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Vitamin D supplementation during pregnancy:
Effect on the neonatal immune system in a
randomized controlled trial
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GRAPHICAL ABSTRACT
Background: Programming of the immune system during fetal
development can influence asthma-related risk factors and
outcomes in later life. Vitamin D is a well-recognized immune
modulator, and deficiency of this nutrient during pregnancy is
hypothesized to influence disease development in offspring.
Objective: We sought to investigate the effect on neonatal
immunity of maternal supplementation with 4400 IU/d vitamin
D3 during the second and third trimesters of pregnancy by using
a subset of cord blood samples from a randomized, double-
blind, placebo-controlled clinical trial (the Vitamin D Antenatal
Asthma Reduction Trial).
Methods: Cord blood samples from neonates born to mothers
supplemented with 4400 IU/d (n 5 26) or 400 IU/d (n 5 25) of
vitamin D3 were analyzed for immune cell composition by flow
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cytometry, Toll-like receptor (TLR) expression by quantitative
PCR, and cytokine secretion after stimulation with mitogenic,
TLR, and T-cell stimuli by cytometric bead array.
Responsiveness to the glucocorticoid dexamethasone was
determined.
Results: Supplementation of mothers with 4400 IU of vitamin
D3 resulted in an enhanced broad-spectrum proinflammatory
cytokine response of cord blood mononuclear cells to innate and
mitogenic stimuli (P 5 .0009), with an average 1.7- to 2.1-fold
increase in levels of several proinflammatory cytokines (GM-
CSF, IFN-g, IL-1b, IL-6, and IL-8) across stimuli, a higher gene
expression level of TLR2 (P 5 .02) and TLR9 (P 5 .02), a greater
than 4-fold increase in IL-17A (P 5 .03) production after
polyclonal T-cell stimulation, and an enhanced IL-10 response
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Abbreviations used

CBMC: Cord blood mononuclear cell

FITC: Fluorescein isothiocyanate

1,25(OH)2D3: 1,25-Dihydroxyvitamin D3

25(OH)D: Total 25-hydroxyvitamin D (25-hydroxyvitamin D2

plus 25-hydroxyvitamin D3)

PE: Phycoerythrin

TLR: Toll-like receptor

VDAART: Vitamin D Antenatal Asthma Reduction Trial
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of cord blood mononuclear cells to dexamethasone treatment in
culture (P 5 .018).
Conclusion: Vitamin D exposure during fetal development
influences the immune system of the neonate, which can
contribute to protection from asthma-related, including
infectious, outcomes in early life. (J Allergy Clin Immunol
2018;141:269-78.)

Key words: Vitamin D, asthma, innate immunity, pregnancy

The majority of all asthma cases are diagnosed in early
childhood,1,2 implying that the origin of the disease is in fetal
or very early life. Recurrent wheeze,3,4 atopy,5,6 and lower
respiratory tract infections7 in early childhood are considered
risk factors for the development of asthma-related disease.
Maternal vitamin D deficiency during pregnancy has also
been proposed to be a risk factor for development of childhood
asthma8 and the associated risk factors of allergy and
infection; however, observational studies that have investigated
a relationship between asthma-related outcomes in children
and total 25-hydroxyvitamin D (25-hydroxyvitamin D2 plus
25-hydroxyvitamin D3; 25[OH]D) levels in maternal or cord
blood have produced inconsistent results.9,10

Immune measurements taken from the neonate at birth have
been linked to the subsequent development of atopic and
asthmatic disease, implying that early changes in the immune
system can precede and underpin disease development. For
example, neonates born to parents with a history of allergy or
asthma, who are themselves at an increased risk of experiencing
these diseases, have lowermononuclear cell cytokine responses to
respiratory syncytial virus11 and lower mononuclear cell prolifer-
ative responses to LPS.12 Additionally, direct comparisons with
disease outcomes have shown that neonates who go on to have
atopic disease or asthma have lower LPS-induced mononuclear
cell proliferative responses12 and lower cord blood serum levels
of IL-4, TNF-a, and IFN-g.13

Cells of the innate and adaptive immune systems express the
vitamin D receptor, and their function is modulated by exposure to
1,25-dihydroxyvitaminD3 (1,25[OH]2D3) in culture.Direct invitro
treatment of innate immune cells with 1,25(OH)2D3 has been
shown to enhance the expression of antimicrobial peptides, such
as cathelicidin,14,15 and to influence innate immune signaling.16

Dysregulation of the adaptive immune system is also of prime
importance in the pathology of asthma. 1,25(OH)2D3 has been
described to directly inhibit TH1

17,18 and TH17
19,20 cytokine pro-

duction in vitrowhile promoting regulatory T-cell phenotypes.19,21

We have previously described upregulation of IL-10 gene expres-
sion in CD4 T cells22 and an increased response to dexamethasone
in culture for IL-10 synthesis23 after supplementation of asthmatic
patients with 1,25(OH)2D3. Notably, all these studies were per-
formed in adults and might not reflect immunity in early life.

