways in which a mix engineer may

have a direct effect on these emotions. These are proposed with respect to BRECVEMA.

The eight mechanisms and their potential relationship to music production quality are

as follows:

• Brain stem reflex is a hard-wired primordial response that humans have to

sudden loud noises and dissonant sounds. A reason given for the brain stem reflex

reaction is the dynamic changes in music [70]. This particular mechanism might

be related to music production in terms of a recording having good dynamics. A

mix that has sudden large bursts in volume should arouse the listener more.

• Rhythmic entrainment is when the listener’s internal body rhythm adjusts to

an external source, such as a drum beat. This may relate to music production in

a similar way as the brain stem reflex, i.e. if the drums in a musical production

are loud and have a clear pulse, the listener may be more aroused.

• Evaluative conditioning occurs because a piece of music has been paired re-

peatedly with a positive or negative experience and an emotion is induced.

• Emotional contagion is when the listener perceives an emotional expression in

the music and mimics the emotions internally [71]. This may mean that a better

quality mix conveys the emotion in music in a clearer sense than a poorer quality

mix, e.g. vocals or lead guitar is more audible in one mix over the other.

• Visual imagery may occur when a piece of music conjures up a particularly

strong image. This could potentially have negative or positive valence and has

been linked to feelings of pleasure and deep relaxation [70].

• Episodic memory is when music triggers a particular memory from a listener’s

past life. When a memory is triggered, so is an attached emotion [68]. A mix

engineer might use a certain music production technique from a specific era, which

may trigger nostalgia in the listener.

• Musical expectancy is believed to be activated by an unexpected melodic or

harmonic sequence. The listener will expect musical structure to be resolved, but

suddenly it is violated or changes in an unexpected way [71].

• Aesthetic judgment is the mechanism that induces ‘aesthetic emotion’ such

as admiration and awe. This may play a part in music production quality by

enhancing musically induced emotions. How well a song has been mixed can be
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judged on the artistic skill involved as well as how much expression is in the mix.

A poor mix is not typically going to be as expressive as a well constructed mix.

I seek to capture perceived and induced emotions from the listener with respect to

music production quality through self-report, physiological measures, facial expression

and body movement in chapter 6.

2.5.2 Psychological Models of Emotion

To describe musical emotions, three well known models may be employed; discrete,

dimensional and music specific.

The discrete or categorical model is constructed from a limited number of universal

emotions such as happiness, sadness and fear [72, 73]. One criticism is that the basic

emotions in the model are unable to describe many of the emotions found in everyday

life and there is not a consistent set of basic emotions [74, 75].

Dimensional models consider all affective terms along broad dimensions. The dimensions

are usually related to valence and arousal, but can include other dimensions such as

pleasure or dominance [76, 77]. Dimensional models have been criticised for blurring the

distinction between certain emotions such as anger and fear, and because participants

can not indicate they are experiencing both positive and negative emotions [66, 74, 75].

In recent years, a music-specific multidimensional model has been constructed. This is

derived from the Geneva Emotion Music Scale (GEMS) and has been developed for mu-

sically induced emotions. This consists of nine emotional scales; wonder, transcendence,

tenderness, nostalgia, peacefulness, power, joyful activation, tension and sadness [66, 78].

The scales have been shown to factor down to three emotional scales; calmness-power,

joyful activation-sadness and solemnity-nostalgia [78, 79].

Empirical evidence [80, 81] suggests both discrete and dimensional models are suitable

for measuring musically induced and perceived emotions [66]. [78] compared the dis-

crete approach, the dimensional approach and the GEMS approach. It was found that

participants preferred to report their emotions using the GEMS approach. Therefore, I

adopted the GEMS approach as well as the dimensional model in my research.
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2.5.3 Measuring Emotional Responses to Music

There are a number of different methods for measuring emotional responses to music.

Here I discuss self-report, physiological measures, facial expression analysis and head

nod-shake detection.

2.5.3.1 Self-Report Methods

The most common self-report method to measure emotional responses to music is to

ask listeners to rate the extent to which they perceive or feel a particular emotion,

such as happiness. Techniques to assess affect are measured using a Likert scale or

choosing a visual representation of the emotion the person is feeling. An example visual

representation is the Self-Assessment Manikin [82] where the user is asked to rate the

scales of arousal, valence and dominance based on an illustrative picture.

Another method is to present listeners with a list of possible emotions and ask them to

indicate which one (or ones) they hear. Examples are the Differential Emotion Scale

and the Positive and Negative Affect Schedule (PANAS). In PANAS, participants are

requested to rate 60 words that characterise their emotion or feeling. The Differential

Emotion Scale contains 30 words, 3 for each of the 10 emotions. These would be examples

of the categorical approach mentioned previously [83, 84].

A third approach is to require participants to rate pieces on a number of dimensions.

These are often arousal and valence, but can include a third dimension such as power,

tension or dominance [74, 85].

Self-reporting leads to concerns about response bias. Fortunately, people tend to be

attuned to how they are feeling (i.e., to the subjective component of their emotional re-

sponses) [86]. Furthermore, Gabrielsson came to the conclusion that self-reports are “the

best and most natural method to study emotional responses to music” after conducting

a review of empirical studies of emotion perception [64]. One caveat with retrospective

self-report is ‘duration neglect’ [87], where the listener may forget the momentary point

of intensity of the emotion attempted to be measured.

I chose self-report in my experiment due to it being the most reliable measure according

to [64]. GEMS-9 was used for measuring induced emotion and Arousal-Valence-Tension

for perceived emotion. I selected GEMS-9 to report induced emotions over a dimensional

method due to it being a specialised measure for the self-report of musically induced

emotions. I then chose to use Arousal-Valence-Tension due to it being a dimensional

rather than categorical model like GEMS-9. This allowed me to use two different models

of self-report.
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2.5.3.2 Physiological Measures

Measures for recording physiological responses to music include heart or pulse rate,

galvanic skin response, respiration or breathing rate and facial electromyography. Such

measures have been used in recent papers [71, 88, 89].

High arousal or stimulative music tends to cause an increase in heart rate, while calm

music tends to cause a decrease [90]. Respiration has been shown to increase in 19

studies on emotional responses to music [90]. These studies found differences between

high- and low-arousal emotions but few differences between emotions with positive or

negative valence.

One physiological measure that corresponds with valence is facial electromyography

(EMG). EMG measurements of cheek and brow facial muscles are associated with pro-

cessing positive and negative events, respectively [91]. In [92], each participant’s facial

muscle activity was measured while they listened to different pieces of music that were

selected to cover all parts of the valence-arousal space. Results showed greater cheek

muscle activity when participants listened to music that was considered high arousal

and positive valence. Brow muscle activity increased in response to music that was

considered to induce negative valence, irrespective of the arousal level.

Galvanic skin response (GSR) is a measurement of electrodermal activity or resistance

of the skin [93]. When a listener is aroused, resistance tends to decrease and skin

conductance increases [94, 95]. I used ECG and skin conductance measurements in my

experiment as it had been used extensively in previous studies related to music and

emotion [71, 88–90]. I also felt it would be better to have as many measures as feasibly

possible, since it is much easier to throw away data rather than re-run an experiment

with more measurements.

2.5.3.3 Facial Expression and Head Movement

The Facial Action Coding System (FACS) [96] provides a systematic and objective way to

study facial expressions, representing them as a combination of individual facial muscle

actions known as Action Units (AU). Action Units can track brow and cheek activity,

which can be linked to arousal and valence when listening to music [92].

[97] examined how schizophrenic patients perceive emotion in music using facial expres-

sion, and [98] looked at the role of a musical conductors facial expression in a musical

ensemble. I were unable to find anything directly related to my research questions.
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People move their bodies to the rhythms of music in a variety of different ways. This

can occur through finger and foot tapping or other rhythmic movements such as head

nods and shakes [99, 100]. In human psychology, head nods are typically associated with

a positive response and head shakes negative one [101]. In one study, participants who

gauged the content of a simulated radio broadcast more positively were more inclined to

nod their head than those who performed a negatively associated head shaking movement

[100, 102]. But for music, a head shake might be considered a positive response as this

might simply be a rhythmic response.

I examined facial expression in this experiment since it had not been attempted before

in music and emotion or music production quality research. Facial expression analysis is

somewhat similar to facial EMG, so we should be able to link results to previous findings

[90].

2.6 Feature Learning and Classification

I discuss the background of some relevant machine learning topics here as they are

important background for Chapter 5.

2.6.1 Decision Trees

Decision trees are a commonly used machine learning classifier that belong to the family

of supervised learning algorithms. Decisions trees can be used for either classification

or regression tasks, where these trees are Classification And Regression Tree’s (CART).

Decision trees build either a classification or regression model in a tree structure, where

they take a dataset and recursively break the dataset down into smaller and smaller

datasets using a technique called recursive partitioning. The dataset is broken down

based on a feature value test, the test usually being Gini Diversity Index (GDI). GDI is

calculated as

GDI = 1−
∑
i

p(i)2 (2.6)

where i is the class and p(i) is the fraction of objects within class i following the branch.

I refer the reader to [103] for a further discussion on CART. An example decision tree

is shown in Figure 2.4
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Figure 2.4: This is an example of how different decisions are arrived at based on
certain features [104]. In my case this might be audio features such as RMS or Spectral

Centroid.

2.6.2 Random Forest

Random Forest is a particular type of Ensemble Learning method based on growing

decision trees. This can be used for either classification or regression problems, but can

also be used for feature selection. After training has occurred on a dataset each decision

tree that is grown predicts an outcome. For regression decision trees, the output is the

average value predicted by all of the decision trees grown. For classification decision

trees it is the classification outcome that was voted most popular by all of the decision

trees grown [105]. Random Forest is based on the idea of bootstrap aggregating or more

commonly know as bagging. Bagging in this instance is where each decision tree makes

a decision and the majority decision is what is used to make a prediction. In the context

of my work this could be a prediction of what type of subgroup an audio track belongs

to.

Random Forest was chosen because it has been proven to work very well for feature

selection in other fields such as bio-informatics and medicine [106, 107]. Also Random

Forest is know to generalise well and tends to avoid over fitting due to the the cross-

validation that is inherent in the algorithm.

The measure of a Random Forest’s accuracy is known as its Out-of-bag error (OOB). I

refer the reader to [105] for a more detailed explanation of the specifics of this classifier.

2.6.3 Feature Selection

When attempting to train a machine learning classifier, each data point you feed the

classifier has features that represent it. It is these features that the classifier learns from
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and ultimately makes decisions from. However, sometime the features provided to the

classifier can be redundant or highly correlated with other features. When this occurs,

there may by too many unimportant features trying to describe something, which wastes

computation time and can reduce a trained classifier’s discriminative power.

Feature selection is the iterative process of removing poorly performing features and

selecting the features that give you the most discriminative power. There are a number

of different approaches to going about this, which are out of the scope of this thesis. I

refer the reader to [103] for a more detailed explanation.

In this work, the Random Forest classifier was used to perform feature selection. Random

Forest was chosen as it is robust, easy to tune and requires very little feature engineering.

It can also be setup to avoid biased variable selection by using subsampling without

replacement [106]. It was also chosen as it was found to out-perform Naive Bayes and

SVM’s when used for another classification task explained in Appendix 9.1.

The Random Forest gives a Feature Importance Index (FII). This ranks all features

in terms of importance by evaluating the OOB error for each tree grown with a given

feature, to the overall OOB error. Random Forest feature importance can be defined for

Xi, where the vector X = (X1, ...Xp), contains feature values and where p is the number

of audio features used. For each tree τ in the Random Forest, consider the associated

OOBτ sample (this is the out-of-bag data that is not used to construct τ). errOOBτ

denotes the error of a single tree τ using the OOBτ sample. The error being a measure

of the Random Forest classifier’s accuracy. If the values of Xi are randomly permuted in

OOBτ to get a different sample denoted by ÕOBj
τ and we compute

˜
errOOBj

τ .
˜

errOOBj
τ

being the error of τ because of the different sample. The feature importance of Xi is

equal to:

FI(Xi) =
1

ntree

∑
τ

(
˜

errOOBj
τ − ÕOBj

τ ) (2.7)

where the sum is over all trees τ of the Random Forest and ntree is the number of trees

in the Random Forest [108].

2.6.4 Hierarchical Clustering

Hierarchical clustering is a type of unsupervised data clustering. Generally in Hierar-

chical clustering a cluster hierarchy or a tree of clusters, also known as a dendrogram

is constructed. An example of a dendrogram can be seen in Figure 2.5. Hierarchical

clustering methods are categorised into agglomerative and divisive. The agglomerative
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clustering method is what I used in thesis. The idea is that the algorithm starts with

singular clusters and recursively merges two or more of the most similar clusters [109].

The reason why I chose agglomerative clustering is because the algorithmic process is

similar to how a human would create subgroups in a multitrack. Initially, a human

would find two audio tracks that belong together in a subgroup and then keep adding

audio tracks until a subgroup is formed. An example would be pairing a kick track with

a snare track and then pairing them with a hi-hat track to create a drum subgroup. It is

also worth noting that Figure 1.1 which is a typical subgrouping setup can be likened to

a tree structure, so it would make sense to attempt to cluster audio tracks in a tree like

fashion. It also provides the benefit of providing cophonetic distances between different

clusters, so that the relative distances between nodes of the hierarchy are clear.

The agglomerative clustering algorithm can be described as thus [110]. Given a set of

N audio feature vectors to be clustered.

1. Assign each audio feature vector Vaudio to its own singleton cluster and number

the clusters 1 through c.

2. Compute the between cluster distance d(r, s) as the between object distance of the

two objects in r and s respectively, r, s = 1, 2, ..., c. Where d(r, s) =
√∑

c(rc − sc)2

is the Euclidean distance function and let the square matrix D = (d(r, s)).

3. Find the most similar pair of clusters r and s, such that the distance, D(r, s), is

minimum among all the pairwise distances, d(ci, cj) = min {d(r, s) : r ∈ ci, s ∈ cj}.
This is what is known as the linkage function. A similar pair of clusters could be

a snare track and a hi-hat track.

4. Merge r and s to a new cluster u and compute the between-cluster distance d(u, k)

for any existing cluster k 6= r, s. Once the distances are obtained, remove the rows

and columns corresponding to the old cluster r and s in D, since r and s do not

exist any more. Then add a new row and column in D corresponding to cluster u.

Merging two clusters is like grouping two audio tracks together or else adding an

audio track to an existing subgroup.

5. Iteratively repeat steps 3 to 5 a total of c − 1 times until all the data items are

merged into one cluster.

2.7 Summary

The audio engineering concepts, affect analysis approaches, machine learning techniques

and relevant computational background to this thesis were introduced in this chapter. I
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Figure 3: Mean OOB Error for each Random Forest grown plot-
ted against optimal number of clusters for each feature selection
iteration

In cluster 1, which has quick, periodic, high dynamic range
sounds with a gradual decay, the majority of the results are from a
range of production elements which are highly reverberant repeti-
tive sounds, such as slide transition sounds. Many of these sounds
are artificial or reverberant in nature, which follows the intuition
of the cluster identification.

Cluster 2 contains a combination of foley sounds and water-
splashing sounds. These sounds are somewhat periodic, such as
lapping water, but do not have the same decay as in cluster 1.

Cluster 3 is very mixed. Impacts, household sounds and foley
make up the largest parts of the dataset, but there is also contri-
bution from crashes, production elements and weapon sounds. It
is clear from the distribution of sounds that this cluster contains
mostly impactful sounds. It is also evident that a range of impact-
ful sounds from across the sound effect library have been grouped
together.

In cluster 4, most of the samples are from the production ele-
ments label. These elements are moderately periodic at a high rate,
such as clicking and whooshing elements, which are also similar
to the next category of multimedia.

Cluster 5 contains a spread of sound labels, which includes
transport and production elements as the two largest components.
In particular, the transport sounds will be a periodic repetition of
engine noises or vehicles passing, while remaining at a consistent
volume.

There is a large range of labels within cluster 6. The three
most prominent are human, multimedia and production elements,
though cartoon and emergency sounds also contribute to this clus-
ter. Human elements are primarily speech sounds, so the idea that
periodic sounds that do not have a lot of high mid seems suit-
able, as the human voice fundamental frequency is usually be-
tween 90Hz and 300Hz.

Cluster 7 is entirely represented by the science fiction label.
These fairly repetitive, constant volume sounds have an unnatu-
rally large amount of high mid frequency.

Within cluster 8, the largest group of samples is multimedia,
which consists of whooshes and swipe sounds. These are aperi-

Figure 4: Dendrogram of arbitrary clusters - The dotted line rep-
resents the cut-off for the depth of analysis (9 clusters)

odic, and their artificial nature suggests a long reverb tail or echo.
A low dynamic range suggests that the samples are consistent in
loudness, with very few transients.

Finally, cluster 9 consists of a range of aperiodic impactful
sounds from the impact, foley, multimedia and weapon categories.

5. DISCUSSION

The 9 inferred clusters were compared to the 29 original labels. It
is clear that some clusters relate to intuition, and that this structure
may aid a sound designer and present a suitable method for finding
sounds, such as impactful sounds in cluster 9. Despite this, there
are some clusters that do not make intuitive sense, or are difficult
to fully interpret. We suspect that this is due to the depth of anal-
ysis on the dataset. Despite the GMM predicting 9 clusters within
the data, we believe that a greater depth of analysis and clustering
could aid in providing more meaningful, interpretable results, as
many of the clusters are currently too large.

As can be seen from Figure 6 and discussed in Section 4, dy-
namic range and periodic structure are the key factors that sepa-
rate this dataset. It is surprising that no timbral attributes and only
one spectral attribute appears in the top features for classification
within the dataset, and that seven of the eight features are time
domain features.

Cluster 7 was described entirely as ‘Science Fiction’ in Sec-
tion 4.4. This set of sound effects is entirely artificial, created using
synthesisers and audio production. We believe that that the group-
ing using this audio feature is an artefact of the artificial nature of
the samples and the fact they all come from a single source. This

DAFX-432

Figure 2.5: An example dendrogram

also reviewed existing automatic mixing systems, where I went through the individual

audio effect types that were being automated.

I found there to be no automatic system where there was an emphasis on mixing in

subgroups. I also found the literature around subgrouping to be quite limited. This is

what inspired the work carried out in chapter 3 and chapter 4, since I needed to document

and define the subgrouping process in greater detail. I also found no automatic system

that makes use of both DRC and equalisation. Typically a mix engineer will make use

of both DRC and equalisation when mixing as they are essential tools for frequency and

dynamics processing. This is why I chose to use these effects in chapter 7.

I also found there were no studies that examined the relationship between music pro-

duction quality and emotional response. This is something I investigated in chapter 6

and is important in the context of automatic mixing systems. It is important because I
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do not know how good a mixing system needs to be, before it actually becomes a useful

tool to a beginner producer.



Chapter 3

The impact of subgrouping

practices on the perception of

multitrack mixes

3.1 Introduction

The aim of this chapter is to investigate how different mix engineers perform subgroup-

ing, and what kind of subgroup processing they use. Furthermore, I attempt to quantify

what effect subgrouping has on the subjective quality of a mix. Section 5.2 provides the

details of a mix experiment from which I gathered the subgrouping data. Section 5.5

provides the results obtained from the mix session files, which are analysed and discussed

in Section 3.4. In Section 3.5, I summarise my findings and outline future work.

3.2 Dataset

3.2.1 Experiment

A dataset of mixes and mix projects obtained from the Open Multitrack Testbed [111]

was examined to see how many subgroups were created by the mix engineers, what kind

of subgroup processing they used and how the mix engineers created the subgroups.

This dataset was the same data recorded from an experiment that had been previously

conducted [14]. In this experiment, different mixes of different songs were rated by

experienced subjects. These mixes were rated from (0-100) in terms of how much each

participant preferred the mix quality. Each listener compared 8 mixes of each song and

33
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Song name Genre Mix engineers

Red To Blue (S1) Pop-Rock A - H

Not Alone (S2) Funk A - H

My Funny Valentine (S3) Jazz A - H

Lead Me (S4) Pop-Rock A - H

In The Meantime (S5) Funk A - H

- (S6) Soul-Blues I - P

No Prize (S7) Soul-Jazz I - P

- (S8) Pop-Rock I - P

Under A Covered Sky (S9) Pop-Rock I - P

Table 3.1: Song title, genre and mix group. Songs in italics are not available online
due to copyright restrictions.

then gave each one a rating. In the context of my research, this allowed me to investigate

the relationship between subgrouping and how preferred a mix was.

The mix engineers in this experiment were students of the MMus in Sound Recording

at the Schulich School of Music, McGill University. Each song was mixed by one of the

two classes of eight students each, such that one group of students mixed five songs in

total (over three semesters - four as first years and one more as second years), and one

group mixed four songs in total (over two semesters) [14]. A breakdown of which songs

were mixed by which group can be seen in Table 3.1.

Five out of nine songs are available on the Open Multitrack Testbed1 [111] including

raw tracks, the rendered mixes and the complete Pro Tools project files, allowing others

to reproduce or extend the research.

3.2.2 Data Extraction

The data for each mix engineer’s subgrouping setup was extracted manually from each

of their Pro Tools session files. Information extracted from each session file included

how many subgroups there were, if any subgroup processing such as equalisation (EQ),

dynamic range processing (DRC) and reverb were used, and if subgroup send processing

was used. Subgroup send processing is when the audio from a subgroup is sent to an

auxiliary track or outboard device for audio processing.

I also logged the instruments in each subgroup, to determine on what basis different

tracks are subgrouped, and whether the subgroups were hierarchical. I define a hierar-

chical subgroup as a type of subgroup that groups two or more subgroups together. An

1multitrack.eecs.qmul.ac.uk
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Subgroup type # subgroups # tracks

Vocals 90 324

Drums 78 680

Guitars 69 371

Keys 56 164

Bass 47 88

Other percussion 17 43

Brass 12 33

Strings 10 24

Table 3.2: The number of different individual subgroup types and how many audio
tracks of that type occurred in all the mixes.

example would be a guitar subgroup that contains a rhythm guitar subgroup and a lead

guitar subgroup.

The overall preference score for each mix engineer on each mix was calculated by taking

the median rating value given by the mix engineers and the mix professionals from

the other group participating in the experiment. I used the median value as the mix

preference ratings are not all normally distributed. However, I found that the difference

between the median and mean mix preference ratings were not large enough to report

separately. The distributions of the mix preference ratings for each mix engineer are

presented in the results section.

3.3 Results

Table 3.2 shows a breakdown of the most commonly created individual subgroup types.

The subgroup type indicates the main instrument type in that subgroup. I found there

to be eight individual subgroup types and drums was the most common instrument type

in all of the mix projects. Table 3.3 shows that a number of subgroups contained com-

binations of instruments. I also found that almost all mix engineers subgrouped audio

tracks based on instrumentation and only four out of the 72 mixes had no subgroups at

all, in which three out of the four mixes were of the same song.

Table 3.4 shows how many hierarchical subgroups I had in the mixes I examined. Drums

and vocals were the only single instrument types that were hierarchically grouped and

the rest were combinations of instrument types. The most hierarchically subgrouped

instrument was drums. Furthermore, I found that hierarchical subgroups were present

in 19 of the 72 mixes examined.
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In Tables 3.5 and 3.6 I present the absolute amount of subgroups created by each mix

engineer for each of the songs they mixed. The number in the parentheses is the number

of audio tracks that each mix engineer used for each mix. The reason there is a variation

in the audio track number for each mix is because some mix engineers duplicated audio

tracks or else completely left them out of the mix.

Table 3.7 shows the different amount of track types available to each mix engineer before

they began to mix. The subgroup types used in Table 3.2 are based on the different

audio track types I found for each song.

In Tables 3.8 and 3.9 I present the correlations (Spearman’s rank correlation coefficient)

of the average amount of subgroups, EQ subgroups, DRC subgroups and EQ + DRC

subgroups created per mix engineer with median mix preference as well as the correlation

(Spearman’s rank correlation coefficient) of the amount of subgroups, EQ subgroups,

DRC subgroups and EQ + DRC subgroups created per mix with median mix preference.

