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Recently there is a surge of interest in network geometry and topology. Here we show that the
spectral dimension plays a fundamental role in establishing a clear relation between the topological
and geometrical properties of a network and its dynamics. Specifically we explore the role of the
spectral dimension in determining the synchronization properties of the Kuramoto model. We show
that the synchronized phase can only be thermodynamically stable for spectral dimensions above
four and that phase entrainment of the oscillators can only be found for spectral dimensions greater
than two. We numerically test our analytical predictions on the recently introduced model of network
geometry called Complex Network Manifolds which displays a tunable spectral dimension.
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I. INTRODUCTION

Recently there has been growing interest in character-
izing networked structures using geometrical and topo-
logical tools [1–3]. On one side an increasing number of
works aim at unveiling the hidden geometry of networks
using statistical mechanics [4–11], discrete geometry [12]
and machine learning [13, 14], on the other side topolog-
ical data analysis is tailored to capture the structure of
a large variety of network data [15–21].

Simplicial and cell complexes are generalized network
structures not only formed by nodes and links but also
by triangles, tetrahedra, hypercubes, orthoplexes, etc.
Having geometrical building blocks, simplicial and cell
complexes are ideal discrete structures to investigate and
model network geometry and topology [1–3]. Modelling
network geometry with simplicial and cell complexes has
been for long the practice in quantum gravity approaches
including Causal Dynamical Triagulations, Regge calcu-
lus or Tensor networks, to name a few [22–24]. Moreover,
simplicial and cell complexes have recently become very
popular to model complex systems ranging from brain
networks to social networks [1–3, 25–27], in part sup-
ported by the fact that their geometrical properties are
often retained if one considers their network skeleton, i.e.
the network formed exclusively by their nodes and links.

Network geometries are typically characterized by hav-
ing a finite spectral dimension dS [28–32] that character-
izes the return time distribution of the random walk. For
instance, Euclidean lattices in dimension d have spectral
dimension d = dS . Therefore in this case the spectral
dimension is also equal to the Hausdorff dimension of
the lattice, dS = dH . However, in general, networks can
have non-integer spectral dimension dS not equal to their
Hausdorff dimension. The fundamental role of the spec-
tral dimension in characterizing the geometry of discrete
network structures has been widely recognized in quan-
tum gravity where the spectral dimension has been ex-

tensively used to compare different approaches [31–34].
Interestingly, it has recently been shown that the skele-

ton of simplicial and cell complexes generated by the
model called Complex Network Manifolds [5–8] displays
finite spectral dimension, heterogeneous degree distribu-
tion, small-world property (Hausdorff dimension dH =
∞) and rich community structure on top of an emergent
hyperbolic geometry. This suggests that a finite spec-
tral dimension is not only a very strong indication of a
rich underlying geometry of network structures, but is
also totally compatible with the main universal proper-
ties of complex networks. Therefore, complex networks
with a strong geometric component such as brain net-
works [16, 35, 36] and power-grids [37] are likely to dis-
play a finite spectral dimension together with character-
istic properties of complexity.

Predicting the properties of synchronization dynam-
ics on network geometries is a fundamental statistical
mechanics problem that can be crucial to understand
the relation between structural and functional brain net-
works and to predict the stability of power-grids. Even
though the interplay between complex network structure
and synchronization dynamics has been extensively stud-
ied [38–47], so far most works have considered complex
networks where the smallest non-zero eigenvalue of the
Laplacian (the so called Fidler eigenvalue) is well sepa-
rated from zero, i.e. the network displays a spectral gap
and does not display a spectral dimension.

Only very recently a few works have pointed out that
network geometry can have a profound effect on sychro-
nization dynamics [16, 25, 48]. In particular, it has been
found that neuronal cultures have synchronization prop-
erties strongly affected by their dimensionality, so that 2d
neuronal cultures display weaker synchronization prop-
erties than neuronal cultures grown in 3d scaffolds [48].
Additionally, large-scale numerical models of the brain
generated in the framework of the Blue Brain project
[16] reveal that neurons in the brain can be thought
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of as forming a simplicial complex where neurons be-
longing to higher dimensional simplices are more corre-
lated. Recently, these results have been interpreted in
the framework of a numerical stylized model of the Ku-
ramoto model on Complex Network Manifolds displaying
strong spatio-temporal fluctuations and strong effects of
the dimensionality of the simplicial complex [25].

Here we shed light in these numerical results by inves-
tigating the sychronization properties of the Kuramoto
model [47] on networks with a finite spectral dimension.
We first derive analytically general results on the pre-
dicted stability of the synchronized phase in the linear
approximation of the Kuramoto model. Subsequently we
compare these predictions with numerical results of the
Kuramoto model on Complex Network Manifolds.

For Euclidean lattices of dimension d, it is known that
the sychronized phase of the Kuramoto model is ther-
modynamically stable only for d > 4 [49, 50]. Here we
extend this result by showing that in complex networks
with finite spectral dimension, the Kuramoto model can
yield a synchronized state in the infinite network limit
only for spectral dimensions dS > 4. For spectral dimen-
sions dS ∈ (2, 4] instead, only an entrained synchroniza-
tion phase can be observed in the large network limit.
Our results are then tested on Complex Network Man-
ifolds formed by regular polytopes of dimension d. We
validate our results and we show evidence that in these
network structures it is possible to observe entrained
phase synchronization also for dimensions d > 4 provided
that the spectral dimension dS ≤ 4. Interestingly, Com-
plex Network Manifolds are hyperbolic network geome-
tries [7] which are very different from regular Euclidean
lattices. A notable difference with Euclidean lattices is
that despite the fact that they have a finite spectral di-
mension, their eigenvectors are not delocalized over the
network like the Fourier basis on an Euclidean lattice.
Rather they can be very localized on a small fraction of
nodes, reflecting the symmetries present in the network.
Therefore, here we characterize the spectral properties
of Complex Network Manifolds and study the effect of
these properties on the entrained phase synchronization,
which is known to display strong spatio-temporal fluc-
tuations of the order parameter [25]. This phase, also
called frustruated synchornization [43, 44], has a very
rich structure and can be interpreted as an extended crit-
ical region to be related to the smeared phase observed
in critical phenomena on hyperbolic networks, such as
percolation [51, 52].

