
ON THE UNION OF INTERSECTING FAMILIES

DAVID ELLIS AND NOAM LIFSHITZ

Abstract. A family of sets is said to be intersecting if any two sets in the
family have nonempty intersection. In 1973, Erdős raised the problem of
determining the maximum possible size of a union of r different intersect-
ing families of k-element subsets of an n-element set, for each triple of in-
tegers (n, k, r). We make progress on this problem, proving that for any
fixed integer r ≥ 2 and for any k ≤ ( 1

2
− o(1))n, if X is an n-element

set, and F = F1 ∪ F2 ∪ . . . ∪ Fr, where each Fi is an intersecting family
of k-element subsets of X, then |F| ≤

(n
k

)
−

(n−r
k

)
, with equality only if

F = {S ⊂ X : |S| = k, S ∩R 6= ∅} for some R ⊂ X with |R| = r. This is best
possible up to the size of the o(1) term, and improves a 1987 result of Frankl
and Füredi, who obtained the same conclusion under the stronger hypothe-
sis k < (3 −

√
5)n/2, in the case r = 2. Our proof utilises an isoperimetric,

influence-based method recently developed by Keller and the authors.

1. Introduction

Let [n] := {1, 2, . . . , n}, and let
(

[n]
k

)
:= {S ⊂ [n] : |S| = k}. If X is a set, we let

P(X) denote the power-set of X. A family F ⊂ P([n]) is said to be 1-intersecting
(or just intersecting) if for any A,B ∈ F , we have A ∩B 6= ∅.

One of the best-known theorems in extremal combinatorics is the Erdős-Ko-Rado
theorem [8], which bounds the size of an intersecting subfamily of

(
[n]
k

)
.

Theorem 1 (Erdős-Ko-Rado, 1961). Let k, n ∈ N with k < n/2. If F ⊂
(

[n]
k

)
is

intersecting, then |F| ≤
(
n−1
k−1

)
. Equality holds only if F = {S ∈

(
[n]
k

)
: j ∈ S} for

some j ∈ [n].

In 1987, Frankl and Füredi [12] considered the problem, first raised by Erdős [7]
in 1973, of determining the maximum possible size of a union of r 1-intersecting
subfamilies of

(
[n]
k

)
, for each triple of integers (n, k, r). They proved the following.

Theorem 2 (Frankl, Füredi, 1986). If F ⊂
(

[n]
k

)
is a union of two intersecting

families, and n > 1
2 (3 +

√
5)k ≈ 2.62k, then |F| ≤

(
n
k

)
−
(
n−2
k

)
. Equality holds only

if F = {S ∈
(

[n]
k

)
: S ∩ {i, j} 6= ∅}, for some distinct i, j ∈ [n].

They give an example which shows that the upper bound in Theorem 2 does not
hold provided if n0 ≤ n ≤ 2k+ c0

√
k, where n0, c0 > 0 are absolute constants with

n0 sufficiently large and c0 sufficiently small; this disproved a conjecture of Erdős
in [7].

In this paper, we prove the following strengthening and generalisation of Theorem
2.
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Theorem 3. For each integer r ≥ 2, there exists a constant C = C(r) ∈ N such
that the following holds. Let n ≥ 2k + Ck2/3, and let F ⊂

(
[n]
k

)
be a union of at

most r 1-intersecting families. Then |F| ≤
(
n
k

)
−
(
n−r
k

)
, and equality holds only if

F = {S ∈
(

[n]
k

)
: S ∩R 6= ∅} for some R ∈

(
[n]
r

)
.

We note that even in the case r = 2, the conclusion of Theorem 3 was previously
known to hold only in the case n−2k ≥ Ω(k) (i.e., only in the case k/n ≤ 1/2−Ω(1)).
For the first time, we prove it for n− 2k = o(k) (i.e., for k/n ≤ 1/2− o(1)), for any
fixed r ≥ 2, though the correct rate of growth of the o(k) term here remains open.
We conjecture that the conclusion of Theorem 3 holds for n ≥ 2k+c

√
k for c = c(r)

sufficiently large; this would be best-possible up to the value of c, as evidenced by
the aforementioned construction of Frankl and Füredi. It would be of great interest
to determine the extremal families for every triple of integers (n, k, r).

We remark that if F ⊂ P([n]) is a union of at most r 1-intersecting subfamilies
of P([n]), then |F| ≤ 2n − 2n−r. This was first proved by Kleitman [17] and is an
easy consequence of the FKG inequality (see Lemma 19); it is sharp, as evidenced
by taking F = ∪ri=1{S ⊂ [n] : i ∈ S}. In fact, we will use this bound in our proof
of Theorem 3.

