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 For manymillions of patients at secondary risk of coronary thrombosis pharmaceutical protection is supplied by
dual anti-platelet therapy. Despite substantial therapeutic developments over the last decade recurrent throm-
botic events occur, highlighting the need for further optimisation of therapies. Importantly, but often ignored,
anti-platelet drugs interact with cyclic nucleotide systems in platelets and these are the same systems that me-
diate key endogenous pathways of platelet regulation, notably those dependent upon the vascular endothelium.
The aim of this review is to highlight interactions between the anti-platelet drugs, aspirin and P2Y12 receptor an-
tagonists and endogenous pathways of platelet regulation at the level of cyclic nucleotides. These considerations
are key to concepts such as anti-platelet drug resistance and individualized anti-platelet therapywhich cannot be
understood by study of platelets in isolation from the circulatory environment.We also explore novel and emerg-
ing therapies that focus on preserving haemostasis and how the concepts outlined in this review could be
exploited therapeutically to improve anti-thrombotic efficacy whilst reducing bleeding risk.
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1. Introduction

Formanymillions of patients at secondary risk of coronary thrombo-
sis pharmaceutical protection is supplied by dual anti-platelet therapy
(DAPT). Despite substantial therapeutic developments over the last de-
cade recurrent thrombotic events occur, highlighting the need for fur-
ther optimisation of therapies, especially in patients at elevated risk of
major adverse cardiovascular events (MACE). Notably, but not often
emphasized in reviews, anti-platelet drugs interact with cyclic nucleo-
tide systems in platelets and these are the same systems that mediate
key endogenous pathways of platelet regulation. The aim of this review
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is to highlight interactions between the anti-platelet drugs, aspirin and
P2Y12 receptor antagonists and endogenous pathways of platelet regu-
lation at the level of cyclic nucleotides whilst underlining the impor-
tance of the endothelium. We discuss the relevance to concepts such
as anti-platelet drug resistance, individualized anti-platelet therapy
and the combination of aspirin with other anti-platelet drugs and ex-
plore novel and emerging therapies that focus on preserving
haemostasis and how the concepts outlined in this review could be
exploited therapeutically to potentiate anti-thrombotic potential whilst
reducing bleeding risk.

2. The endothelium, platelets and haemostasis

The circulatory system has developed a range of haemostatic pro-
cesses to maintain its integrity. Two principal players in arterial
haemostasis are blood platelets and endothelial cells lining the interior
surface of all blood vessels. Platelets respond to breakages in the arterial
wall by sensing underlying exposed proteins, adhering, activating and
attracting in more platelets to rapidly build a platelet plug. This process
activates the clotting cascade to add insoluble fibrin strands to
strengthen and bind the growing thrombus. In parallel, this cascade of
factors is limited by generation of anti-clotting processes that limit
clot growth ensuring it remains focused on the local bleeding event.

Since Furchgott and Zawadski's seminal report in 1980 of the oblig-
atory nature of the endothelium in producing blood vessel relaxation
(Furchgott & Zawadzki, 1980) there has been a vast quantity of litera-
ture published in the area of blood vessel regulation by endothelial
cells, building on studies from the 1960s and 1970s by researchers
such as Florey, Jaffe, Gimbrone and Vane. These studies characterise en-
dothelial cells as a remarkably diverse cell population in both structure
and functionwith differing properties in different vascular beds, in arte-
rial, venous andmicrocirculations, and evenwithin the same blood ves-
sel (Aird, 2012). In addition to controlling vasomotor tone the
endothelium is vital for haemostatic balance and its phenotypic hetero-
geneity contributes to how systemic imbalance will affect haemostasis
differently between sites to lead to site specific thrombosis (Aird, 2005).

Crucially, endothelial cells regulate haemostasis by reducing the ex-
citability of platelets through production of nitric oxide (NO) and pros-
taglandin I2 (PGI2), which provide a constant inhibitory effect upon
platelets within the circulation. NO directly stimulates guanylyl cyclase
(GC) in platelets to cause the production of cGMP while PGI2 acts on IP
receptors to stimulate adenylyl cyclase (AC) to produce cAMP. Elevation
of either cGMP or cAMP in platelets causes a reduction in platelet reac-
tivity, and the two together are strongly synergistic, as establishedmore
than 25 years ago (Radomski, Palmer, & Moncada, 1987). So platelets
with elevated levels of cAMP and cGMP are rendered rather unrespon-
sive (Schwarz, Walter, & Eigenthaler, 2001). However, platelets are also
equippedwith a range of enzymes that rapidly remove cAMPand cGMP,
the phosphodiesterases (PDE) (Rondina & Weyrich, 2012). So, a dy-
namic balance exists; endothelial cell inhibitory mediators will con-
stantly stimulate the formation of cAMP and cGMP and intraplatelet
systemswill constantly remove them,with the reactive state of platelets
determined as a product of these two systems.