Vitamin D status during pregnancy has been linked to immune
parameters in the neonate. For example, a positive correlation
between cord blood 25(OH)D levels and IFN-g release from cord
blood mononuclear cells (CBMCs) on LPS stimulation24 and
serum IL-10 levels25 has been shown.

To our knowledge, all studies to date that have investigated
links between vitamin D status and immune outcomes in the
neonate have been observational and therefore do not address
directly whether vitamin D can actively alter the responsive-
ness of the neonatal immune system to innate and adaptive
challenge. Therefore in the current study we aimed to test the
effect of daily vitamin D3 supplementation during pregnancy
on the immune system of the neonate using samples from a
large, randomized, double-blind, placebo-controlled clinical
trial, the Vitamin D Antenatal Asthma Reduction Trial
(VDAART).9,26 First, we hypothesized that high-dose maternal
vitamin D3 supplementation would promote the innate immune
system of the neonate, increasing the capacity of CBMCs to
respond to Toll-like receptor (TLR) ligation. Second, we hy-
pothesized a more nuanced effect of maternal vitamin D3 sup-
plementation on neonatal T-lymphocyte responses, with
suppression of IFN-g and IL-17A production but enhancement
of IL-10. Additionally, we hypothesized that there would be
greater dexamethasone-induced IL-10 production in neonates
from mothers receiving high-dose supplementation.
METHODS

VDAART ancillary study
Umbilical cord blood was collected from 51 pregnant women recruited

consecutively to the Boston Medical Center site of the parent VDAART study

and who provided written informed consent to participate in this ancillary

study. Sample size was based on power calculations performed by using data

from human adult studies on 1,25(OH)2D3-induced IL-10 synthesis and cell

phenotyping,21,22 in which studying 48 subjects would produce excellent po-

wer (>85%) to detect differences across dosing groups.We aimed to recruit up

to an additional 12 subjects to allow for the risk of technical issues with inves-

tigative assays, such as insufficient blood volume. Participants were random-

ized at 10 to 18 weeks of pregnancy to high- or low-dose vitamin D

supplementation; 26 of the ancillary study participants were from the study

arm supplemented with 4400 IU/d vitamin D3, and 25 were from the study

arm supplemented with 400 IU/d.
Preparation and culture of CBMCs
CBMCs were isolated by means of standard density gradient centrifu-

gation, and CBMCs from each donor were cultured at 2 3 106 cells/mL in

supplemented RPMI medium either alone or with the addition of LPS

(from Escherichia coli 0111:B4m, 0.01 mg/mL; InvivoGen, San Diego,

Calif), PPG (peptidoglycan from Staphylococcus aureus, 1.25 mg/mL, In-

vivoGen), CpG (type C CpG oligonucleotide ODN 2395, 1 mg/mL, Inviv-

oGen), or PHA (lectin from Phaseolus vulgaris, 15 mg/mL; Sigma, St

Louis, Mo). Culture supernatants were harvested at 24 hours from each

well and immediately stored, without pooling, at 2808C before cytokine

analysis. CBMCs were cultured at 1 3 106/mL in RPMI medium in the

presence of plate-bound anti-CD3 (1 mg/mL, OKT3) and soluble recombi-

nant human IL-2 (50 U/mL; EuroCetus, Amsterdam, The Netherlands) to

study adaptive T cell responses. Culture supernatants were harvested after

72 hours and stored at 2808C until analysis. All CBMC cultures were per-

formed in duplicates, and cytokine levels from each well were measured

independently.



TABLE I. Characteristics of VDAART participants contributing immunological data

Mother’s characteristics

4400 IU 400 IU

P valuen Percent n Percent

Race

African American 10 38 14 56

All other races 16 62 11 44 .21

History of eczema/atopic dermatitis 8 31 10 40 .49

History of asthma 10 38 9 36 .86

History of hayfever and allergic rhinitis 16 62 18 72 .43

Cesarean section delivery 8 31 11 44 .33

n Mean (SD) n Mean (SD)