The paper is organized as follows. In Sec. II we define
the properties of the normalized Laplacian and the spec-
tral dimension of a network. In Sec. III we introduce the
model of Complex Network Manifolds and characterize
its spectral properties. In Sec. IV we discuss our theoret-
ical predictions regarding the synchronization properties
of the Kuramoto model on complex networks with finite
spectral dimension using the linear approximation. In
Sec. V we validate the theoretical predictions and fully
investigate the properties of synchronization defined over

Complex Network Manifolds. In Sec. VI we provide the
conclusions. Finally in the Appendices we provide an
extensive account of our theoretical derivations.

II. THE SPECTRAL DIMENSION

Diffusion on network structures is typically studied us-
ing the properties of suitably defined Laplacian opera-
tors. On an undirected network of N nodes and adja-
cency matrix a the normalized Laplacian L is a N × N
matrix of elements

Lij = δij −
aij
ki
. (1)

The normalized Laplacian operator is typically used to
characterize the random walk on a given network, or a
diffusion dynamics in which, starting from each node i,
there is a well defined probability of diffusion to every
neighbour node. For instance, the random walk can be
characterized by studying the equation for the probabil-
ity πi(t) that a random walker is at node i at time t given
by

πi(t) = −
∑
j

Ljiπj(t− 1). (2)

Given the initial condition πi(0) = δi,i0 , this equation
has the solution

πi(t) =
∑
λ

e−λtuλi v
λ
i0 , (3)

where vλ and uλ are the right and left eigenvectors cor-
responding to the eigenvalue λ. While L is asymmetric,
an alternative definition of the normalized Laplacian con-
siders the symmetric matrix L̂ of elements

L̂ij = δij −
aij√
kikj

. (4)

Interestingly, is it easy to show that the spectrum of
L and the spectrum of L̂ are the same. Therefore, al-
though the normalized Laplacian L is asymmetric, it has
a real spectrum and non-negative eigenvalues. Addition-
ally, the normalized Laplacian has the following spectral
properties:

• The normalized Laplacian L has always one zero
eigenvalue λ = 0 with degeneracy equal to the num-
ber of components of the network. So if a network is
connected the zero eigenvalue has degeneracy one.

• In a connected network the right and left eigenvec-
tors corresponding to the zero eigenvalue λ = 0 are
given by

vλ=0 =
1√
〈k〉N

(1, 1, . . . 1),

uλ=0 =
√
〈k〉N(µ1, µ2, . . . , µN ), (5)
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where

µi =
ki
〈k〉N

(6)

is the invariant measure of the random walk on the
network. The components of the right vλ and left
uλ eigenvectors of L are related to the components
of the eigenvectors wλ of L̂ by

uλi =
√
kiw

λ
i ,

vλi =
1√
ki
wλi . (7)

Therefore, if follows that the elements uλi and vλi
are simply related by the expression

uλi = kiv
λ
i . (8)

Moreover, since the eigenvectors wλ are orthogo-
nal, we have

N∑
i=1

uλi v
λ′

i =

N∑
i=1

wλi w
λ′

i = δ(λ, λ′). (9)

• The effective number of nodes over which the λ
eigenmode is localized can be measured using the
participation ratio Y defined as [25]

Y =

[
N∑
i=1

(uλi v
λ
i )2

]−1

=

[
N∑
i=1

(wλi )4

]−1
. (10)

In networks with distinct geometrical properties, the den-
sity of eigenvalues ρ(λ) of the normalized Laplacian fol-
lows the scaling relation

ρ(λ) ' λdS/2−1 (11)

for λ � 1, where dS is called the spectral dimension of
the network. In d-dimensional Euclidean lattices dS =
d. More generally, it can be shown that dS is related
to the Hausdorff dimension dH of the network by the
disinequalities [31, 32]

dH ≥ dS ≥ 2
dH

dH + 1
. (12)

Therefore, for small-world networks, which have infinite
Hausdorff dimension dH =∞, it is only possible to have
finite spectral dimension dS ≥ 2.

We observe here that, in presence of a finite spectral
dimension, the cumulative distribution ρc(λ) evaluating
the density of eigenvalues λ′ ≤ λ follows the scaling

ρc(λ) ' λdS/2, (13)

for λ� 1. In presence of a finite spectral dimension it is
possible to evaluate the scaling with the network size of
the smallest non-zero eigenvalue λ2 of a connected net-
work (also called the the Fidler eigenvalue) by imposing
that

ρc(λ2) =
1

N
, (14)

i.e. the eigenvalue λ2 is the smallest non zero eigenvalue.
From this relation and the scaling of the cumulative den-
sity of eigenvalues we get

λ2 ∝ N−2/dS . (15)

Therefore, the Fidler eigenvalue λ2 → 0 as N → ∞ and
we say that in the large network limit the spectral gap
closes.