To appreciate the importance of these systems in atherothrombosis,
it is important to consider where these interactions between platelets
and the endothelium take place. Traditionally, text books and review
papers discussing atherothrombosis display pictures of large blood ves-
sels consisting of endothelial cells layered on smooth muscle cells, with
platelets passing by, and arrows indicating release of NO and PGI2 from
endothelial cells into the blood and we therefore, envisage that this is
where these mediators exert their principal effects on platelets. Indeed,
in many areas of cardiovascular research, attention is paid to the larger
vessels: the coronary and carotid arteries for instance, because of their
associations with acute coronary and cerebrovascular events and so it
seems that there is particular relevance of endothelium in these areas
(which actually represent infinitesimally small areas when the vast
endothelium is contemplated in its entirety) to human disease. When
we consider platelet and endothelial cell interactions in this context
we visualise large numbers of platelets present for each endothelial
cell and so this is how we perceive these interactions throughout the
body. Of course, upon plaque rupture the myriad of activating platelets
recruited to drive thrombus formation will certainly outnumber local
endothelial cells in order to override physiological inhibitory mecha-
nisms. Whilst it is apparently attractive to consider these interactions
during the acute event, itmakes little sense to focus upon the roles of lo-
cally produced inhibitory endothelial cell mediators in the acute pro-
cess. Rather, it is important to consider outside of this, in homeostasis
what kind of relationship between endothelial cells and platelets
could actually be exerted in these large vessels?

When contemplating these interactions, one must reflect a moment
on the cardiovascular system. In adults, the total blood volume (5 l) con-
tains approximately 1.25 trillion blood platelets but crucially, these are
outnumbered by approximately 60 trillion endothelial cells forming
an almost 1 kg organ (Aird, 2005). So, in an individual there are many
more endothelial cells than platelets, around 50-fold more. The diame-
ter of a platelet is 2-3 μm, the diameter of a capillary 5-10 μm, and the
diameter of the proximal LAD around 2.8–4.2 mm (3000–4000 μm). If
one considers the volume to internal surface area ratio of a capillary of
8 μmdiameter and 1 cm in length it is 0.5; the volume to internal surface
area ratio of the proximal LAD of 4 mm diameter and 1 cm length is
1000. So, in capillaries, as compared to large arterial vessels, there is ac-
tually a 2000-fold greater ratio of endothelial cells to platelets. In addi-
tion, blood flows around 500 times faster in arteries than in
capillaries; the blood flow in a healthy coronary artery is 10 to over
100 cm/s, in a capillary 0.1 cm/s. Lastly, while the cross-sectional area
of the aorta is 3–5 cm2 that of the body's total capillary bed is approxi-
mately 4500–6000 cm2, comprising the vastmajority of the total surface
area of the circulation (Tortora & Derrickson, 2011).

Equipped with these principles we can deduce that the principal in-
fluence of the 50-fold excess of endothelial cells over platelets must be
exerted in the capillaries and not in the large conduit vessels. In the cap-
illaries there is the time and space for the interaction to take place.
Platelets will, therefore, leave the capillary bedswith elevated cyclic nu-
cleotide tone from an intimate interaction with local endothelial cells
that cannot be matched in larger vessels. As at rest normal human car-
diac output matches the blood volume, at around 5 l/min, individual
platelets, are exposed to the pulmonary and systemic capillary beds
every minute. The pulmonary circulation contains multiple isoforms of
NO synthase (NOS) and pulmonary endothelial cells are active pro-
ducers of NO (Gomberg-Maitland et al., 2013). Similarly, it was noted
over 30 years ago that the lung is a major producer of PGI2 and that
this can inhibit platelet reactivity (Hensby, Barnes, Dollery, & Dargie,
1979). Likewise numerous reports show that endothelial cells from vas-
cular beds throughout the body produce NO and PGI2 (Zetter, 1981),
with the renal vasculature having a large capacity to generate both NO
and PGI2 (Nasrallah & Hebert, 2005). Of note, mice deficient in PGI2 re-
ceptors are predisposed to cardiovascular disease and platelets from pa-
tients lacking IP receptors have exaggerated responses to arterial
damage (Arehart et al., 2008; Cheng et al., 2002). Similarly, humans
with dysfunctional GC (Erdmann et al., 2013) or mice lacking eNOS
(Ozuyaman et al., 2005) are at elevated risk of thrombosis.