Subgroup type # subgroups

Bass + Guitars + Keys + Vocals 4

Drums + Bass + Guitars + Keys 4

Bass + Guitars + Keys 3

Drums + Percussion 3

Guitars + Keys 3

Drums + Bass + Vocals 1

Drums + Bass 1

Bass + Guitars 1

Drums + Bass + Keys + Vocals 1

Table 3.3: The number of different multi-instrument subgroup types that occurred
in all the mixes.

Hierarchical No. of
subgroup type hierarchical

subgroups

Drums 10

Vocals 3

Bass + Guitar + Keys + Vocals 2

Drums + Bass + Guitars + Keys 2

Drums + Bass + Vocals 1

Bass + Guitar + Keys 1

Drums + Vocals 1

Drums + Bass + Keys + Vocals 1

Bass + Guitars 1

Table 3.4: The number of different hierarchical subgroup types that occurred in all
the mixes.
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S1 S2 S3 S4 S5

A 10 (44) 10 (25) 9 (17) 9 (23) 3 (26)

B 2 (45) 5 (28) 8 (17) 7 (22) 6 (25)

C 13 (42) 8 (25) 9 (17) 6 (25) 8 (25)

D 4 (43) 3 (25) 0 (19) 4 (23) 3 (25)

E 10 (45) 7 (25) 9 (19) 10 (23) 8 (25)

F 2 (44) 3 (25) 0 (19) 7 (23) 4 (25)

G 8 (43) 8 (25) 0 (19) 6 (23) 6 (25)

H 6 (43) 3 (25) 9 (19) 8 (23) 6 (25)

Table 3.5: The number of subgroups created for each song by each each mix engineer
in mix group A - H. The number of audio tracks used in each mixing project is in

parentheses.

S6 S7 S8 S9

I 7 (18) 3 (12) 3 (16) 5 (28)

J 7 (25) 4 (17) 4 (25) 7 (28)

K 7 (26) 0 (17) 1 (28) 5 (28)

L 6 (25) 6 (17) 4 (20) 3 (30)

M 10 (25) 7 (17) 4 (25) 3 (22)

N 8 (25) 3 (17) 6 (25) 4 (29)

O 9 (25) 5 (18) 8 (26) 8 (29)

P 6 (14) 6 (20) 5 (29) 6 (22)

Table 3.6: The number of subgroups created for each song by each each mix engineer
in mix group I - P. The number of audio tracks used in each mixing project is in

parentheses.

Track type S1 S2 S3 S4 S5 S6 S7 S8 S9

Vocals 17 9 1 6 9 4 1 4 10

Drums 11 10 9 9 10 10 8 10 9

Guitars 12 2 0 6 2 2 5 7 15

Keys 1 4 2 2 2 2 1 2 1

Bass 1 1 1 1 1 2 2 2 2

Other percussion 1 0 4 1 0 1 0 0 0

Brass 0 0 1 0 0 3 0 0 0

Strings 0 0 3 0 0 0 0 0 0

Table 3.7: The number of different audio track types in each song before they were
mixed.
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Ratio type ρ

Subgroup - Audio Track
Ratio

0.62 (p < 0.01)

Subgroup EQ - Audio
Track Ratio

0.67 (p < 0.01)

Subgroup DRC - Audio
Track Ratio

0.45 (p < 0.05)

Subgroup EQ + DRC -
Audio Track Ratio

0.59 (p < 0.01)

Table 3.8: Average amount of subgroups, EQ subgroups, DRC subgroups and EQ
+ DRC subgroups created per mix engineer and its correlation (Spearman’s rank cor-

relation coefficient) with median mix preference.

Ratio type ρ

Subgroup - Audio Track
Ratio

0.32 (p < 0.01)

Subgroup EQ - Audio
Track Ratio

0.4 (p < 0.01)

Subgroup DRC - Audio
Track Ratio

0.35 (p < 0.01)

Subgroup EQ + DRC -
Audio Track Ratio

0.38 (p < 0.01)

Table 3.9: Amount of subgroups, EQ subgroups, DRC subgroups and EQ + DRC
subgroups created per mix and its correlation (Spearman’s rank correlation coefficient)

with median mix preference.

I chose the Spearman’s rank correlation coefficient since it is non-parametric and my

data was not normally distributed. The number of subgroups in the correlation scores is

presented as the number of created subgroups relative to how many audio tracks the mix

engineer used to create the final mix. I call this the Subgroup - Audio Track Ratio. This

also applies to the different types of processing applied to each subgroup, so I have the

EQ Subgroup - Audio Track Ratio, the DRC Subgroup - Audio Track Ratio and the EQ

+ DRC Subgroup - Audio Track Ratio. The EQ + DRC Subgroup - Audio Track Ratio

is a measure of when a subgroup was created and both EQ and DRC processing are

applied. Ratios were used because larger mixes with more instrumentation are likely to

have more subgroups. This allowed us to compare the amount of subgroups created and

the types of subgroup processing used on a mix by mix basis. This linear relationship

is evident in Table 3.2 where we see that when more audio tracks are available there

tends to be more subgroups created. In fact, the Spearman rank correlation coefficient

for this relationship is very strong and significant with a value of 0.93 (p < 0.01).
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Figure 3.1: (i) shows each mix engineer’s mix preference ratings ranked from highest
to lowest median value. (ii - v) show the Subgroup - Audio Track Ratio’s, the EQ
Subgroup - Audio Track Ratio’s, the DRC Subgroup - Audio Track Ratio’s and the EQ
+ DRC Subgroup - Audio Track Ratio’s for all the mixes created by each mix engineer.

3.4 Analysis and Discussion

In Tables 3.2-3.4 I summarised the different subgroup types that were created in all the

mixes examined. I looked at standard subgroups and hierarchical subgroups. Table 3.2

shows that the top three standard subgroups were vocals, drums and guitars. In a mix

there can be many different vocalist types. There may be a lead vocalist, a secondary

vocalist and background vocalists. This would explain why it is the most subgrouped

instrument type. The mix engineers may have wanted to control and process different

subgroups of singers that are singing in different styles or singing different parts of each

song. The song Red to Blue (S1) is a perfect example of when this occurs. Three of the

eight mix engineers have split the vocal tracks into separate subgroups for processing.
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One of the mix engineers was doing this for simple gain processing, but the other two mix

engineers were doing it for gain processing as well as applying EQ and DRC processing.

Also, vocals tend be the most important instrument type in a mix. In [112] it was shown

that most of the listener’s attention and about a third of the critical comments on the

same mixes used in this paper were about vocals. It has also been shown that the vocals

are consistently the loudest instrument type in the same mixes I examined [13].

The second most subgrouped instrument type was drums. Drums are an important part

of a mix as they are the rhythm section that keeps the rest of the song in time, so it

would be important to be able to control how loud they are in a mix. It is also worth

mentioning that in [12], under testing the assumption “Gentle bus/mix compression

compression helps blend things better”, it was found that some professional mix engineers

like to apply DRC to the drums as a subgroup. Drums also have the most amount of

instrument tracks in all of the mix projects, see Table 3.2.

The third most frequently subgrouped instrument type was the guitars. Guitars are

similar to vocals because it is possible to have different styles of guitar playing in a

single mix. An arrangement might contain lead guitars and rhythm guitars, distorted

and clean guitars, and electric and acoustic guitars. All of these guitar types serve a

different purpose in a mix, so it is easy to see how a mix engineer might want to control

them or process them individually. An example might be that a mix engineer wants to

apply more EQ to a particular group of guitars. Something like this occurred in two

separate mixes for the song Red to Blue (S1). One mix engineer had a subgroup for

‘Heavy’ guitars which used EQ processing, while another mix engineer had a subgroup

for ‘Lead’ guitars which used DRC processing. I also found that acoustic guitars were

subgrouped separate to other guitar types in 13 of the mixes I examined. Furthermore,

in five of the 13 mixes, EQ or DRC subgroup processing was being applied to the acoustic

guitars.

Interestingly, only four out of the 72 mixes did not use any subgrouping at all and

three of these were of the same song. On examination of the instrumentation of the

song where three mix engineers did not create any subgroups, I found there were flute,

harp, vibraphone, piano and violin tracks. There was also no guitar tracks and only one

vocal track. It might have been through inexperience that the mix engineers may not

have known how to approach creating subgroups for instruments such as flutes, harps

and vibraphones. However, it was found in 4 that six out of the ten professional mix

engineers that were interviewed created subgroups based on genre. This suggests there

could have been a style or genre dependency on how the mix engineers in the experiment

created the subgroups for this particular song.
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Table 3.4 shows that the most hierarchically subgrouped instrument type was drums. It

was found on examining the many different mixes, in eight of the mixes, the mix engineers

chose to separate the overhead microphones from the rest of the drum recordings. As the

overhead microphones are often treated as a stereo pair with left and right microphones,

grouping these into one channel allows simultaneous processing. I also found that some

mix engineers chose to group the kick, snare and hi-hats separately. The kick, snare

and hi-hats are the most important instruments in a drum kit and I found seven mixes

where this occurred. Furthermore, 19 out of the 72 mixes used some form of hierarchical

subgrouping, so this shows that it is a style of subgrouping that is practised often.

Table 3.8 shows there is a strong significant Spearman correlation of 0.62 (p < 0.01)

between the average Subgroup - Audio Track Ratio per mix engineer and the median

mix preference rating. This implies that the more the mix engineer creates subgroups

on average, the higher the mix preference rating they receive.

In Table 3.8 there is a strong significant Spearman correlation of 0.67 (p < 0.01) between

the average EQ Subgroup - Audio Track Ratio per mix engineer and the median mix

preference rating. The strong EQ Subgroup - Audio Track Ratio correlation implies that

the more EQ subgroup processing that occurs the higher a mix preference rating the

mix engineer receives. The strong correlation also gives us confidence that this type

of subgroup processing is an important mixing technique. This subgroup processing

technique might be done frequently by a mix engineer, so that they can apply EQ

to a group of instruments as a whole and stop them from masking another group of

instruments.

Table 3.8 shows there is a moderate significant Spearman correlation of 0.45 (p < 0.05)

between the average DRC Subgroup - Audio Track Ratio per mix engineer and the

median mix preference rating. I was surprised to see such a low correlation for the

DRC Subgroup - Audio Track Ratio as I would have expected people to process a lot

of their subgroups with DRC. This seems to go against the assumption made in [12],

but this may be because the participants in the experiment do not have the same level

of experience as the mix engineers interviewed in [12] or I simply have not examined

enough mixes to see this trend.

Table 3.8 shows a moderate significant Spearman correlation of 0.59 (p < 0.05) between

the average EQ + DRC Subgroup - Audio Track Ratio per mix engineer and the median

mix preference rating. I also expected the relationship between subgroups created that

use EQ + DRC processing and mix preference rating to be stronger, but it is probably

not as strong as I hoped since it corresponds with the moderate correlation for DRC

subgroup processing.
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Table 3.9 show there is a weak significant Spearman correlation of 0.32 (p < 0.01)

between the Subgroup - Audio Track Ratio per mix and the median mix preference rating.

This implies that there is very little relationship between the amount of subgroups

created and mix preference when I consider each mix individually. This suggests that

the assumption that creating more subgroups leads to a higher mix preference does not

apply to mixes universally, but is more specific to the mix engineer. What I mean by

this is that there may be latent variables involved I am not yet considering.

Table 3.9 shows there is a moderate significant Spearman correlation of 0.40 (p < 0.01)

between EQ Subgroup - Audio Track Ratio and mix preference over all the mixes created.

This is not as strong as the result in Table 3.8. In Table 3.9 we see a weak significant

Spearman correlation of 0.35 (p < 0.01) between DRC Subgroup - Audio Track Ratio

and mix preference over all the mixes created. Table 3.9 also shows a weak significant

Spearman correlation of 0.38 (p < 0.01) between EQ + DRC Subgroup - Audio Track

Ratio and mix preference over all the mixes created. This shows that the correlations

are not strong for subgroup processing when I consider each mix individually, but are

stronger when we examine each mix engineer individually. This leads us to further

believe that there are other factors that I am not considering and the results from

Table 3.8 may not be generalisable. Subgrouping and subgroup processing may only

work well for some mix engineers.

Figure 3.1 plots the distribution of all the variables I correlated and are ranked from

left to right in descending median mix preference value for each mix engineer. The

distributions of Subgroup - Audio Track Ratio’s of the top three ranked mix engineers

(M, E and C) show that overall, the median value are higher than 10 of the other mix

engineers. It also shows that the amount of subgroups they created varied over each

of their mixes if I include the outlier for mix engineer C. This implies that each mix

engineer considers how many subgroups they will create for each mix as opposed to an

arbitrary number of subgroups. If we look at the EQ Subgroup - Audio Track Ratio’s,

the median results are similar for the top three mix engineers, but it varies more from

left to right. The inverse seems to be true for the DRC Subgroup - Audio Track Ratio

as the median decreases going from left to right, as well as the amount of variance. If

I compare the results of the top three mix engineers with the rest of the mix engineers

I do see a trend of higher Subgroup - Audio Track Ratios, EQ Subgroup - Audio Track

Ratio’s, DRC Subgroup - Audio Track Ratios and EQ + DRC Subgroup - Audio Track

Ratios than the other mix engineers. This is not true in all cases, but is a general

observation.
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3.5 Conclusion

From the experimental results I found that subgroups are mainly made up of similar

instrumentation, but in some cases can be a combination of different types of instru-

mentation. However, I found the former to occur much more often. I found that the

three instrument types that were subgrouped together the most were drums, vocals and

guitars. I also found that when hierarchical subgrouping occurred, it was usually applied

to drums and to a lesser extent vocals. I was able to show there was a strong significant

Spearman correlation when looking at the median mix preference score of all the mixes

done by each mix engineer and the amount of subgroups this mix engineer created on

average. I also found a strong significant Spearman correlation when looking at the me-

dian mix preference score of all the mixes done by each mix engineer and the amount of

EQ subgroup processing this mix engineer used on average. There was also a moderate

significant Spearman correlation when looking at the median mix preference score of all

the mixes done by each mix engineer and the amount of DRC subgroup processing this

mix engineer used on average.

The results provide an important insight into the relationship between mix preference

and the ubiquitous, but poorly documented practice of subgrouping. There appears to

be a very distinct relationship between the number of subgroups used and mix preference.

This may be because the mix engineer is able to exercise greater control over the mix

through subgrouping as well as being able to treat an entire instrument group with

effects processing. However, I do not know whether these findings apply to every mix

engineer, since I only examined the mixes of 16 mix engineers in one university. This

makes the results difficult to generalise. There is also potential for bias due to how they

may have been taught to mix by the instructor. Correlation does not necessarily imply

causation either, and more subgroups may not necessarily imply higher mix preference in

this case. As mentioned already, there are a number of confounding variables to consider

such as the previous experience of each mix engineer as well as the song preference and

genre preference of the raters. All these variables can add bias to the presented results

and need to be considered.

Overall, this research contributes to a deeper understanding of this poorly documented

mixing practice. Informed by these results, further research questions emerge that re-

quire a larger dataset, and which could be answered by collecting and analysing a larger

and more diverse set of mixes. Future work will be to further examine the link between

EQ subgroup processing, DRC subgroup processing and mix preference.



Chapter 4

Analysis of the subgrouping

practices of professional mix

engineers

4.1 Introduction

This chapter sheds light on the ubiquitous but poorly defined mix practice of subgroup-

ing, and provides rules and constraints derived from a questionnaire that could be used

in intelligent audio production tools. I prepared an online questionnaire consisting of 21

questions testing nine assumptions in order to identify subgrouping decisions, such as

why a mix engineer creates subgroups, when they subgroup and how many subgroups

they use.

Previously, I analysed a number of multitrack mixes to determine how mix engineers

created subgroups, how they apply subgroup effect processing such as equalisation (EQ)

and dynamic range compression (DRC), and if there was any link between subgrouping

and mix preference [113]. I had access to actual multitrack project files and were able

to analyse exactly how each participant had constructed subgroups and what effect

processing had been applied. However, the mixes that were analysed were created by

three separate groups of music production students, so their level of mix engineering

experience was contentious [114].

Section 4.2 describes the methodology used in this chapter. I describe the questionnaire,

my hypotheses, how I approached the qualitative and quantitative analysis. Following

that, I present the results and my analysis in section 4.3. I discuss participants, coding

and theme development, and then analyse each theme in the context of the questions in

44
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the survey in section 4.4. In section 4.5 I discuss the results and analysis in relation to

my hypotheses and make recommendations based on my findings.

4.2 Methodology

4.2.1 Survey Questionnaire

Before the survey was conducted I proposed a number of assumptions about how mix

engineers subgroup, and many survey questions were designed to test these assumptions.

The assumptions are listed in Table 4.1. These assumptions were developed from audio

engineering literature [1, 7, 17], from discussions with other mix engineers, academics

and from past experiences in the field. The questionnaire that I used to test these

assumptions is provided in Appendix 9.3.

Table 4.1: Subgrouping assumptions

Assumptions Description

A1 Mix engineers subgroup
to achieve subgroup effect
processing

A2 Mix engineers subgroup to
create individual submixes

A3 Mix engineers create their
subgroups based on the
genre being mixed

A4 Mix engineers subgroup to
make the mix process less
complicated

A5 Mix engineers create sub-
groups within subgroups
(Hierarchical subgrouping)

A6 Mix engineers subgroup
based on instrument fam-
ily

A7 Mix engineers subgroup to
maintain good gain struc-
ture

A8 Mix engineers subgroup to
reduce auditory masking

A9 The most common sub-
grouping effect to apply
is dynamic range compres-
sion
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The survey consisted of 21 questions that allowed the respondent to provide both qual-

itative and quantitative responses. Similar to [27], I sought to probe their knowledge

based on the assumptions rather than lead the respondent with them. I also tried

to identify subgrouping habits and how those habits changed over time. Quantitative

analysis of survey results are summarised in tables and figures throughout this chapter.

Assumptions 1, 2, 5, 6, 7 and 9 came from reading audio engineering literature, discus-

sions within my research groups, discussions with audio engineers and initial analysis

of the data gathered in the previous chapter [1, 7, 17]. Assumptions 3, 4 and 8 mainly

came from having lengthy discussions with my audio engineering research group about

the uses of subgrouping.

4.2.2 Thematic Analysis

Thematic analysis [115] was used to analyse qualitative survey data. It involves famil-

iarisation with the data and then coding sentences, paragraphs or statements from each

respondent. This allows themes to be formulated and concepts or repeated ideas to

be identified. The thematic analysis used here is mostly deductive, where analysis is

driven by my particular analytical interest in the area. Due to the lack of subgrouping

literature, I employed inductive thematic analysis, where survey responses allowed us

to develop themes not directly related to the questions. I also took a latent approach

to my thematic analysis [116], where the analysis goes beyond the semantic content to

look for underlying ideas or thought processes. I followed the six phases of thematic

analysis [115] to guide the analysis. I was unable to find this specific type of analysis

applied anywhere else in audio engineering literature. However, it is a well documented

and established technique for doing qualitative data analysis [115, 116].

4.3 Results and Analysis

4.3.1 Survey Questionnaire Respondent Data

The survey was provided via a web form, where respondents could complete it in their

own time and come back to it later if needed. To ensure high quality answers rep-

resentative of skilled practice, all ten respondents were distinguished, professional mix

or mastering engineers, and had received a recognised award such as a Grammy or

achieved a number one hit in the commercial music charts. The mixing background var-

ied in terms of genre. The most common responses for genre of music mixed was Pop,

Rock and Electronic music, but some were also involved in Jazz, Classical, Techno/IDM

and World Music. All the respondents were male and their average age was 49.3 (SD:
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8.13) years. The least amount of mixing projects a respondent was involved in a year

was 5, the most was 100 and average was 40.8 (SD: 46.15).

4.3.2 Coding

Figure 4.1 gives an example of the manual coding applied to each respondent’s answers

to question one of the survey questionnaire. It illustrates how I broke down each re-

spondents answers in too individual codes, which subsequently led to developing themes.

The coding process generated 72 codes in total for all the respondents answers.

Figure 4.1: This is an example of coding a respondent’s reply to a question. The
sentence is summarised into as few words as possible.

4.3.3 Theme Development

Five main themes arose from the thematic analysis; Decisions, Subgroup Effect Process-

ing, Organisation, Exercising Control, and Analogue versus Digital. They were devel-

oped by exporting coding details in the form of nodes and edges from QSR Nvivo1, and

visualised in Gephi2. Figure 4.2 illustrates one of the visualisations that were used to

develop my thematic map, where each code is clustered based on the Pearson’s corre-

lation coefficient. The coding at the selected nodes is compared based on similarity of

1NVivo is a qualitative data analysis (QDA) software package.
2Gephi is an open source graph visualisation platform.
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each of the coded text extracts with each other. Text extracts that have been coded

similarly are clustered together on the cluster analysis diagram [117]. I used the graph in

Figure 4.2 to decide what codes were related to each other and what codes had the most

text references. The strength of Pearson’s correlation coefficient is given in Figure 4.2

by how thick each graph edge is. Figure 4.3 shows the resultant thematic map with the

main themes in red and one sub-theme in bold.

The theme Decisions arose mainly from responses to survey questions based on partic-

ular mix situations. This was the largest theme and was expected due to the types of

questions I asked. It contained a Genre sub-theme because it became apparent from the

data that many mix decisions have a genre dependency.

The Subgroup Effect Processing theme was expected since a number of survey questions

were based around this theme. It was one of the largest themes and was mentioned

often with respect to audio effects like EQ, DRC and to a lesser extent Reverb. In this

theme I try to understand how and when subgroup effects are applied.

The Organisation theme covers what mix engineers would typically put in a subgroup,

how many subgroups they would create relative to the amount of audio tracks available

and why they would organise subgroups in a particular way. It is related to the themes

of Decisions and Subgroup Effect Processing since a mix engineer needs to decide on

how to organise a multitrack and this needs to be decided before any subgroup effect

processing can be applied.

Exercising Control was not directly related to any of the questions on the questionnaire,

but was foreseen. It relates to the mix engineer being able to control many audio tracks

at once and simplifying the mixing process.

The final theme Analogue versus Digital, was not anticipated.Ie assembled this theme

in the context of how subgrouping has changed for each respondent over a number of

years. Since this was induced from the data itself I do not have an assumption related

to it.

4.3.4 Survey response analysis and final theme analysis

Respondents were first asked how they would define subgrouping. Items mentioned

included subgrouping tracks by similar instrumentation, combining tracks for subgroup

effects processing and simplifying the mix process. Quotes used to define subgrouping

were as follows,

“Sub mixing different sets of audio (drums and percussion, strings, guitars etc.) in order

to give them a global audio treatment, often compression and eq.”
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a : analog versus digitala : analog versus digital
b : analogue summingb : analogue summing

c : dawc : daw

d : software dependencyd : software dependency

e : vcae : vca

f : exercising controlf : exercising control

g : balancingg : balancing

h : ease of mixingh : ease of mixing

j : group manipulationj : group manipulation

n : genren : genre

t : organisationt : organisation

z : one body of soundz : one body of sound

ac : subgroup effect processingac : subgroup effect processing

ai : individual channel effects instead of subgroup effectsai : individual channel effects instead of subgroup effects

ak : subgrouping habitsak : subgrouping habits

ap : order of executionap : order of execution aq : reason not to subgroupaq : reason not to subgroup

i : global treatmenti : global treatment

k : live mixingk : live mixing
l : reasons to subgroupl : reasons to subgroup

m : surround soundm : surround sound

o : dance-edm musico : dance-edm music

p : information in the mixp : information in the mix
s : studio albumss : studio albums

u : ease of monitoringu : ease of monitoring

v : grouping similar audio tracksv : grouping similar audio tracks

w : hierarchical subgroupingw : hierarchical subgrouping

x : makes sense to the engineerx : makes sense to the engineer

y : number of audio tracks availabley : number of audio tracks available
aa : reducing complexityaa : reducing complexity

ae : drcae : drc

af : eqaf : eq

am : more subgroups over timeam : more subgroups over time

ao : no order of executionao : no order of execution

q : no genre dependencyq : no genre dependency

r : song specific groupingr : song specific grouping

ab : sound coherenceab : sound coherence

ad : downmixingad : downmixing

aj : parallel compressionaj : parallel compression

al : bass separateal : bass separate

an : multiple recordings of the same instrumentan : multiple recordings of the same instrument

ag : gain structureag : gain structure

ah : group instruments based on sound spaceah : group instruments based on sound space

ar : subgrouping is creativear : subgrouping is creative

Figure 4.2: Codes clustered by word extract similarity.