III. COMPLEX NETWORK MANIFOLDS: A
MODEL WITH TUNABLE SPECTRAL

DIMENSION

A. Definition and basic structural properties

Simplicial complexes and cell complexes are natural
objects to be considered when investigating network ge-
ometry. In fact, they can be intuitively interpreted as
geometrical network structures built from geometrical
building blocks.

A pure d-dimensional simplicial complex is formed by
d-dimensional simplices (fully connected networks of d+1
nodes) such as nodes (d = 0), links (d = 1), triangles
(d = 2) , tetrahedra (d = 3) etc., glued along their faces.
Here by a face of a d-dimensional simplex, we indicate
a δ-dimensional simplex with δ < d formed by a subset
of its nodes. A simplicial complex has the following two
additional properties:

(1) If a simplex α belongs to the simplicial complex K
(i.e. α ∈ K), then also all its faces α′ ⊂ α belong
to the simplicial complex K (i.e. α′ ∈ K).

(2) If two simplices α and α′ belong to the simplicial
complex (i.e. α, α′ ∈ K), either their intersection is
null, i.e. α∩α′ = ∅ or their intersection belongs to
the simplicial complex, (i.e. α ∩ α′ ∈ K).

Here we consider a recently proposed model, Complex
Network Manifolds (CNM) [5–7], that generates discrete
d-dimensional manifolds by a non-equilibrium growing
simplicial complex dynamics. CNM are discrete man-
ifolds generated by gluing subsequently d-dimensional
simplices along their (d − 1)-faces. Every (d − 1)-face
α of the CNM is characterized by an incidence number
nα indicating the number of d-dimensional simplices inci-
dent to it minus one. Initially (at time t = 1), the CNM is
formed by a single d-dimensional simplex. At any subse-
quent step (at time t > 1), a new d-dimensional simplex
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is glued to a (d− 1)- face α with probability

Πα =
1− nα∑
α′(1− nα′)

. (16)

In Ref. [7] the exact degree distribution of CNM has
been analytically derived. Mainly, the degree distribu-
tion P̃ (k) is exponential for dimension d = 2 and power-

law (i.e. P̃ (k) ' Ck−γ) for dimension d > 2, with power-
law exponent γ given by

γ = 2 +
1

d− 2
. (17)

CNM can be generalized to cell complexes that are
not just formed by simplices but instead they are formed
by the subsequent gluing of regular polytopes along
their faces [8]. Since in dimension d > 4 there are
only three types of convex regular polytopes, the sim-
plices, the hypercubes and the orthoplexes, here we focus
on CNM formed by subsequently gluing these building
blocks along their faces. Therefore, we consider CNM
built using repeatedly the same building block given by
a d-dimensional simplex, a d-dimensional hypercube or a
d-dimensional orthoplex. To each face of the polytopes
we assign an incidence number nα given by the number
of d-dimensional polytopes incident to it minus one. Fi-
nally the cell complex is built by starting from a single
polytope and at each subsequent time adding a new poly-
tope of the same type to a (d − 1)-face with probability
given by Eq. (16).

The resulting CNM [8] have exponential degree distri-
bution for d = 2 and power-law degree distribution for
d > 2, with power-law exponent γ given by

γ = 1 +
F − 2

f − 2
, (18)

where F is the number of faces of the regular polytopes
that form the building block of the cell complex, and f
is the number of (d − 1)-faces incident to a node on the
same regular polytope. By using the fact that F and f
are given for the different regular polytopes by

F = d+ 1, f = d, simplices,
F = 2d, f = d, hypercubes,
F = 2d, f = 2d−1, orthoplexes,

(19)

we derive that the power-law exponent γ of the degree
distribution is given by

γ = 2 + 1
d−2 , simplices,

γ = 3 + 2
d−2 , hypercubes,

γ = 3 + 1
2(d−2)−1 , orthoplexes.

(20)

Interestingly, we notice that only CNM built using sim-
plices have a scale-free degree distribution with γ ∈ (2, 3]
in dimension d > 2.

We observe that the network structure of simpli-
cial complexes CNM [5] reduces to Apollonian Random

Graphs [53, 54] and the cell complexes CNM in d = 3 are
strictly related to the model proposed in Ref. [56].

It was recently revealed that CNM and their general-
ization called Network Geometry with Flavor [6], which
allows us to establish the connection with preferential at-
tachment models, have an emergent hyperbolic geometry.
Here we focus exclusively on the skeleton of CNM, i.e. the
network formed exclusively by its nodes and links. The
geometrical nature of the skeleton of CNM is strongly
reflected in the spectral properties of the network, char-
acterized by a finite spectral dimension, as we will discuss
in the following section.

B. The spectral properties of Complex Network
Manifolds

CNM follow simple combinatorial rules that do not
take into account any embedding space. However, these
structures display an emergent hyperbolic geometry char-
acterized by an infinite Hausdorff dimension dH = ∞
(the networks are small-world) [25] together with a finite
spectral dimension dS ≥ 2.

In this section we investigate numerically the spectral
properties of CNM. Figure 1 shows the cumulative distri-
bution of eigenvalues ρc(λ) as obtained for the simplices
(panel a), hypercubes (panel b) and orthoplexes (panel
c), and for dimensions d = 2, 3, 4 and 5, as indicated by
the different colours in the legend. A finite size study of
this spectrum reveals that λ2 approaches zero in the large
network limit, as predicted in presence of a finite spectral
dimension dS . Moreover, ρc(λ) obeys Eq.(13) for λ� 1,
which allows us to obtain the spectral dimension dS as
a function of d (see Figure 1d) by performing a power-
law fit to ρc(λ) for λ � 1. We notice that the spectral
dimension dS increases with the dimension of the regu-
lar polytope d for simplices, hypercubes and orthoplex
as well. However, the growth of dS with d saturates for
hypercubes and orthoplexes, while it does not appear to
saturate for simplices. Therefore, we conclude that the
spectral dimension dS does not only depend on the di-
mension d of the polytopes forming the building blocks
of the cell complex, but also on the specific nature and
symmetry of these polytopes.