From thiswe can construct a viewof how the endotheliumpromotes
platelet inhibition and blood fluidity; platelets are central to blood
clotting and their innate reactivity is balanced by a 50-fold excess of en-
dothelial cells. Taking into consideration human cardiac output, plate-
lets on their journey through the circulation will make intimate
contact with endothelial cells in the pulmonary and systemic microvas-
culature 2–3 times a minute, exposing them to NO and PGI2 elevating
platelet cGMP and cAMP,which are strongly inhibitory and ‘tame’ plate-
lets through multiple effects including early activation signals such as
release of Ca2+ from intracellular stores, G-protein activation, and adhe-
sion, granule release and aggregation (Beck et al., 2014; Gambaryan et
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al., 2004; Schwarz et al., 2001; Smolenski, 2012) including for example,
inhibiting GPVI dimerization (Loyau et al., 2012), the inhibition of plate-
let shape change through regulation of the RhoA-RhoKinase-MLCphos-
phatase signalling pathway (Aburima, Walladbegi, Wake, & Naseem,
2017), reducing phosphatidylserine exposure and blunting platelet
pro-coagulant activity (Yan, Wang, Yuan, Cheng, & Dai, 2009), blocking
thrombin-induced shape change (Jensen, Selheim, Doskeland, Gear, &
Holmsen, 2004) as well as regulation of thrombin-induced activation
of Rap1b (Benz et al., 2016), regulation of apoptosis (Rukoyatkina,
Walter, Friebe, & Gambaryan, 2011) and inhibiting P-selectin expres-
sion (Libersan, Rousseau, &Merhi, 2003). Fundamentally, cyclic nucleo-
tides are global inhibitors of platelet function.

An interesting consideration is how systems have evolved such that
fast-flowing platelets can overcome this strong inhibitory tone to aggre-
gate at sites of arterial injury. The answer appears to be that the first ar-
riving platelets release secondary mediators, most notably ADP that
activates P2Y12 receptors on platelets rapidly leading to blockade of
AC, turning off cAMP production, and countering the inhibitory signal-
ling actions of cGMP. Therefore, acting in direct opposition to the pow-
erful, endogenous inhibitory pathways in platelets (Fig. 1). This greatly
potentiates platelet activation responses (Cattaneo & Lecchi, 2007;
Kirkby et al., 2013; Storey, 2006), a process that is supported by the rap-
idly acting PDE enzymes that constantly remove cyclic nucleotides
(Rondina & Weyrich, 2012; Schwarz et al., 2001). Interestingly, but
Fig. 1. Upper panel (reproduced with permission of Professor RF Storey) summarizes the
concept of amplification of platelet activation following stimulation of P2Y12 receptors by
ADP (Storey, 2006). Strikingly, lower panel demonstrates that targets of P2Y12 receptor
activation are matched by those under inhibitory regulation by cyclic nucleotides (cAMP
and cGMP) (Adams & Feuerstein, 1984; Graber & Hawiger, 1982; Imai, Hattori,
Takahashi, & Nozawa, 1983; Lerea, Glomset, & Krebs, 1987; Libersan et al., 2003;
Schwarz et al., 2001; Waldmann & Walter, 1989). This is consistent with the concept of
amplification being explained by P2Y12 receptor activation quenching the inhibitory
effects of cyclic nucleotides.
less well understood P2Y12 receptor-dependent PI3K activation could
constitute a cGMP-insensitive pathway that supports aggregation in
the presence of NO (Kirkby et al., 2013).

Thus, we can draw together many lines of research to propose a sin-
gle idea of atherothrombus formation with the relationship between
the endothelium and platelets at its centre. Endothelial cells produce
NO and PGI2 that elevate cAMP and cGMP in platelets, and these two
systems synergise to produce the greatest inhibition of platelet reactiv-
ity. This effect largely takes placewithin capillary beds, but rapidlymov-
ing platelets carry the effects of endothelial cell exposure with them
throughout their journey in the vasculature. Exposure of platelets to a
damaged blood vesselwall releases ADP that throughP2Y12 receptor ac-
tivation pivotally turns off the cAMP and cGMP generating and signal-
ling systems and in concert with activated phosphodiesterases rapidly
switches the platelet to being strongly reactive (Fig. 1). These systems
are in balance with the time it takes platelets to pass from capillary
beds to large vessels. With this concept in mindwe can consider the ef-
fects and clinical significance of the anti-platelet drugs currently recom-
mended as DAPT in a ‘one size fits all approach’.
3. Aspirin

Aspirin, marketed in tablet form since 1899, is established in clinical
practice as the default anti-platelet therapy in cardiovascular disease.
This is based upon robust data that for “at risk” patients lowdose aspirin
reduces thrombotic events by around 30% (Patrono, Garcia Rodriguez,
Landolfi, & Baigent, 2005). Aspirin acts by irreversibly blocking the cy-
clooxygenase enzyme (COX) within platelets, inhibiting the production
of thromboxane A2 (TXA2). TXA2, when unchecked, drives further ag-
gregation through stimulation of receptors for thromboxane A2 (TP re-
ceptors) on neighbouring platelets. While aspirin is short-lived in the
circulation, it permanently inhibits the COX-1 enzyme through acetyla-
tion, and as platelets lack the apparatus to produce replacement COX-1
protein individual platelets remain inhibited for their lifetime. Platelets
circulate for around 7–10 days and so the concept has arisen of once a
day dosing with aspirin to produce blockade of the entire platelet pop-
ulation. Aspirin is effective in doing this at what is generally referred to
today as low dose (75–100 mg/day) which has evolved dramatically
from previous cardiovascular doses (900–1500 mg). While this is low
dose relative to anti-inflammatory (5 g/day) and doses used for pain
(600–650 mg) it is not a low dose for platelets which are completely
inhibited (Patrignani, Filabozzi, & Patrono, 1982).