We remark also that the problem considered here is closely related to the well-
known Erdős matching conjecture. Recall that the matching number m(F) of a
family F ⊂ P([n]) is defined to be the maximum integer s such that F contains
s pairwise disjoint sets. The 1965 Erdős matching conjecture [6] asserts that if
n, k, s ∈ N with n ≥ (s+ 1)k and F ⊂

(
[n]
k

)
with m(F) ≤ s, then

|F| ≤ max

{(
n

k

)
−
(
n− s
k

)
,

(
k(s+ 1)− 1

k

)}
.

This conjecture remains open. Erdős himself proved the conjecture for all n suf-
ficiently large depending on k and s, i.e. for all n ≥ n0(k, s). The bound on
n0(k, s) was lowered in several works: Bollobás, Daykin and Erdős [3] showed that
n0(k, s) ≤ 2sk3; Huang, Loh and Sudakov [15] showed that n0(k, s) ≤ 3sk2, and
Frankl and Füredi (unpublished) showed that n0(k, s) = O(ks2). One of the most
significant results on the problem to date is the following theorem of Frankl [11].

Theorem 4 (Frankl, 2013). Let n, k, s ∈ N such that n ≥ (2s + 1)k − s, and let
F ⊂

(
[n]
k

)
such that m(F) ≤ s. Then |F| ≤

(
n
k

)
−
(
n−s
k

)
. Equality holds if and only

if there exists S ∈
(

[n]
s

)
such that F = {F ∈

(
[n]
k

)
: F ∩ S 6= ∅}.

Frankl and Kupavskii [13] recently proved that n0(k, s) ≤ 5
3ks−

2
3s for all s ≥ s0

(for some absolute constant s0), strengthening Theorem 4 for s sufficiently large.
Clearly, if F ⊂

(
[n]
k

)
is a union of at most r 1-intersecting families, thenm(F) ≤ r,

so Theorem 4 implies the conclusion of Theorem 3 under the (stronger) condition
n ≥ (2r + 1)k − r.

Our proof techniques. Our main tool is the following ‘stability’ version of The-
orem 3.

Theorem 5. There exists an absolute constant C0 > 0 such that the following
holds. Let r, k ∈ N with k ≥ C0r

2, let s ≥ C0

√
log k, let t ∈ N with t ≥ s2k/n,

let n ≥ 2k + s
√
k, and let F ⊂

(
[n]
k

)
be a family satisfying µ 1

2

(
F↑
)
≤ 1 − 2−r and
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|F| ≥
(
n
k

)
−
(
n−r
k

)
−
(
n−r−t
k−1

)
. Then there exists R ∈

(
[n]
r

)
such that |{S ∈ F :

S ∩R = ∅}| ≤ 2r exp(−Θ(s2k/n))
(
n−r
k

)
.

Here, for F ⊂ P([n]), we write F↑ := {S ⊂ [n] : T ⊂ S for some T ∈ F} for
the up-closure of F . For 0 < p < 1 and G ⊂ P([n]), µp(G) denotes the p-biased
measure of G, defined in Section 2 below.

Roughly speaking, our strategy for proving Theorem 5 is as follows. Instead
of working with the uniform measure on

(
[n]
k

)
, we consider the up-closure F↑ of

our family F , and we work with the p-biased measure on P([n]), where p ≈ k/n.
It is well-known that µp(F↑) approximately bounds |F|/

(
n
k

)
from above, for an

appropriate choice of p. More precisely, we choose p to be slightly larger than k/n,
and use the lower bound on |F| to show that µp(F↑) ≈ 1−(1−p)r. Combined with
the fact that µ1/2(F↑) ≤ 1 − 2−r, this implies an upper bound on the derivative
of the function q 7→ µq(F↑), at some q ∈ (p, 1/2). But by Russo’s Lemma, this
derivative is precisely Iq[F↑], the influence of F↑ with respect to the q-biased
measure; we deduce that Iq[F↑] is close to its minimum possible value. We then
use a recent structure theorem for families with small influence (proved in [5]) to
deduce that F↑ must be close (with respect to the q-biased measure) to a family of
the form {S ⊂ [n] : S ∩ R 6= ∅}, for some R ∈

(
[n]
r

)
. Finally, we deduce from this

that F is almost contained in a family of the form {S ∈
(

[n]
k

)
: S ∩ R 6= ∅}. Note

that a similar strategy was used to obtain the stability results in [4]; indeed, we use
here some of the lemmas from that paper.