“Routing instruments or groups of instruments into individual busses that then feed to

the mix bus. . . for purpose of processing, balancing or simply for organisation and ease

of monitoring particular groups (soloing).”

They were then provided with a definition of subgrouping and asked if they agreed;

“Subgrouping can be defined as when you sum one or more audio tracks into a bus with

the idea of creating a submix.”

All agreed, but some provided further alternate definitions. This implies that my pro-

posed definition may have been too brief and did not capture all aspects of the sub-

grouping process.

Respondents were asked if specific reasons to subgroup applied to their workflow, de-

picted in Figure 4.4. Other reasons given for subgrouping included the need to create

stereo stems from mono recordings, it being easier to fine-tune an instrument group
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Figure 4.3: The thematic map. Themes are shown in red and codes are shown in
green.

and combining large amounts of backing vocal tracks. Applying distortion was also

mentioned and creating subgroups within subgroups (hierarchical subgrouping). One

respondent stated that there should be no set rule and subgrouping should be used cre-

atively. The respondent gave an example of how keyboardist Herbie Hancock has many

subgroup routings for different types of keyboard modulation.

4.3.4.1 Decisions

Decisions appeared to be the core theme as it is interlinked with all the other themes

developed. Also, much of the data accumulated was based on how a mix engineer would

act in certain mix situations, allowing us to determine patterns or habits typical of a

professional mix engineer’s workflow. Decisions was the only theme that had a sub-

theme, the sub-theme being Genre.

I was interested to see at what point in the mix process the respondents normally consider

putting audio tracks into subgroups. Table 4.2 summarises these results, where I used

median ranking for each mix process over all respondents.
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Figure 4.4: Respondent results based on how they subgroup.

Table 4.2: Rank order of execution in the mix process. This refers to question 9 in
Appendix 9.3

Rank Mix Process

1 Panning
2 Subgrouping/EQ/DRC
3 Loudness/Level
4 Effects(temporal)

Overall panning is most important, but subgrouping is considered as important as ap-

plying EQ and DRC. However, when I examined some of the statements provided in

relation to this question I had a different representation;

“Equalizing is first because I’m recording live instruments and it’s important to clarify

the spectral space of the recording and remove non-critical or distracting frequencies.

Compression and effects further distinguish the recording. Then grouping, panning, and

levelling are creative decisions most important in the final mix down, which must be

made in the context of a full mix.”

“I set level, panning, and compression/EQ on the individual tracks. Then submit usually

by instrument. I apply FX to both the individual channels and the sub mixes.”

“I progress from an organisational approach then to gain structure as primary focuses.

Following that would be dynamics. Effects are ‘sugar on top’. Loudness would be the

last thing I would be thinking of, when the final balance is achieved. . . gain structure

is probably the most important aspect to mixing in my opinion especially when mixing

on an analog console . . . The level out of the mix buss has a distinctive effect on how
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the overall mix will sound. With digital you are more concerned with just simply not

clipping.”

One respondent implies that subgrouping is creative while another suggests it is part of

the organisational aspect and important for gain structure and another mentions that

they subgroup by instrument type. In contrast, one respondent said there is no order of

execution and that mixing is an organic process.

Table 4.3: The minimum, median, and maximum percentage of subgrouping decisions
made by all the respondents in the last 100 mixes i.e. Respondent 1 subgrouped 10%
of the last 100 mixes they did to maintain good gain structure. I present the minimum

percentage for this question for all the respondents.

Mix Deci-
sion

Min % Median % Max %

Subgroup to
maintain good
gain structure

0 100 100

Subgroup some
or all of the au-
dio tracks

60 100 100

Split drums
into different
subgroups

0 35 100

Change your
subgroups part-
way through
mixing

0 23 80

Subgroup to
eliminate audi-
tory masking

0 5 100

Subgroup to
pan a group of
instruments

0 5 50

Respondents were asked to estimate how often various subgrouping related decisions

were made over the last 100 mixes, see Table 4.3. “Subgrouping to maintain good gain

structure” received 100% median percentage rating, which relates to Subgroup Effect

Processing and will be discussed later. “Subgroup some or all of the audio tracks”

indicated that there may be cases where subgrouping is not valid. However, the median

percentage was 100, so this implies subgroups are used much more often than not. The

median percentage for “Changed your subgroups partway through mixing” was 23. Two

respondents said they would rarely change subgroups, but would further split them to

create new subgroups, e.g.;
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“Goodness knows why I might change routing, but I change things all the time, it’s often

a refining process to achieve a better sound. I add subgroups more than change them

but I might disband some that aren’t working or I need more control into two separate

subgroups, backing vocals being split up for example.”

The last two questions had a median of 5%. I assumed mix engineers might subgroup

instruments together to reduce masking, since instruments in a subgroup often occupy

the same spectral space and it would be useful to EQ all of the instruments together.

However, I was surprised to see such a low score. In fact half of the participants gave a

score of 0% and only one gave 100%.

Respondents were asked yes/no questions to decisions the mix engineer might make

when mixing, summarised in Table 4.4. These types of questions were mainly related

to instrument choices, especially drums and guitars. The two most polarising questions

are related to auditory masking and to acoustic and lead guitar placement. The results

to the auditory masking question tend to agree with the result in Table 4.3. Each of

these questions was followed by ‘can you please tell us why,’ so that they could provide

qualitative feedback. I did not test the knowledge of any of respondents with respect

to masking. I assumed that since they were at such an advanced level in the field of

mixing, they would already be quite knowledgeable in this area.

There was only one genre related question, but other questions generated genre related

answers. Respondents noted genre-dependency in subgrouping, for instance;

“I might submit ‘strings’ for a rock track, but for an orchestra I’ll break this down into

‘violins’ and ‘cellos’.”

One respondent mentions that some subgroups receive different effect processing based

on genre, in particular DRC. Also, certain styles require effect processing using subgroup

processing, while others benefit from a global treatment. A respondent noted that

a guitar subgroup for reggae would be treated differently than in rock music. Other

statements include;

“The more compression required, the more subgroups necessary.”

“Many genres of music need subgroups, it’s not the genre, but the amount of information

in the mix.”

The need for more subgroups when more compression is required indicates that there

could be more need for gain staging, so as to correctly process the varying amounts

of dynamic range. This suggests that a reason for creating subgroups is to reduce

complexity.
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Table 4.4: Answers to simple yes/no questions from online survey questionnaire

Mix Decision Yes No

Do you create subgroups with
subgroups (Hierarchical)

6 4

Subgroup kick drum sepa-
rately

4 6

Subgroup snare drum sepa-
rately

3 7

Subgroup bass guitar played
percussively with percussion/-
drums

3 7

Put rhythm guitar and lead
guitar in the same subgroup

6 4

Put bass guitar and lead guitar
in the same subgroup

2 8

Place acoustic guitar and lead
guitar in the same subgroup

8 2

Subgroup to achieve a uniform
tone

6 4

Subgroup to reduce auditory
masking

2 8

Dance and EDM music was mentioned separately by two different respondents. One

statement being

“Dance or EDM as a particular genre uses a vastly greater number of effect ‘tricks’ hence

sub grouping with this genre is generally more focused on this as opposed to most other

genres in which I am just concentrating on organisation and dynamics.”

An example relating the quantity of subgroups to genre is illustrated in the following

ambiguous statement,

“Pop=lots, folk=not so many.”

The respondent mentions that there are many subgroups when mixing ‘Pop’ music, but

this could mean that there are more instruments to subgroup or that ‘Pop’ needs more

subgroup processing.

Genre appears to be a significant deciding factor on how subgrouping is applied. How-

ever, at least two respondents claim that genre has no impact on their subgrouping
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decision. One respondent stated that genre does not have much influence on their sub-

grouping decisions and is always song specific or depends on the information in the

mix.

4.3.4.2 Subgroup Effect Processing

Subgroup effect processing is where at all of the tracks in the group benefit from sim-

ilar processing. This theme was formulated because the topic of effect processing was

mentioned the most in responses (130 code references associated with this theme). It

was also a major theme when I visualised the relationship between the coded references

seen in Figure 4.2. The types of subgroup effect processing that respondents used is

summarised in Figure 4.5. All respondents would apply DRC.

Figure 4.5: Summary of the different types of FX processing that each respondent
would apply to a subgroup. This refers to question 3 in the questionnaire.

Other types of audio processing that were mentioned were enhanced stereo imaging,

doubling, harmonic excitation, distortion and parallel compression. A statement from

one respondent illustrating subgroup effect processing referred to the ‘body of sound’,

which could be interpreted as a group of similar instrumentation;

“Subgrouping drums, vocals, guitars etc. enables you to apply overall compression and

FX so the body of sound can be treated as one, FX could be anything from as simple as

reverb or more complicated like adding parallel compression.”

I asked respondents how likely they were to apply DRC to certain instrument subgroups,

see Figure 4.6. Statements related to this question include
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“Elements such as drums, percussion and bass, need the most dynamic range compression

because they create the groove. Legato instruments such as brass, pads or vocals are not

as closely tied to the groove so they should be more free.”

“I pretty much always use some form of compression on drums, lead vocals and bass,

source, get rout and parallel compression.”

Figure 4.6: The subgroup types that are most likely to have DRC applied. This refers
to question 8 in Appendix 9.3.

In [113], the most subgrouped and hierarchically subgrouped instrument types were

drums and vocals. Many comments supported the view that drums, vocals and bass get

more DRC because they have the greatest dynamic range and are the foundational part

of a mix [17]. An interesting comment was

“Drums and Vocals. . . always get a touch of compression in my mixes, even if it’s one

or two dB, this helps the master bus compressor focus on the overall mix and not be

triggered by a subgroup.”

The rationale that some instruments may need to be removed from a subgroup be-

cause they adversely affect group compression leads to “Do you subgroup kick drum

separately?” from Table 4.4. One stated that they would do so in order to compress it.

Another related statement was that since it is such a powerful instrument it would affect

compression on the other drums in the subgroup and need to be processed separately.

I asked “Do you subgroup instruments to achieve a uniform tone through EQ?” One

respondent stated they would use subgroup EQ processing all the time, but not for
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uniform tone. Two responses mentioned that they do it since it is easier on CPU, but

this slightly contradicts earlier points about trying to treat a particular instrument type.

Others noted convenience in achieving uniform tone, and the ability to make instruments

sound like they are in the same room, which was the only response that discussed reverb

in respect to subgroup effect was processing;

“Primarily for convenience. I’m fascinated with gluing sounds together whether that’s

by creating a virtual soundstage or something more abstract.”

“It can be handy to group the bass and drums when using ambience or reverb effects to

make all instruments seem like they are in the same space/room.”

In Table 4.3 the “Do you subgroup to maintain good gain structure?” question had a

median percentage score of 100;

“. . . I have to note that gain structure is probably the most important aspect to mixing in

my opinion especially when mixing on an analog console such as an SSL or Neve . . . ”

“Affects how subgroups get treated - some genres benefit from subgroup dynamic com-

pression. Others just from the gain structure advantages.”

The second statement was in relation to genre and the respondent highlighted advantages

of subgrouping to achieve good gain structure since it allows gain processing to be applied

in a step by step instrument group process.

All respondents put strong emphasis on subgroup effect processing, but some referred

to effect processing on individual tracks instead of subgroup effect processing. This

mostly related to EQ, where a respondent might sculpt the sound of each instrument

individually to reduce masking. In most cases this was in reference to guitars as in [113],

where they were treated individually because they served different roles in the song e.g.

distorted guitar, lead guitar.

4.3.4.3 Organisation

Organisation directly relates to Exercising Control and Subgroup Effect Processing,

since they cannot happen without first organising tracks in to sensible subgroups. It

also relates to Decision, since the mix engineer has to decide how to organise their

subgroups. Relevant statements include;

“Putting audio tracks with some commonality into a group.”



Intelligent Subgrouping of Multitrack Audio 58

“Routing instruments or groups of instruments into individual busses that then feed to

the mix buss. This is done for purpose of processing, balancing or simply for organisation

and ease of monitoring particular groups (soloing).”

“It is a combination of discrete audio tracks mixed together under a collective term, but

not the final stereo mix.”

The word organisation was only mentioned once above, but other words and phrases

like ‘commonality’ and ‘collective term’ are organisational.

In Table 4.3, when I asked how often respondents split drums into different drum sub-

groups i.e. hierarchically subgroup, the median percentage was 35%. I previously found

that when hierarchical subgrouping did occur, 12% of drum subgroups created were hi-

erarchical [113]. When asked “did you modify the subgroups you had already created?”

two respondents said they would rarely change subgroups, but would further split them

to create new subgroups, an example of hierarchical subgrouping.

Two questions related to how many subgroups respondents used based on how many

tracks were in a multitrack, and how many tracks were needed before they considered

subgrouping. The minimum, average and maximum amount of subgroups the respon-

dents would normally create in relation to the number of audio tracks can be seen in

Figure4.7.

“First if the subgrouping makes sense internally, and second if the group works in the

context of a mix.”

One respondent would subgroup all guitars together simply for organisational purposes.

“Due to the physical limitations of an analog console. . . subgroup all the guitars anyway

simply for organisational purposes. Any processing would be done individually.”

4.3.4.4 Exercising Control

Exercising control and the simplification of the mixing task was an important theme

in the data. By exercising control I mean that by subgrouping many audio tracks, the

tracks can be collectively manipulated in terms of level and effect processing using a

single fader or dial without losing control. Two definitions given by respondents on

subgrouping are as follows,

“. . . dividing multiple tracks of audio into separate groups, this makes large complicated

mixes easier to manage, essential for live mixing, . . . incredibly beneficial for mixing in

the studio.”



Intelligent Subgrouping of Multitrack Audio 59

Figure 4.7: This shows the averaged results of all the respondents. I asked them
to indicate the minimum (blue), average (green) and maximum (yellow) number of
subgroups respondents create based on a given amount of audio tracks. This is in

reference to question 6 in Appendix 9.3.

“Whenever one controller is used to control more than one. Most commonly, it is fader

grouping, and these take two forms: 1. Control groups (one fader controls other faders)

and 2. Processing Groups (signals are combined into an ensemble/stem/group . . . )”

One respondent mentions it being essential for live mixing, which is understandable

considering that it simplifies continually adjusting gain levels. Another respondent refers

to the subgroup as a control group and implies that subgrouping is used for control.

Overall, only 50% of the respondents said they use subgrouping to simplify the process,

but on further analysis, the terms control and simplification were mentioned throughout

the responses. One statement summarising this was;

“More complexity, more subgroups”

Other statements say that the more tracks there are, the more subgroups needed to keep

the mixing task as simple as possible while maintaining a good degree of control,

“It makes it much easier to monitor groups of instruments or instruments that contain

multiple sources (such as drums). One could describe this also as ‘soloing’.”
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“When a mix gets beyond 24 tracks. . . it makes it easier to fine tune the overall mix if a

group of instruments needs to be adjusted. Many mixes are 96 faders of information or

more.”

“Large track counts, e.g. 100+, subgrouping will be essential to retain control.”

“If they’re all too bright, it’s easier and more DSP friendly to do them all at once.”

Exercising control was also mentioned in a surround sound context where the respondent

states

“Surround might need control over the centre channel, you may have many kick drums

you want to compress as a whole etc. you may want to remove the kick drum from the

main drum compression so it stops affecting the other drums via the compressor.”

4.3.4.5 Analogue versus Digital

The modern Digital Audio Workstation (DAW) has revolutionised how mix engineers

approach mixing, since they now rarely worry about physical limitations. The Ana-

logue versus Digital theme became clear once I attempted to understand if subgrouping

practice has changed over the last five years. Some respondents said that because of

the modern DAW they now use more subgroups since they no longer have the physical

limitation of an analogue desk and the amount of available subgroups is almost limit-

less. The Analogue versus Digital theme was not something I attempted to test with

my assumptions. It was developed through thematic analysis and was not something I

anticipated.

“A big change. . . during the transition from all analog mixing to mixing in the box.

Generally these were physical limitations due to the console. . . virtually unlimited sub-

grouping in DAWs.”

“Subgrouping approach has only changed via computing power has grown, as I mix mostly

within a DAW, the more power I have the more I can expand my mixer. . . ”

“If I were using an analogue desk with only 8 groups, then maybe, but these days I don’t

need to constrain myself in that way.”

There were two statements made that illustrate why a mix engineer might not have used

as many subgroups before they had access to a DAW.

“In the analogue domain, I may not do this because the subgrouping requires an additional

pass through a summing amp, which – depending on the console – might pay a sonic

penalty.”
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“20 string mics are still one instrument and it is useful to be able to treat it as such.

Pre DAW, these items would all have been bounced to stereo as part of the recording

process.”

Finally, there was a statement that summarises what is meant by the theme of Analogue

versus Digital in a subgrouping context.

“Subgroup processing is part of the current sonic environment.”

4.4 Discussion and Assumptions

(A1) - eight out of the ten respondents agreed with this statement and subgroup effect

processing was a major theme in this report. Also, statements were given that subgroup

effect processing, especially DRC and EQ, is essential and is heavily used. DRC was

referenced 31 times throughout the survey responses and EQ was referenced ten times.

I therefore consider this assumption to be true.

(A2) - eight out of ten respondents agreed with this statement. This assumption was

touched on under the themes of Organisation and Exercising Control where respondents

mentioned putting similar instruments into the same subgroup in order to mix them as

one. An example of this is when the mix engineer attempts to mix drums or is making

a stem track. Based on the fact it is an obvious reason to create subgroups and so many

respondents agreed, I would consider this assumption to be true.

(A3) - six out of ten respondents said that genre has an effect on how they create

subgroups. There were many examples given by the respondents on when this would

occur, particularly for EDM/Dance music. However, some respondents said it does not

affect their subgroup choices and one respondent said it depends on the information in

the mix. Based on the many examples given by the respondents on when genre affects

subgroup choices and the overall majority of respondents agreeing with this assumption,

I consider this assumption to be true.

(A4) - five out ten respondents said they create subgroups to reduce complexity. How-

ever, if I examine Figure 4.7 I see a trend where the more audio tracks there are, the

more subgroups there are. This suggests that mix engineers create subgroups to reduce

the amount of faders and effects they have to manage. Therefore, reducing complexity.

There were many statements provided that fell under the themes of Organisation and

Exercising Control that suggested that subgroups are created to make the mix engineers

life easier. Despite that only half respondents agree with this statement, the volume of
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qualitative data suggests otherwise. Therefore, I would consider this assumption to be

true.

(A5) - six out of ten respondents said they hierarchically subgroup. The median per-

centage for respondents who split the drum subgroup up into smaller subgroups in their

last 100 mixes was 35%. I also found this occurred in previous work mainly with respect

to drums and vocals [113]. In relation to Table 4.3, two respondents both similarly said

they would rarely change subgroups, but they would further split them and create new

subgroups which is the same as hierarchical subgrouping. Based on these results I would

consider this assumption to be true.

(A6) - All respondents agreed with this assumption. It was also found to be true in

previous work [113]. The idea of subgrouping based on instrument family also came up

under the themes of Decisions and Organisation. It could be argued that this was an

obvious assumption. However, I have never seen it explicitly stated anywhere in the

literature as a rule [1, 7, 17]. Consequently, I consider this assumption to be true.

(A7) - The median percentage for respondents who answered the question “in the last

100 mixes did you subgroup to maintain good gain structure” was 100%. One respondent

mentioned this to be one of the most important aspects of mixing. They said that they

would initially use subgrouping for organisational purposes and then for maintaining

good gain structure. I consider this assumption to be true.

(A8) - The median percentage of respondents who answered the related question in

Table 4.3 was 5%. Furthermore, when respondents answered in a simple yes or no

context, only two out of ten respondents said yes. This is not a result I expected as I

know that masking reduction is important to mix engineers and by treating instruments

that share a similar spectral space together this would make masking reduction easier

to achieve. Based on the results found, I consider this assumption to be false.

(A9) - All of the respondents said they would apply DRC to their subgroups. Fur-

thermore, I also asked what instrument groups each respondent is most likely to apply

DRC to and found this to be drums and vocals. These results agree with the findings in

[12], where the authors tested the assumption “Gentle bus/mix compression helps blend

things better” and it was found to be correct. I believe this assumption to be true.

4.5 Conclusion

From the analysis and discussion presented here, it is clear that subgrouping is not as

simple as subgrouping all instruments that are similar to each other. There is more
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of a thought process behind subgrouping and a number of different factors come into

play when subgrouping decisions need to be made. For instance, genre has an impact

on the type of subgrouping strategy used. It determines if and how subgroups should

be broken down, what type of effects processing is to be used, what instrumentation

subgroups contain, and how many tracks there will be in a subgroup.

The data gathered through the survey validates the majority of the assumptions that

were made previously with regard to subgroup processing and organisation. It also

uncovered underlying information that would otherwise be passed on from practitioner

to practitioner, or learned through trial and error, but that would remain undocumented.

Many of the findings in this survey are of no surprise, such as subgrouping by instrument

type, subgrouping for effects processing and subgrouping to make the mixing processing

less complicated. However, these are often just stated in the literature as a reason to

subgroup without discussion as to why [1, 7, 17]. Since many of these assumptions were

obvious, but not clearly stated, the need was felt to clarify and test them as rigorously as

qualitative analysis will allow. This explain why so many of the assumptions were found

to be true. Although this process may not have been robust, this is the difficulty of

working with qualitative data. Furthermore, results from the survey tend to agree with

the results uncovered in chapter 3. However, it is worth mentioning that the participants

in the previous study were students and not professional level mix/mastering engineers.

Considering these results in an intelligent audio production tool context, they indicate

that subgrouping should be considered in developing these types of systems [2, 3, 15, 18].

If professionals perform subgrouping when mixing, then systems trying to mimic similar

results may also benefit from this. I thus make the following seven recommendations for

any intelligent mixing system that were to consider using subgrouping;

1. Subgrouping should be applied when there is more than one of any instrument type

and should be applied to instruments that are similar to each other i.e. subgroup

drums or guitars.

2. Subgrouping should be applied to maintain a good gain structure.

3. Based on the rankings in Table 4.2 I suggest that subgrouping be applied after

panning and before DRC or EQ is applied. The reason for it being applied before

DRC or EQ is because DRC or EQ will then be applied to each subgroup as well

as individual channels.

4. Subgroups should be created based on the genre of the music being mixed. Genre

should inform the types of effect processing applied to subgroups.
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5. If hierarchical subgrouping is to be used, this should be applied to drums, vocals

and guitars.

6. DRC subgroup processing should always be applied to drum and vocal subgroups

and to a lesser extent EQ should be applied to all subgroups.

7. The number of subgroups should be created in proportion to the amount of audio

tracks available as well as the genre of music being mixed in order to reduce

complexity.

These recommendations are based on the analysis of 72 student mixes in chapter 3

and the detailed survey of ten award-winning professional mix and mastering engineers

herein. They are by no means exhaustive, but it is hoped that they will be utilised and

validated further in an automatic mixing system.



Chapter 5

Automatic subgrouping of

multitrack audio

5.1 Introduction

In the literature reviewed, there is currently no proposals or discussions of a system that

attempts to automate the subgrouping process [2, 3, 15, 118]. In this chapter, I suggest

that this can be done autonomously using machine learning techniques. The motivation

is two-fold. Firstly, not only would it be possible to subgroup the audio tracks in the

conventional sense, but through analysis of each audio track’s spectro-temporal audio

features, I may discover in this study that there are more intelligent ways to create

subgroups.

Secondly, the audio features that are determined to be important can be used to answer

the research question are we putting the instruments in the correct subgroups? Whereby,

if we have good audio features to determine subgroups, this may inform us that a certain

audio track or even certain sections of an audio track should be subgrouped differently

from how they would be typically subgrouped. An example of how this may work would

be when we find over time that an audio track changes and may become more similar to

another audio track in another subgroup. This could occur if the bass player suddenly

switched from picking the bass guitar to playing in the style of slap bass. The audio

track that was once in the bass subgroup could now be subgrouped with the percussive

instrument audio tracks. At this point, it would make sense to split the single bass

guitar audio track into two individual audio tracks and have them designated to their

appropriate subgroups.