Importantly, in addition to its effects upon platelets, aspirin inhibits
COXat other sites in thebody (FitzGerald et al., 1983;Warner, Nylander,
&Whatling, 2011) with doses of around 600 mg (two standard tablets)
producing analgesic and antipyretic effects through inhibiting COX at
sites other than the platelet. There is a substantial amount of informa-
tion regarding the effects of strong, whole body blockade of COX en-
zymes, and an understanding that this is associated with increased
thrombotic risk (Kearney et al., 2006). The generally accepted mecha-
nism for this is changes in the balance of pro-aggregatory TXA2 from
platelets and anti-aggregatory PGI2 from endothelial cells, changes
that can be followed by the measurement of urinary metabolites
(FitzGerald et al., 1983;Warner et al., 2011) For example, 80mg aspirin
reduced urinary TXA2 metabolites by around 80% and PGI2 metabolites
by around50%; 325mgaspirin reduced themetabolites, respectively, by
around 95% and 70% (FitzGerald et al., 1983)with the investigators con-
cluding it was unlikely that any dose of aspirin could completely selec-
tively inhibit TXA2 synthesis. Others report even stronger effects on PGI2
production (Ritter, Cockcroft, Doktor, Beacham, & Barrow, 1989;
Warner et al., 2011) and local measures strongly support the notion
that aspirin inhibits COX in the vascular endothelium and so reduces
PGI2 production (Mitchell & Warner, 2006; Warner et al., 2011). One
must conclude that even at low, anti-thrombotic doses, aspirin produces
substantial inhibition of COX within the vasculature, both in platelets
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and in endothelial cells. As shown inmultiple models, reduction in PGI2
signalling in platelets causes increased in vivo activation.

4. P2Y12 receptor blockade and dual anti-platelet therapy

As knowledge regarding anti-thrombotic therapy develops, it has
become accepted that administration of blockers of the ADP P2Y12 re-
ceptor, such as clopidogrel, prasugrel or ticagrelor, togetherwith aspirin
further reduces the risk of acute thrombotic events (Wallentin et al.,
2009; Wiviott et al., 2007; Yusuf, et al., 2001). Because of the manner
in which this therapeutic approach evolved randomised clinical trials
conducted over two decades and notably since the introduction of
more efficacious P2Y12 blockers have always been conducted in the
presence of aspirin. Clopidogrel is associated with wide individual vari-
ability in pharmacodynamic response so with a third of patients not
achieving satisfactory platelet inhibition (Gurbel, Bliden, Hiatt, &
O'Connor, 2003), it may well be that for patients receiving clopidogrel
addition of aspirin provides further anti-thrombotic protection. How-
ever, at their standard clinical doses prasugrel and ticagrelor produce
strong and consistent P2Y12 blockade (Gurbel et al., 2009). With these
agents now established in clinical practice it is an important time to re-
address the question of whether patients should also receive aspirin.

We have suggested previously that addition of aspirin to strong
P2Y12 blockademay produce little additional inhibition of platelet func-
tion, when platelets are considered in isolation. This is as several lines of
evidence suggest there is not a simple additive effect between the two
treatments. P2Y12 antagonists inhibit not only ADP-induced platelet ag-
gregation but also TXA2 pathways of platelet activation (Armstrong et
al., 2011). As outlined above data from studies of NSAIDs indicate that
whole body inhibition of COX increases thrombotic risk, and aspirin in-
hibits COX at sites other than the platelet. Reduction in vascular PGI2
production, for instance, can reduce platelet cAMP, increase platelet re-
activity and so increase the potential for thrombosis. The incremental
increase in platelet inhibition provided by aspirin on top of strong
P2Y12 receptor blockade may well be insufficient to balance this
thrombogenic effect. So, while consideration of platelet activation path-
ways in isolation could lead to the conclusion that addition of aspirin to
strong P2Y12 blockade increases platelet inhibition, consideration of
platelet activation pathways in vivo,within the milieu of the circulation
may lead to the conclusion that addition of aspirin actually decreases
platelet inhibition. Aspirin also increases bleeding risk, particularly
within the gastrointestinal tract, increases blood pressure and promotes
fluid retention, providing additional reasons to question the overall clin-
ical benefit of aspirin's addition to potent third generation P2Y12

blockers.