We deduce Theorem 3 from Theorem 5 using a combinatorial ‘bootstrapping’
argument, involving an analysis of cross-intersecting families.

2. Definitions, notation and tools

Definitions and notation. In this paper, all logarithms are to the base 2. A
dictatorship is a family of the form {S ⊂ [n] : j ∈ S} or {S ∈

(
[n]
k

)
: j ∈ S} for

some j ∈ [n]. For j ∈ [n], we write Dj := {S ∈
(

[n]
k

)
: j ∈ S} for the corresponding

dictatorship. If R ⊂ [n], we write SR := {S ⊂ [n] : R ⊂ S}, and we write
ORR := {S ⊂ [n] : S ∩R 6= ∅}.

A family F ⊂ P([n]) is said to be increasing (or an up-set) if it is closed under
taking supersets, i.e. whenever A ⊂ B and A ∈ F , we have B ∈ F ; it is said to be
decreasing (or a down-set) if it is closed under taking subsets.

If F ⊂ P([n]) and l ∈ [n], we write F (l) := {F ∈ F : |F | = l}. Hence, for
example,

(ORR)(k) = {S ∈
(

[n]

k

)
: S ∩R 6= ∅}.

If F ⊂ P([n]), we define the dual family F∗ by F∗ = {[n] \ A : A /∈ F}. We
denote by F↑ the up-closure of F , i.e. the minimal increasing subfamily of P([n])
which contains F .

If F ⊂ P([n]) and C ⊂ B ⊂ [n], we define FCB := {S ∈ P ([n] \B) : S ∪ C ∈ F}.
A family F ⊂ P([n]) is said to be a subcube if F = {S ⊂ [n] : S ∩ B = C}, for

some C ⊂ B ⊂ [n], and it is said to be an increasing subcube if F = {S ⊂ [n] : B ⊂
S}, for some B ⊂ [n].

We say a pair of families A,B ⊂ P([n]) are cross-intersecting if A ∩ B 6= ∅ for
any A ∈ A and any B ∈ B.
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If X is a set and A ⊂ X, we write 1A for the indicator function of A, i.e., the
Boolean function

1A : X → {0, 1}; 1A(x) =

{
1 if x ∈ A;

0 if x /∈ A.

By identifying {0, 1}n with P([n]) in the usual way (identifying a vector x ∈
{0, 1}n with the set {i : xi = 1} ⊂ [n]), we may identify Boolean functions on
{0, 1}n with Boolean functions on P([n]), and therefore with subfamilies of P([n]).
We will sometimes write Boolean functions on {0, 1}n using the AND (∧) and OR
(∨) operators. Hence, for example,

f : {0, 1}n → {0, 1}; f(x1, . . . , xn) 7→ x1 ∨ (x2 ∧ x3)

corresponds to the subfamily {S ⊂ [n] : 1 ∈ S or {2, 3} ⊂ S} ⊂ P([n]).
For p ∈ [0, 1], the p-biased measure on P([n]) is defined by

µp(S) = p|S|(1− p)n−|S| ∀S ⊂ [n].

In other words, we choose a random set by including each j ∈ [n] independently
with probability p. For F ⊂ P([n]), we define µp(F) =

∑
S∈F µp(S).

We remark that if C ⊂ B ⊂ [n], then µp(FCB ) refers to the p-biased measure on
P([n] \B), not on P([n]), since we regard FCB as a subset of P([n] \B).

If f : P([n]) → {0, 1} is a Boolean function, we define the influence of f in
direction i (with respect to µp) by

Infpi [f ] := µp({S ⊂ [n] : f(S) 6= f(S∆{i})}).
We define the total influence of f (w.r.t. µp) by Ip[f ] :=

∑n
i=1 Infpi [f ].

Similarly, if A ⊂ P([n], we define the influence of A in direction i (w.r.t. µp)
by Infpi [A] := Infpi [1A], and we define total influence of A (w.r.t. µp) by Ip[A] :=
Ip[1A].

Tools. We will use the following ‘biased version’ of the Erdős-Ko-Rado theorem,
first obtained by Ahlswede and Katona [1] in 1977.

Theorem 6. Let 0 < p ≤ 1/2. Let F ⊂ P([n]) be an intersecting family. Then
µp(F) ≤ p. If p < 1/2, then equality holds if and only if F = {S ⊂ [n] : j ∈ S} for
some j ∈ [n].

We will use the following special case of the well-known inequality of Harris [14]
(which is itself a special case of the FKG inequality [9]).