Moreover, we observe that although CNM appear to
have a finite spectral dimension as Euclidean lattices, the
eigenvectors of CNM are very different from the Fourier
eigenvectors of a Euclidean lattice, as evidenced by the
behavior of its participation ratio Y (see Figure 2). In
fact, for Euclidean lattices one would have Y = N for
all eigenmodes, while for CNM there is a large fraction
of eigenmodes with partion ratio Y � N . The eigenvec-
tors have indeed a very heterogeneous distribution P (Y )
of the participation ratio Y , including many eigenvectors
localized on a small number of nodes compared to the to-
tal number of nodes of the network (see panels (a), (d),
and (g) of Figure 2). This phenomenon can be also ap-
preciated by observing that the cumulative distribution
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FIG. 1: The cumulative distribution of eigenvalues ρc(λ) for
CNM of dimension d = 2, 3, 4 and 5, is shown in panels (a),
(b) and (c) for the simplex, hypercube and orthoplex CNM re-
spectively. Panel (d) represents the fitted spectral dimension
of the CNM as a function of the dimension d of its building
blocks. Results are for N = 6400 and the cumulative distri-
bution of eigenevalue ρc(λ) is averaged over 100 realizations
of the network.

Pc(Y ) of eigenmodes with partition ratio less than Y can
be significantly high also for values of Y much smaller
than the number of nodes N of the network, i.e. Y � N
(see panels (b), (e), (h) of Figure 2). Finally, the de-
pendence of the participation ratio Y on λ can be highly
non-trivial (panels (c), (f), and (i) of Figure 2) and it is
likely to be affected by the symmetries of the CNM [58].

IV. KURAMOTO DYNAMICS ON NETWORKS
WITH FINITE SPECTRAL DIMENSION

A. The Kuramoto model

Synchronization dynamics on complex networks has
been widely studied in the literature and it is known to
be very significantly affected by the spectral properties
of the network. However, the scientific interest so far has
focused on networks which do not have a spectral dimen-
sion and display instead what is called a spectral gap, i.e.
the smallest non-zero eigenvalue of the normalized Lapla-
cian λ2 does not approaches zero in the infinite network
limit.

However, in network geometries it is important to con-
sider network structures in which the spectral gap closes,
λ2 → 0 as N →∞, and the density of eigenvalues follows
the scaling in Eq. (11), i.e. the network has a finite spec-
tral dimension. To investigate the role of the spectral
dimension in the synchronization dynamics, we consider
the Kuramoto model.

The Kuramoto dynamics describes a system of N cou-

pled oscillators i = 1, 2, . . . , N with phases θi(t) obeying
the following dynamical equation,

θ̇i(t) = ωi + σ

N∑
j=1

aij
ki

sin(θj − θi), (21)

where ki is the degree of node i, aij the adjacency ma-
trix of the network, and σ the control parameter tuning
the strength of the coupling between nodes. Each inter-
nal frequency ωi is independently drawn from a normal
distribution with mean 0 and variance 1, i.e. N (0, 1).
We note that sometimes the Kuramoto model is defined
by omitting ki in Eq. (21), however our choice here is
dictated by the desire to screen out the effect of having
heterogeneous degree distributions. Therefore, the con-
sidered dynamics is designed to be independent of the
degree distribution so that the effect of having networks
with different spectral dimension can be revealed.

B. Theoretical predictions

In order to study the stability of the synchronized
phase, we have linearized the Kuramoto dynamics in Eq.
(21) assuming that |θi − θj | � 1 for every pair of neigh-
bour nodes. In this way we get the linear system of equa-
tions

θ̇i(t) = ωi − σ
N∑
j=1

Lijθj , (22)

for i = 1, 2, . . . , N , where L is defined in Eq. (1). In
order to evaluate the stability of the synchronized state,
we use an approach already established for finite lattices
[49, 50]. Specifically we calculate the average fluctuation
of the phases over the entire network by evaluating W 2

given by

W 2 =
1

N

〈
N∑
i=1

[θi(t)− θ]2
〉
, (23)

where in Eq. (23) θ is given by

θ =
1

N

N∑
i=1

θi(t), (24)

in the linear approximation. In presence of a thermody-
namically stable synchronized phase, the average fluctu-
ations of the phases W 2 should remain bounded. There-
fore, if W 2 diverges with the network size N , the syn-
chronized phase is unstable. By considering networks
having a finite spectral dimension dS we obtain (see Ap-
pendix A) that in the large network limit (N →∞) W 2

diverges as long as dS ≤ 4. Specifically we can show that
W 2 obeys the scaling

W 2 ∼

 N4/dS−1 if dS < 4,
ln(N) if dS = 4,
const if dS > 4.

(25)
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FIG. 2: The probability distribution P (Y ), the cumulative distribution Pc(Y ) of the participation ratio Y , and the average
value of the participation ratio Y as a function of the corresponding eigenvalue λ are shown for CNM formed by simplices
(panels (a, b, c)), hypercubes (panels (d, e, f)) and orthoplexes (panels (g, h, i)) networks with dimension d = 2, 3, 4, 5 of the
polytopes.

It follows from this derivation that the synchronized state
cannot be thermodynamically stable in networks with
spectral dimension dS ≤ 4.