5. Dual anti-platelet therapy, PGI2 and NO

As a further layer of complexity, blockade of platelet P2Y12 receptors
also significantly increases the sensitivity of platelets to the inhibitory
effects of both PGI2 (Cattaneo & Lecchi, 2007) and NO (Kirkby et al.,
2013). This is the flipside of the observation that P2Y12 activation re-
duces the inhibitory effects of cyclic nucleotide signalling pathways
within platelets; i.e. P2Y12 activation greatly increases platelet excitabil-
ity. When P2Y12 receptors are blocked, releasing AC, the effects of PGI2
and NO acting through cAMP and cGMP signalling pathways are unim-
peded and so their inhibitory effects are increased relative to P2Y12 re-
ceptor uninhibited platelets. As PGI2 and NO have synergistically
inhibitory effects upon platelets, the interaction with P2Y12 receptor
blockers actually provides a powerful three way synergistic effect: NO,
PGI2 and P2Y12 blockade are inhibitory individually, synergise with
each other in individual pairs, and synergise still further as a trio provid-
ing potent platelet inhibition (Chan et al., 2016). Understanding this
powerful interaction has therapeutic and diagnostic implications for
DAPT. It provides even further cause to question the benefit of addition
of aspirin to strong P2Y12 blockade; inhibition of PGI2 production will
lessen this three-way synergy and increase platelet reactivity beyond
that predicted for loss of PGI2 alone (which by itself has been suggested
as responsible for the pro-thrombotic effects of NSAIDs). This could be
particularly relevant to patients with endothelial dysfunction and al-
ready compromised endothelial mediator production. It also has signif-
icant implications for platelet function testing (PFT) and individualized
therapies.Whilst high on-treatment ADP reactivity is linked to negative
outcomes following PCI (Stone et al., 2013), randomised trials have not
demonstrated benefit of adjusting anti-platelet therapy based on PFT
(Tantry, et al., 2013). Emergence of these interactions implies that endo-
thelial mediator production is an important determinant of P2Y12 ther-
apeutic efficacy and endothelial function testing alongside PFT could
enhance risk prediction, identifying thosewhowould benefit fromesca-
lated P2Y12 therapy in a personalized therapeutic manner.

6. Implications for high risk patient groups

Alongside patients with traditional cardiovascular risk factors, pa-
tients with PAD, CKD and COPD represent high-risk populations for ath-
erothrombosis and have increasedmortality despite DAPT (Anavekar et
al., 2004; Morillas, et al., 2009; Salisbury, Reid, & Spertus, 2007). Mech-
anisms are not fully understood but shared risk factors, inflammation,
accelerated atherosclerosis, oxidative stress and underuse of recom-
mended therapies are proposed. Whilst usually considered separately,
all are in fact associated with capillary bed destruction, significant mi-
crovascular endothelial dysfunction and disruption of NO and PGI2 syn-
thesis. The negative impact of COPD following ACS has been linked to
smoking but interestingly, also to reduced pulmonary function inde-
pendent of smoking (Friedman, Klatsky, & Siegelaub, 1976). The pulmo-
nary vasculature is affected in emphysema with remodeling
culminating in altered pulmonary circulation, loss of expression of
PGI2 synthase and eNOS and decreased PGI2, 6-keto-PGF1α, PGIS mes-
senger RNA and protein expression, as well as disturbed L-arginineme-
tabolism, reduced NO bioavailability and increased ADMA compared to
healthy lungs (Dinh-Xuan et al., 1991). Both PGI2 deficiency and im-
paired NOpathways are implicated in the pathogenesis of PADwith dif-
fuse vascular damage in different territories and elevated ADMA and
SDMA levels predicting worse outcome (Morillas, et al., 2009). In-
creased ADMA levels, and disturbances in PGI2 biology have also long
been associated with CKD (Vallance, Leone, Calver, Collier, & Moncada,
1992) (Nasrallah & Hebert, 2005). Endothelial dysfunction of pulmo-
nary, renal and peripheral capillary beds, all important producers of
PGI2 and NO could lead to imbalances of these endothelial mediators,
their specific synthases and receptors, all of which are linked to throm-
bosis (Reid & Kinsella, 2015). Impaired synergy between NO, PGI2 and
P2Y12 antagonists could reduce the therapeutic potential of these
agents. Notably, other high-risk groups (diabetics and hypertensives)
also display microvascular pathophysiological changes and elevated
MACE. This could partly explain why these patients have poorer out-
comes despite DAPTwith third generation P2Y12 antagonists. Recogniz-
ing this opens possibilities for more efficacious treatments.

7. Novel and future anti-platelet therapies

As discussed above, DAPT with aspirin and P2Y12 receptor antago-
nists represents the cornerstone of therapy for the treatment of athero-
thrombosis but 10% of ACS patients still experience recurrent
thrombotic events and DAPT also increases the risk of bleeding. Indeed,
it is often expressed that a ceiling has been reached with current anti-
platelet agents and an increase in potency using these approaches will
be offset by an increased bleeding risk (McFadyen, Schaff, & Peter,
2018). Notably, differences between haemostasis and thrombosis have
started to emerge, identifying new regulators of thrombus formation
as targets that potentiallymay not interferewith haemostasis. Other re-
cent data indicate reasonswhy existing anti-platelet therapies may lack
efficacy. In vivo experiments, have shown a hierarchical structurewithin
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developing thrombi identified as being composed of two distinct re-
gions: a haemostatic core composed of closely packed, fully activated
platelets representing the primary site of fibrin deposition which is
highly dependent on ADP, TXA2 and thrombin activity; and an outer
shell, the propagating thrombus that, in contrast contains platelets
that are loosely packed, in a low-activation state regulated by different
mechanisms such as PI3Kβ, PDI activation andαIIbβ3 signalling, poten-
tially making these platelets refractory to current antiplatelet therapies
(Stalker et al., 2013). With this improved understanding the ability to
modulate thrombosis without affecting haemostasis may be closer at
hand. In the following section of this review we consider current pre-
clinical and clinical data indicating the future directions of antiplatelet
therapies.