Age at childbirth 26 31.0 (4.9) 25 28.1 (6.2) .06

BMI before pregnancy 22 29.4 (5.9) 20 29.4 (5.9) .97

Plasma 25(OH)D3 (ng/mL) at enrollment 26 19.2 (6.7) 25 23.5 (8.6) .05

Plasma 25(OH)D3 (ng/mL) at third-trimester visit 23 35.4 (13.8) 25 24.6 (9) .002

Neonatal characteristics

4400 IU 400 IU

P valuen Percent n Percent

Sex

Female 13 50 8 32

Male 13 50 17 68 .19

n Mean (SD) n Mean (SD)

Gestational age (wk) at delivery 26 39.4 (1.4) 25 39.4 (1.3) .99

Birth weight (g) 26 3555.4 (513.3) 25 3247 (447.1) .03

Birth length (cm) 26 51.4 (2.4) 25 49.9 (2.3) .03

Cord blood plasma 25(OH)D3 (ng/mL) 26 25.4 (15.3) 23 16.2 (6.5) .01

BMI, Body mass index.
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Flow cytometry
For phenotypic characterization of the main immune cell populations in

cord blood, samples were stained with appropriate antibodies (see the

Methods section in this article’s Online Repository at www.jacionline.org),

and data were acquired on a BD LSR II flow cytometer by using BD FACS-

Diva software (BD Biosciences, San Jose, Calif) and then analyzed with

FlowJo software (version 9.6.4; TreeStar, Ashland, Ore).
Cytokine measurements
Cytokine concentrations in individual culture supernatants were deter-

mined by using a cytometric bead array assay (BD Biosciences), according to

the manufacturer’s instructions.
Quantitative PCR
CBMCs (23 106) were lysed in 750mL of Trizol Reagent (Ambion, Foster

City, Calif) and stored at2808C until RNA extraction and analysis. RNAwas

isolated according to the manufacturer’s protocol and purified by using an

RNAeasy Mini column (Qiagen, Hilden, Germany), with additional DNase

treatment (Ambion) performed per the manufacturer’s instructions. RNA

quantity was determined by using the Agilent RNA 6000 Pico kit (Agilent

Technologies, Santa Clara, Calif). One hundred nanograms of RNA was

reverse transcribed into cDNA. Quantitative RT-PCR was performed in tripli-

cates with TaqMan gene expression technology and the ViiA7 system (Life

Technologies, Grand Island, NY), and data were expressed by using the

22DCT method.
Statistical analysis
All immune assays were performed in a blinded manner, and the data were

subsequently unblinded and analyzed independently by a statistician. For
analysis of the effect of vitamin D supplementation on cytokine production by

CBMCs in response to innate stimulation, a global null hypothesis of no effect

of supplementation on mean cytokine production was tested by using fixed-

effects multivariate ANOVA. Random-effects ANOVA models were used to

test the effects of vitamin D supplementation on TLR expression in CBMCs

and T-cell cytokine production after adaptive immune stimulation. All

computations used R software (version 3.3; www.r-project.org). Two separate

replicate CBMC cultures were conducted for each culture condition for each

donor. The resulting biological replicates were appropriately analyzed as

repeated measures to capture the effects of biological variation in the statisti-

cal analysis. In contrast, further technical replicates in PCR analyses were

analyzed by using the mean average of replicate values per standard practice.

Full details of methods, reagents, and statistical analyses can be found in

the Methods section in this article’s Online Repository.
RESULTS

Characteristics of the trial population
Umbilical cord blood samples from 51 VDAART participants

recruited consecutively into the BostonMedical Centre site of the
trial were used for immunologic analyses: 26 from the study arm
supplemented with 4400 IU/d vitamin D3 and 25 from the study
arm supplemented with 400 IU/d vitamin D3. Characteristics of
these participants are shown in Table I. There were no significant
differences in the mother’s race, age, prepregnancy body mass in-
dex, or history of eczema, atopic dermatitis, asthma, hay fever,
and allergic rhinitis between the 2 study arms of the trial. The pro-
portion of cesarean section deliveries, sex of the neonate, and
gestational age were also not significantly different between the
2 arms. At enrollment in the trial (10-18 weeks’ gestation),

http://www.jacionline.org
http://www.r-project.org


TABLE II. Effect of vitamin D supplementation in pregnancy on immune cell populations in cord blood

Immune population

4400 IU/d 400 IU/d

P valueMean (SE) No. Mean (SE) No.