Lemma 7 (Harris). Let 0 < p < 1. Then for any increasing sets A,B ⊂ P([n]),
µp(A ∩ B) ≥ µp(A)µp(B). The same inequality holds if A and B are decreasing.

By repeatedly applying Lemma 7, one immediately obtains the following well-
known corollary.

Corollary 8. Let r ∈ N, let 0 < p < 1, and suppose A1, . . . ,Ar ⊂ P([n]) are
increasing. Then

µp(A1 ∩ . . . ∩ Ar) ≥
r∏
i=1

µp(Ai).

The same inequality holds if A1, . . . ,Ar are decreasing.

The following ‘biased isoperimetric inequality’ is well-known; it appears for ex-
ample in [16].
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Theorem 9. If 0 < p < 1 and A ⊂ P([n]) is increasing, then

(2.1) pIp[A] ≥ µp(A) logp(µp(A)).

We will need the following ‘stability’ version of Theorem 9, proved by Keller and
the authors in [5].

Theorem 10. For each η > 0, there exist C1 = C1(η), c0 = c0(η) > 0 such that
the following holds. Let 0 < p ≤ 1− η, and let 0 ≤ ε ≤ c0/ ln(1/p). Let A ⊂ P([n])
be an increasing family such that

pIp[A] ≤ µp(A)
(
logp (µp(A)) + ε

)
.

Then there exists an increasing subcube C ⊂ P([n]) such that

µp(A∆C) ≤ C1ε ln(1/p)

ln
(

1
ε ln(1/p)

)µp(A).

We will need the well-known lemma of Russo [18], which relates the derivative
of the function p 7→ µp(A) to the total influence Ip(A), where A ⊂ {0, 1}n is
increasing.

Lemma 11 (Russo’s lemma). Let A ⊂ P([n]) be increasing, and let 0 < p0 < 1.
Then

dµp(A)

dp

∣∣∣
p=p0

= Ip0 [A].

We need the following lemma from [4], which follows from Russo’s lemma and
Theorem 9.

Lemma 12. If A ⊂ P([n]) is increasing, then the function p 7→ logp(µp(A)) is
monotone non-increasing on (0, 1).

We will also need the following Chernoff bound.

Lemma 13. Let n ∈ N, let 0 < δ, p < 1 and let X ∼ Bin(n, p). Then

(2.2) Pr[X ≤ (1− δ)np] < e−δ
2np/2.

The following lemma (combined with the Chernoff bound (2.2)) will allow us to
bound |G|/

(
n
k

)
from above in terms of µp(G↑), where G ⊂

(
[n]
k

)
and p is slightly

larger than k/n.

Lemma 14. Let k, n ∈ N, let 0 < α, p < 1 and let G ⊂
(

[n]
k

)
be a family with

|G| = α
(
n
k

)
. Then

µp
(
G↑
)
≥ αPr [Bin (n, p) ≥ k] .

Proof. For each l ≥ k, the local LYM inequality (see e.g. [2, §5]) implies that
|(G↑)(l)|/

(
n
l

)
≥ |G|/

(
n
k

)
= α. Hence,

µp
(
G↑
)
≥

n∑
l=k

pl (1− p)n−l α
(
n

l

)
= αPr [Bin (n, p) ≥ k] ,

as required. �

Finally, we need the following immediate consequence of a lemma of Hilton (see
[10]).
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Lemma 15. Let n, k, l, t ∈ N with k + l ≤ n. Let A ⊂
(

[n]
k

)
, B ⊂

(
[n]
l

)
be cross-

intersecting families. If |A| ≥
(
n
k

)
−
(
n−t
k

)
, then |B| ≤

(
n−t
l−t
)
.

3. Proofs of the main results

Our first aim is to prove Theorem 5; for this, we need some preliminary lemmas.

Lemma 16. Let s > 0 and let t ∈ N with t ≥ s2k/n. Let n, k ∈ N with n ≥
2k+ s

√
k, and let p = k/n+0.5

2 . If F ⊂
(

[n]
k

)
with |F| ≥

(
n
k

)
−
(
n−r
k

)
−
(
n−r−t
k−1

)
, then

µp
(
F↑
)
≥ 1− (1− p)r − exp(−Ω(s2k/n)).

Proof. The Kruskal-Katona Theorem implies that(
F↑
)(l) ≥ (n

l

)
−
(
n− r
l

)
−
(
n− r − t
l − 1

)
= | (x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ (xr ∧ (xr+1 ∨ xr+2 ∨ · · · ∨ xr+t)))(l) |

for any l ≥ k. It follows that

µp
(
F↑
)
≥ µp (x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ (xr ∧ (xr+1 ∨ xr+2 ∨ · · · ∨ xr+t)))
− Pr [Bin (n, p) < k]

= 1− (1− p)r − p(1− p)r+t−1 − Pr [Bin (n, p) < k] .