The central driver of thrombus formation is thrombin for which rea-
son it is a key target for anti-thrombotic therapies. These are aimed at
the processes leading to thrombin activation, at thrombin itself, and at
thrombin receptors. Direct factor Xa inhibitors stop the conversion by
factor Xa of prothrombin into thrombin. The ATLAS ACS 2-TIMI 51
trial has demonstrated that the addition of the factor Xa inhibitor,
rivaroxaban, on top of DAPT leads to significant reductions in cardiovas-
cular death but at the cost of increased bleeding (Mega, et al., 2009).
This has resulted in the recommendation that rivaroxaban can be used
in ACS patients but should be restricted to patients receiving aspirin
and clopidogrel with low bleeding risk (Ibanez et al., 2017). Interest-
ingly, however, the APPRAISE-2 trial assessing the effects of apixaban
in addition to DAPT failed to find a reduction in the primary endpoint
of cardiovascular death, MI or stroke but did find an increase in TIMI
bleeding leading to a premature end to the trial (Alexander et al.,
2011). The first direct thrombin inhibitor to be tested in addition to
DAPT was dabigatran, which in the RE-DEEM trial demonstrated an in-
crease in major bleeding with no reduction of the primary endpoint of
cardiovascular death, MI or stroke meaning dabigatran is not indicated
in the treatment of ACS (Oldgren et al., 2011). The only available PAR-
1 inhibitor, vorapaxar, received FDA approval in 2014 but its use has
been associated with an increase in bleeding (Morrow et al., 2012;
Tricoci et al., 2012). To minimize this risk vorapaxar is approved as
add-on therapy to aspirin or DAPT including clopidogrel but not DAPT
including ticagrelor or prasugrel (Ibanez et al., 2017). However, as
DAPT with ticagrelor and prasugrel is becoming standard practice it is
difficult to imagine an expanded role for vorapaxar. The role of
cangrelor, the first i.v. P2Y12 inhibitor in the treatment of ACS after
FDA approval in 2015 following the CHAMPION PHEONIX trial, also re-
mains to be established (Bhatt et al., 2009). Parmodulins, PAR-1 antag-
onists distinct to vorapaxar, are also in development with the hope that
they produce less bleeding (Flaumenhaft & De Ceunynck, 2017). These
represent worthwhile candidates, as rather than inhibiting all down-
stream signalling from PAR-1, they selectively inhibit platelet and endo-
thelial cell activation and also spare cryoprotective signalling
mechanisms in endothelial cells (Aisiku et al., 2015).

In addition to thewell-known targets described so far, notably COX-
1, P2Y12 receptors and thrombin, recent research has identified a broad
scope of platelet therapeutic targets. Inhibitory toxins, antibodies, li-
gand mimetics, nucleotide-based aptamers and soluble recombinant
forms of receptor are in development asmeans of modulating GPVIme-
diated adhesion pathways, GPIb-IX-V adhesive function and signalling,
αIIbβ3 outside in signalling, phosphatidylinositol 3-kinase-beta
(P13Kbeta) and protein disulphide-isomerase activation.

Interactions between GPIb and vWF that occur at sites of vascular in-
jury under conditions of high shear stress, conditionswhich are found in
stenotic arteries, are vital in regulation of thrombus growth. Therefore,
theGPIb–IX–V axis has been targeted using a variety of agents including
antibodies against GPIb or vWF, anti-vWF aptamers, a GPIb antagonist
derived from snake venom and recombinant fragments of GPIb or
vWF. Unfortunately, the development of caplacizumab, a humanized
single-variable-domain immunoglobulin (nanobody) directed towards
vWF that has antithrombotic effects was stopped due to an
unfavourable bleeding profile (Bartunek et al., 2013). The aptamer
(ARC1779) showed promise in phase II trials reducing cerebral throm-
boembolism however again use of this compound was associated with
unacceptable haemorrhagic complications and its development was
halted (Markus et al., 2011).

GP IV is themain collagen platelet receptor, critical for the process of
αIIbβ3 activation following platelet exposure to collagen which is rich
in atherosclerotic plaques. Supporting the idea of this as a therapeutic
target with reduced risk, GPVI deficiency is only associated with a
mild bleeding phenotype (Dutting, Bender, & Nieswandt, 2012). The
GPVI pathway may be inhibited by compounds which induce depletion
of platelet GPVI, or by blocking antibodies, or by using mimics of GPVI
which bind to collagen and mask its platelet activating epitopes
(Ungerer &Munch, 2013). The first tested anti-GPVI antibodieswere as-
sociated with acute thrombocytopenia or platelet GPVI depletion so
their developmentwas halted.However, revacept is a promising recom-
binant dimeric form of the ectodomain of GPVI fused to the fragment
crystallizable (Fc) region of human immunoglobulin G1 (IgG1)
(Ungerer et al., 2011) which has shown benefit in phase I trials and is
now being tested in phase II trials. Another approach is through block-
ade of the collagen-binding site of GPVI with high affinity using the an-
tigen-binding fragment of a mouse monoclonal antibody, known as
9O12.2 which has shown initial antithrombotic potential (Ohlmann et
al., 2008).