The linear approximation is valid only if the coupling
term of each oscillator with the phases of the linked os-
cillators is small. Therefore in order for the linear ap-
proximation to hold we must require that the vector Lθ
has small elements. A global parameter that can estab-
lish the sufficient condition for the failure of the linear
approximation is the correlation C defined as

C =
1

N

〈
θTLθ

〉
. (26)

In fact, if the correlation C diverges the linear approxi-
mation cannot be valid. In a network with finite spectral
dimension dS we have obtained (see detailed derivation
in Appendix B) that C obeys the following scaling with
N ,

C ∼

 N2/dS−1 if dS < 2,
ln(N) if dS = 2,
const if dS > 2.

(27)

Therefore, for spectral dimension dS ≤ 2 the correlations
among the phases of nearest neighbour nodes diverge and
the linear approximation fails.

So far we have shown that for spectral dimension
dS < 2 the linear approximation fails, while for spec-
tral dimensions dS ∈ (2, 4] the linear approximation can

be valid but the synchronized phase is not thermodynam-
ically stable. In order to uncover the phenomenology for
spectral dimensions dS ∈ (2, 4], we follow the approach
used by [49, 50] for regular lattices. We start by char-
acterizing the fluctuations observed in phase velocities
across the nodes of the network

V 2 =
1

N

N∑
i=1

〈[
ψi − ψ̄

]2〉
, (28)

where ψi indicates the phase velocity of node i,

ψi = θ̇i, (29)

and ψ̄ the average of the phase velocities over the network

ψ̄ =
1

N

N∑
i=0

ψi. (30)

In Appendix C we show that, as long as the linear approx-
imation is valid, i.e. dS > 2, the fluctuations observed in
phase velocities vanish in the large network limit, i.e.

V 2 → 0 as N →∞. (31)

This analysis therefore reveals that for spectral dimen-
sions dS ∈ (2, 4] phase entrainment takes place as long
as the linear approximation is valid.



7

V. KURAMOTO MODEL ON COMPLEX
NETWORK MANIFOLDS

In this section we present numerical results of the Ku-
ramoto dynamics defined over CNM. As CNM have tun-
able spectral dimension this analysis will provide a solid
benchmark where we can test our theoretical predictions.
The macroscopic state of synchronization of the system
at each time t is characterized by the Kuramoto order
parameter, defined as

Z(t) = R(t)eiφ(t) =
1

N

N∑
j=1

eiθj(t), (32)

where R(t) ∈ [0, 1] is a real variable that quantifies the
level of global synchronization, and φ(t) gives the average
global phase of collective oscillations [38, 47]. Therefore,
R(t) ≈ 0 corresponds to the noisy or non-coherent state,
whereas R(t) ≈ 1 corresponds to the coherent or syn-
chronized state.

We simulated the Kuramoto dynamics by integrating
the system of Eqs. (21) in MATLAB using the ode45
function, which uses a non-stiff 4-th order integration al-
gorithm with adaptive time steps. Simulations are run
for a total time T , and for different realizations of the
CNM, formed by d-dimensional simplices, hypercubes
and orthoplexes.

Our numerical analysis reveals that CNM can display
a frustrated synchronization phase with fully entrained
phases in which the global order parameter R(t) has large
temporal fluctuations. The typical range of values of the
coupling constants where we observe this phase depends
both on the spectral dimension dS and the network size
N . In Figure 3 we show single instances of the time se-
ries R(t) of the global order parameter defined on CNM
of size N = 3200 for representative values of the coupling
σ and for different polytopes and dimensions. Character-
istic states of frustrated synchronization can be observed
for σ = 5.0 and d = 3, 4 for CNM formed by simplex, hy-
percubes and orthoplex (panels (d), (e), (f), (g), (h) and
(i) of Figure fig : series); and also for d = 5 for CNM
formed by hypercubes and orthoplex (panels (k) and (l)
for Figure 3).

In general, for CNM formed by a finite number of nodes
N , as the coupling constant σ increases we can generally
distinguish between three phases. For very small values
of the coupling constant σ, the order parameter R(t) ≈ 0,
i.e. the oscillators are not coherent (as shown for exam-
ple in panels (a) and (b) of Figure 3). For large values of
the coupling constant σ we observe a synchronized phase
and a stationary time-series of R(t) with large values of
R(t) (see for instance curves obtained for σ = 11.0, and
σ = 16.0, in panels (a) and (b) of Figure 3). In the inter-
mediate range of values of the coupling constant σ, we
observe the frustrated synchronization regime of phase
entrainment where the order parameter R(t) is not sta-
tionary (see for instance curves obtained for σ = 5.0 in
panels (d), (e) and (f) of Figure 3).

In order to investigate the thermodynamical stability
of these phases in the large network limit as a function
of the spectral dimension dS , we have studied the finite
size effects of the Kuramoto synchronization for CNM
formed by simplices, hypercubes and orthoplexes for di-
mensions d = 2, 3, 4, 5. The spectral dimension of these
CNM is shown in Figure 1. For d = 2 CNM have spec-
tral dimension dS ≈ 2, whereas for 2 < d ≤ 5 CNM
formed by simplices have spectral dimension dS that in
first approximation can be assumed to be dS ≈ d and
CNM formed by hypercubes and orthoplexes have spec-
tral dimension dS ∈ (2, 3). Consequently, our theoretical
expectation is that for d = 2 we cannot observe entrained
phases, and that for 2 < d ≤ 4 we can observe entrained
phases and the synchronized phase cannot be thermody-
namically stable. Moreover for d = 5 our predictions are
that CNM formed by simplices can display a thermody-
namically stable synchronized phase while CNM formed
by hypercubes and orthoplexes cannot display a thermo-
dynamically stable synchronized phase.