The Chernoff bound in Lemma 13 (applied with δ = 1 − k/(np) = Ω(s
√
k/n)),

together with our condition on t, completes the proof. �

Lemma 17. Let r, n ∈ N, let 0 < p < 1/2 and let 0 < η < 1. If A ⊂ P([n]) is
increasing with µ1/2(A) ≤ 1− 2−r and

µp (A) ≥ 1− (1− p)r − η,

then there exists p′ ∈
(
p, 1

2

)
such that

Ip
′
[A] ≤ Ip

′
[x1 ∨ . . . ∨ xr] +

η

0.5− p
.

Proof. By Russo’s lemma (Lemma 17 above), we have

0.5ˆ

p

Iq [A] dq = µ 1
2

(A)− µp (A) ≤ 1− 2−r − (1− (1− p)r) + η.

Hence,
0.5ˆ

p

(Iq [A]− Iq [x1 ∨ . . . ∨ xr]) dq ≤ η.

This implies that for some p′ ∈ (p, 0.5) we have

Ip
′
[A]− Ip

′
[x1 ∨ . . . ∨ xr] ≤

η

0.5− p
,

as required. �
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Lemma 18. There exist absolute constants δ0, ε0, C2 > 0 such that the following
holds. Let 0 ≤ δ < δ0, 0 ≤ ε < ε0 and 1/4 ≤ p < p′ < 1/2. If A ⊂ P([n]) is
increasing with µ1/2(A) ≤ 1− 2−r, µp(A) ≥ 1− (1− p)r(1 + δ) and

Ip
′
[A]− Ip

′
[x1 ∨ . . . ∨ xr] ≤ ε(1− p′)r,

then there exists R ∈
(

[n]
r

)
such that

µp′(A∅
R) ≤ C2(ε+ δ).

Proof. Note that for any family B ⊂ P([n]), we have Ip
′
[B] = I1−p′ [B∗]. Hence, by

hypothesis, we have

I1−p′ [A∗]− r(1− p′)r−1 = I1−p′ [A∗]− I1−p′ [x1 ∧ . . . ∧ xr] ≤ ε(1− p′)r.

Since A∗ is increasing and µ1/2(A∗) = 1 − µ1/2(A) ≥ 2−r, by Lemma 12 we
have µ1−p′(A∗) ≥ (µ1/2(A∗))log1/2(1−p′) ≥ (1 − p′)r. Similarly, since µ1−p(A∗) =
1− µp(A∗) ≤ (1− p)r(1 + δ), we have

µ1−p′(A∗) ≤ (µ1−p(A∗))log1−p(1−p′) ≤ ((1−p)r(1+δ))log1−p(1−p′) ≤ (1−p′)r(1+3δ),

provided δ0 is sufficiently small. Therefore,

µ1−p′(A∗) log1−p′(µ1−p′(A∗)) ≥ (1−p′)r log1−p′((1−p′)r(1+3δ)) ≥ (r−11δ)(1−p′)r.

It follows that

(1− p′)I1−p′ [A∗]− µ1−p′(A∗) log1−p′(µ1−p′(A∗)) ≤ (ε+ 11δ)µ1−p′(A∗).

Applying Theorem 10 (with η = 1/4, with 1− p′ in place of p and with ε+ 11δ
in place of ε) to the family A∗, we see that there exists R ⊂ [n] such that

(3.1) µ1−p′(A∗∆SR) ≤ C2(ε+ δ)(1− p′)r,

where C2 > 0 is an absolute constant, provided ε0, δ0 are sufficiently small. We
claim that |R| = r. Indeed, if |R| > r, then

µ1−p′(A∗∆SR) ≥ µ1−p′(A∗)− µ1−p′(SR) ≥ (1− p′)r − (1− p′)r+1 = p′(1− p′)r,

contradicting (3.1) provided ε0, δ0 are sufficiently small. Similarly, if |R| < r, then

µ1−p′(A∗∆SR) ≥ µ1−p′(SR)− µ1−p′(A∗)
≥ (1− p′)r−1 − (1 + 3δ)(1− p′)r

= (1− p′)r−1(p′ − 3(1− p′)δ),

again contradicting (3.1) provided ε0, δ0 are sufficiently small. This proves the
claim. It follows that

µp′(A∅R) = (1− p′)−rµp′(A \ORR)

≤ (1− p′)−rµp′(A∆ORR)

= (1− p′)−rµ1−p′(A∗∆SR)

≤ C2(ε+ δ),

as required. �
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Proof of Theorem 5. Let n, k, r, s and t be as in the statement of the theorem, where
C0 is to be chosen later. Let F ⊂

(
[n]
k

)
be a family satisfying µ 1

2

(
F↑
)
≤ 1 − 2−r

and |F| ≥
(
n
k

)
−
(
n−r
k

)
−
(
n−r−t
k−1

)
.