CD31 cells within CD451 fraction (%) 19.18 (2.17) 15 24.744 (3.33) 16 .18

CD141 cells within CD451 fraction (%) 4.615 (0.36) 20 5.994 (0.82) 16 .11

Neutrophils within CD451 fraction (%) 52.27 (3.66) 17 47.927 (3.44) 15 .40

CD191 cells within CD451 fraction (%) 5.329 (0.54) 14 5.143 (0.467) 14 .80

HLA-DR1Lin2*cells within CD451 fraction (%) 0.487 (0.05) 16 0.471 (0.06) 14 .84

CD11c1 mDCs within HLA-DR1Lin2 fraction (%) 48.86 (5.29) 14 34.25 (5.29) 11 .051

BDCA41 pDCs within HLA-DR1Lin2 fraction (%) 12.30 (2.19) 14 11.93 (1.68) 11 .90

CD41 cells within CD31 fraction 67.965 (1.64) 20 70.756 (1.66) 16 .24

CD81 cells within CD31 fraction (%) 24.88 (1.40) 20 23.144 (1.41) 16 .39

RA1RO2 cells within CD31CD41 fraction (%) 68.556 (2.87) 16 73.657 (4.06) 14 .30

RA2RO1 cells within CD31CD41 fraction (%) 8.389 (1.04) 18 5.864 (1.09) 14 .11

FoxP31CD251 cells within CD31CD41 fraction (%) 3.962 (0.57) 13 3.908 (0.4) 13 .94

mDCs, Myeloid dendritic cells; pDCs, plasmacytoid dendritic cells.

*Lineage 5 CD3, CD14, CD16, CD19, CD20, and CD56.
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mean levels of circulating 25(OH)D in the mothers from both
study arms were in the insufficient-deficient range (<30 ng/mL),
although mean levels were lower (P 5 .05) in the group subse-
quently supplemented with 4400 IU/d vitamin D3 versus the
400 IU/d group. After 22 to 30 weeks of supplementation (ie, in
the third trimester of pregnancy), the pregnant women receiving
400 IU/d vitamin D3 remained in the insufficient range (<30 ng/
mL), with only 6 of 23 patients having a sufficient vitamin D level
at this time point. The mean concentration in women receiving
4400 IU/dmoved into the sufficient range (>30 ng/mL), achieving
a mean 25(OH)D concentration of 35 ng/mL, with 17 of 25 par-
ticipants demonstrating vitamin D sufficiency. Data for vitamin
D status were missing for 3 women in the 400 IU arm and for 1
woman in the 4400 IU arm. Therefore 4400 IU/d was effective
in increasing 25(OH)D levels to sufficiency within this subset
of the larger trial patient population and resulted in a significant
difference (P 5 .002) in maternal 25(OH)D3 levels compared
with the 400 IU/d group by the third trimester of pregnancy.

The effect of maternal supplementation in our patient popula-
tion was also reflected in cord blood 25(OH)D levels, which were
significantly (P5 .01) higher in the group that received 4400 IU/
d versus thosewho received 400 IU/d. Babies born in the 4400 IU/
d group were significantly longer (P5 .03) and heavier (P5 .03)
than in the 400 IU/d group.
Effect of vitamin D3 supplementation in pregnancy

on immune cell populations in cord blood
Supplementation with 4400 IU/d vitamin D3 during pregnancy

versus 400 IU/d vitamin D3 had no significant effect on the rela-
tive proportions of the main immune cell types in cord blood, as
measured by using flow cytometry (Table II). Myeloid, but not
plasmacytoid, dendritic cells showed a trend (P 5 .051) toward
an enhanced frequency in CBMCs from babies within the 4400
IU/d group in comparison with those of the 400 IU/d group.
Effect of vitamin D3 supplementation in pregnancy

on cytokine secretion from CBMCs after stimulation

of innate immune responses
To address our first hypothesis that vitamin D3 supplemen-

tation during pregnancy would promote the innate immune
system of the neonate, we cultured CBMCs from the 2 clinical
trial study arms for 24 hours with LPS (TLR4 specific), pepti-
doglycan (TLR2 specific), the type C CpG oligonucleotide
ODN 2395 (CpG, TLR9 specific), PHA (mitogenic), or me-
dium alone. Each CBMC sample was cultured in 2 separate
wells, and the resultant culture supernatants were then
analyzed independently for concentrations of 7 innate cyto-
kines. CBMCs cultured in medium alone released an undetect-
able or minimal amount of cytokine in the 24-hour period,
with the exception of IL-8, levels of which ranged from 125
to 280,000 pg/mL (data not shown). Data are summarized in
Fig 1, A, as a heat map in which the ratio of the geometric
mean cytokine concentrations (adjusted for cytokine levels
in medium control) in the 4400 IU/d supplementation group
are calculated relative to those in the 400 IU/d supplementa-
tion group. Ratios of greater than 1 are indicative of a higher
geometric mean cytokine concentration in the 4400 IU/
d group. Geometric mean cytokine concentrations were
greater in the 4400 IU/d vitamin D3 supplementation arm
than the 400 IU/d vitamin D3 supplementation arm in 27 of
the 28 cytokine-stimulation combinations (P 5 .0009, multi-
variate ANOVA–based summary test of treatment effect on
7-dimensional response; Fig 1, A; analysis for TLR stimuli
alone, P 5 .156).