65
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In light of the above discussion, the subgroup classification problem can been seen as

somewhat similar to musical instrument identification, which has been done before for

orchestral style instruments [119–122]. However, in subgrouping classification we are not

trying to classify traditional instrument families, but defined groups of instrumentation

that would be used for the mixing of audio from a specific genre. For example, in

rock music the drum subgroup would consist of hi-hats, kicks and snares etc. while

the percussion subgroup may contain tambourines, shakers and bongos. In practice,

the genre of the music will dictate the type of instrumentation being used, the style in

which the instrumentation will be played and what subgroup the instrument belongs to.

It is also worth noting that typical subgroups such as vocals or guitars can be further

broken down into smaller subgroups. In the case of vocals the two smaller subgroups

might be lead vocals and background vocals. Furthermore, we can never assume that

the multitrack recordings being used are good quality recordings. They may contain

background noise, microphone bleed interference or other recording artefacts. All of

these factors can affect the accuracy of a classification algorithm.

The purpose of this study is to determine the best set of audio features that can be

extracted from multitrack audio in order to perform automatic subgrouping. In my par-

ticular case, I looked at multitracks that would be considered as Rock, Pop, Indie, Blues,

Reggae, Metal and Punk genres, where the subgroups would typically be drums, bass,

guitars, vocals etc. The rest of the chapter is organised as follows. Section 5.2 describes

the dataset used for feature selection and testing. Section 5.3 provides a list of features

used and describes how they were extracted. Section 5.4 explains how the experiments,

classification and clustering were performed. Section 5.5 presents the results obtained.

Section 5.6 discusses the results and then finally the chapter is concluded in section 5.7.

5.2 Dataset

The amount of data available for multitrack research is limited due to a multitrack

being an important asset of a record label and the copyright issues that come with

distributing them. The Open Multitrack Testbed contains multitrack audio, mixes of

multitrack audio and corresponding metadata. I used this for my dataset because it is

one of the largest of its kind (1.3 TB in size) and contained data that was available for

public use [13]. A subset of data was selected from this.

The subset used for feature selection consists of 54 separate multitracks and 1467 audio

tracks in total once all duplicate audio tracks were removed. The multitracks that were

used span a wide variety of musical genres such as Pop, Rock, Blues, Indie, Reggae,

Metal, and Punk. I annotated each track by referring to its filename and then listening
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Table 5.1: Details of the subset used for feature selection

Subgroup type No. of tracks Percentage of subset

Drums 436 29.72%
Guitars 365 24.88%
Vocals 363 24.74%
Keys 103 7.02%
Bass 93 6.34%

Percussion 80 5.45%
Strings 19 1.30%
Brass 8 0.55%

to each file for a brief moment to confirm its instrument type. The labels used for

each audio file were based on commonly used subgroup instrument types. These were

drums, vocals, guitars, keys, bass, percussion, strings and brass. Table 5.1 shows the

breakdown of all the multitrack data used for feature selection relative to what subgroup

each audio track would normally belong to. It is worth noting the imbalance of label

types in my dataset. This is because the most common instruments in my multitrack

dataset are drums, vocals and guitars. Furthermore, the drum subgroup consists of

many different types of drums such as kicks, snares, hi-hats etc. meaning it tends be

the largest subgroup.

The subset used to test if the selected features were useful or not consists of five unseen

multitracks. The breakdown of the different types of audio tracks for each test multitrack

can be seen in Table 5.2.

Table 5.2: Details of the subset used for testing

Subgroup type MT 1 MT 2 MT 3 MT 4 MT 5

Drums 11 8 9 10 1
Vocals 17 11 6 9 3
Guitars 12 2 6 2 0

Keys 1 4 2 4 3
Bass 1 1 1 1 1

Percussion 1 0 1 0 0
Strings 0 0 0 0 6
Brass 0 0 0 0 0
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5.3 Extracted Features

Each audio track in the dataset was downsampled to 22050 Hz and summed to mono

using batch audio resampling software. The audio features were then extracted from

the 30 secs of audio with the highest amount of total energy in each audio track [123].

This was done to speed up the feature extraction process as I did not see the need to

extract features from long periods of silence that occur in multitrack recordings. 159

continuous low level audio features were extracted in total with a hamming window size

of 1024 samples and a hop size of 512 samples. These window and hop size values were

chosen as they were the most commonly used in all the literature I reviewed. A list of

the audio features and the relevant references are in Table 5.3. Overall, there are 42

different low level audio feature types and the majority of these are frame based. Only

three audio features were whole audio track features and not frame based. Since the

whole track audio features were not frames like the others, no pooling was required.

Pooling is a technique used in music information retrieval that allows for the summary

of audio features over specific time frames i.e. the mean spectral centroid over 10 secs

[124]. The mean, standard deviation, maximum and minimum values were taken of each

framed audio feature over the 30 secs of audio used for feature extraction. This allowed

the pooling of the framed features over the 30 secs of audio and is the reason why there

was 159 audio features in total [124].

5.4 Experiment

Two experiments were conducted. The first experiment determined a reduced set of

audio features from the 159 audio features that I extracted previously. This was done

by performing feature selection. The goal of this experiment was to determine the best

subset of the 159 original audio features that could be used for automatic subgrouping.

A second experiment was conducted where five test multitracks were agglomeratively

clustered using all of the 159 audio features extracted and then agglomeratively clustered

using the reduced feature set for comparison. This was done to investigate how well the

reduced audio feature set compared to the entire audio feature set when performing

automatic subgrouping.

5.4.1 Feature Selection

Random Forest is a particular type of Ensemble Learning method based on growing

decision trees. This can be used for either classification or regression problems, but can



Intelligent Subgrouping of Multitrack Audio 69

Table 5.3: Audio features

Category Feature Pooled Reference

Dynamic RMS Y
Peak Amplitude Y

Crest Factor Y
Periodicity N [125]

Entropy of Energy N [126]
Low Energy N [127]

Spectral Zero Crossing Rate Y [128]
Centroid Y .
Spread Y .

Skewness Y .
Kurtosis Y .

Brightness Y .
Flatness Y .

Roll-Off (.85 and .95) Y .
Entropy Y .

Flux Y .
MFCC’s 1-12 Y .

Delta-MFCC’s 1-12 Y [128]
Spectral Crest Factor Y [123]

also be used for feature selection. Random Forest is based on the idea of bootstrap

aggregating or more commonly know as bagging. After training has occurred on a

dataset each decision tree that is grown predicts an outcome. For regression decision

trees, the output is the average value predicted by all of the decision trees grown. For

classification decision trees it is the classification outcome that was voted most popular

by all of the decision trees grown [105]. Random Forest was chosen because it has been

proven to work very well for feature selection in other fields such as bioinformatics and

medicine [106, 107].

Determining the most salient features using the Random Forest classifier was performed

as follows. 100 decision trees were grown arbitrarily and a feature importance index

was calculated. It will be seen further on in Section 5.5 that this was an appropriate

amount of decision trees to grow.

The feature importance index was calculated for each of the 159 audio features. The

average feature index was then calculated and the audio features that performed below

the average were eliminated. The use of the average importance index was found to give

us the most satisfactory set of audio features.

I also tried eliminating the 20% worst performing audio features, then retraining on the

new audio feature set and repeating the 20% worst performing audio feature elimination
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process. This process would then stop once the out-of-bag error began to rise. However,

I found that this was found to give us an unsatisfactory set of audio features. They

were unsatisfactory because when I used these audio features to automatically create

subgroups, the subgroups created were mostly incorrect e.g. drums in the same subgroup

as guitars. This was the search method that was used in [108].

It should also be noted that when using the Random Forest classifier I set prior proba-

bilities for each class based on my imbalanced dataset. The prior probabilities were set

using the data in the Percentage of subset column in Table 5.1

5.4.2 Agglomerative clustering

In my case the similarity is found between every pair of audio feature vectors that

represent the audio tracks in my dataset. This is normally calculated using a distance

function such as Euclidean, Manhattan or Mahalanobis distance. I used Euclidean

distance as I found it gave me more realistic clusters. It is also worth noting that I

normalised each instance in my dataset using L2-normalisation, while each audio feature

value was normalised between zero and one. This was done due to the Euclidean distance

function being used. I then linked together audio feature vectors into binary pairs that

were in close proximity to each other using a linkage function. I used the shortest

distance measure as my linkage function, as this would make the most sense in my case

as I am trying to subgroup similar audio tracks based on instrumentation. The newly

formed clusters created through the linkage function were then used to create even

larger clusters with other audio feature vectors. Once linkage has occurred between

all the audio feature vector clusters, all the branches of the tree below a specified cut-

off are pruned. This cut-off can be specified as an arbitrary height in the tree or else

the maximum amount of clusters to create. A maximum number of eight clusters was

specified in my case. This was due to there only being eight labels in the original dataset

used for feature selection.

Figure 5.3 depicts that any two audio tracks in the dataset become linked together

at some level of the dendrogram. The height of the link is known as the cophenetic

distance and represents the distance between the two clusters that contain those two

audio tracks. If the agglomerative clustering is suited to a dataset, the linking of audio

tracks in the dendrogram should have a strong correlation with the distances between

audio tracks generated by the distance function. A cophenetic correlation coefficient

can be calculated to measure this relationship. The cophenetic correlation coefficient is

measured from -1 to 1 and the closer the value is to 1 the more accurately the dendrogram

reflects the dataset. Suppose that the previous example dataset Ni has been modelled
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using the above cluster method to produce a dendrogram Ti. The cophenetic correlation

coefficient is calculated as such

c =

∑
i<j(d(i, j)− d̄)(t(i, j)− t̄)√[∑

i<j(d(i, j)− d̄)2
] [∑

i<j(t(i, j)− t̄)2
] (5.1)

where d(i, j) is the ordinary Euclidean distance between the ith and jth observations of

the dataset and t(i, j) is the cophenetic distance between the dendrogram points Ti and

Tj . d̄ is the average of the d(i, j) and t̄ is the average of the t(i, j).

5.5 Results

In this section I present the results of the experiments conducted. I firstly show the

results of the feature selection performed and then show the results of the agglomerative

clustering. I also present the resulting dendrograms from the clustering.

5.5.1 Selected Features

Using the feature selection method mentioned in Section 5.4.1 I determined a subset of

74 audio features from the original 159. The average feature importance index was 0.421

with a standard deviation of 0.1569. The maximum value for feature importance index

was 0.9086 and the minimum was -0.0135. The 20 most important features are depicted

in Figure 5.1. This illustrates some of the audio features that would occur in an audio

feature vector used during agglomerative clustering.

The cumulative out-of-bag error having grown 100 trees with the full audio feature set

was 0.1384. Using the reduced feature set and growing 100 trees the cumulative out-of-

bag error was 0.1431. Figure 5.2 shows that these results converge and start becoming

very close after about 70 trees. This also supports my original choice to arbitrarily grow

100 decision trees for feature selection.

5.5.2 Agglomerative clustering

In Table 5.4 I present the results for each of the five multitracks that were agglomeratively

clustered using the entire audio feature set and the reduced audio feature set. Also, I

give the cophenetic correlation coefficients as described in Section 5.4.2. Also, I give the

number of audio tracks in each multitrack as well as how many incorrect subgroups were
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Figure 5.1: The 20 most important features

created to show how well the clustering is at creating meaningful subgroups. An incorrect

subgroup would be where at least two different audio tracks with different instrument

types are subgrouped together. An example of an incorrect subgroup would be if a

subgroup consisted of drums, guitars and vocals. These three instrument types would

normally be separate. There will always be eight subgroups due to the labels used in

the training dataset, but these eight subgroups may not always be constructed correctly

using agglomerative clustering. The number of incorrect audio tracks is measured by

how many audio tracks were placed in a cluster where the majority of the instrument

types where incompatible. An example being if I had a cluster of six guitars and two

vocals. The guitars are the majority, so the incorrect audio tracks would be the vocal

tracks. I also show this measure as a percentage of all the audio tracks in each multitrack.
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Figure 5.2: Cumulative out-of-bag classification errors for both feature sets

5.6 Analysis and Discussion

5.6.1 Selected Features

Looking at Figure 5.1 I can see the list is dominated by spectral features and has only

three features related to dynamics. I was not surprised to see MFCC’s in the 74 selected

audio features as they have been proven before to perform quite well in speech recognition

and audio classification tasks [129–131]. The Low Energy audio feature also plays a very

significant role in classification. The Low Energy audio feature can be defined as the

percentage of frames showing less than average RMS energy [127]. Vocals with silences

or drum hits would have a high low energy rate compared to say a bowed string, so this

may be one of the reasons it was so successful.

The maximum and average spectral spread as well as the standard deviation of kurtosis

are also placed in top five ranked audio features. This suggests that the shape of the
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Table 5.4: Agglomerative clustering results using all features and the reduced feature
set

159 Features MT 1 MT 2 MT 3 MT 4 MT 5

Cophenetic C.C. 0.799 0.844 0.751 0.894 0.814

Audio tracks 43 26 25 26 14

Incorrect subgroups 3 1 3 1 2

Incorrect audio 19 7 5 7 2
tracks

Percentage incorrect 44% 26.9% 20% 26.9% 14%
audio tracks

74 Features MT 1 MT 2 MT 3 MT 4 MT 5

Cophenetic C.C. 0.771 0.887 0.806 0.924 0.956

Audio tracks 43 26 25 26 14

Incorrect groups 2 0 1 0 2

Incorrect audio 6 0 1 0 2
tracks

Percentage incorrect 13% 0% 4% 0% 14%
audio tracks

Table 5.5: Agglomerative clustering results for all multitracks

159 Features 74 Features

Avg. Cophenetic C.C. 0.8203 0.8642
Total no. audio tracks 114 114
Avg. no. audio tracks 26.1 26.1

Total incorrect subgroups 10 5
Total incorrect audio tracks 40 9

Percentage incorrect 35.08% 7.89%
audio tracks

audio spectrum for each audio track was one of the most important factors. The spectral

centroid, brightness and roll off 95% also featured in the top 20, which are all spectral

features.

I was expecting the Periodicity feature to perform much better, but it did not even make

it into the subset of 74 audio features. I expected this to be important for drum and

percussion classification. Ideally, this would be predictably high for drums, but low for

vocals.

5.6.2 Agglomerative clustering

If we compare the results from agglomerative clustering using the entire audio feature

set and the reduced audio feature set we can clearly see that the reduced audio feature

set achieved a higher performance. The overall percentage of incorrectly clustered audio

tracks changes from 35.08% for the entire audio feature set to 7.89% for the reduced audio

feature set. I also found that the reduced audio feature set has a slightly higher average

cophenetic correlation coefficient than the entire audio feature set. This suggests the
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Figure 5.3: Dendrogram of MT 1 using the reduced feature set. Different stem types
are shown to be close to each other. This is indicated by the cophenetic distance. The
bottom of the part of this dendrogram has mainly vocals linked together, while the

upper part has mainly drums and guitar lined together.

clustering better fits the reduced audio feature dataset. Furthermore, the total number

of incorrectly created subgroups was halved when using the reduced audio feature set.

Table 5.5 shows these results.

There is also an overall trend of higher performance for the reduced audio feature set
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Figure 5.4: Dendrogram of MT 2 using the reduced feature set. Different stem types
are shown to be close to each other. This is indicated by the cophenetic distance. The
bottom of the part of this dendrogram has mainly vocals linked together, while the

upper part has mainly drums and guitar lined together.

when we examine each multitrack separately. MT 1 was the worst performing multitrack

for both the entire audio feature set and the reduced audio feature set. MT 1 when using

the reduced audio feature set, had a lower misclassification measure than MT 1 using

the entire audio feature set, but surprisingly has a slightly lower cophenetic correlation

coefficient. Overall, MT 1 had the lowest cophenetic correlation coefficient for both sets
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Figure 5.5: Dendrogram of MT 3 using the reduced feature set. Different stem types
are shown to be close to each other. This is indicated by the cophenetic distance. The
bottom of the part of this dendrogram has mainly acoustic guitar linked together, the
middle part has mainly drums linked together, while the top part consists of vocal, keys

and guitar linked together.

of audio features and this maybe because it also had the most amount of audio tracks to

cluster. This may have been improved by using a varying maximum amount of clusters

based on how many audio tracks are present. It is also worth mentioning that once the

experiment was finished I listened back to the incorrectly subgrouped audio tracks for

the reduced audio feature set and I found that these audio tracks suffered badly from

microphone bleed. This is most likely the cause of the poor classification accuracy as

two different instrument types can be heard on the recording. This problem could be

addressed by using an automatic noise gate to reduce the microphone bleed [132].

The four other multitracks had greater success than MT 1 when clustered, but this may

be due to them having fewer audio tracks to cluster. When we compare the results of the

entire audio feature set versus the reduced audio feature set we can see a big improvement

in results. Especially in MT 2 and MT 4 where the misclassification measure dropped

to 0% in both cases. In MT 3, when using the reduced audio feature set we see that
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Figure 5.6: Dendrogram of MT 4 using the reduced feature set. Different stem types
are shown to be close to each other. This is indicated by the cophenetic distance. The
bottom of the part of this dendrogram has mainly keys linked together, the middle part
has mainly drums linked together, while the top part consists of vocal, guitar and bass

linked together.

we had only one misclassification. This was the ‘Snaps’ audio track being subgrouped

with the ‘GangM’ vocal tracks and is depicted in Figure 5.5. There is a small amount

of microphone bleed on the ‘GangM’ vocal tracks, so this may be the reason why we are

seeing this misclassification. In MT 5 the misclassification is more difficult to explain

as there does not seem to be any audible microphone bleed. This may be because the

synthesiser has a similar timbre to the lead vocalist. Figure 5.7 shows that ‘Synth21’

is further away from the violins than the Synth11’ is from the vocals, suggesting that

‘Synth11’ is similar to the vocal audio tracks.

When looking at Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 generally

the lower parts of the trees tend to cluster the audio tracks together correctly. It is

very easy to pick out drum, vocal and guitar clusters especially. The best examples are

shown in Figure 5.4, Figure 5.5 and Figure 5.6. Interestingly, the ‘Bass’ audio track is

the furthest distance from any other audio track in each of the multitracks. This most
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likely has to do with this instrument occupying the lower frequency bands and the rest

of the instruments tending to be in mid and upper frequency ranges.

5.7 Conclusion

In this chapter, I determined a set of audio features that could be used to automatically

subgroup multitrack audio using a Random Forest for feature selection. I took a set of

159 low level audio features and reduced this to 74 low level audio features using feature

selection. I selected these features from a dataset of 54 individual multitrack recordings

of varying musical genre. I also showed that the most important audio features tended

to be spectral features. I used the reduced audio feature set to agglomeratively cluster

five unseen multitrack recordings. I then compared the results of the agglomerative

clustering using the entire audio feature set to the agglomerative clustering using the

reduced audio feature set. I was able to show that the overall misclassification measure

went from 35.08% using the entire audio feature set to 7.89% using the reduced audio

feature set. Thus indicating that my reduced set of audio features provides a significant

increase in classification accuracy for the creation of automatic subgroups. Part of the

novelty of this approach was that I was trying to classify audio tracks of entire multitrack

recordings. Whereby, multitracks have the issue where recordings may contain artefacts

such as microphone bleed. This did cause us problems in some cases, but I was easily

able to identify the cause by listening to the problematic audio tracks.

In future work, automatic subgrouping could be applied to music from the Dance or Jazz

music genres. In this case I only applied automatic subgrouping to Pop, Rock, Indie

etc. However, it would seem that currently the subgroups for the Dance or Jazz music

genres are not very well defined, so further research would be needed on best practices

in subgrouping for music production of this kind. It would also be interesting to see how

automatic subgrouping could be used in current automatic mixing systems like [9, 49,

133], where each automatic mixing algorithm is used on each subgroup of instruments

individually to create a submix. Then once all the subgroups are automatically mixed,

the automatic mixing algorithm would be used to mix each individual subgroup. In this

work I inspected the correctness of the automatically generated subgroups manually, in

further work I would like to test the validity of this technique automatically by using

cross validation.
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Figure 5.7: Dendrogram of MT 5 using the reduced feature set. Different stem types
are shown to be close to each other. This is indicated by the cophenetic distance. The
bottom of the part of this dendrogram has mainly strings linked together, the middle
part has mainly vocals and synths linked together, while the top part consists of drums

and bass linked together.



Chapter 6

An empirical approach to the

relationship between emotion and

music production quality

6.1 Introduction

There have been several studies that have looked at why people prefer certain mixes

over others. [13, 134] conducted a mix experiment where groups of nine mix engineers

were asked to mix 10 different songs. The mixes were evaluated in a listening test to

infer the quality as perceived by a group of trained listeners. Mix preference ratings

were correlated with a large number of low level features in order to explore if there was

any relationship, but the findings indicated in this particular case was that there were

no significantly strong correlations. The details of this study are described in Chapter 3.

In Chapter 3, the same tracks used in [13, 134] were used to ascertain the impact of

subgrouping practices on mix preference. The quantity of subgroups and the type of

subgroup effect processing used was looked at for each mix. Then these findings were

correlated with mix quality preference ratings to see the extent of the relationship [113].

In a somewhat related study, [135] claimed that audio production quality is linked to

perceived loudness and dynamic range compression. It also demonstrated that a partic-

ipant’s expertise is not a strong factor in assessing audio quality or musical preference.

However, the relationship between music production quality was not explored in this

study.

To my knowledge, there have been no previous studies that examined the relationship

between music production quality and emotional response. This represents a new area

81
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of research in music perception and emotion that I intend to explore. In [12], three of

the mix engineers that were interviewed mentioned the importance of emotion in the

context of mixing and producing music. This indicates that emotion plays a significant

role in how a mix engineer tries to achieve a desired mix. [136] states that dynamic

contrast in a piece of music has been heralded as one of the most important factors for

conveying emotion.

The purpose of the current study is to determine the extent of the link between music

production quality and musically induced and perceived emotions. The participants

in this study listened to low and high quality mixes (rated in [13, 134]) of the same

musical piece. These were participants I recruited separately for this experiment and

had no relation to the studies detailed in [13, 134]. I then measured each participant’s

subjective experience, peripheral physiological changes, changes in facial expressions and

head nods, and shakes as they listened to each mix.

The rest of the chapter is organised as follows. Section 6.2 provides the methodology used

to conduct this experiment. Section 6.3 presents the results obtained and the subsequent

analysis. Section 6.4 discusses the results, the chapter is concluded in section 6.5. Finally,

section 6.6 proposes future work.

6.2 Methodology

6.2.1 Research questions and hypotheses

My original hypothesis was that music production quality had a direct effect on the

induced and perceived emotions of the listener. However, before I proceeded to the

main study, I conducted a short pilot study.

6.2.1.1 Pilot Study

The pilot study consisted of us running the experiment for six participants, where three

had critical listening skills and the other three did not. I measured each participant’s

subjective experience, peripheral physiological changes and changes in facial expressions

as they listened to each mix. The feedback from the pilot study indicated that training

was required in order for participants to become familiar with the adjectives used to

describe induced emotions. I also decided to track head nods and shakes, a typical

response to musical enjoyment, based on a review of the recorded videos. I found

participants were moving their heads a lot in time with the music. Observation of
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potential differences between critical and non-critical listeners led us to revise my original

hypothesis.

6.2.1.2 Main hypothesis

The main hypothesis was refined to be that music production quality has more of an

effect on the induced and perceived emotions of critical listeners than those of non-critical

listeners. Thus, implying that the null hypothesis is that critical and non-critical listeners

experience the same induced and perceived emotions regardless of music production

quality. This is what I tested using statistical analysis in the later sections.

6.2.2 Participants

Twenty participants were recruited from within the university. 14 were male, 6 female

and their ages ranged from 26 to 42 (µ = 30.4, σ2 = 4.4). 10 participants had critical

listening skills, i.e, knew what critical listening involved and had been trained to do so

previously or had worked in a studio, while the other 10 did not i.e., no music produc-

tion experience and not trained in how to critique a piece of music. A pre-experiment

questionnaire established the genre preference of participants, shown in Table 6.1, since

some participants may have bias towards certain genres.