In order to test these predictions we have numerically
studied as functions of the coupling σ the mean value R̄
and the standard deviation stdR of the order parameter
R(t), averaged after the transient evolution over differ-
ent realizations of CNM. In Figure 4 we display R̄ and
stdR for CNM formed by simplices, hypercubes and or-
thoplex of dimension d = 2, 3, 4, 5 and different network
sizes N . The de-coherent or unsynchronized phase corre-
sponds to the regime where R̄ is low. The synchronized
phase corresponds to the regime where R̄ is high and the
fluctuations stdR are low. Finally, the frustrated syn-
chronization phase corresponds to values of the coupling
where both R̄ and stdR have significantly high values.
As the network size N increases we observe different sce-
narios depending on the value of the spectral dimension
dS . For spectral dimension dS ≈ 2, in the large net-
work limit the system remains in the de-coherent state.
This occurs for all considered CNM of dimension d = 2.
For spectral dimension dS ∈ (2, 4], we observe that the
synchronized phase is not thermodynamically stable as
the values of coupling constant where the onset of this
phase is observed increase with the network size and do
not converge to a finite value. It occurs for CNM formed
by simplices of dimension d = 3, 4 and for CNM formed
by hypercubes and orthoplexes of dimension d = 3, 4, 5.
Finally, for spectral dimension dS > 4 we observe that
the synchronized phase is thermodynamically stable as
the onset of this phase occurs at a finite value of σ in the
large network limit.

In summary, our numerical study of the synchroniza-
tion properties of CNM indicates that the phase diagram
of the model depends critically on the spectral dimension
dS as predicted by our theoretical investigation.

The properties of the frustrated synchronization phase
observed in CNM are here furthermore investigated by
means of the orbit diagrams [57] (see Figure 5). These
are measured as the extrema R∗ (maximum and mini-
mum) of the time series R(t) for each coupling σ. There-
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FIG. 3: Time series of the global order parameter calulcated for different values of σ = 5, 11 and 16, as indicated in the legend,
and for CNM formed by simplices (panels (a), (d), (g), (j)), hypercubes (panels (b), (e), (h), (k)) and orthoplex (panels (c),
(f), (i), (l)) of dimensions d = 2 (panels (a), (b), (c)), d = 3 (panels (d), (e), (f)), d = 4 (panels (g), (h), (i)) and d = 5 (panels
(j), (k), (l)).

fore, a fixed stationary state is represented by one point
corresponding to the mean value, as it appears in the
synchronized state observed for high values of σ provided
that d > 2. This situation corresponds to one of full syn-
chronization if R∗ = 1 or to partial synchronization if

R∗ < 1, in which some nodes remain unsynchronized.
For spectral dimensions dS ∈ (2, 4], on the other hand,
we observe that, as the value of the coupling constant
σ is lowered and we enter in the frustrated synchroniza-
tion phase, oscillatory states appear with a given number
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FIG. 4: The average order parameter R̄ and the standard deviation of the order parameter stdR) are plotted versus the coupling
constant σ for CNM formed by simplices (panels (a), (b), (c), (d)), hypercubes (panels (e), (f), (g), (h)) and orthoplexes (panels
(i), (j), (k), (l)) and for dimension d = 2 (panels (a), (e), (i)), d = 3 (panels (b), (f), (j)), d = 4 (panels (c), (g), (k)) and d = 5
(panels (d), (h), (l)). Results are shown for different network sizes N = 100, 200, 400, 800, 1600 and 3200 as indicated in the
legend. Results are for T = 1000 and have been averaged after equilibration for 20 realizations of the networks and internal
frequencies.
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FIG. 5: Orbit diagrams of the system dynamics for CNM formed by simplices (left panels), hypercubes (center panels) and
orthoplexes (right panel) for d = 2, 3, 4 and 5 from top to bottom. The orbit diagrams are represented by the extremes
(maxima and minima) R∗ taken by R(t) for t > 0.8T . Results are for N = 3200, T = 1000 and a given realization of the
networks structure.

of extrema that depends on the network and frequency
realization. These typically correspond to intereference
among different locally synchronized regions, whose sizes
scale as N [25], which gives rise to a chaotic behavior as
the coupling constant σ is decreased. Finally, in the case
dS ≈ d = 2 the synchronized state is never reached.

VI. CONCLUSIONS

This work investigates the role of the spectral dimen-
sion dS on the synchronization properties of the Ku-
ramoto model. Using a linear approximation we have
shown that the synchronized phase cannot be thermody-
namically stable for spectral dimension dS ≤ 4. There-
fore a necessary condition to observe a synchronized
regime in the thermodynamic limit is that dS > 4. We
have also shown that the considered linear approxima-

tions cannot be valid for dS ≤ 2, since the correlations
C diverge. Finally, we have shown that, for spectral di-
mension dS ∈ (2, 4], phase entrainment takes place in the
large network limit as long as the linear approximation is
valid, i.e. the fluctuations in phase velocities, V 2, vanish
asymptotically in time, so that the phases of the nodes
are totally entrained.

In order to consider a concrete example where to test
these theoretical derivations, we have characterized the
synchronization dynamics of the normalized Kuramoto
model taking place on Complex Network Manifolds which
have a tunable spectral dimension. These networks de-
fine discrete manifolds with the small-world property (in-
finite Hausdorf dimension) and highly modular structure,
and provide an ideal theoretical setting to explore the in-
terplay between network geometry and synchronization
dynamics [25].