In further exploratory analyses the effect of vitamin D
supplementation on production of individual innate cytokines
was examined. For each cytokine measured, stimulation of
CBMCs with each of the 3 TLR ligands and PHA significantly
induced a range of cytokine concentrations in culture superna-
tants, and maternal vitamin D3 supplementation dose exhibited
significant or borderline significant effects on geometric mean
cytokine levels of GM-CSF (P 5 .010), TNF-a (P 5 .131), IL-
1b (P 5 .094), and IFN-g (P 5 .077); for IL-6, IL-8, and IL-
10, P values for tests of supplementation effect exceeded 0.40
(Fig 1, B).

CBMCs from neonates of mothers supplemented with 4400 IU/
d vitamin D3 had higher expression levels of TLR2 (P5 .02) and
TLR9 (P 5 .02) gene expression compared with the 400 IU/
d group, an observation that could in part explain increased sen-
sitivities to peptidoglycan and CpG in this group. However,
TLR4 expression was not significantly greater in the 4400 IU/
d group (P 5 .14, Fig 2).



A

B

FIG 1. Effect of vitamin D3 supplementation during pregnancy on innate andmitogenic cytokine responses.

A, Heat map of ratios of geometric mean cytokine concentrations adjusted for medium control cytokine

level. Ratios of greater than 1 (red scale) are indicative of a higher concentration in the 4400 IU/d group.

B, Raw cytokine levels. Gray filled symbols, 4400 IU/d group (n 5 14-18); open symbols, 400 IU/d group

(n 5 15-16). There were 2 biological replicates per CBMC sample.
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per group). Gray filled circles, 4400 IU/d; open circles, 400 IU/d.
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Effect of vitamin D3 supplementation in pregnancy

on T-cell responses in the neonate
CBMCs from the 2 study arms were cultured with anti-CD3

and IL-2 to establish the effect of vitamin D3 supplementation
during pregnancy on adaptive T-lymphocyte responses in the
neonate. Culture of CBMCs with this polyclonal T-cell stimulus
resulted in detectable production of a range of T-cell cytokines
(IFN-g, IL-5, IL-10, IL-13, and IL-17A) after 72 hours (Fig 3).
CBMCs from the group supplemented with 4400 IU/d of vitamin
D3 secreted greater geometric mean levels of IL-17A (P 5 .03)
versus the 400 IU/d group, the opposite effect to that hypothe-
sized. There were no significant differences in the levels of other
cytokines measured between the 2 arms of the study; however,
there was a trend for lower levels of IL-10 and higher levels of
IL-13 in the 4400 IU/d group versus the 400 IU/d group.
Effect of vitamin D3 supplementation in pregnancy

on glucocorticoid responses in the neonate
We next assessed whether the higher dose of maternal vitamin

D3 supplementation would enhance dexamethasone-induced IL-
10 production from CBMCs in anti-CD3– and IL-2–stimulated
cultures. The change in IL-10 production in response to dexa-
methasone treatment was enhanced in CBMC cultures from the
study arm supplemented with 4400 IU/d compared with the arm
supplemented with 400 IU/d and was statistically significant be-
tween the 2 study arms (P 5 .018, Fig 4). However, no effect of
vitamin D3 supplementation during pregnancy on the expression
level of glucocorticoid receptor in CBMCs was observed to
explain this finding (Fig 2).

Production of IFN-g, IL-13, IL-5, and IL-17A in response to
dexamethasone was also studied and in both arms of the trial was



FIG 4. Effect of vitamin D supplementation on neonatal responses to dexamethasone. CBMCs were

cultured with anti-CD3 and IL-2 for 72 hours in the presence or absence of 1 3 1027 mol/L dexamethasone

(DEX). Change in cytokine concentration in dexamethasone-treated versus untreated cultures is expressed

as a log ratio. Two biological replicates per participant are plotted.Gray filled circles, 4400 IU/d; open circles,
400 IU/d.

FIG 3. Effect of vitamin D supplementation in pregnancy on neonatal cytokine responses after T-cell

stimulation. CBMCs were cultured with anti-CD3 and IL-2. Supernatants were harvested at 72 hours, and

production of 5 T-cell cytokines was measured. Two biological replicates for each participant are shown.