Table 6.1: Genre preference for participants

Genre No. of Participants

Rock/Indie 15
Dance/Electronic 11

Pop 8
Jazz 6

Classical 4

6.2.3 Stimuli

Ten different songs were used, each with nine mixes (90 mixes in total). Songs were

split into three study groups, where mixes for songs within a study group were created

by 8 student mix engineers and their instructor, who was a professional mix engineer

(the same professional mix engineer participated in Groups 1 and 2). These mixes were

obtained from the experiment conducted in [134] and the same ones used in Chapter 3.

Mixes of a song had been rated for mix quality preference by all the members of the

other study groups, so no one rated their own mix. Further details on how the stimuli

was obtained can be seen in [134] and in Chapter 3. For my experiment, I selected
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the lowest and highest quality rated mixes of each song. Table 6.2 shows the names of

each song, the song genre and which group mixed each song. Some song names had to

be removed due to copyright issues, but the rest are available on the Open Multitrack

Testbed [137]. All mixes were loudness normalised using ITU-R BS. 1770-2 specification

[138] to avoid bias towards loud mixes.

Table 6.2: Song titles, song genres and mix groups. Songs in italics are not available
online due to copyright restrictions.

Song Name Genre Mixed By

Red to Blue - (S1) Pop-Rock Group 1
Not Alone - (S2) Funk Group 1
My Funny Valentine - (S3) Jazz Group 1
Lead Me - (S4) Pop-Rock Group 1
In the Meantime - (S5) Funk Group 1
- (S6) Soul-Blues Group 2
No Prize - (S7) Soul-Jazz Group 2
- (S8) Pop-Rock Group 2
Under a Covered Sky - (S9) Pop-Rock Group 2
Pouring Room - (S10) Rock-Indie Group 3

6.2.4 Measurements

6.2.4.1 Physiological Measures

To measure skin conductance I used small (53mm x 32 mm x 19 mm) wireless GSR

sensors developed by Shimmer Research. The GSR module was placed around the wrist

of their usually inactive hand, and electrodes strapped to their index and middle finger.

ECG measurements were attempted but discarded due to extreme noise levels in the

data, at least partly since participants moved in the rotatable chair provided.

6.2.4.2 Facial Expression and Head Nod-Shake

To record video for facial expression and head nod/shake detection, I used a Lenovo

720p webcam that was embedded in the laptop used to perform the experiment. In

Figure 6.1 we can see the automatic facial feature tracking for one of my participants.

6.2.4.3 Self-Report

After listening to each piece of music, participants used GEMS-9 to rate the emotions

induced while listening. This was done using a 5-point Likert scales ranging from ‘Not

at all’ to ‘Very much’ based on 9 adjectives; wonder, transcendence, power, tenderness,

nostalgia, peacefulness, joyful activation, sadness and tension. Each participant also
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Figure 6.1: Facial features tracked for detecting facial action units during music
listening.

rated the emotions they perceived in each song using three discrete (1-100) sliders for

arousal, valence and tension. They were also asked to indicate how much they liked each

piece of music they heard based on a 5-point Likert scale ranging from ‘Not at all’ to

‘Very much’.

6.2.4.4 User Interface

The physiological measurements, self-report scores and video were recorded into a be-

spoke software program developed for the experiment. It was designed to allow the

experiment to run without the need for assistance, and the graphical user interface was

designed to be as aesthetically neutral as possible.

6.2.4.5 Pre- and Post-Experiment Questionnaires

I provided pre- and post-experiment questionnaires. The pre-experiment questionnaire

asked simple questions related to age, musical experience, music production experience,

music genre preference and critical listening skills. There was also a question clarifying

each participant’s emotional state as well as how tired they were when they started the

study. If any participant indicated that they were very tired, I asked them to attempt

the experiment at a later time once rested.

The post-experiment questionnaire asked questions such as could they hear an audible

difference between the two mixes of each song, was there any difference in emotional

content between the two mixes of each song and was there any difference in the induced

emotions between the two mixes of each song. These were all asked on a 5-point Likert

scale ranging from ‘Not at all’ to ‘Very much’.
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6.2.5 Setup

The experiment took place in a dedicated listening room at the university. The room

was very well lit, which was important for facial expression analysis and head nod/shake

detection. Each participant was sat at a studio desk in front of the laptop used for the

experiment. The audio was heard over a pair of studio quality loudspeakers, where the

participant could adjust the volume of the audio to a comfortable level. Figure 6.2 shows

the room in which the experiment was conducted.

Figure 6.2: Studio space where the experiment was conducted.

6.2.6 Tasks

After the pre-experiment questionnaire, I trained each participant in how the interface

worked. They were supervised while they listened to two example songs and they were

asked if they understood all the adjectives and terms used in the experiment. If they

did not understand any adjective or term, they were referred to a dictionary where the

adjective or term was subsequently explained to them.

Each participant was then asked to relax and listen to the music as they would at home

for enjoyment. Next, three minutes of relaxing sounds were played to each participant

in order to get an emotional baseline. They then had to click play in order for one of

the mixes to be heard, where the order in which mixes were presented was randomised.

While the music was playing, GSR measurements and facial and head movements were

recorded. Once the music finished, each participant rated the induced emotions using

GEMS-9. They then rated perceived emotions on the Arousal-Valence-Tension scale and
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rated how much they liked each mix. Once answers were submitted, there was another

30 seconds of relaxing sounds played for an emotional baseline and the same procedure

repeated for the next mix. The participant was updated on their progress throughout

the experiment via the software. Finally, the participant filled out the post-experiment

questionnaire and the experiment was concluded. This whole process is illustrated in

Figure 6.3.

Training (2 Songs) Baseline (3 mins)
Listen, ECG, 
GSR, FAU’s + 
Nod-Shake

GEMS-9

A-V-T + Like

Baseline (30 secs)

Post-experiment 
Questionnaire

Pre-experiment 
Questionnaire

(20 Mixes)

Figure 6.3: Tasks involved in the experiment.

6.2.7 Data Processing

Skin conductance response (SCR) has been shown to be useful in analysis of GSR data

[139, 140]. I used Ledalab 5 to extract the timing and amplitude of SCR events from the

raw GSR data (sampled at 5Hz) using Continuous Decomposition Analysis (CDA) [141].

Interpolation was performed and the mean, standard deviation, positions of maxima and

minima, and number of extrema divided by task duration, were calculated from the SCR

amplitude series for each mix [139, 142]. GSR data of one critical listener was discarded

due to poor electrode contact.

I extracted head nod events, head shake events and dimensional measures such as

arousal, expectation, intensity, power and valence from each video clip using the clas-

sification method introduced in [143]. This method captures each of these events and

dimensional emotion values from every 20 frames (0.8 sec) of video. Head nod and head

shake events are binary values, while the rest of the features are continuous values. The

classification method used for this was trained to capture head nod, head shake events

and variations of these using Hidden Markov Models and Support Vector Machines. I

extracted the total head shake and head nod events and took average and standard

deviation values for the rest of the features for each video clip.

Intensity values (0-1) of eight AUs, see Table 6.3, were extracted every five frames (0.2

sec) for each video, using the method of [144]. I calculated the average and standard

deviation values of each AU for each video clip.
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Table 6.3: Extracted Action Units

AU Number FACS Name

AU1 Inner brow raiser
AU2 Outer brow raiser
AU4 Brow lowerer
AU12 Lip corner puller
AU17 Chin raiser
AU25 Lip raiser
AU28 Lip suck
AU45 Blink

6.3 Experiment and Results

Table 6.4 summarises the conditions tested in my experiment. In conditions C1, C2,

C5 and C6, I constrained listener type and tested if there was a statistical difference in

emotional response ratings and scores based on mix quality. In conditions C3, C4, C7

and C8 I constrained mix quality type and tested if there was a statistical difference in

emotional response ratings and scores based on critical listening skills.

I used two types of weightings for ratings and scores, similar to the approaches in [145–

147]. The audible difference weighting was used in conditions C1 - C4. It weighted

participant results by how much they indicated they could hear an audible difference

between the high and low quality mix types. The perceived emotional difference weight-

ing was used in conditions C5 - C8, based on how much participants could perceive an

emotional difference between the high and low quality mixes. Weights were calculated

based on each participant’s response to questions asked in the Post-Experiment ques-

tionnaire. Each participant indicated on a Likert scale how much they could perceive

an audible difference between the two mixes of each song and to what extent they could

perceive an emotional difference between the mixes of each song. Weighting was applied

as WR = ORDX
N , where OR is the original and WR the weighted result, DX is the Likert

value for either perceived audible difference or perceived emotional difference, and N is

the number of points used in the Likert scale.

In conditions C1, C2, C5 and C6 I used the Wilcoxon Signed Rank non-parametric

statistical test because my data is ordinal and I have the same subjects in both datasets.

In conditions C3, C4, C7 and C8 I used the Mann-Whitney U non-parametric statistical

test because my data is ordinal and I am comparing the medians of two independent

groups. In each table in this section the results shown are p-values from the statistical

tests for rejecting the null hypothesis, where the numbers in bold are significant (p <

0.05). I have not used the Bonferroni correction because the method is concerned with



Intelligent Subgrouping of Multitrack Audio 89

the general null hypothesis. In this instance, I am investigating how emotions and

reactions vary along the many different dimensions tested [148].

The data used for this analysis can be accessed online1 for further examination.

Table 6.4: Different types of conditions tested

Condition Constrained Varied Weighting Statistical Test

C1 Critical Listener High Quality Mix vs Low Quality Mix Audible Difference Wilcoxon Sign Rank
C2 Non-critical Listener High Quality Mix vs Low Quality Mix Audible Difference Wilcoxon Sign Rank
C3 High Quality Mix Critical Listener vs Non-Critical Listener Audible Difference Mann-Whitney U
C4 Low Quality Mix Critical Listener vs Non-Critical Listener Audible Difference Mann-Whitney U
C5 Critical Listener High Quality Mix vs Low Quality Mix Emotional Difference Wilcoxon Sign Rank
C6 Non-critical Listener High Quality Mix vs Low Quality Mix Emotional Difference Wilcoxon Sign Rank
C7 High Quality Mix Critical Listener vs Non-Critical Listener Emotional Difference Mann-Whitney U
C8 Low Quality Mix Critical Listener vs Non-Critical Listener Emotional Difference Mann-Whitney U

6.3.1 GEMS-9

Table 6.5 compared the ratings for each of the GEMS-9 emotional adjectives on a song by

song basis for conditions C1 to C4. I have removed any p-values that were not significant

in order to make the tables easier to read. There are four statistically significant p-

values for C1 in contrast to C2 where there are no statistically significant p-values. This

occurred for two songs and happened for the emotions transcendence, tenderness, joyful

activation and tension. I see a lot more significant p-values for C3 and C4 than for C1

and C2. I have 47 significant p-values out of a possible 90 for C3 and 43 significant p-

values out of 90 for C4. The most amount of significant p-values occur for the emotions

of nostalgia, peacefulness, joyful activation and sadness.

6.3.2 Arousal-Valence-Tension

Table 6.6 compares the ratings for Arousal-Valence-Tension dimensions on a song by

song basis for Conditions C1 to C4. For C1, there are four statistically significant p-

values for arousal, two for valence, and two for tension. This is in contrast to C2 where

there is one significant p-value for arousal and one for valence. The significant p-values

for C1 are related to six songs in contrast to C2 where they are only related to one

song. For both C3 and C4, there are six significant p-values for arousal, all ten for

valence and four for tension. p-values for both are similar in terms of distribution over

the dimensions, but they differ by song.

1https://goo.gl/EA86K2
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Table 6.5: GEMS-9 - Audible Difference Weighting for Conditions C1 to C4.

C1 Wonder Trans Power Tender Nostal Peace Joyful Sadness Tension

S4 0.031 0.031
S7 0.031 0.031

C2 Wond Trans Power Tender Nostal Peace Joyful Sadness Tension

C3 Wonder Trans Power Tender Nostal Peace Joyful Sadness Tension

S1 0.030 0.042 0.014 0.043 0.011 0.023
S2 0.039 0.028 0.007 0.034
S3 0.024 0.005 0.041
S4 0.022 0.018 0.038 0.028 0.007 0.027
S5 0.042 0.031 0.035
S6 0.039 0.028 0.041 0.014
S7 0.006 0.038 0.038
S8 0.035 0.036 0.038 0.031 0.013 0.027
S9 0.027 0.043 0.030 0.008 0.035 0.042 0.017
S10 0.017 0.022 0.031 0.020 0.027

C4 Wonder Trans Power Tender Nostal Peace Joyful Sadness Tension

S1 0.010 0.033 0.029 0.006 0.025 0.049
S2 0.011 0.023 0.009
S3 0.028 0.014 0.005 0.026
S4 0.039
S5 0.042 0.024
S6 0.034 0.010 0.018 0.028 0.020
S7 0.020 0.034 0.004 0.023
S8 0.017 0.015 0.045 0.021 0.007 0.006
S9 0.049 0.018 0.039 0.031
S10 0.004 0.016 0.041 0.006 0.011 0.008 0.007 0.032

6.3.3 GSR

I compared the mean, standard deviation, positions of maxima and minima and fre-

quency of event values for each participant’s GSR data on a song by song basis. How-

ever, since there were few significant p-values I did not present the results in a table.

This was also the only part of the experiment where I tested conditions C1 to C4 as

well as conditions C5 to C8, as it was the only time these conditions gave a noticeable

amount of significant p-values.

When I tested C1 and C2, there were only 3 out of 50 statistically significant p-values

for critical listeners and 3 out of 50 statistically significant p-values for non-critical

listeners. Similar results occurred when I tested conditions C5 and C6. C3 gave 5 out

of 50 statistically significant p-values for two songs, and there were 4 out of 50 for C4.
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Table 6.6: Arousal-Valence-Tension - Audible Difference Weighting for Conditions C1
to C4.

C1 A V T C3 A V T
S1 S1 0.019 0.013 0.045
S2 S2 0.011
S3 0.021 S3 0.004 0.021
S4 0.002 S4 0.018
S5 S5 0.008 0.017
S6 S6 0.021 0.009 0.049
S7 0.039 S7 0.002
S8 0.035 S8 0.008 0.006 0.038
S9 0.027 0.016 S9 0.009 0.002
S10 0.016 0.031 S10 0.019 0.004

C2 A V T C4 A V T
S1 S1 0.026 0.011
S2 0.047 0.039 S2 0.007 0.005
S3 S3 0.038 0.006
S4 S4 0.014
S5 S5 0.004 0.010 0.010
S6 S6 0.005 0.026
S7 S7 0.006
S8 S8 0.011 0.021 0.041
S9 S9 0.007 0.015 0.028
S10 S10 0.013

When I tested condition C7, there were 9 out of 50 statistically significant p-values. This

is in contrast to C8 where there were 2 out of 50 statistically significant p-values.

6.3.4 Head Nod and Shake

I compared Head Nod and Shake scores on a song by song basis. There were no sta-

tistically significant p-values for condition C1, and only 2 out 70 p-values for C2 were

statistically significant. The results for conditions C3 and C4 are summarised in Ta-

ble 6.7. For C3, I have 31 significant p-values out of a possible 70. The most amount of

significant p-values occurred for shake, expectation and power. C4 gave 35 significant

p-values out of 70. The largest amount of significant p-values occur for shake, arousal

and power.

6.3.5 Facial Action Units

I compared the standard deviation for each participant’s Facial Action Unit scores on a

song by song basis. I saw 3 out of 80 statistically significant p-values for condition C1,
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Table 6.7: Head Nod and Shake - Audible Difference Weighting for Conditions C3
and C4.

C3 Nod Shake Arousal Expectation Intensity Power Valence

S1 0.023 0.041 0.006 0.006 0.006
S2 0.017 0.034
S3 0.002 0.009 0.004 0.017 0.000
S4 0.009 0.002
S5 0.026 0.006 0.006
S6 0.013 0.026 0.038
S7 0.014
S8 0.011 0.021 0.009 0.031
S9 0.005 0.001 0.001 0.002 0.003
S10 0.002

C4 Nod Shake Arousal Expectation Intensity Power Valence

S1 0.005 0.026
S2 0.006 0.010 0.009 0.010
S3 0.028 0.014
S4 0.045 0.007
S5 0.034 0.036 0.017
S6 0.007 0.038 0.031 0.045 0.031
S7 0.005 0.007 0.011 0.005
S8 0.001 0.017 0.000 0.021 0.004
S9 0.017 0.017 0.021 0.034
S10 0.006 0.028 0.023 0.013

whereas C2 gave 7 out of 80 statistically significant p-values. Results for conditions C3

and C4 are summarised in Table 6.8. There were 23 significant p-values out of a possible

80, mainly for AU1, AU4 and AU45. For condition C4, I have 20 significant p-values

out of 80, mostly from AU4 and AU45.

I also examined which AUs had the highest intensity throughout the experiment. I

checked every mix that each participant listened to, to see if any of their average AU

intensities was >= 0.5. If the average AU intensity was >= 0.5 I marked the AU for

that particular mix with a 1, otherwise a 0. I summarised the results as a percentage of

all the mixes listened to for critical listeners and non-critical listeners in Table 6.9. AU1

and AU4 gave the greatest amount of average AU intensities >= 0.5. The results for

AU12 and AU17 were omitted since all the results were 0. Critical listeners experienced

a greater number of average AU intensities >= 0.5 than non-critical listeners for all AUs

except AU28. However, the difference in the case of AU28 is 0.005, which is negligible.
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Table 6.8: FACS - Audible Difference Weighting for Conditions C3 and C4.

C3 AU1 AU2 AU4 AU12 AU17 AU25 AU28 AU45

S1 0.011 0.021
S2 0.038 0.006
S3 0.026 0.038
S4 0.026 0.014 0.038
S5 0.045 0.007
S6 0.004 0.045
S7 0.038 0.006 0.011 0.031
S8 0.038 0.004 0.026
S9 0.038 0.014
S10 0.021

C4 AU1 AU2 AU4 AU12 AU17 AU25 AU28 AU45

S1 0.009 0.045
S2 0.031 0.045 0.045
S3 0.003 0.007
S4 0.009 0.038
S5 0.006
S6 0.002 0.031 0.011
S7 0.021
S8 0.045 0.014 0.011
S9 0.009
S10 0.006 0.026

6.4 Discussion

6.4.1 Findings

6.4.1.1 GEMS-9

With GEMS-9 I investigated if there was a significant difference in the distribution

of induced emotions of each listener type. Table 6.5 results indicate that the critical

listeners were the only group where there was significant differences in the distribution

of induced emotions between the two mix types. This suggests that my hypothesis is

true. However, since there are so few p-values in comparison to the amount of tests I

can not draw a strong conclusion from this.

Table 6.5 results also indicate that high quality mixes had a greater significant difference

on the distribution of induced emotions between the two listener types. These results

support my hypothesis, in that the high quality mix had more of an impact emotionally

on one listener type over the other. They also imply that there was a greater difference

in the indicated levels of joyful activation and sadness between critical and non-critical
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Table 6.9: Percentage of mixes where average AU intensity was >= 0.5. (i) Non-
critical listeners (ii) Critical listeners

(i) AU1 AU2 AU4 AU25 AU28 AU45
A 0.9
B 0.85 0.85
C 0.55 0.7
D
E 0.05 0.95 0.05
F 0.75 0.05
G 0.25 0.55
H 1 0.75 0.05
I 0.75 0.7 0.05
J 0.85

Total % 0.43 0.005 0.61 0.01 0.005 0.005

(ii) AU1 AU2 AU4 AU25 AU28 AU45
K 1 1
L 0.95 0.05 0.25 0.25 0.1
M 0.1 0.95 0.2
N 0.55 0.35
O 1
P 0.9 1
Q 0.45 1
R 0.2 0.35 0.1 0.15
S 0.75 0.45 1
T 0.8 0.05

Total % 0.57 0.05 0.695 0.035 0 0.045

listeners for the high quality mixes (C3). Joyful activation and sadness would be syn-

onymous with the positive and negative valence, implying that the quality of the mix

may have an impact on how happy or sad a critical listener may feel.

6.4.1.2 Arousal-Valence-Tension

I investigated if there was a significant difference in the distribution of emotions perceived

by each listener type along Arousal-Valence-Tension dimensions. Table 6.6 indicates that

for critical listeners there are more examples of where there are significant differences in

the distribution of perceived emotions, especially with respect to arousal. This was the

only time a noticeable difference in the amount of significant p-values occurred when I

compared the critical listener’s high quality mixes to critical listener’s low quality mixes.

This also occurred in the case of non-critical listeners (C2), but to a lesser extent. These

results support my hypothesis, in that critical listeners were able to perceive an emotional

difference between the two mixes much more so than non-critical listeners and this was

mostly with respect to arousal and tension.
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Table 6.6 showed a lot of significant p-values for Conditions C3 and C4 in comparison

to C1 and C2. Interestingly, I have the same amount of significant values in each

dimension for both conditions C3 and C4. This implies that there are the same amount

of significant differences in the distribution of emotions for both listener types due to

mix quality, but it varies by song. The two listener types are perceiving different levels

of arousal and tension, but on different songs. However, this may have something to

do with the participant’s genre preference. These results are similar to those seen in

Table 6.5 (iii) and (iv), in the respect that joyful activation corresponds to positive

valence and sadness corresponds to negative valence.

6.4.1.3 GSR

Overall GSR gave largely inconclusive results except when I examined the responses of

critical and non-critical listeners to high quality mixes (C3, C7). There is also a trend

when I compare the results for C3 and C7, against the results for critical and non-

critical listeners low quality mixes (C4, C8). There are more significant results when I

do this comparison as opposed to comparing responses of critical listeners to high and

low quality mixes (C1, C5), against responses of non-critical listeners to high and low

quality mixes (C2, C6). I also saw this for GEMS-9 and Arousal-Valence-Tension. Thus

testing critical versus non-critical listener responses to high versus low quality mixes

supported my hypothesis.

6.4.1.4 Head Nod and Shake

Head nod/shake results proved to be conclusive and supported my hypothesis. The

difference in nodding is far more apparent for low quality mixes (C4) than high quality

mixes (C3). Notably, on low quality mixes, non-critical listeners nodded their heads

more than critical listeners. This could mean that non-critical listeners might enjoy the

mix regardless of mix quality. I also see something similar for arousal and power where

there are slightly more significant p-values for the low quality mixes than for the high

quality mixes.

Power, expectation and arousal seem to be divisive features when comparing the types of

listeners. Power is based on the sense of control, expectation on the degree of anticipation

and arousal on the degree of excitement or apathy [143]. These are features based on

tracking emotional cues when conversing with someone, so it is interesting to see them

having such an effect during music listening. Having examined the participant’s videos

I found that since they were sitting in a chair that could rotate, they sometimes moved

the chair in time with the music. The classifier detected this as a head shake, which
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would normally be viewed as a negative response [101], but in this case it could indicate

that the participant is engaged with the music and most likely enjoying it. It is also

worth noting that music is very cultural and certain individuals might react differently

than others with respect to head nods and shakes.

6.4.1.5 Facial Action Units

Table 6.8 results indicated that the high quality mixes had a greater effect than low

quality mixes on the distribution of AU1 and AU4 between the two listener types. AU1

corresponds to inner brow raiser and AU4 corresponds to brow lowering, so this is similar

to research on Facial EMG and music, where the brow is associated with the processing

of negative events [91, 92]. AU45 corresponds to blinking. There is one more significant

AU45 result for condition C4 than there is condition C3, which might imply that there

is a difference in intensity of blinking for critical and non-critical listeners.

The percentage total of average AU intensities >= 0.5 for AU45 is small, but provided

a large amount of significant p-values in Table 6.8. This suggests that the differences in

blink intensity between listener type may have been very subtle.

This is the first experiment of its kind that has looked at automatic facial expression

recognition and tracking head nod/shakes in a music production quality context. By

inspecting the videos I found that some participants were much more expressive in their

face than others or might be a lot more inclined to nod and shake their head than use

facial expressions. Some critical listeners gazed left or right of the camera, closed their

eyes while listening for a prolonged duration, placed their hand under their chin, looked

down, looked up, moved their head back and forth, tilted their head or sucked their lip.