CNM have significant spectral properties and display
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a finite spectral dimension. In particular, we have found
that CNM based on simplicial complexes have a spec-
tral dimension dS increasing almost linearly with the di-
mension d of the simplices, whereas CNM formed by d-
dimensional hypercubes and orthoplexes have a spectral
dimension dS that saturates with d. Having a tunable
spectral dimension, CNM can be compared to Euclidean
lattices that have a spectral dimension dS equal to their
Hausdorff dimension, i.e. dS = dH . However, CNM have
a hyperbolic structure with dH = ∞ and we always ob-
serve dS < dH . Moreover, a closer look at the local-
ization properties of the eigenvectors CNM reveals more
significant differences with respect to Euclidean lattices.
In fact, contrarily to the Fourier eigenvector of Euclidean
lattices, a large fraction of eigenmodes of CNM are highly
localized on few nodes of the network, reflecting the sym-
metries of the building block structure.

We have studied numerically the Kuramoto dynamics
on CNM testing our theoretical predictions on the na-
ture of the synchronization dynamics as a function of the
spectral dimension dS . We show that a frustrated syn-
chronization regime with entrained phases emerges for
spectral dimensions dS ∈ (2, 4] and that, for this range
of values of the spectral dimension, finite CNM with high
coupling constant σ reach also a synchronized phase but
this phase is not thermodynamically stable. Moreover,
we show that for spectral dimension dS = 5 the synchro-
nized phase is thermodynamically stable.

In conclusion our work reveals that non-trivial synchro-
nization states can emerge even in small-world networks,
with an infinite Hausdorff dimension, provided that the
spectral dimension is finite. These results reveal deep
connections between geometry and synchronization dy-
namics and are potentially very useful to further investi-
gate the relation between structural and functional brain
networks.
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Appendix A: Stability of the synchronized phase

In this Appendix we will investigate the stability of the
synchronized phase by considering the linearized dynam-

ical system given by Eqs. (22). The normalized Lapla-
cian L appearing in Eqs. (22) and defined in Eq. (1) is
diagonalizable with eigenvalues {λi}i=1,2,...,N , numbered
in increasing order, 0 = λ1 < λ2 ≤ λ3, . . . ,≤ λN , and
therefore can be written as

P−1LP = D, (A1)

where P is the matrix whose columns are the right eigen-
vectors vλ and and P−1 is the matrix whose rows are
the left eigenvectors uλ of L. Notice that we always have
P−1P = I, where I indicates the identity matrix, due to
the normalization condition of the eigenvectors given by
Eq. (9).

The vector θ = (θ1, θ2, . . . , θN )
T

can be projected in
the base of the right and left eigenvectors, so θi can be
equivalently expressed as

θi =
∑
λ

θRλ v
λ
i ,

θi =
∑
λ

θLλu
λ
i , (A2)

or, equivalently,

θ = PθR,

θ = [P−1]TθL, (A3)

where we have indicated with θR and θL the column
vector of elements θRλ and θLλ , respectively. Inverting
these relations we have that θR and θL are given by

θR = P−1θ,

θL = PTθ. (A4)

Similarly we can also consider the vector ω of elements
ωi and project it along the bases of the right and the left
eigenvectors,

ω = PωR,

ω = [P−1]TωL. (A5)

Inverting these relations we obtain

ωR = P−1ω,

ωL = PTω. (A6)

The linearized Eq. (22) can also be projected along the
bases of right and left eigenvectors getting

dθRλ
dt

= ωRλ − σλθRλ ,

dθLλ
dt

= ωLλ − σλθLλ . (A7)

This equations can be solved obtaining, for λ 6= 0,

θ
R/L
λ (t) = e−σλtθ

R/L
λ (0) +

ω
R/L
λ

σλ
(1− e−σλt), (A8)
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and, for λ = 0,

θ
R/L
λ (t) = θ

R/L
λ=0 (0) + ω

R/L
λ=0 t. (A9)

Finally, let us note that ωR,L have the following aver-
ages 〈

ωR,Lλ

〉
= 0.

〈
ωRλ ω

L
λ′
〉

=

N∑
i=1

N∑
j=1

〈ωiωj〉uλi vλ
′

j = δλ,λ′ . (A10)

As mentioned in the main text, in order to evaluate
the stability of the synchronized state, we use an ap-
proach already established for finite lattices [49, 50] and
we calculate the average fluctuation of the phases over
the entire network. These fluctuations are quantified by
W 2 given by

W 2 =
1

N

〈
N∑
i=1

[θi(t)− θ]2
〉
, (A11)

where

θ =
1

N

N∑
i=1

θi(t). (A12)

The divergence of W 2 with the network size N will indi-
cate that the synchronized phase is unstable.

Since θ can be expressed equivalently in the base of
right and left eigenvectors as expressed in Eqs. (A3),
and the right eigenvector is given by the first of Eqs. (5),
we can calculate θ in terms of θL and θR as

θ =

√
〈k〉
N
θLλ=0(t)

θ =
∑
λ

θRλ (t)
1

N

∑
i

vλi (A13)

Using the explicit solution of θLλ (t) and θRλ (t) given by
Eq. (A8) and Eq. (A9) and using Eqs. (A10) we can

express
〈
θ
2
〉

as

〈
θ
2
〉

=
1

N

〈
θLλ=0(t)θRλ=0(t)

〉
+

√
〈k〉
N
θLλ=0(0)θRλ=0(0)

×
∑
λ 6=0

e−σλt
1

N

N∑
i=1

vλi . (A14)

Therefore asymptotically in time, for t→∞, we obtain〈
θ
2
〉

=
1

N

〈
θLλ=0(t)θRλ=0(t)