Gray filled circles, 4400 IU/d; open circles, 400 IU/d.
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reduced by addition of dexamethasone; there was no significant
effect of vitamin D3 supplementation on this response.
DISCUSSION
This study investigates the effect of supplementation with 4400

IU/d vitamin D3 during the second and third trimesters of preg-
nancy on the immune responsiveness of the neonate by using a
subset of umbilical cord blood samples from babies born within
VDAART.9,26 This regimen led to an increase in mean maternal
circulating 25(OH)D levels into the sufficiency range (>30 ng/
mL). In contrast, supplementation with the current recommended
daily intake of 400 IU/d did not enhance 25(OH)D levels in the
mother. Notably, even within the small cohort studied here, a sig-
nificant increase in newborn weight and height was observed in
babies born to mothers supplemented with 4400 IU/d.
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Importantly, supplementation of pregnant women with 4000 IU/
d vitamin D3 appears to be safe and effective in reducing the co-
morbidities of pregnancy.27,28

Our first major finding was of significantly enhanced proin-
flammatory cytokine production in response to innate and
mitogenic stimuli in CBMC cultures from babies born within
the 4400 IU/d vitamin D3 arm. This effect was not specific to any
one particular cytokine or stimulation given that all cytokine stim-
ulation combinations were on average higher in the 4400 IU/
d group and resulted in mean fold increases across the 4 stimuli
of 1.715 for GM-CSF, 2.105 for IFN-g, 1.72 for IL-1b, 1.7 for
IL-6, and 1.778 for IL-8. In contrast, such an effect was not
seen with the anti-inflammatory cytokine IL-10. The capacity
of vitamin D3 supplementation during pregnancy to enhance
innate responses in the neonatal period is supported by observa-
tional studies in early life, showing a positive relationship be-
tween cytokine responses and 25(OH)D levels in cord blood.24,29

Additionally, we observed higher gene expression levels for
TLR2 and TLR9 in CBMCs from the 4400 IU/d group. Given that
the strongest effect of vitamin D3 supplementation was observed
after PHA stimulation, the difference in expression of these recep-
tors might not fully explain the difference in responsiveness be-
tween study arms. However, PHA will activate innate
lymphocytes, such as natural killer cells, and has also been pro-
posed to act as a TLR agonist.30 Analysis of cell subset composi-
tion hinted at an increased frequency of myeloid, but not
plasmacytoid, dendritic cells (P 5 .051) within CBMCs from
the 4400 IU/d group. Although more detailed analyses are war-
ranted based on these preliminary data, it is plausible that den-
dritic cells can contribute both directly to the enhanced
proinflammatory cytokine levels and/or indirectly by enhancing
T-cell activation in these short-term cultures. However, the mech-
anism by which high-dose maternal vitamin D3 supplementation
improves the fitness of innate immune cells to respond to stimu-
lation remains uncertain.

Responsiveness of immune cells to infectious stimuli at birth is
known to be highly variable between subjects.31 Stronger
neonatal cytokine responses, in particular for IFN-g, have been
associated with reduced respiratory tract illness,32-34 as well as
with the incidence of wheeze, allergy, and asthma11-13,35,36 later
in childhood. In addition, lower expression levels of TLRs on
cord blood immune cells has been linked to maternal allergy.37,38

Therefore the capacity of high-dose vitamin D3 supplementation
during pregnancy to enhance innate immune fitness in the neonate
might limit the immune perturbations in early life that are linked
to asthma development.

Our second major finding was that vitamin D3 supplementation
of 4400 IU/d led to enhanced IL-17A production in CBMC cul-
tures in response to polyclonal T-cell stimulation. IL-17A and
TH17-associated cytokines play a crucial role in pulmonary im-
mune defense to pathogens39 and in neonatal immunity40 but in
excess can also have pathologic effects. Lack of IL-12/IL-
23p40 in very premature babies is associated with an increased
risk of sepsis, and this further suggests a role for IL-17 in neonatal
defense to infection.41 We propose that upregulation in the pre-
sent study would support the capacity of vitamin D to promote
the protective antimicrobial actions of IL-17A in the neonate.
These data were unexpected given previous reports demon-
strating that 1,25(OH)2D3 inhibits IL-17A and TH17 synthe-
sis19,20,42 in addition to our own data showing that IL-17A is
strongly inhibited in CBMCpolyclonal T cell–stimulated cultures
in the presence of in vitro 1,25(OH)2D3 (data not shown). These
conflicting findings highlight the importance of context and
timing in the actions of vitamin D on the immune system.