For non-critical listeners, there were not as many AU’s activated, except in one case

where the participant was looking away, moving their body on the chair left and right,

moving their head back and forth and moving their head left and right. Some stills from

the videos can be seen in Figure 6.4, where the top two participants are critical listeners

and the bottom two are non-critical listeners.

6.4.2 Measures

Self-report measures proved to be the most revealing when comparing mixes and when

comparing listener types. I expected the GSR results to be more telling, but found them

to be mostly inconclusive. This might have been due to noise in the data as a result of

poor electrode contact which is similar to what happened in [89].
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Figure 6.4: Still images of four participants from the videos made during the experi-
ment. Top two rows are critical listeners and the bottom two are non-critical listeners.

The values for the AUs only became interesting when I looked at the standard devia-

tion. This is expected since someone that is more excited by music tends to be more

expressive in their face as the music is played. Head nod/shake detection proved to be
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Figure 6.5: The percentage of significant results for each statistical test performed for
each condition. The highest percentage of significant results occurred for GEMS9 (In-
duced emotion), Arousal-Valence-Tension (Perceived emotion), Head Nod/Shake and

Facial Action Units.

very interesting when comparing the types of listeners. Non-critical listeners nodded

their heads more than critical listeners when listening to the poor quality mix, which

was something I decided to analyse based on my initial findings in the pilot study.

6.4.3 Design

As beneficial as it was to have a pilot study, I learned a lot about experimental design

from the main part of the experiment, which could be used to help future studies. One

participant reported that most of the emotions that music induces for them comes from

the lyrics. They reported that if they disliked the lyrics, then they tended to dislike the

song, thus potentially meaning a negative or lack of emotional response. This aspect

of music listening may have had an impact on the emotional responses of non-native

English speakers. Ten of the participants were non-native speakers and may not have

fully understood all lyrics, so this is a confounding variable I had not considered.

Recent research on perceptual evaluation of high resolution audio found that providing

training before conducting perceptual experiments greatly improved the reliability of

results [149]. In my experiment I provided two training songs, but this was to become
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familiar with the experimental interface. However, it could be argued that training

would have blurred the distinction between critical and non-critical listeners.

Ideally I would have used songs in the experiment that came from a wider variety of

genres. A number of participants were dissatisfied with the songs because they simply

did not like the genre. But this was out of my control since I used songs rated in a

previous experiment [13]. I would have also liked to have had a bigger sample size for

my experiment, to further generalise the results.

I would also suggest that each participant be made sit on a chair that does not rotate or

have wheels. When some participants were enjoying a song they tended to move around,

which sometimes caused sensors to become dislodged and rendered the acquired data

unusable.

6.5 Conclusion

My exploratory study provides an insight into the relationship between music produc-

tion quality and musically induced and perceived emotions. I highlighted some of the

challenges with working with physiological sensors and conducting listening tests when

trying to measure emotional responses in a musical context. I conducted the first ex-

periment of its kind using facial expression analysis and head nod-shake detection in

conjunction with a perceptual listening test.

When I tested to see if critical listeners and non-critical listeners had different emotional

responses based on the difference in music production quality, the results were inconclu-

sive for GSR, facial expression and head nod-shake detection. Results strongly agreed

with my hypothesis only when I looked at the self-report of perceived emotion.

When I examined just high quality mixes and looked at the difference in emotions of

critical and non-critical listeners I found significant p-values in most cases. This was

most evident for self-report, head nods/shakes and facial expression. When I examined

low quality mixes and looked at the difference in emotions of critical and non-critical

listeners I also found a lot of significant p-values, but to a lesser extent than that of the

high quality mixes. This was also most evident for self-report, head nods/shakes and

facial expression.

The results implied that emotion in a mix, whether induced or perceived, mattered the

most to those with critical listening skills, which agrees with my hypothesis. This was

most evident from the GEMS-9, Arousal-Valence-Tension, Head Nod/Shake Detection

and Facial Action Unit results since they had the most amount of significant p-values.
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If one was to take a cynical view, it could be said that using a more professional and

experienced mix engineer to mix a piece of music only really matters to those who

have been trained to listen for mix defects, and mix quality has little bearing on the

layperson emotionally. This is a very important result for audio engineers, specifically

in the context of automatic mixing systems and this thesis. The results imply that the

perceived quality of an automatically generated mix may not be important to those

without critical listening skills. It suggests that automatically generated mixes may be

good enough for the general public and casual music listeners. This is something I touch

on in the following chapter, where I compare automatically generated mixes with human

made mixes. However, all the participants in Chapter 7 had critical listening skills. It

would have been interesting to have had some non-critical listener participants to do a

comparison.

6.6 Future Work

It would be interesting to perform pair-wise ranking between the two mix types, as

Likert scales may not be the best tool for affect studies since the values they ask people

to rate may mean different things to each participant [150]. However, one argument

against pairwise testing is that it is time consuming, e.g. for 10 samples, one might need

10*9/2 comparisons [151, 152].

It would also be interesting to see if I would get similar results when non-critical listeners

are provided with training before the experiment i.e. trained to spot common mix

defects. This would help identify if the trained non-critical listeners exhibited emotions

based on what they think is expected of them due to the training.

I would like to track if a participant is singing along to the music being played, as this

could be regarded as a measure of engagement and potential enjoyment of the music.

This could be achieved by tracking the Action Units that correspond to the mouth as well

as having a microphone near the participant to verify if they were actually singing or not.

I would also recommend looking at tracking foot or finger tapping as this is a common

form of movement to music [99]. This could be achieved by attaching accelerometers to

the participant’s feet and placing small piezo contact microphones on their fingertips.

I hope this work will inspire future research. In particular there is a need to use more

varied genres of music for evaluation and to see if emotional measures correlate well with

low to high level audio features. This could potentially be used in automatic mixing

systems such as [2, 18, 133, 153].



Chapter 7

Automatic Minimisation of

Masking in Multitrack Audio

using Subgroups

7.1 Introduction

The iterative process of masking minimisation when mixing multitrack audio is a chal-

lenging optimisation problem, in part due to the complexity and non-linearity of audi-

tory perception. In this chapter, I first present a multitrack masking metric inspired by

the MPEG psychoacoustic model. I investigate different audio processing techniques to

manipulate the frequency and dynamic characteristics of the signal in order to reduce

masking based on the presented metric. I also investigate whether or not automatically

mixing using subgrouping is beneficial or not to perceived quality and clarity of a mix.

Evaluation results suggest that the masking metric when utilised in an automatic mix-

ing framework reduces inter-channel auditory masking as well as improves the perceived

quality and perceived clarity of a mix. Furthermore, my results suggest that using sub-

grouping in an automatic mixing framework can also improve the perceived quality and

perceived clarity of a mix.

It was shown in Chapter 4 that none of the professional mix engineers created subgroups

with the aim of reducing masking. However, the results did show they subgrouped to

apply effects such as DRC to many instruments at the same time and to maintain good

gain structure. Also, since masking reduction is one of many goals when mixing audio

[154]. It was decided to see if combining these two techniques could be used together to

mix effectively.

101
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The structure of this chapter is summarised as follows. In Section 7.2 describes the

methodology of how I formed an automatic multitrack masking minimisation system and

how I conducted the subsequent listening test. In section 7.3 performance evaluations

are presented and finally in section 7.4 I discuss the most interesting aspects of the

research and outline future directions.

7.2 Methodology

7.2.1 Research Questions and Hypotheses

The main hypothesis I aim to test is can my proposed automatic mixing system be

used to reduce the amount of auditory masking that occurs in a multitrack mix and

subsequently improve its perceived quality. I also tested two further hypotheses, can

using subgroups when generating an automatic mix improve the perceived quality and

clarity of a mix and can the use of subgroups in an automatic mixing system have

an impact on the perceived emotions of the listener over automatic mixes that do not

use subgroups. These hypotheses were evaluated through examination of the objective

performance and subjective listening tests.

7.2.2 Automatic Mixing System

There were two types of automatic mixes generated for this experiment, one which made

use of subgrouping and one which did not. The mix process is illustrated in Figure 7.1.

7.2.3 Audio Processing and Control Parameters

7.2.3.1 Subgrouping

In the multitrack of each song I used for the experiment, I created subgroups based on

typically grouped instrumentation such as vocals, drums and guitars etc. This is similar

to the approach I developed in chapter 4. This allowed us to use the optimisation

mixing technique presented here to create a number of submixes and then create a final

mix by mixing each of the submixes together. This essentially gave us a multi-layer

optimisation framework. When subgrouping was not used in an automatic mix, the

optimisation mixing technique was applied to all the audio tracks at once.
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Raw Audio Tracks
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Figure 7.1: Automatic mixing process.

7.2.3.2 Loudness Normalisation

Before I applied the optimisation mixing technique I employed loudness normalisation

on each audio track in each multitrack. I performed loudness normalisation on all of

the audio tracks using the ITU-R BS. 1770-2 specification [138]. Each audio track

was loudness normalised to -24 LUFS except in the case of a lead vocal, where it was

loudness normalised to -18 LUFS. I made the lead vocal louder than everything else as

it is usually the most important audio track within a mix [17]. Once a subgroup had

been mixed, it was also loudness normalised to -24 LUFS except in the case of vocal

subgroups, which would be set to -18 LUFS. One of the caveats of using this loudness

normalisation process is the potential for it to bring up the noise floor and thus may not

be the best solution for an automatic mixing system. This effect could potentially be

mitigated with an automatic gating system such as the one described in [132]. However,

I did not include this in my experiment and is something worth considering in future

work.
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7.2.3.3 Equalisation

I designed a six-band equaliser to be applied in the optimisation process. Six different

cascaded second-order IIR filters were designed to cover the typical frequency range used

when mixing. The filter specification is shown in Table 7.1

Table 7.1: Six band equaliser filter design specifications

Band No. Centre Frequency (Hz) Q-Factor

1 75 1
2 100 0.6
3 250 0.3
4 750 0.3
5 2500 0.2
6 7500 1

The gains of the six-band equaliser filter for each track are selected as the control pa-

rameters to be obtained through the optimisation procedure. The control parameters

in the equalisation cases are given by

xEQ = [g1 g2 . . . gn], (7.1)

in which for each gi (vector-valued)

gi = [g1i g2i . . . g6i], (7.2)

contains the six gain controls for each track.

7.2.3.4 Dynamic Range Compression

The digital compressor model employed in my approach was a feed-forward compressor

with smoothed branching peak detector [61]. A typical set of parameters of a dynamic

range compressor includes the Threshold, Ratio, Attack and Release Times, and Make-

up gain. In the case of adjusting the dynamic of the signal to reduce masking through

optimisation, the values of threshold (T ), ratio (R), attack (a) and release (r) are control

parameters to be optimised. Since dynamics are my main focus here rather than the level,

the make-up gain of each track is set to compensate the loudness differences (measured

by EBU loudness standard [138]) before and after dynamic processing. The make-up

gain for each track is given by
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g∆i = LEBUi − L′EBUi, (7.3)

where LEBUi and L′EBUi represent the measured loudness before and after the dynamic

range compression respectively. The control parameters in the dynamic case are given

by

xDRC = [d1 d2 . . . dn] (7.4)

Similarly, every di is constituted of four standard DRC control parameters denoted as,

threshold (Ti), ratio (Ri) attack (ai), release (ri).

di = [Ti Ri ai ri] (7.5)

7.2.3.5 Control Parameters

The notation of the final control parameters to be optimised in the multitrack masking

minimisation process is given by

xC = [c1 c2 . . . cn], (7.6)

In this case, for each ci

ci =
(
g1,i ... g6,i Ti Ri ai ri

)
(7.7)

7.2.4 Masking Metric

7.2.4.1 MPEG Psychoacoustic Model

Audio coding or audio compression algorithms compress the audio data in large part by

removing the acoustically irrelevant parts of the audio signal. The MPEG psychoacous-

tic model [155] plays a central role in the compression algorithm. This model produces

a time-adaptive spectral pattern that emulates the sensitivity of the human sound per-

ception system. The model analyses the signal, and computes the masking thresholds

as a function of frequency [29, 155, 156]. The block diagram in Figure 7.2 illustrates the

simplified stages involved in the psychoacoustic model.
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parts of the audio signal. The MPEG psychoacoustic model 
[39] plays a central role in the compression algorithm. This 
model produces a time-adaptive spectral pattern that emulates 
the sensitivity of the human sound perception system. The 
model analyzes the signal, and computes the masking 
thresholds as a function of frequency [10, 38, 39]. The block 
diagram in Figure 4 illustrates the simplified stages involved in 
the psychoacoustic model.  

 
Figure 4 Flowchart of the MPEG psychoacoustic model. 

The procedure to derive masking thresholds is summarized as 
follows. 
 
The complex spectrum of the input signal is calculated using a 
standard forward FFT. A measure of unpredictability is 
calculated based on the polar representation of the spectrum. 
The spectral components are then grouped into threshold 
calculation partitions, which provide a resolution of 
approximately either one spectra component or 1/3 critical 
band, whichever is wider. The energy and unpredictability in 
the threshold partitions are computed through integration.  
 
A strong signal component reduces the audibility of weaker 
components in the same critical band and also the neighboring 
bands. The psychoacoustic model emulates this by applying a 
spreading function to spread the energy of a critical band across 
other bands. The total masking energy of the audio frame is 
derived from the convolution of the spreading function with 
each of the maskers. The spreading function, sf (measured in 
dB) used in this model is given by 

 

  

s f (i, j) =
0 B(z) ≤ −60

10
( x+B(dz ))

10 else

⎧
⎨
⎪

⎩⎪
,   (5) 

where the calculation of B(dz) can be found in [12]. dz is the bar 
distance between maskee and masker. Conversion between bar 
scale and frequency Hz can be approximated by 
 

  
z( f ) = 13arctan(0.00076 f )+ 3.5arctan ( f / 7500)2( ).   (6) 

The spreading function is then convolved with the partitioned, 
renormalized energy to derive the excitation pattern in 
threshold partitions. The unpredictability measure is convolved 
with the spreading function to take the spreading effect into 
account resulting. A likelihood measure known as the tonality 
index which determines if the component is more tone-like or 
noise-like, is calculated based on the energy and 
unpredictability in the threshold partitions. 
 

The masking threshold is determined by providing an offset to 
the excitation pattern, where the value of the offset strongly 
depends on the nature of the masker. The tonality indices 
evaluated for each partition are used to determine the offset of 
the renormalized convolved signal energy [39], which converts 
it into the global masking level. The values for the offset are 
interpolated based on the tonality index of a noise masker to a 
frequency-dependent value defined in the standard for a tonal 
masker. The interpolated offset is compared with a frequency 
dependent minimum value, minval, defined in the MPEG-1 
standard and the larger value is used as the signal to noise ratio. 
In the standard, Noise Masking Tone is set to 6 dB and Tone 
Masking Noise to 29 dB for all partitions. The offset is obtained 
by weighting the maskers with the estimated tonality index. 
The partitioned threshold derived for the current frame is 
compared with that of the two previous frames and the 
threshold in quiet. The maximum of three values is chosen to be 
the actual threshold.  
 
Pre-echoes occur when a signal with a sharp attack begins near 
the end of a transform block immediately following a region of 
low energy. Pre-echo can be controlled by detecting such 
transients and making a decision to switch to shorter windows 
(as relative to current window size leading to pre-echo) using 
perceptual entropy [38] as an indicator. 
 
The energy in each scale-factor band, Esf(sb) and the threshold 
in each scale-factor band, T(sb) are calculated as described [12] 
in a similar way. Thus the final MSR in each scale-factor band 
is defined a 

 
  
MSR(sb) = 10log10

T (sb)
Esf (sb)

⎛

⎝
⎜

⎞

⎠
⎟ .   (7) 

 
Metric III: MPEG masking metric derived from the final mix 
 
We can measure the amount of masking by looking at the 
masking threshold of the final stereo mix directly. This 
approach assumes that when there is more masking in the 
multitrack, there will be more masking within the final mix, and 
more efficient MPEG audio coding can be applied to the final 
mix. The masking metric of the mixture, Mmix then becomes 

 
  
Mmix =

MSR(sb)
Tmaxsb⊂Esf <T

∑ ,   (8) 

where Tmax is the predefined maximum amount of masking 
distance between T(sb) and Esf(sb) for each scale-factor band, 
which is set to 20 dB. 
�
Metric IV: MPEG masking metric based on cross-adaptive 
multitrack masking  
 
We adapt the masking threshold algorithm from MPEG audio 
coding into a multitrack masking metric based on a 
cross-adaptive architecture [36, 37]. The flowchart of the 
system is illustrated in Figure 5. 

MPEG Psychoacoustic Model
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Function and 

Excitation 
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Masking 

Threshold for 
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Pre-Echo 
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(MSR)

Input Signal

Masking Threshold and MSR

Figure 7.2: Flowchart of the MPEG psychoacoustic model [155].

The procedure to derive masking thresholds is summarised as follows. The complex

spectrum of the input signal is calculated using a standard forward FFT. A tonality

index as a function of frequency is calculated based on the local peaks of the audio

power spectrum. This index gives a measure of whether a component is more tone-

like or noise-like. This index is then interpolated between pure tone-masking-noise and

noise-masking-tone values. The tonality index is based on a measure of predictability,

where tonal components are more predictable and thus will have higher tonality indices

[157].

A strong signal component reduces the audibility of weaker components in the same

critical band and also the neighbouring bands. The psychoacoustic model emulates this

by applying a spreading function to spread the energy of a critical band across other

bands. The total masking energy of the audio frame is derived from the convolution of

the spreading function with each of the maskers. The spreading function, sf (measured

in dB) used in this model is given by

sf (i, j) =

0 B(z) ≤ 0

x
x+B(dz)

10 else
(7.8)

where the calculation of B(dz) can be found in [31]. dz is the bark distance between mas-

kee and masker. Conversion between bark scale and frequency Hz can be approximated

by

z(f) = 13 arctan(0.00076f) + 3.5 arctan((f/7500)2). (7.9)
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The spreading function is then convolved with the partitioned, re-normalised energy to

derive the excitation pattern in threshold partitions. The masking threshold is deter-

mined by providing an offset to the excitation pattern, where the value of the offset

strongly depends on the nature of the masker. The tonality indices evaluated for each

partition are used to determine the offset of the re-normalised convolved signal energy

[155], which converts it into the global masking level. The values for the offset are in-

terpolated based on the tonality index of a noise masker to a frequency-dependent value

defined in the standard for a tonal masker. The interpolated offset is compared with a

frequency dependent minimum value, minval, defined in the MPEG-1 standard and the

larger value is used as the signal to noise ratio. In the standard, Noise Masking Tone is

set to 6 dB and Tone Masking Noise to 29 dB for all partitions. The offset is obtained

by weighting the maskers with the estimated tonality index. The partitioned threshold

derived for the current frame is compared with that of the two previous frames and the

threshold in quiet. The maximum of three values is chosen to be the actual threshold.

The energy in each scale-factor band, Esf (sb) and the threshold in each scale-factor

band, T (sb) are calculated as described in [31], in a similar way. Thus the final masker-

to-signal ratio (MSR) in each scale-factor band is defined as

MSR(sb) = 10 log10(
T (sb)

Esf (sb)
) (7.10)

7.2.4.2 Cross-adaptive MPEG Masking Metric

I adapt the masking threshold algorithm from MPEG audio coding into a multitrack

masking metric based on a cross-adaptive architecture [2, 51]. The flowchart of the

system is illustrated in Figure 7.3.

To account for the masking that is imposed on an arbitrary track by the other accom-

panying tracks rather than by itself, I replace T (sb) with T ′(sb), which is the masking

threshold of track n caused by the sum of its accompanying tracks. Let H denote all the

mathematical transformations of the MPEG psychoacoustic model to derive the masking

threshold. I thus can compute T ′(sb) as

T ′n(sb) = H(

N∑
i=1,i 6=n

si) (7.11)

Esf,n(sb) denotes the energy at each scale-factor band of track n. I assume masking

occurs at any scale-factor band where T ′n(sb) > E(sb). The masker to signal ratio in

multitrack content becomes
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Figure 5 System flowchart of proposed cross-adaptive 
multitrack masking model.    

To account for the masking that is imposed on an arbitrary track 
by the other accompanying tracks rather than by itself, we 
replace T(sb) with   ′Tn(sb) , which is the masking threshold of 
track n caused by the sum of its accompanying tracks. Let H 
denote all the mathematical transformations of the MPEG 
psychoacoustic model to derive the masking threshold. We thus 
can compute   ′Tn(sb)  as 

 
  
′Tn(sb) = H ( si

i=1,i≠n

N

∑ ).   (9) 

Esf,n(sb) denotes the energy at each scale-factor band of track n. 
We assume masking occurs at any scale-factor band where 

  ′Tn(sb) > Esf ,n(sb) . The masker-to-signal ratio in multitrack 
content becomes 

 
  
MSRn(sb) = 10log10(

′Tn(sb)
Esf ,n(sb)

).   (10) 

We then can define a cross-adaptive multitrack masking 
measurement, Mn, as 

 
  
Mn = (

MSRn(sb)
Tmaxsb⊂Esf ,n< ′Tn

∑ ).   (11) 

 

III.! AUDIO EFFECTS AND CONTROL PARAMETERS 
 
Next we investigate the audio processing techniques used to 
reduce masking. Control parameters that define the 
characteristics of each audio effect are presented.  
 

A.! Equalization  
 
We designed a six-band equalizer to be applied in the 
optimization process. Six different second-order IIR filters 
were connected in cascade to equalize the audio signal over the 

typical frequency range. The filter specification is shown in 
Table 1. 
 
Table 1 Six-band equalizer filter design specifications. 

Band No. Center Frequency (Hz) Q-factor 

1 75 1 
2 100 0.6 

3 250 0.3 
4 750 0.3 
5 2500 0.2 
6 7500 1 

 
The gains of the six-band equalizer filter for each track are 
varied through the optimization procedure. The control 
parameters are thus given by 
    x = [g1,g2 ,...,gN ],   (12) 
in which for each gi (vector-valued) 

 
    
gi = [ g1,i g2,i  g6,i ],   (13) 

contains the six gains control for each track. 
 

B.! Dynamic range compression  
 
The digital compressor model design employed in our approach 
is a feed-forward compressor with smoothed branching peak 
detector [40]. A typical set of parameters of a dynamic range 
compressor (DRC) includes the Threshold (T), Ratio (R), Knee 
width (K), Attack (a) and Release (r) Times, and Make-up gain. 
The Threshold denotes the level above which gain reduction 
starts. The Ratio determines the input/output ratio for signals 
exceeding the threshold level. The Knee width controls whether 
the threshold-determined transition point in the transfer 
characteristics of a compressor has a sharp (hard-knee) or 
smooth transition (soft-knee). The Attack and Release, also 
known as time constants, determine how fast the compressor 
acts. Since the compressor reduces the level of the signal, a 
Make-up Gain can be added at the output to compensate for 
level loss. In the case of adjusting the dynamic of the signal to 
reduce masking through optimization, the values of threshold, 
ratio, knee, attack and release are control parameters to be 
optimized. Since dynamics are our main focus here rather than 
the level, make-up gain of each track is set to compensate the 
loudness differences (measured by the ITU 1770 loudness 
standard [41]) before and after dynamic processing. The 
make-up gain for each track is given by 
 

   
g,i = LITU ,i − ′LITU ,i ,   (14) 

where LITU,i, L’ITU,i represent the measured loudness before and 
after the dynamic range compression respectively. The control 
parameters in the dynamic case are given by 

 

   

x = [d1,d2 ,...,dN ]

di = [ Ti Ri Ki ai ri ]
,   (15) 

Accompanying Sum

Cross-Adaptive Analysis Using MPEG 
Psychoacoustic Model

SNS2S1 ...
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...

...
Masking 

Measurement
Masking 

Measurement
Masking 

Measurement

MNM2M1 ...

Figure 7.3: System flowchart of proposed cross-adaptive multitrack masking model.
The multitrack consists of N sources that have been pre-recorded onto N tracks. Track
n therefore contains the audio signal from source n, given by sn and s′(n) =

∑N
i=1,i6=1 si.