Let p = k/n+0.5
2 . By Lemma 16, we have

µp
(
F↑
)
≥ 1− (1− p)r − exp(−Θ(s2k/n)).

Applying Lemma 17 with η = exp(−Θ(s2k/n)) and A = F↑, yields p′ ∈ (p, 1
2 ) such

that

Ip
′ [
F↑
]
≤ Ip

′
[x1 ∨ . . . ∨ xr] +

exp(−Θ(s2k/n))

0.5− p
.

Provided C0 is sufficiently large, we may apply Lemma 18 with δ = 2r exp(−Θ(s2k/n))
and

ε =
exp(−Θ(s2k/n))

(0.5− p)(1− p′)r
≤ 2r

√
k

s
exp(−Θ(s2k/n)) ≤ 2r exp(−Θ(s2k/n)),

yielding

(3.2) µp′((F↑)∅R) ≤ 2r exp(−Θ(s2k/n))

for some p′ ∈ (p, 1/2) and some R ∈
(

[n]
r

)
.

Applying Lemma 14 with G = (F↑)∅R, with n − r in place of n, and with p′ in
place of p, we obtain

(3.3)
|F∅
R |(

n−r
k

) ≤ µp′((F↑)∅R)

Pr[Bin(n− r, p′) ≥ k]
.

Applying the Chernoff bound in Lemma 13 with n − r in place of n, and with
δ := 1− k/(p′(n− r)) = Ω(s

√
k/n), we obtain

(3.4) Pr[Bin(n− r, p′) ≥ k] > 1− exp(−Θ(s2k/n)).

Combining (3.2), (3.3) and (3.4), we obtain

|F∅
R |(

n−r
k

) < µp′((F↑)∅R)

1− exp(−Θ(s2k/n))
≤ 2r exp(−Θ(s2k/n)),

completing the proof of Theorem 5. �

Before proving Theorem 3, we need some additional lemmas.

The FKG bound. We need the following well-known upper bound on the p-biased
measure of the union of r 1-intersecting subfamilies of P([n]); we provide a proof
for completeness.

Lemma 19. If F1, . . . ,Fr ⊂ P([n]) are intersecting families, and 0 < p ≤ 1/2,
then

µp(F1 ∪ . . . ∪ Fr) ≤ 1− (1− p)r.

Proof. By replacing Fi with F↑i for each i, if necessary, we may assume that each Fi
is increasing. For each i, since Fi is intersecting, Theorem 6 implies that µp(Fi) ≤ p,
and therefore µp(Fci ) ≥ 1 − p. Hence, using Corollary 8 (applied to the down-sets
Fc1 , . . . ,Fcr ), we have

µp(F1 ∪ . . . ∪ Fr) = 1− µp(Fc1 ∩ . . . ∩ Fcr ) ≤ 1−
r∏
i=1

µp(Fci ) ≤ 1− (1− p)r,
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as required. �

Clearly, Lemma 19 is sharp, as can be seen by taking Fi = {S ⊂ [n] : i ∈ S} for
each i ∈ [r].

Upper bounds on linear combinations of sizes of cross-intersecting fam-
ilies.

Lemma 20. For each constant C1 > 0, there exists a constant C2 = C2 (C1) > 0
such that the following holds. Let n

C1
< k1 < n

2 − C2,
n
C1

< k2 < n
2 − C2 with

|k1 − k2| ≤ C1, and let t0 ∈ N with t0 ≥ C2/ log
(
n−k1
k1

)
. Suppose that G1 ⊂(

[n]
k1

)
, G2 ⊂

(
[n]
k2

)
are cross-intersecting families with |G1| ≤

(
n−t0
k1−t0

)
. Then

|G2|+ C1 |G1| ≤
(
n

k2

)
,

and equality holds only if G1 = ∅.

Proof. Choose t ∈ N such that
(
n−t−1
k1−t−1

)
≤ |G1| ≤

(
n−t
k1−t

)
. Note that t ≥ t0 ≥

C2/ log
(
n−k1
k1

)
. By Lemma 15, we have |G2| ≤

(
n
k2

)
−
(
n−t−1
k2

)
. So it suffices to

prove that (n−t−1
k2

)
( n−t
k1−t)

> C1.