Also in development are innovative ways of targeting αIIbβ3, acti-
vated by ‘inside out’ signalling, this is themost abundant platelet recep-
tor and has several ligands other than fibrinogen and vWF (Reheman et
al., 2005). Currently clinically available αIIbβ3 inhibitors (abciximab,
epitifibatide and tirofiban) reduce the incidence of MI and death but
are associated with significant bleeding. In early stages of development
are compounds hoped to produce less bleeding risk, such as RUC-4 that
interferes with Mg2+binding to αIIbβ3 (Li et al., 2014) and therapies
that target only active αIIbβ3, amongst others, scFvSCE5, a urokinase
plasminogen activator fused to an antibody that binds selectively to ac-
tivated αIIbβ3 (Fuentes et al., 2016). Other recently described targets
are the endogenous thiol isomerase function of the integrin PSI domain
near the N-terminus of the β3 subunit (Zhu et al., 2017) and it has been
demonstrated that it is potentially possible to target specific and precise
signalling functions of.

αIIbβ3 involving Gα13 and talin associations, which could inhibit
thrombus formation as effectively as αIIbβ3 inhibitors but without the
bleeding risk (Shen et al., 2013). Interestingly, other members of the
integrin family such asα2β1,α5β1 andα6β1 (themain laminin recep-
tor) (Schaff et al., 2013) are also being considered as future antiplatelet
targets. Another potential approach is to exploit CD39, an
ectonucleoside triphosphate diphosphohydrolase which hydrolyzes
ADP, with promising data found in a mouse model employing the ad-
ministration of a fusion protein of solCD39 and an antibody specific
for αIIbβ3 active form (Hohmann et al., 2013).

The protein disulfide isomerase (PDI) family of thiol isomerases
have been shown to be important for thrombus formation and are se-
creted from activated platelets and endothelial cells at sites of vascular
injury. Critically, inhibition of PDI blocks platelet thrombus formation
and fibrin generation (Furie & Flaumenhaft, 2014). Inhibition of PDI by
antibodies or small molecule inhibitors blocks thrombus formation
and therefore, unsurprisingly efforts have beenmade to develop PDI in-
hibitors (Flaumenhaft, Furie, & Zwicker, 2015). Isoquercetin, a flavonoid
quercetin, andML359 are examples of PDI inhibitors undergoing testing
in both venous and atherothrombosis with positive results. Most inter-
estingly, and in keeping with the concepts presented in this review, a
group of compounds that activate cGMP production by soluble guanylyl
cyclase have been shown to reduce thrombus formation in animal
models (Stasch, Pacher, & Evgenov, 2011).

Finally, given the myriad of platelet receptors identified as having
roles in thrombus formation and regulating other platelet functions,
there are many other targets under consideration including antagonists



Table 2
Potential new emerging anti-platelet agents in development.

Class of agent Drug name

GPVI antagonists Revacept
Losartan
scFv 9012

α2β1 inhibitor EMS16
GPIb-IX-VWF axis inhibitor
(Anti-vWF)
Anti-vWF aptamers
Anti-vWF nanobody

ARC1779 (Halted), ARC15105
Caplacizumab (Halted), ALX-0081

GPIb-IX-VWF axis inhibitor
(Anti-GPIb-IX)

Anfibatide
H6B4
NIT family mAbs

P-selectin inhibitors rPSGL-Ig
PSI-697
PSI-421

CD40 inhibitor Anti-CD40 Ab
αIIβ3 inhibitors RUC-4

Anti-PSI Domain mAbs
scFvSCE5

TP antagonist Ifetroban, Terutroban
Parmodulins RWJ-58259
PDI inhibitors ML359

Isoquercetin
GLP-1R agonist Exenatide, Liraglutide, Lixisenatide,

Albiglutide, Dulaglutide, Semaglutide
Toll-like receptor antagonists Ginkgolide B
α5β1 PHSCNK, JSM6427
α6β1 GoH3
PI3Kβ SAR260301, GSK2636771
CD 39 Targ-CD39
Syk inhibitor BI1002494
BTK inhibitor LFM-A13
Direct GC activators YC-1, BAY 41–2272, BAY 58–2667
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of CD40/CD40L, P-selectin/PSGL-1, Toll-like receptors and GLP-1R
(Cameron-Vendrig et al., 2016), and inhibitors of the signalling mole-
cules Syk (Stegner, Haining, & Nieswandt, 2014) and Btk (Kamel et al.,
2015), although again with a risk of increased bleeding. As a summary
of these existing and emerging therapies, Table 1 lists current anti-
platelet therapies and Table 2 summarizes potential new anti-platelet
therapies in development.