T ′
n is defined in Eq. 7.11 and Est,n is the energy in each scale-factor band. These are

subsequently used to calculate Mn in Eq. 7.13

MSRn(sb) = 10 log10

T ′sb
Esf,n(sb)

(7.12)

I then can define a cross-adaptive multitrack masking, Mn as

Mn =
∑

sb⊂Esf,n<T ′
n

MSRn(sb)

Tmax
(7.13)
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where Tmax is the predefined maximum amount of masking distance between T (sb) and

Esf (sb) for each scale-factor band, which is set to 20 dB.

7.2.5 Numerical Optimisation Algorithm

The multitrack masking minimisation process is treated as an optimisation problem

concerned with minimising a vector-valued objective function described by the masking

metric. It systematically varies the input variables, which are the control parameters of

the audio effect to be applied, and computes the value of the function until the error of

the objective function is within a tolerance value (0.05), reaches the maximum number

of iterations or the masking metric is reduced to zero.

7.2.5.1 Function Bounds

The minimum and maximum values I used for the 6-band equaliser and the dynamic

range compressors were set based on audio engineering literature and having consulted a

professional practitioner in the audio engineering field [1, 7, 17, 133]. These are detailed

in Table 7.2.

Table 7.2: The minimum and maximum values used for the different types of audio
processing used during the optimisation procedure.

Audio Process Min Value Max Value

Instrument EQ Gain Bands 1- 6 -6 db + 6 db
Subgroup EQ Gain Bands 1- 6 -3 db + 3 db
Instrument DRC Ratio 1 6
Subgroup DRC Ratio 1 6
Instrument DRC Threshold -30 db 0 db
Subgroup DRC Threshold -30 db 0 db
Instrument DRC Attack 0.005 secs 0.25 secs
Subgroup DRC Attack 0.005 secs 0.25 secs
Instrument DRC Release 0.005 secs 3 secs
Subgroup DRC Release 0.005 secs 3 secs

I used smaller minimum and maximum equalisation gains when I was mixing the sub-

groups together, since the majority of the inter-channel auditory masking would have

been removed when mixing the individual instrument tracks.
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7.2.5.2 Objective Function

A numerical optimisation approach was used in order to derive an optimal set of inputs

which would result in a balanced mix. Before defining the objective functions a number

of parameters are defined which were used with the optimisation algorithm.

Let A denote the total number of tracks in the multitrack and K denote the total

number of the control parameters. The masking metrics are given by Mi(xC), for

i = 1, . . . , n. These describe the amount of masking in each track as a function of the

control parameters xC . Note that xC represents the whole set of the control parameters

for all tracks. The values of xC tend to have multitrack influences, due to the complexity

and non-linearity of the perception of masking. Changes in the control parameter for

one track not only affect the masking of that particular track itself but also masking of

all other tracks.

The total amount of masking, MT (xC), can be expressed as the sum of squares of

Mi(xC), for i = 1, . . . , n,

MT (xC) =

A∑
i=1

M2
i (xC) (7.14)

It is desired to minimise the sum of the masking across tracks and so (7.14) can be used

as the first part of the objective function.

The second objective is that the masking is balanced, i.e., there is not a significant

difference between masking levels. Here a maximum masking difference based objective

is formed as follows:

Md(xC) = max(‖Mi(xC)−Mj(xC) ‖),

for i = 1, . . . , n, j = 1, . . . , n, i 6= j
(7.15)

This allows this second part of the objective to be used within a min-max framework,

similar to that used in [158].

Combining the two objective functions, the following optimisation problem is solved to

give xC :

xC = min
xC

MT (xC) +Md(xC) (7.16)

The optimisation problem is a nonlinear, non-convex formulation, and the only infor-

mation available to the optimisation routine were returns of the function values. Thus a

Particle Swarm Optimisation (PSO) approach was used to guide the optimisation rou-

tine about the solution space. The Levenberg-Marquardt algorithm was considered for

this optimisation since the problem was non-linear. However, it was found that using it
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was much slower and did not always give a global optimal solution. A similar optimisa-

tion approach to mixing was used in [9], where they used the Gauss Newton optimisation

method.

7.2.6 Experiment Setup

7.2.6.1 Participants

Twenty four participants, all of good hearing, were recruited. 20 were male, 4 were

female and their ages ranged from 23 to 52 (µ = 30.09, σ2 = 6.2). All participants had

some degree of critical listening skills, i.e, the participant knew what critical listening

involved and had been trained to do so previously or had worked in a studio.

7.2.6.2 Stimuli

There were five songs used in the experiment, where there were five different 30 sec.

mono mixes of each song. Two of the mixes were automatically generated using my

proposed mix algorithm, where one mix used subgroups and the other did not. There

was one mix that was just a straight sum of all the raw audio tracks. Finally, there were

two human mixes, where I selected the low quality mix and high quality mix of each

song as determined from a previous experiment. The human mixes were created using

standard audio processing tools available in Pro Tools, where I was able to get each mix

without the added reverb [13]. The mixes were created with the intention of producing

the best possible mix. The songs were sourced from the Open Multitrack Testbed [137].

I loudness normalised all of the mixes using the ITU-R BS. 1770-2 specification [138] to

avoid bias towards mixes which were louder than others. The song name, genre, number

of tracks, number of subgroups and how many of each instrument type there were is

shown in Table 7.3

Table 7.3: The audio tracks names, genre types, total number of tracks mixed, number of subgroups mixed and
the total number of individual instrument tracks mixed.

Track Name Genre Tracks Subgroups Drums Vox Bass Keys Guitars

In the Meantime Funk 24 5 10 6 1 4 2
Lead Me Pop-Rock 19 5 9 2 1 2 5

Not Alone Funk 24 5 8 9 1 4 2
Red to Blue Pop-Rock 14 4 9 1 1 0 3

Under a Covered Sky Pop-Rock 25 5 9 5 1 2 8
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7.2.6.3 Pre-Experiment Questionnaire

I provided a pre-experiment questionnaire. The pre-experiment questionnaire asked sim-

ple questions related to age, hearing, musical experience, music production experience,

music genre preference and each participant’s confidence in their critical listening skills.

There was also a question with respect to how tired they were when they started the

study. If any participant indicated that they were very tired, I asked them to attempt

the experiment at a later time once they were rested.

7.2.6.4 Tasks

I explained to each participant how the experiment would proceed. They were also

supervised during the experiment in the event a participant was unsure about anything.

There were two experiment types, where half the participants did experiment type 1

(E1) and the other half did experiment type 2 (E2). Each experiment type had two

parts, where the second part was common to both. In E1 (i), I required the participants

to rate each of the five mixes of each song they listened to in terms of their preference.

In E2 (i), I required the participants to rate each of the five mixes of each song they

listened to in terms of how well they could distinguish each of the sources present in the

mix (Mix Clarity). In E1 (ii) and E2 (ii) each participant had to listen and compare

the automatically generated mixes. They then had to each rate mix for their perceived

emotion of each mix along three scales. The scales were Arousal, Valence and Tension

(A-V-T). All the songs and mixes used in the experiment were presented in random in

order.

After all mixes were rated, participants were asked to provide some feedback on how the

experiment was conducted and what their impressions were of the mixes they heard.

7.2.6.5 Setup and User Interface

The experiment either took place in a dedicated listening room at the university or at

an external music studio environment. Each participant was sat at a studio desk in

front of the laptop used for the experiment. The audio was heard over either a pair of

PMC AML2 loudspeakers or Sennheiser HD-25 headphones, where the participant could

adjust the volume of the audio to a comfortable level.

Mix preference and self-report scores were recorded into a bespoke software program

developed for this experiment. The software was designed to allow the experiment to
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run without the need for assistance, and the graphical user interface was designed to be

as aesthetically neutral as possible, so as not to have any effect on the results.

In this section I present the results related to the optimisation procedure used to generate

the automatic mixes. Furthermore, I present the results of the subjective evaluation

of the automatic mixes, where the mixes were rated for preference, clarity and the

participant’s perceived emotion. I have placed all the mixed and unmixed audio used in

this experiment in an online repository at https://goo.gl/U2F3ed.

7.3 Results of Optimised Automatic Mixing

In Figure 7.4 I present the results of the optimisation process used to mix “In the

Meantime”, for mixing each of the different subgroups, mixing the subgroups and mixing

all the tracks together as one. The x-axis on the graph indicates how many iterations

of the optimisation process occurred before a solution was found. The y-axis indicates

masking was present. The results for the other four songs analysed follow a similar

trend.

Figure 7.4: Cost function value (f(x)) for “In The Meantime” plotted against the
number of optimisation function iterations. “All Tracks” is the optimisation process
when mixing all the tracks together at once. “All Subgroups” is the optimisation process
when mix all the individual subgroup types together. The different instrument types

such as “Drums”, “Vocals”, “Keys” and “Guitars” are the instrument submixes.

https://goo.gl/U2F3ed
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When the vocal tracks (Vocals) were being mixed, the amount of inter-channel masking

that occurred was similar to that of all the tracks being mixed (All Tracks), but took less

time to find an optimal solution. This suggests that a lot of the inter-channel masking

occurred among the vocalists.

As expected, subgroups with fewer tracks generally took less iterations to converge.

Drums were the instrument type which took the most iterations to converge, with the

exception of “Lead Me”. This is only partly explained by the number of sources in the

drums subgroup, since it often took more iterations than when mixing all raw tracks.

I summarise these results in Figure 7.4. In this table I present how many iterations

were required to mix each type of each song, the change in masking that occurred and

the average amount of masking that remained. The numbers in parentheses are the

number of tracks used to do the average calculation. It is clear that applying subgroups

to generate stems rather than raw tracks results in fewer iterations and a greater overall

reduction in masking.

Table 7.4: Number of optimisation iterations required, the change in masking M , and
the average masking M where the number of tracks mixed is in brackets.

No. Iter ∆M µM

In the Meantime - All Tracks 26 19.6 4.43 (24)
In the Meantime - Subgroups 25 19.28 16.92 (5)
Lead Me - All Tracks 31 35.3 6.37 (19)
Lead Me - Subgroups 25 16.98 18.66 (5)
Not Alone - All Tracks 26 27.1 6.81 (24)
Not Alone - Subgroups 24 19 20.56 (5)
Red to Blue - All Tracks 37 39.6 7.7 (14)
Red to Blue - Subgroups 24 17.6 26.13 (4)
Under a Covered Sky - All Tracks 51 45.4 25 (4.82)
Under A Covered Sky - Subgroups 25 18.57 19.85 (5)

7.3.1 Subjective Evaluation Results

7.3.1.1 Mix Preference

I asked half of the participants to rate each mix based on their preference (E1). The

results are illustrated in Figure 7.5.

In Figure 7.5 we see the results for each of the five songs used in the experiment,

where they are organised by mix type. The figure shows the mean values across all

participants, where the red boxes are the 95% confidence intervals and the thin vertical

lines represent 1 standard deviation. The songs are ordered for each mix type as follows:
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Figure 7.5: Results for mix preference based on mix type for each of the individual
songs (E1). The songs are ordered for each mix type as follows: “In the Meantime”,

“Lead Me”, “Not Alone”, “Red to Blue” and “Under a Covered Sky”.

“In the Meantime”, “Lead Me”, “Not Alone”, “Red to Blue” and “Under a Covered

Sky”.

The mean scores for the summed mixes hover around 0.2, and were never greater than

any of the corresponding automatic mixes. However, we see overlapping confidence

intervals for all the summed mixes and the automatic mixes without subgroups. Fur-

thermore, there is also some slight overlap with the automatic mixes that use subgroups,

but it is not prevalent.

When we compare the two automatic mix types for each song, we see that the automatic

mixes that used subgroups were preferred more on average than the automatic mixes that

did not use subgroups. This supports my main hypothesis about subgroups improving

the perceived mix quality of an automatic mix. However, we see overlapping confidence

intervals for “In the Meantime”, ”Not Alone” and “Under a Covered Sky”.

On comparing the automatic mixes to the human mixes, we see the human mixes out-

performing the automatic mixes in nearly all cases except for “Lead Me”. In the case

of “Lead Me”, the automatic mix with subgrouping scores 0.6 on average, while the
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human low quality mix scores 0.27. There are also overlapping confidence intervals be-

tween “Lead Me” for mix types Automatic Mix - S and Human Mix - HQ, “Not Alone”

for mix types Automatic Mix - S and Human Mix - LQ and “Under a Covered Sky” for

mix types Automatic Mix - S and Human Mix - HQ.

Figure 7.6: Results for mix preference based on mix type for all songs (E1).

In Figure 7.6 we see the results for each of the individual mixes, but where we have taken

mean across all the different songs. The red boxes are the 95% confidence intervals and

the thin vertical lines represent 1 standard deviation. We see there is a trend in increasing

means going from Summed mix all the way to Human Mix - HQ. It is apparent that

the automatic mixes have performed better than the summed mixes, which supports

my main hypothesis. However, there is very slight confidence interval overlap between

Summed Mixes and Automatic Mix - NS. In support of my second hypothesis we can

clearly see that there is a preference for the mixes that use subgroups. However, we do

not see any confidence interval overlap with either of the human mix types.

7.3.1.2 Mix Clarity

I also asked the other half of all the participants to rate the mixes in terms of perceived

clarity (E2). The results are illustrated in Figure 7.7.
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Figure 7.7: Results for mix clarity based on mix type for each of the individual songs
(E2). The songs going from left to right for each mix type are “In the Meantime”,

“Lead Me”, “Not Alone”, “Red to Blue” and “Under a Covered Sky”.

In Figure 7.7 we see the results for each of the five songs used in the experiment, where

they are organised by mix type. The results are illustrated similarly to Figure 7.5.

As in Figure 7.5, the mean scores for the summed mixes are never greater than any

of the corresponding automatic mixes. This indicates that the automatic mixes were

perceived to have greater clarity on average than the summed mixes. However, we do

see overlapping confidence intervals for all the summed mixes and the automatic mixes

without subgroups. Furthermore, this also occurred for the songs “In the Meantime”

and “Red to Blue” when we compared Summed mix to Automatic Mix - S.

When we compare the two automatic mix types for each song, we see that the automatic

mixes that used subgroups had a better clarity rating on average than the automatic

mixes that did not use subgroups in only three of the five songs. We also see overlapping

confidence intervals for four of the five songs.

On comparing the automatic mixes to the human mixes, we see the human mixes out-

performing the automatic mixes in nearly all cases except for “Lead Me”. In the case of

“Lead Me”, the automatic mix with subgrouping scores 0.58 on average, while the low

quality mix scores 0.4. There are also overlapping confidence intervals between “Lead
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Me” for mix types Automatic Mix - NS and Human Mix - LQ, “Lead Me” for mix types

Automatic Mix - S and Human Mix - HQ and “Under a Covered Sky” for mix types

Automatic Mix - S and Human Mix - HQ.

Figure 7.8: Results for mix clarity based on mix type for all songs (E2).

Again we see in Figure 7.8 there is a trend in increasing means going from Summed mix

all the way to Human Mix - HQ. It is apparent that the automatic mixes have performed

better than the summed mixes in terms of clarity. This supports my main hypothesis

that I am reducing auditory masking as per Eq. 7.16, which reduces the masking in

each individual track while keeping the masking reduction balanced between each track.

And in support of my second hypothesis, there is a preference in terms of clarity for the

mixes that use subgroups.

7.3.1.3 Perceived Emotion

I asked each of the participants to listen to all the the automatic mixes with subgroups

and without subgroups side by side. This was so that they could indicate if they could

perceive an emotional difference between each of the two mixes along the three affect

dimensions: arousal, valence and dominance. I used the results to test the hypothesis

that using subgroups can have an emotional impact on the perceived emotions of the

listener. I found my hypothesis to be true in only 1 out of 15 cases (5 songs measured
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along 3 affect dimensions). The one significant result I found is illustrated in Figure 7.9.

I tested all of the data using the Wilcoxon signed rank statistical test.

Figure 7.9: Box plot of perceived arousal for ”Not Alone”. This plot illustrates that
there was a significant difference in perceived arousal for the two different mix types of

this song. One mix was created using subgroups, the other did not.

7.3.2 Summary

Table 7.4 and Figure 7.4 objectively show that my proposed intelligent mixing system

is able to reduce the amount of inter-channel auditory masking that occurs by changing

the parameters of the equaliser and dynamic range compressor on each audio track.

In all mixing cases it was able to reduce the amount of inter-channel masking after

a few iterations of the optimisation procedure. Table 7.4 shows that the reduction

in masking was significantly less in four out of the five songs when mixing Subgroups

versus All Tracks. This suggests a lot of the masking had been reduced when mixing

the subgroups, where the instrumentation would have been similar.

In Figure 7.10 I present the mean score for each mix type for each of the participating

groups, where group 1 evaluated each mix for preference and group 2 evaluated the

mixes for clarity. We see that the automatic mixes were preferred more on average than
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Figure 7.10: Mean and standard deviation scores of each mix type for each group,
where the blue bars represent mix preference and the red bars represents mix clarity

the summed mixes, which agrees with my main hypothesis. However, the automatic

mixes never outperformed the human mixes. We also see that the automatic mixes that

used subgroups were preferred more on average than the automatic mixes that did not

use subgroups. This supports my second hypothesis. However, there were three cases

of overlapping confidence intervals. Figure 7.10 does not show any evidence my second

hypothesis is true.

When we examine the results for Group 2, which are denoted by the light coloured

bars in Figure 7.10, we see that the automatic mixes were preferred more on average

than the summed mixes for clarity, which agrees with my main hypothesis. The results

do not show any evidence my proposed de-masking method provides any more clarity

to a mix than a human can on average. However, one automatic mix with subgroups

performed better than human mix. Also, there were overlapping confidence intervals

for two automatic mixes and two human mixes with respect to clarity. We see that

the automatic mixes that used subgroups had better perceived clarity on average than

the automatic mixes that did not use subgroups. This supports my second hypothesis.

However, when we examined the clarity results for the individual songs this only occurred

for three songs and there were overlapping confidence intervals for four songs.
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The results for the mix clarity group are higher on average than the mix preference

group. This might suggest that the technique presented here might be better just as

a de-masking technique than an overall mixing technique or just that people are more

likely to give higher marks for the word “Clarity” than for the word “Preference”.

I was only able to show there was a significant difference in perceived emotions for 1

out of the 15 cases tested. This suggests out third hypothesis cannot be accepted to be

true.

7.4 Conclusion

This chapter described the automation of loudness normalisation, equalisation and dy-

namic range compression in order to improve the overall quality of a mix by reducing

the inter-channel auditory masking. I adapted and extended the masking threshold al-

gorithm of the MPEG psychoacoustic model in order to measure inter-channel auditory

masking. Ultimately, I proposed an intelligent system for masking minimisation using a

numerical optimisation technique. I tested the hypothesis that my proposed intelligent

system can be used to generate an automatic mix with reduced auditory masking and

improved perceived quality. This paper also tested the hypothesis that using subgroups

when generating an automatic mix can improve the perceived mix quality and clarity of

a mix. I further tested to see if using subgrouping or not affects the perceived emotion

in an automatic mix. I evaluated all my hypotheses through a subjective listening test.

I was able to show objectively and subjectively that the novel intelligent mixing system

I proposed reduced the amount of inter-channel auditory masking that occurred in each

of the mixes and it improved the perceived quality. However, the results did not match

the results of the human mixes in most cases.

Furthermore, the results of the subjective listening test implied that subgrouping im-

proves the perceived quality and perceived clarity in an automatic mix over automatic

mixes that do not use subgroups. However, the results suggested that using subgroups

had very little effect if any on the perceived emotion in any of the mixes. It was only

shown to be true in 1 out of the 15 cases.

7.5 Future Work

It is clear that my proposed intelligent mixing system has scope for improvement. One

way in which this could be improved is if the equalisation and dynamic range compres-

sion settings changed on a frame by frame based on the inter-channel auditory masking
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metric. Currently the equalisation and dynamic range settings are static for the en-

tire track. One of the more experienced participants in the subjective listening test

mentioned that they could hear this.

I also believe the optimisation procedure could be improved by having a larger optimality

tolerance, where once this tolerance has been reached another nonlinear solver begins,

using the PSO results as initial conditions. If we examine Figure 7.4 we see that many

of the optimisation procedures find a satisfactory solution in less than ten iterations.

I would also like to see this intelligent system used in combination with panning. I

would have liked to have implemented panning, but I believe this would have removed

the majority of the masking present in the mix and would have made it difficult to

demonstrate the effectiveness of the inter-channel auditory masking metric.

The process of applying the correct gain, equalisation and dynamic range settings in a

multitrack is a challenging and time consuming task. I believe the framework I proposed

here could be useful in developing systems for beginner and amateur music producers

where it could be an assistive tool, giving initial settings for compressors and EQs on

all tracks, that are then refined by the mix engineer.



Chapter 8

Conclusions, Limitations and

Future Work

I first summarise what contributions were made to the fields of audio engineering and

automatic mixing systems. I relate these contributions to my aims and objectives.

Finally, I discuss the limitations I encountered and propose future directions where this

work could potentially be taken.

8.1 Conclusion

In fulfilment of my aim to further understand the practice of subgrouping, how sub-

grouping affects an automatic mixing system and the importance of emotion in mixing,

there have been four main contributions;

• Development of rules and guidelines on how subgrouping should be approached.

• A technique for automatically creating subgroups.

• A deeper understanding of the importance of emotion when mixing.

• Evidence to show that subgrouping is beneficial to automatic mixing systems.

Overall, I have shown that subgrouping is a poorly understood and generally undocu-

mented part of the mix process. There seems to be no formal approach on how to create

different types of subgroups, but through examination of mix data and the interview of

practitioners in the field I have shown to a certain degree that there is a documented

123
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process and thus have made recommendations based on this. This deeper understand-

ing of subgrouping has allowed us to show that it can be beneficial to the mix process,

whether it be a mix created by a human or an automatically generated mix.

The main aim of this work was to highlight the importance subgrouping plays when

mixing audio as this mix technique is often taken for granted. It was also to help the

audio engineering community to have a better understanding of the underlying processes

and concepts associated with it. The main contribution of this work was to document

all the knowledge and understanding around subgrouping and present it in an easy to

follow piece of literature. The novelty of this work was take a mix technique that is

normally performed by a human, to automate it and demonstrate how beneficial it can

be to an automatic mixing system.

In chapter 3 I analysed the impact that subgrouping practices had on the perception of

quality in a number of multitrack mixes. I also analysed the multitracks in order to see

if any decision patterns emerged, which I later used to infer mix decisions in chapter 4.

The experimental results in chapter 3 showed that subgroups are mainly made up of

similar instrumentation, but in some cases can be a combination of different types of

instrumentation. However, I found the former to occur more often than the latter. I

found that the three instrument types that were subgrouped together most frequently

were drums, vocals and guitars. I also found that when hierarchical subgrouping oc-

curred, it was usually applied to drums and to a lesser extent vocals. I was able to

show there was a strong significant Spearman correlation when looking at the median

mix preference score of all the mixes done by each mix engineer and the amount of sub-

groups this mix engineer created on average. I also found a strong significant Spearman

correlation when looking at the median mix preference score of all the mixes done by

each mix engineer and the amount of EQ subgroup processing this mix engineer used

on average. There was also a moderate significant Spearman correlation when looking

at the median mix preference score of all the mixes done by each mix engineer and the

amount of DRC subgroup processing this mix engineer used on average. These results

provided an insight into some of the typical subgroup processes that occur when creating

a mix. However, it is worth bearing in mind the subjects in this experiment were audio

engineering students and may have been inherently biased by their instructor. This is

the problem with analysing mix habits of mix engineers from the same group. It would

be interesting to see how these results compare to those of another unrelated group of

mix engineers. Generally, the results agreed with my intuition on how subgroups are

created and processed.