〉
. (A15)

The fluctuations of the phases of the Kuramoto dynamics
can be evaluated by considering that W 2 can be equiva-
lently expressed as

W 2 =
1

N

〈
θTθ

〉
−
〈
θ
2
〉
. (A16)

Using Eq. (A4) we note that
〈
θTθ

〉
has a simple expres-

sion in terms of θL and θR, i.e.〈
θTθ

〉
=
〈
[θL]TP−1P[θR]

〉
=
〈
[θL]TθR

〉
. (A17)

Using the solution of the Kuramoto dynamics Eq. (A8)
and Eqs. (A10) we get〈

[θL]TθR
〉

=
〈
θLλ=0(t)θRλ=0(t)

〉
+

∑
{λ}|λ6=0

[
e−2σλtθRλ (0)θLλ (0) +

1

(σλ)2
(1− e−σλt)2

]
.(A18)

Finally using Eq. (A16) together with Eqs. (A15)-(A18),
it results that asymptotically in time for t→∞

W 2 =

∫ λmax

λ2

dλρ(λ)
1

(σλ)2
. (A19)

Since the Fidler eigenvalue λ2 satisfies the scaling ex-
pressed in Eq. (15) and goes to zero in the infinite net-
work limit, using the scaling in Eq. (11) for the density
of eigenvalues ρ(λ) we obtain the following results.

(1) For spectral dimension dS < 4 the average fluctua-
tion of the phases W 2 diverges as

W 2 ' O
(
λ
dS/2−2
2

)
(A20)

(2) For spectral dimension dS = 4 the average fluctua-
tion of the phases W 2 diverges as

W 2 ' O(− lnλ2). (A21)

(3) Only for spectral dimension d > 4 the average fluc-
tuation of the phases W 2 converges.

Specifically, by inserting the scaling of the Fidler eigen-
value Eq. (15) with the network size N we obtain

W 2 ∼

 N4/dS−1 if dS < 4
ln(N) if dS = 4
const if dS > 4.

(A22)

It follows from this derivation that the synchronized state
cannot be thermodynamically stable in networks with
spectral dimension dS ≤ 4.

Appendix B: Correlations between phases and
validity of the linear approximation

In this Appendix we will evaluate the scaling of the
correlation C defined as

C =
1

N

〈
θTLθ

〉
(B1)

in the linear approximation. The divergence of the cor-
relation C in the large network limit indicates that the
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linear approximation fails to be valid. The correlation
can be expressed in the basis of eigenvalues of the nor-
malized Laplacian getting the simple expression

C =
1

N

∑
λ

〈
θLλλθ

R
λ

〉
. (B2)

By using the explicit expression for θ
L/R
λ given by Eq.

(A8) it is easy to show that

C =
1

N

∑
{λ}|λ6=0

λ

[
e−2σλtθRλ (0)θLλ (0) +

1

(σλ)2
(1− e−σλt)2

]

which gives in the asymptotic limit t→∞

C =

∫ λN

λ2

ρ(λ)
1

σ2λ
dλ. (B3)

By inserting the scaling of the Fidler eigenvalue with the
network size N given by Eq. (15) we obtain

C ∼

 N2/dS−1 if dS < 2
ln(N) if dS = 2
const if dS > 2.

(B4)

Therefore, for spectral dimension dS ≤ 2 the correlations
among the phases of nearest neighbour nodes diverge and
the linear approximation fails.

Appendix C: Entrained phases

In this Appendix we will characterize the fluctuations
observed in phase velocities across the nodes of the net-
work quantified by the global parameter V 2 given by

V 2 =
1

N

N∑
i=1

〈[
ψi − ψ̄

]2〉
(C1)

where ψi indicates the phase velocity of node i

ψi = θ̇i, (C2)

and ψ̄ the average of the phase velocities over the network

ψ̄ =
1

N

N∑
i=0

ψi. (C3)

The phase velocities ψ = (ψ1, ψ2, . . . , ψN )T can be pro-
jected into the basis of right and left eigenvectors of the

normalized Laplacian getting

ψR = P−1ψ,

ψL = PTψ. (C4)

By using the solution of the linearized dynamics, Eqs.
(A8) and (A9), it is easy to show that with the linear
approximation we have

ψ
R/L
λ (t) = θ̇λ

R/L
= −σλe−σλtθR/Lλ (0) + ω

R/L
λ e−σλt,(C5)

and for λ = 0

ψ
R/L
λ (t) = ω

R/L
λ=0 . (C6)

Using the same procedure used previously for the deriva-
tion of θ̄, it is easy to show that the average phase velocity
ψ̄ can be expressed equivalently as

ψ̄ =

√
〈k〉
N
ψLλ=0(t),

ψ̄ =
∑
λ

ψRλ (t)
1

N

∑
i

vλi . (C7)

From these expressions, and using Eqs. (A10), it follows
that

〈
ψ̄2
〉

=
1

N

〈
ψLλ=0(t)ψrλ=0(t)

〉
. (C8)

Finally using again Eq. (A10) we get that

V 2 =
1

N

〈
[ψL]TψR

〉
−
〈
ψ̄2
〉

(C9)

scales in the asymptotic limit t→∞ as

V 2 ∼
∫ λmax

λ2

dλρ(λ)e−2σλt

∼ t−dS/2. (C10)

This result implies that asymptotically in time the fluc-
tuations in the phase velocities vanish, i.e.

V 2 → 0 (C11)

as t → ∞. This result implies that the phases of the
oscillators are totally entrained as long as the linear ap-
proximation is valid.
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