Whilst the therapies outlined in this section are of great interest and
hold promise in the advancement of the treatment of atherothrombosis,
it must be highlighted that some have only been established in animal
models, most are associated with increased bleeding and all require
translation and further trials before being used as antiplatelet therapies.
Despite these ongoing research efforts, at the present time theweight of
evidence supports the clinical efficacy of DAPT in atherothrombosis and
this remains the standard of care. Given the growing evidence that we
have presented in this review we suggest that our current focus should
be uponmaking the best use of approved drugs. In particular, it is timely
to evaluate the efficacy of third generation P2Y12 inhibitors in the ab-
sence of aspirin.

8. Future of dual anti-platelet therapy without aspirin

Despite DAPT, MACEs remain at 10% and even higher in at risk pa-
tient groups fuelling research and discussions regarding optimal ther-
apy. As part of these discussions, aspirin's role in combination
therapies is currently being revisited. A notable example is the WOEST
trial that demonstrated removal of aspirin from triple therapy (aspirin
plus clopidogrel plus warfarin) reduced bleeding and mortality but
also unexpectedly, thrombotic events (Dewilde, et al., 2013). Impetus
for discussions into the role of aspirin in DAPT has come from the
PLATO trial that indicated a reduced efficacy of ticagrelor in North
American patients, associated with a negative interaction with higher
doses of aspirin (Wallentin et al., 2009). Whilst TRITON-TIMI didn't re-
flect these results, lower aspirin doses (75 mg–162 mg) were recom-
mended alongside prasugrel and events generally occurred early in
the trial before the impact of changes in vascular resistance could
occur (Wiviott et al., 2007). The CURE study however, did show a
non-significant 23% MACE increase and increased bleeding with higher
doses of aspirin (Yusuf, et al., 2001). The randomised clinical trials,
GLOBAL-LEADERS (Vranckx et al., 2016) and TWILIGHT (Baber et al.,
2016) investigating the relative benefits and risks of aspirin and
ticagrelor both singularly and in combination are expected to provide
important insights to inform this debate when they report later this
year. If aspirin were proven to provide little additional benefit to strong
P2Y12 blockade, then drugs such as prasugrel or ticagrelor alone could
become standard of care. DAPT could then become third generation
P2Y12 antagonist plus another drug, perhaps those under development
Table 1
Current anti-platelet therapies.

Class of agent Drug name

Cyclooxygenase inhibitor Aspirin
Triflusal

P2Y12 inhibitors Clopidogrel (Plavix)
Prasugrel (Effient)
Ticagrelor Brillanta)
Cangrelor (Kengreal)

αIIbβ3 inhibitors Abciximab (Reopro)
Eptifibatide (Integrillin)
Tirofiban (Aggrastat)

Phosphodiesterase inhibitors Dipyridamole (Persantine)
Cilostazol (Pletal)

PAR1 antagonist Vorapaxar (Zontivity)
Direct thrombin inhibitors Bivalirudin (Angiomax)

Dabigatran (Pradaxa)
Direct factor Xa inhibitors Apixaban (Eliquis)

Rivaroxaban (Xarelto
Edoxaban (Lixiana)
touched upon above. It is interesting to speculate that enhancing inhib-
itory cyclic nucleotide pathways in platelets could represent an effective
therapy. The benefits of adding cilostazol (PDE3 inhibitor) to DAPT to
reduce MACE without increasing bleeding have been demonstrated
(Lee et al., 2011). The mechanisms underlying the effects are not clear,
but potentiation of P2Y12 blockade through increased cyclic nucleotides
could be contributory. If so, removal of aspirin could further reduce
MACE by increasing the levels of PGI2. Interestingly, the PDE5 inhibitor,
dipyridamole, was not beneficial (Park et al., 2014), in keepingwith the
synergy between P2Y12 blockade, NO and PGI2 being cAMP dependent
(Chan et al., 2016). Agents aimed at directly increasing platelet cyclic
nucleotides (synthetic PGI2 analogues or direct GC activators) could
represent another treatment option. The use of such agents is generally
limited by their relaxant effects upon the blood vessel wall which leads
for instance to hypotension and headache. However, through enhance-
ment of their inhibitory potencies on platelets by P2Y12 blockade, these
agents could be provided at effective anti-thrombotic doses that pro-
duce lesser effects on the vasculature. By focusing on promoting endog-
enous inhibitory mechanisms rather than further inhibiting pro-
aggregatory pathways in platelets with a third anti-platelet agent, this
newer DAPT approach could diminish platelet excitability to reduce
thrombosis without increasing bleeding. The application of these endo-
thelial enhancing therapies to those high-risk patients discussed could
represent a step towards personalized therapy and improving patient
outcomes that can be used both to optimize existing anti-platelet ther-
apies and to provide a therapeutic basis upon which to add new anti-
platelet drugs.
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