In chapter 4, I interviewed ten award winning mix engineers through an online question-

naire, where I asked questions related to subgrouping of a qualitative and quantitative
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nature. This was done to further understand the process of subgrouping and get a

practitioners perspective. The questionnaire consisted of 21 questions, where I tested

nine assumptions related to subgrouping. The nine assumptions were based on identi-

fying subgrouping decisions, such as why a mix engineer creates subgroups, when they

subgroup and how many subgroups they use. I then used thematic analysis to anal-

yse the responses from each participant. This allowed us to develop five themes; (i)

Decisions, (ii) Subgroup Effect Processing, (iii) Organisation, (iv) Exercising Control,

and (v) Analogue versus Digital. Four of these five themes were somewhat expected,

however Analogue versus Digital was something I had overlooked in my development of

the survey. The analysis of the themes allowed us to show that eight out of the nine

assumptions could be accepted to be true. Furthermore, by also taking the results of

chapter 3 into consideration along with the thematic analysis results, I was able to pro-

pose a number of recommendations on how subgrouping should be implemented in an

automatic mixing system and gave us a deeper understanding of the mix process. It was

these recommendations that I utilised in my automatic mixing system in chapter 7.

In chapter 5, I determined a set of low level audio features that could be used to auto-

matically subgroup multitrack audio. I determined these audio features using a Random

Forest classifier for feature selection. I took 159 low level audio features and reduced this

to 74 low level audio features using a feature selection process. I selected these audio

features from a dataset of 54 individual multitrack recordings of varying musical genre,

but mainly Pop, Rock and Indie. I was able to show that the most important audio

features tended to be spectral features. I also performed agglomerative clustering on five

unseen multitrack recordings using the original and the reduced audio feature set in or-

der to compare their performance. I was able to show that the overall mis-classification

measure went from 35.08% using the entire audio feature set to 7.89% using the reduced

audio feature set. Thus indicating that my reduced set of audio features provides a

significant increase in classification accuracy for the creation of automatic subgroups.

This potentially could be a useful tool for a mix engineer, where if they had say 100

audio channels to deal with. This would allow them quickly apply control to relevant

audio groups and avoid the time consuming task of assigning audio channels to groups.

I was happy with the overall results of this experiment, but I do not believe my selected

features would generalise well to other genres of music. However, this method could

be reapplied with a larger dataset of more varying genres of music. I took a similar

approach to this in Appendix 9.1, where I applied the feature selection process mainly

to music of an electronic style. Furthermore, an alternative approach to my method

could be to use convolutional neural networks (CNN) in order to see what interesting

features could be learned from the data. CNN’s have been used successfully in the last

few years in the fields of vision and music information retrieval.
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In chapter 6, I investigated the relationship between music production quality and mu-

sically induced and perceived emotions. A listening test was performed where 10 critical

listeners and 10 non-critical listeners evaluated 10 songs. There were two mixes of

each song, the low quality mix and the high quality mix. Each participants subjective

experience was measured directly through questionnaire and indirectly by examining

peripheral physiological changes, change in facial expressions and the number of head

nods and shakes they made as they listened to each mix. I showed that music production

quality had more of an emotional impact on critical listeners. Also, critical listeners had

significantly different emotional responses to non-critical listeners for the high quality

mixes and to a lesser extent the low quality mixes. The findings suggest that a higher

quality mix only seems to matter in an emotional context to a subset of music listeners.

This is important in the context of automatic mixing algorithms, in the sense that the

perceived quality of an automatically generated mix may not be that important to those

without critical listening skills. This suggests that automatically generated mixes may

be good enough for the general public. However, I should remain somewhat sceptical of

these results since I had a small sample size and many of the sensors used were noisy.

In chapter 7, I investigated different audio processing techniques to manipulate the

frequency and dynamic characteristics of the signal in order to reduce masking based

on a proposed MPEG metric. I also investigated whether or not automatically mixing

using subgroups is beneficial or not to perceived quality and clarity of a mix. Evaluation

results suggest that my proposed masking metric when utilised in an automatic mixing

framework reduces inter-channel auditory masking and improves the perceived quality

and perceived clarity of a mix. Furthermore, my results suggest that using subgrouping

in an automatic mixing framework can also improve the perceived quality and perceived

clarity of a mix. These results were important in the context of this thesis. However,

there is still a lot of work to be done in terms of algorithms matching the skills of a

human. It is also worth pointing out that this system was mixing the audio monaurally

and the results may have been very different if it were mixed in stereo with panning

either manually or automatically applied beforehand.

The wider impact of this work in the field of automatic mixing, is that it establishes

a new approach to automatic mixing. Usually automatic mixes are created by mixing

all tracks at once, where in the approach presented here, the mixing is done in smaller

separate stages [2, 18]. This method is essentially a divide and conquer approach, where

different mixing rules can be applied to different subgroups depending on genre and in-

strumentation. This could also potentially allow for the parallelisation of mixing tasks in

order to speed up computation time. Outside of the field of automatic mixing, the work

in this thesis was extended to automatically generating taxonomies for SFX libraries.

This was primarily based on the work in Chapter 5 and was published in [159].
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8.2 Limitations and Future Work

The field of automatic mixing is a relatively new field and as such many avenues are left to

explore. A brief description of the limitations I encountered and possible improvements

that could be made to further the understanding of subgrouping, the mix process as a

whole, and automatic mixing systems are presented here.

One of the struggles I had with analysing the subgrouping structure, was that I had to

manually open each Pro Tools session file and hand annotate all the data. The issues

with this were that it took quite a long time and because it is done by hand, fatigue

became an issue and therefore double checking was required. If this process were to be

automated, much more data could be analysed at once and it would be much less error

prone. If it were possible to develop a tool to assist with, and automate the collection

of data, this could give far more data. If enough data were to be collected rapidly, this

data could then subsequently be mined and used with machine learning classifiers.

When I looked at the automatic creation of subgroups, the dataset I used only rep-

resented music from the genres of Pop, Rock and Indie. I would like to extend the

technique to other genres like Dance and Jazz, where different subgrouping structures

occur. It might be possible to guide an extension of this technique using heuristics based

on some of the responses given by the professional mix engineers wI interviewed.

When I examined the importance of emotion in mixing, I would also have liked to

do pair-wise ranking between the two mix types, since research has shown that Likert

scales may not be the best tool for affect studies, since the values they ask people to

rate may mean different things to each participant [150]. I also think it would have been

interesting to see if similar results occurred if the non-critical listeners had been provided

with some training before the experiment i.e. trained to spot common mix defects. This

would then mean that all the participants would have a more clearly defined idea on how

a mix should sound. The non-critical listeners may not exhibit the same emotions as

they did without training as they now know what to listen for. In future studies similar

to this, I would encourage researchers to try and track foot and finger tapping as this

is a common form of movement to music and is something I overlooked when designing

my experiment [99].

When I assessed how much subgrouping could improve an automatic mixing system I

chose to use a static EQ. However, based on the feedback from one of the more technically

experienced listening test participants, they claimed they could hear that the EQ had

fixed parameter settings. They said that both of the automatic mixes could be improved

greatly if the parameters were to dynamically change over the course of each mix based

on the measured amount of auditory masking. If I were to re-implement my proposed
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automatic mixing system I used, I would attempt to optimise the EQ and dynamic range

compressor parameters on a frame by frame basis. I would use the optimised solution

for each frame to inform the initial search conditions of each subsequent frame in order

to kick start the optimisation process.

If the system presented in Chapter 7 were to be computed on a platform where there

were no limitations on processing power, the results suggest that the subgrouped audio

would still be preferred. However, if the complexity of the audio processing being applied

were to be increased there maybe a difference in quality and subgrouping might not be

as advantageous. Future work could look at using equalisation with more bands and

multi-band compression. This would increase the amount of control parameters to be

optimised hence the need for more processing power.

One of the avenues of research that I was unable to explore due to time constraints

was multi-subgroup mixing. This was where any particular instrument track does not

necessarily need to belong to the same subgroup throughout the whole mix. It may

belong to two or more. The idea being that particular instruments dynamics or timbre

may change over time and might be better suited in another group. An example being

where a bass guitar went from being plucked to suddenly being played using a slap

technique.

I believe that a lot more research can be conducted in relation to subgrouping, since

it is still a relatively unexplored area of audio engineering. As more mix data becomes

available, more interesting and concrete recommendations can be inferred, which subse-

quently can be used to improve the mix process whether it be a human made mix or an

automatically generated one.



Chapter 9

Appendices

9.1 Appendix A

9.1.1 Native Instruments Internship

9.1.1.1 Introduction

In July 2014, the author spent six months working as a member of the Music Information

Retrieval Research team at the Native Instruments head office in Berlin. Native Instru-

ments was founded in 1996 and are a leading manufacturer of software and hardware

for computer based audio production and DJing.

During the six month period spent at Native Instruments, research and development

was conducted in creating a stem analysis tool. The software allowed a user to drop a

folder of audio stems on to the GUI. The software would then analyse and classify each

audio stem to determine if it is was either drum/percussion, bass, vocal, lead synthesizer

or a pad/fx audio file. Once all the audio stems had been analysed and classified, the

user was then able play each group individually or play them altogether. Each audio

file that was classified was also assigned a colour. This colour indicated to the user how

confident the classifier was in determining what group it belonged too. Green being the

most confident and red being the least. A screen shot of the software can be seen in

Figure 9.1.

The development of this tool was a direct continuation of research previously done on

the automatic subgrouping of pop/rock music as seen in chapter 5, but in this case the

subgrouping was applied to electronic music stems.

129
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Figure 9.1: Native Instruments Stem Tool

This presented a new challenge because of the varying timbre of the instrumentation

used in electronic music. An example of this would be that in pop/rock music, the

drums normally tend to come from a recorded drum kit and will generally have a similar

timbre throughout the genre, but in electronic music the percussive elements in a song

could be something as simple as clicks and pops, but structured to give the music a

pulse. An example of this type of sound can be found in the works of artists Ryoji Ikeda

and Alva Noto [160, 161].

Addressing this problem, an audio feature that is normally used for tempo estimation

and based on autocorrelation was adapted to determine if the stem had a periodic signal

or not [125]. The next section discusses the approach used when classifying the stems.

9.1.1.2 Waterfall Approach

Originally, it was decided to use a multi-class classifier for this problem. After realising

the difficulty the varying timbre of electronic music presented, it was decided to use four

binary classifiers instead and the classifier type that was used was Random Forest [105].

The binary classifiers were used in the way a number of waterfalls in succession would

have different stages and pour into each other.

First, the percussive stems are separated from the harmonic stems. Then, the bass stems

are separated from what is left over from the previous stage. This then happens to the

vocals and ideally, what is supposed to be finally left over, is synthesised sounds that

can be either lead synthesisers or pads/fx. This waterfall process is demonstrated in

Figure 9.2.
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Figure 9.2: Waterfall Approach

As mentioned in the last section, the percussive-harmonic classifier was the most difficult

to train, due to the varying timbre of electronic music.

9.1.1.3 Dataset

The dataset consisted of 96 different songs by many different artists. All the songs

used were of the Techno/House/IDM musical genre. These were provided by Native

Instruments, where they had been licensed from the original artists to be used for the

purpose of remixing. This consisted of 1496 audio stems sampled at 44100 Hz. For each

stem that was used, the 30 secs of audio that had the most energy was used for feature

extraction. This was also down-sampled to 22050 Hz in order speed up the feature

extraction process. The breakdown of this data by label can be seen in Table 9.1

Track Type No. of Tracks Mins. of Audio

Drums/Percussion 514 257

Lead/Synth 364 182

Vox 275 137

Pad/FX 221 111

Bass 122 61

Table 9.1: Data Type Breakdown

The audio stems were annotated by the author using a very simple annotation tool. A

.csv file that had a list of audio paths was opened and then a five second snippet of each

audio file was listened to. The five second snippet that was heard was the five seconds

of the stem with the most energy. The label for each stem was selected by the user and

then this was appended to an output .csv file containing the file path and its chosen

label.
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9.1.1.4 Feature Extraction Tool

Due to the Stem Tool and the extracted feature data needing to agree on the exact same

values and calculations. It was decided to develop a batch feature extraction tool which

would share a common code base with the Stem Tool.

The tool allowed the user to provide it with a .csv file that contains a column of file

paths and another column corresponding to the audio file classification label. The user

then specified how much audio to extract features from and a pooling time [124]. The

feature extraction tool extracted audio with a window size of 1024 samples and a hop

size of 512 samples. It extracted 159 audio features in total. The majority of these were

frame based features, but some were whole track features. A list of the audio features

and the relevant references are in Table 9.2 and Table 9.3

Category Feature Reference

Dynamic RMS
Peak Amplitude
Crest Factor [161]

Spectral Zero Crossing Rate [128]
Centroid
Spread
Skewness
Kurtosis
Brightness .
Flatness .
Roll-Off (.85 and .95)
Entropy
Flux
MFCC’s 1-12
Delta-MFCC’s 1-12 [128]
Crest Factor [123]

Table 9.2: Pooled features

Category Feature Reference

Dynamic Periodicity [125]
Entropy of Energy [126]
Low Energy [127]

Table 9.3: Whole track features

9.1.1.5 Classifier and Feature Selection

The Random Forest classifier was chosen for this project, due to its ability to perform

feature selection and the ease at which it could be implemented into native code. It
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also showed more favourable results when it was compared to k-NN and Support Vector

Machine classifiers.

Determining the most salient features for each classifier was performed as follows. When

training each Random Forest classifier, 100 trees were grown and feature importance was

calculated. For any feature, the feature importance measure is the increase in prediction

error if the values of that feature are permuted across the out-of-bag observations. This

measure is computed for every tree, then averaged over the entire ensemble and divided

by the standard deviation over the entire ensemble [108].

Once training was complete, a search method used to determine the better features.

Any feature that performed under the average importance index of all the other features

was eliminated.

A new Random Forest would then be trained with the new features. The overall per-

formance of the classifier was evaluated by training at least 100 a trees and plotting the

average F-Score as the number of trees increased. F-Score is a standard metric used to

evaluate the performance of machine learning models. It is the harmonic average of the

precision and recall scores of the model after it has been used to predict data from a test

dataset. The number of trees used in the final classifier was determined from when the

average F-Score was maximum when predicting a validation dataset. The final result of

the classifier was determined by using a test dataset.

9.1.1.6 Results

The results for each of the four classifiers are discussed in this section. Each classifiers

performance will be presented as well as the features that were important for each.

Harmonic Percussive Classifier

This was the most challenging classifier to design due to the wildly varying timbre of

electronic music and the difficulty in labelling some of the data. The idea was to use

features that would most importantly capture the periodicity of drums and percussion.

Using feature selection it was determined the four most important features were Peri-

odicity, Entropy of Energy, Crest Factor and the Low Energy feature [125, 126].

The dataset was split up into ‘DRUMS’ and ‘NOTDRUMS’ for this classifier, so that

meant the dataset was 34% Percussive data and 66% harmonic. Unfortunately, this

imbalance in the dataset was unavoidable due to lack of data. The classifier required

14 trees to be grown to reach the highest average F-Score on the validation set. The

classifier results on the test set are presented in Table 9.4.
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Drums Not Drums

Drums 82.09% 17.91%
Not Drums 6.11% 93.89%

Precision 0.95 0.77

Recall 0.82 0.94

F-Score 0.88 0.85

Table 9.4: Test Data Results

Bass Classifier

This classifier had the worst imbalance out off all the classifiers. The data was labelled

‘BASS’ and ‘NOTBASS’. The data was split 12% bass and then 88% not bass. This

suffered from difficulty in labelling as sometimes it was hard to decide when a synthesizer

could be considered a bass synthesizer or not just by listening. The classification rate

is quite high for such an imbalance, but this is most likely due to bass having a lower

spectral centroid than, say, vocals or pads. The most important features were Periodicity,

Low Energy and Spectral Centroid. The classifier required 25 trees to be grown to reach

the highest average F-Score on the validation set. The classifier results on the test set

are presented in Table 9.5.

Bass Not Bass

Bass 81.58% 18.42%
Not Bass 3.56% 96.45%

Precision 0.78 0.97

Recall 0.82 0.97

F-Score 0.80 0.97

Table 9.5: Test Data Results

Vox Classifier

The vox classifier also experienced its own difficulties. This was because a lot of the

vocals used in electronic music are heavily processed and barely recognisable. The

human ear can perfectly discern that the audio is somewhat vocal, but it is difficult

to train a classifier to do so. The most important features for this were Periodicity,

MFCC’s, Delta MFCC’s and Spectral Flatness. The data was labelled ‘NOTVOX’ and

‘VOX’. The data was split 28% vox and then 72% not vox. The classifier required

35 trees to be grown to reach the highest average F-Score on the validation set. The

classifier results on the test set are presented in Table 9.6.

Pad/Fx Synth Classifier
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Not Vox Vox

Not Vox 92.42% 7.58%
Vox 4.57% 95.43%

Precision 0.91 0.96

Recall 0.92 0.95

F-Score 0.91 0.96

Table 9.6: Test Data Results

The Pad/FX Synth classifier was the last classifier that was worked on during the intern-

ship, so it had the least amount of time dedicated to it. This classifier suffered the most

from data labelling. It was very difficult at times to label some of audio stems as they

would fall somewhere in between Pad/FX or Synth. The data was labelled ‘PADFX’

and ‘SYNTH’. The data was split 37.7% Pad/FX and then 62.3% Synth. The classifier

required 21 trees to be grown to reach the highest average F-Score on the validation set.

The classifier results on the test set are presented in Table 9.7.

Synth Pad/FX

Synth 88.85% 11.18%
Pad/FX 31.11% 68.89%

Precision 0.82 0.79

Recall 0.89 0.69

F-Score 0.85 0.74

Table 9.7: Test Data Results

9.1.1.7 Discussion

The Periodicity feature proved itself to be one of the most important features in the

classification tasks as well as the Entropy of Energy feature. There is definitely scope to

improve the vox classifier, as this was suffering poor classification on processed vocals.

Analysis of attempts to recognising vocals in polyphonic music mixtures maybe a good

research direction for this.

What could improve the Stem Tool is a transfer learning and active learning approach to

classification, due to the fact a lot of the data being used on the tool would be completely

unseen and the training data was difficult to label a lot of the time.

9.2 Appendix B
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9.2.1 Ethics Approval and Pro Forma for “An empirical approach to

the relationship between emotion and music production quality”



          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

 
c/o Dr Hatice Gunes 
Eng 211 
Department of Electronic Engineering 
Queen Mary University of London 
Mile End Road 
London  

          12th October 2015 
    
To Whom It May Concern: 
 
Re: QMREC1441 – The relationship between musically induced emotions 
and music production quality. 
  
I can confirm that Mr David Ronan has completed a Research Ethics 
Questionnaire with regard to the above research. 

 
The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 
 
Yours faithfully  

 
 

Ms Hazel Covill – QMERC Administrator   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 



Pro forma information sheet and consent form 
 

 
 
 

Information sheet 
 
 

Research study “The relationship between musically induced emotions and 
production quality”  information for participants 

 

We would like to invite you to be part of this research project, if you would like to.  You 
should only agree to take part if you want to, it is entirely up to you. If you choose not to 
take part there won’t be any disadvantages for you and you will hear no more about it.  

Please read the following information carefully before you decide to take part; this will tell 
you why the research is being done and what you will be asked to do if you take part. 
Please ask if there is anything that is not clear or if you would like more information.  

If you decide to take part you will be asked to sign the attached form to say that you 
agree. 

You are still free to withdraw at any time and without giving a reason. 
 
Details 
 
The purpose of this study is to determine the extent of the link between musically induced 
emotions and music production quality.  In order to investigate the link between emotion and 
music production quality, subjective feeling will be measured through self-report, where each 
participant will indicate their emotions using the Geneva Emotional Music Scale (GEMS-9) 
throughout the listening experience.  A multivariate approach will then be used for 
psychophysiological response, where it is planned to measure skin conductance (GSR) and heart 
rate (ECG). We will also record each participant’s facial expressions and analyse these for affect, 
so it is important that each participant looks into the camera. 

 

It is up to you to decide whether or not to take part. If you do decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form.  

 
 
If you have any questions or concerns about the manner in which the study was 
conducted please, in the first instance, contact the researcher responsible for the study. 



If this is unsuccessful, or not appropriate, please contact the Secretary at the Queen 
Mary Ethics of Research Committee, Room W117, Queen’s Building, Mile End Campus, 
Mile End Road, London or research-ethics@qmul.ac.uk. 



 
 

Consent form 
 
Please complete this form after you have read the Information Sheet and/or listened to 

an explanation about the research. 
 

Title of Study: ________________________________________ 
Queen Mary Ethics of Research Committee Ref: ________________ 
 

• Thank you for considering taking part in this research. The person organizing the 
research must explain the project to you before you agree to take part.  

• If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join in. 
You will be given a copy of this Consent Form to keep and refer to at any time.  

• I understand that if I decide at any other time during the research that I no longer 
wish to participate in this project, I can notify the researchers involved and be withdrawn 
from it immediately.  

• I consent to the processing of my personal information for the purposes of this 
research study. I understand that such information will be treated as strictly confidential 
and handled in accordance with the provisions of the Data Protection Act 1998.  

Participant’s Statement:  
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to take 
part in the study. I have read both the notes written above and the Information Sheet 
about the project, and understand what the research study involves.  

Signed: Date:  

 
Investigator’s Statement:  
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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9.2.2 Ethics Approval and Pro Forma for “Automatic Minimisation of

Masking in Multitrack Audio using Subgroups”



          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Dr Josh Reiss 
Eng E305 
EECS 
Mile End 
London          17th July 2017 
    
 
To Whom It May Concern: 
 
Re: QMREC2034a - Automatic Minimisation of Masking in a Multitrack 
using Subgroups. 
 
I can confirm that David Ronan has completed a Research Ethics Questionnaire 
with regard to the above research. 

 
The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

 
 
Yours faithfully  

 
 

Mr Jack Biddle – Research Approvals Advisor  Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 



Pro forma information sheet and consent form 
 

 
 
 

Information sheet 
 
 

Research study “Automatic Minimisation of Masking in Multitrack Audio”: 
information for participants 

 
We would like to invite you to be part of this research project, if you would like to.  You 
should only agree to take part if you want to, it is entirely up to you. If you choose not to 
take part there won’t be any disadvantages for you and you will hear no more about it.  
[If appropriate: Choosing not to take part will not affect your access to treatment or 
services in any way]. 
Please read the following information carefully before you decide to take part; this will tell 
you why the research is being done and what you will be asked to do if you take part. 
Please ask if there is anything that is not clear or if you would like more information.   
If you decide to take part you will be asked to sign the attached form to say that you 
agree. 
You are still free to withdraw at any time and without giving a reason. 
 
“The aim of this study is to conduct a listening test, where you will listen to a number of 
different mixes of the same song. Each mix will have been either created by a human or 
by using an automatic mixing algorithm. We will require you to rate each mix in terms of 
your preference or your ability to distinguish the individual sources (i.e. the lack of 
masking). In the second part of the experiment, we require you to compare two different 
mixes of each song and rate each mix for perceived emotion along three different 
emotional dimensions. You will hear five different songs in this experiment, where we 
will be using five different mixes of each song. You are required to have critical listening 
skills in order to take part in this experiment.”  
 
It is up to you to decide whether or not to take part. If you do decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form.  

 
 
 
 
 



If you have any questions or concerns about the manner in which the study was 

conducted please, in the first instance, contact the researcher responsible for the study.  

If this is unsuccessful, or not appropriate, please contact the Secretary at the Queen 

Mary Ethics of Research Committee, Room W104, Queen’s Building, Mile End Campus, 

Mile End Road, London or research-ethics@qmul.ac.uk.



 

 

Consent form 

 
Please complete this form after you have read the Information Sheet and/or listened to 

an explanation about the research. 
 

Title of Study: Automatic Minimisation of Masking in Multitrack Audio 
Queen Mary Ethics of Research Committee Ref: 
 
. • Thank you for considering taking part in this research. The person 
organizing the research must explain the project to you before you agree to take part.  
. • If you have any questions arising from the Information Sheet or 
explanation already given to you, please ask the researcher before you decide whether 
to join in. You will be given a copy of this Consent Form to keep and refer to at any time.  
. • I understand that if I decide at any other time during the research that I no 
longer wish to participate in this project, I can notify the researchers involved and be 
withdrawn from it immediately.  
. • I consent to the processing of my personal information for the purposes of 
this research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection Act 
1998.  
Participant’s Statement:  
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to take 
part in the study. I have read both the notes written above and the Information Sheet 
about the project, and understand what the research study involves.  
Signed:  Date:  

 
Investigator’s Statement:  
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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