Observe that (
n−t−1
k2

)(
n−t
k1−t

) = ΘC1

( (
n−t
k1

)(
n−t
k1−t

)) ,
and (

n−t
k1

)(
n−t
k1−t

) =
(n− k1) · (n− k1 − 1) · . . . · (n− k1 − t+ 1)

(k1) · (k1 − 1) · . . . · (k1 − t+ 1)
≥
(
n− k1

k1

)t
≥ 2C2 .

Hence, (
n−t−1
k2

)(
n−t
k1−t

) = ΘC1

( (
n−t
k1

)(
n−t
k1−t

)) = ΩC1(2C2) > C1,

provided C2 is sufficiently large depending on C1, as required. �

Approximate containment in dictatorships. We now show that if F = F1 ∪
. . .∪Fr with Fi ⊂

(
[n]
k

)
an intersecting family for each i ∈ [r], and |F| ≈

(
n
k

)
−
(
n−r
k

)
,

then not only is F well-approximated by (ORR)(k) for some R ∈
(

[n]
r

)
, but in

fact each Fi is well-approximated by a (different) dictatorship Dj (with j ∈ R).
Specifically, we prove the following.

Lemma 21. There exists an absolute constant C0 > 0 such that the following
holds. Let r, k ∈ N with k ≥ C0r

2, let s ≥ C0

√
log k, let t ∈ N with t ≥ s2k/n, let

n ≥ 2k+ s
√
k, and let F = F1 ∪ . . .∪Fr, where Fi ⊂

(
[n]
k

)
is an intersecting family

for each i ∈ [r]. If |F| ≥
(
n
k

)
−
(
n−r
k

)
−
(
n−r−t
k−1

)
, then there exists a set R ∈

(
[n]
r

)
and

a permutation π ∈ Sym(R) such that
∣∣∣(Fi)∅{π(i)}

∣∣∣ ≤ 22re−Θ(s2k/n)(n−1
k

)
for each

i ∈ R.
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Proof. First note that by Theorem 5, we have
∣∣F∅
R

∣∣ ≤ 2re−Θ(s2k/n)(n−r
k

)
for some

R ∈
(

[n]
r

)
; without loss of generality, we may assume that R = [r]. Hence,∣∣∣F{j}[r]

∣∣∣ ≥ (n− r
k − 1

)(
1− 2re−Θ(s2k/n)n− r − k + 1

k

)
=

(
n− r
k − 1

)(
1− 2re−Θ(s2k/n)

)
for each j ∈ [r].

Note that for each j1 6= j2 ∈ [r], the families (Fi){j1}[r] , (Fi){j2}[r] are cross-

intersecting. So we may assume, without loss of generality, that µ 1
2

((
(Fi){j}[r]

)↑)
≤

1
2 for any j 6= i.

Fix j ∈ [r]. By Lemma 14 together with the Chernoff bound (2.2), we have

µ 1
2

((
F{j}[r]

)↑)
≥ 1− 2re−Θ(s2k/n). Using Corollary 8, we have

1−µ 1
2

((
F{j}[r]

)↑)
≥

r∏
i=1

(
1− µ 1

2

((
(Fi){j}[r]

)↑))
≥
(

1

2

)r−1(
1− µ 1

2

((
(Fj){j}[r]

)↑))
.

Rearranging, we obtain

µ 1
2

((
(Fj){j}{j}

)↑)
≥ µ 1

2

((
(Fj){j}[r]

)↑)
≥ 1− 22re−Θ(s2k/n).

Hence µ 1
2

((
(Fj)∅{j}

)↑)
≤ 22re−Θ(s2k/n) and the lemma follows from Lemma 14

and the Chernoff bound (2.2). �

Finally, we need the following easy combinatorial inequality.

Claim 22. Let F1, . . . ,Fr ⊂
(

[n]
k

)
and let F = F1 ∪ . . . ∪ Fr. Then

|F| ≤
(
n

k

)
−
(
n− r
k

)
+

r∑
j=1

(∣∣∣(Fj)∅{j}∣∣∣− ∣∣∣((Fj){j}[r]

)c∣∣∣) ,
where

(
(Fj){j}[r]

)c
:=
(

[n]\[r]
k−1

)
\ (Fj){j}[r] .