Although no effect of vitamin D3 supplementation in preg-
nancy on levels of IL-10 synthesized by CBMCs after innate or
T-cell stimulation was observed, enhanced responsiveness of
CBMCs from the 4400 IU/d vitamin D3 group compared with
the placebo group to in vitro dexamethasone treatment for the pro-
duction of IL-10 was seen. This vitamin D phenomenon has been
shown in adults with steroid-resistant asthma23,43 and could be
relevant in the context of early life, when glucocorticoids and
vitamin D have been proposed to influence lung development,44

although the clinical effect of this is an area for further
exploration.

Our study was underpowered to investigate links between
immune parameters at birth and clinical outcomes in children;
however, the main VDAARTof 876 women reported a trend for a
lower incidence of asthma/recurrent wheeze in the group whose
mothers had been supplemented with 4400 IU/d compared with
400 IU/d vitamin D3, a trend for reduced rates of lower respiratory
tract infections, and significantly fewer allergens to which they
were sensitized at age 3 years. Notably, an independent random-
ized controlled trial of vitamin D3 supplementation in pregnancy,
although with significant differences in study design, demon-
strated a trend for similar clinical outcomes and in a secondary
principle component analysis reported an upregulated neonatal
airway immune profile in nasal lining fluid samples from the sup-
plemented arm, which complements the present findings.45

The strengths of this study are that participants were from a
randomized controlled trial and that a comprehensive set of
immunologic assays was conducted examining both innate and
adaptive immune responses. The main limitation of this study is
that it was underpowered for analysis of associations between
immune parameters and subsequent clinical outcomes. Further-
more, additional stratified analyses based, for example, on sex
were not pursued because no sex-specific effects were observed in
the main VDAART and the size of the current study precluded
meaningful analyses. Nevertheless, given the small size of this
substudy of a randomized controlled trial, it is very encouraging
how many immunologic parameters showed a significant effect
from randomization to higher-dose vitamin D supplementation.

In summary, this is the first study to ascertain the effects of
maternal vitamin D supplementation at levels that restored
sufficiency in the majority of pregnant women on the respon-
siveness of the early-life immune system on innate and T-cell
stimulation by using the rigorous approach of a randomized
controlled trial. We report that neonates of mothers supplemented
with 4400 IU/d vitamin D3 had greater innate cytokine responses,
greater IL-17A production in response to T-cell stimulation, and
greater dexamethasone-induced IL-10 production. Given the ev-
idence for strong neonatal immune responses in early life being
associated with decreased development of asthma, this effect
will likely lead to improved respiratory health in early life. Future
studies should address the longitudinal effect of vitamin D3 sup-
plementation in pregnancy on clinical and immune outcomes in
the infant.
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Key messages

d Vitamin D supplementation during pregnancy modifies
the immune system of the neonate.

d This modified immune system might be better equipped
to protect the host against pathogenic infections.
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METHODS

VDAART clinical trial
VDAARTE1 is a multicenter, randomized, double-blind, placebo-

controlled clinical trial designed to determinewhether higher vitaminD intake

in pregnant women will prevent asthma in offspring at age 3 years. Eight hun-

dred seventy-six pregnant women were recruited from 3 clinical sites across

the United States and randomized at 10 to 18 weeks of pregnancy into one

of 2 arms: 4000 IU of vitamin D3 plus a multivitamin containing 400 IU of

vitamin D3 to be taken daily or a placebo pill plus a multivitamin containing

400 IU of vitamin D3 to be taken daily. Eligible participants were pregnant

women between the ages of 18 and 39 years with a history of asthma, eczema,

or allergic rhinitis (or the biological father had a history of asthma, eczema, or

allergic rhinitis) and currently a nonsmoker. VDAART is registered at

ClinicalTrials.gov as NCT00920621.

Preparation of CBMCs
At the time of birth, cord blood samples were collected into tubes

containing 10% sodium citrate and transported to the laboratory within

16 hours of delivery. CBMCs were isolated by using a Ficoll density gradient.

Flow cytometry
For phenotypic characterization of the main immune cell populations in

cord blood samples, the following antibodies were used in various stain

combinations: CD3 fluorescein isothiocyanate (FITC; BDBiosciences), clone

SK7; CD14 FITC (BD Biosciences), clone MFp9; CD16 FITC (BD

biosciences), clone 3G8; CD19 FITC (BD Biosciences), clone 4G7; CD20

FITC (BD Biosciences), clone 2H7; CD56 FITC (BD Biosciences), clone

NCAM16.2; CD3 peridinin-chlorophyll-protein complex (BD Biosciences),

clone SK7; CD14 phycoerythrin (PE; BD Biosciences), clone MFp9; CD19

FITC (BD Biosciences), clone 4G7; HLA-DR peridinin-chlorophyll-protein

complex (BD Biosciences), clone L243; CD45 Pacific blue (AbD Serotec,

Oxfordshire, United Kingdom), clone F10-89-4; CD4 eFluor 450 (eBio-

science, San Diego, Calif); CD8 allophycocyanin (BD Biosciences), clone

OKT4; CD38 allophycocyanin (eBioscience), clone HIT2; CD45RA FITC

(BD Biosciences), clone HI100; forkhead box P3 (FoxP3) PE (eBioscience),

clone PCH101; CD45 RO 650NC (eBioscience), clone UCHL1; and CD25

PE-Cy7 (BD Biosciences), clone BC96.

For stain combinations containing only cell-surface antibodies, 3 mL of

each relevant antibody was added to an aliquot of 125 mL of fresh UCB, and

the sample was incubated on ice for 30 minutes. Fluorescence-activated cell

sorting lysing solution (BD Biosciences) was subsequently added to lyse the

majority of erythrocytes per the manufacturer’s instructions. Cells were fixed

with BD Cytofix. For stain combinations containing the intranuclear FoxP3

antibody, 3 mL of cell-surface antibodies were first added to 1 to 2 million

CBMCs in a volume of 100 mL of PBS plus 2% FBS and incubated on ice for

30 minutes. FoxP3 staining was subsequently carried out by using a FoxP3

staining buffer set from eBioscience, according to the manufacturer’s

instructions. Gating of cell populations was carried out with FlowJo software

(version 9.6.4). Doublets were excluded, and a CD45 gate was applied as a

marker of leukocytes. Subsequent cell proportions were determined as a

proportion of leukocytes or subpopulations of leukocytes. Neutrophils were

identified based on forward- and side-scatter characteristics. Fluorescence

minus one controls for individual samples were used to set the gates. Mean

fluorescence intensity was reported as normalized to the fluorescence minus

one sample.

Cytokine measurements
Cytokine concentrations in cell-culture supernatants were determined by

using a cytometric bead array assay (BD Biosciences), according to the

manufacturers’ instructions. Samples from the assay were analyzed on a

Fortessa flow cytometer (Becton Dickinson). Data were analyzed with FlowJo

software (version 9.6.4) and GraphPad Prism software (version 5). The lower

limit of detection for all cytokines in the assay was 1.5 pg/mL. Samples to be

assayed for IL-6 and IL-8 were first diluted 1:10 because of the high

concentration of these cytokines present in the samples. In these cases

cytokine measurements were multiplied by 10 to produce the final measure-

ments. In the minority of cases in which the measurement of the 1:10 sample

was less than the standard curve of the assay, the assay was repeated with the

undiluted sample. Results greater than the standard curve (despite dilution as

above) were valued as 50,000 pg/mL (for GM-CSF, IFN-g, IL-1b, TNF-a, and

IL-10) or 500,000 pg/mL for IL-6 and IL-8. Results less than the standard

curve were valued as 1 pg/mL.

Quantitative PCR primers
The following FAM-labeled primer and probe sets from Life Technologies

were used: TLR2 (Hs00610101-m1), TLR4 (Hs00152939-m1), TLR9

(Hs00152973_m1), and NR3C1 (Hs00353740_m1). VIC-labeled eukaryotic

18s rRNA endogenous control (Life Technologies) was used as a house-

keeping gene.

Statistical analysis
For analysis of the effect of vitamin D supplementation on cytokine

production by CBMCs in response to innate stimulation, 2-way mixed-effects

analyses were performed,E2 showing effects of stimulation and vitamin D3

supplementation on in vitro production of different cytokines. The mean nat-

ural logarithm of eachmeasured cytokine response plus onewas analyzedwith

adjustment for response to sham, fixed effects of treatment arm and stimulus,

and random effects of subject to accommodate correlation among replicates.

Then for each different cytokine, separate random-effects ANOVAs were con-

ducted to simultaneously test the effect of the different stimuli along with the

effect of supplementation across the range of stimuli. Similar random-effects

models were used to test the effects of vitamin D supplementation on TLR

expression in CBMCs and T-cell cytokine production after polyclonal T-cell

stimulation. The global null hypothesis of no effect of supplementation on

mean cytokine production was tested by using fixed-effects multivariate AN-

OVA,E3 with the 7-dimensional response for each subject composed of log (1

plus measured cytokine concentration) minus log (1 plus mean replicated

cytokine measure with sham stimulus), allowing effects of stimulus type, sup-

plementation with vitamin D, and individual contributor. All computations

used R software (version 3.3; www.r-project.org).
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