Proof. It suffices to prove that

(3.5) 1F (S) ≤ 1OR[r]
(S) +

r∑
j=1

(
1(Fj)∅{j}

(S)− 1([n]\[r]
k−1 )\(Fj)

{j}
[r]

(S \ {j})
)

for all S ∈
(

[n]
k

)
. (The statement of the claim then follows by summing (3.5) over

all S ∈
(

[n]
k

)
.) To prove (3.5), observe that for any set S ∈

(
[n]
k

)
, we have

1([n]\[r]
k−1 )\(Fj)

{j}
[r]

(S \ {j}) = 1⇒ S ∩ [r] = {j} ⇒ 1OR[r]
(S) = 1,

so the right-hand side of (3.5) is always non-negative. Hence, we may assume that
S ∈ F . Without loss of generality, we may assume that S ∈ F1. If |S ∩ [r]| ≥ 2 or
S ∩ [r] = {1}, then

1([n]\[r]
k−1 )\(Fj)

{j}
[r]

(S \ {j}) = 0 ∀j ∈ [r], 1OR[r]
(S) = 1,
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so the right-hand side of (3.5) is at least 1, and we are done. If S ∩ [r] = ∅, then

1([n]\[r]
k−1 )\(Fj)

{j}
[r]

(S \ {j}) = 0 ∀j ∈ [r], 1(F1)∅{1}
(S) = 1,

so the right-hand side of (3.5) is at least 1, and we are done. Finally, if S∩ [r] = {i}
for some i > 1, then we have

1([n]\[r]
k−1 )\(Fj)

{j}
[r]

(S \ {j}) = 1

only if j = i, whereas 1OR[r]
(S) = 1(F1)∅{1}

(S) = 1, so the right-hand side of (3.5) is
at least 1, and we are done. �

Proof of Theorem 3. Let F = F1 ∪ . . . ∪ Fi, where Fi ⊂
(

[n]
k

)
is an intersecting

family for each i ∈ [r], and suppose that |F| ≥
(
n
k

)
−
(
n−r
k

)
. Then F cannot

contain r+ 1 pairwise disjoint sets, so by Theorem 4, if n ≥ (2r+ 1)k− r, we have
|F| ≤

(
n
k

)
−
(
n−r
k

)
, with equality only if F = (ORR)(k) for some R ∈

(
[n]
r

)
. Hence,

we may assume throughout that n ≤ (2r + 1)k − r − 1. Moreover, by choosing
C = C(r) to be sufficiently large, we may assume throughout that n ≥ n0(r) for
any n0(r) ∈ N.

By Theorem 5 (applied with s = C(r)k1/6, where C(r) ∈ N is to be chosen
later), Lemma 19 and Lemma 21, there exists a set R ∈

(
[n]
r

)
and a permutation

π ∈ Sym(R) such that ∣∣∣(Fi)∅{π(i)}

∣∣∣ ≤ 22re−Θ(s2k/n)
(
n− 1

k

)
for each i ∈ R. Without loss of generality, we may assume that R = [r] and π = Id,
so that

(3.6)
∣∣∣(Fi)∅{i}∣∣∣ ≤ 22re−Θ(s2k/n)

(
n− 1

k

)
for all i ∈ [r].

By Claim 22, we have

(3.7) |F| ≤
(
n

k

)
−
(
n− r
k

)
+

r∑
j=1

(∣∣∣(Fj)∅{j}∣∣∣− ∣∣∣((Fj){j}[r]

)c∣∣∣) .
We now wish to apply Lemma 20. To this end, define

t0 :=

⌈
C2(max{2r−1, 2r + 1})/ log

(
n− r − k

k

)⌉
,

where C2(·) is the function defined in Lemma 20. Since n ≥ 2k + C(r)k2/3 ≥
2k + k2/3, and since by assumption (2r + 1)k ≥ n ≥ n0(r), we have t0 = Or(k

1/3),
and therefore (

n−1−(r+t0−1)
k−(r+t0−1)

)(
n−1
k

) ≥
(
k − r − t0 + 2

n− r − t0 + 1

)r+t0−1

≥
(

1

2r + 2

)r+t0−1

≥ exp(−Θr(k
1/3))

> 22r exp(−Θ(s2k/n)),
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provided C = C(r) ∈ N and n0 = n0(r) ∈ N are chosen to be sufficiently large.
Therefore, using (3.6), for all j ∈ [r] and for all T ⊂ [r] \ {j}, we have∣∣∣(Fj)T[r]∣∣∣ ≤ ∣∣∣(Fj)∅{j}∣∣∣

≤ 22re−Θ(s2k/n)
(
n− 1

k

)
<

(
n− 1− (r + t0 − 1)

k − (r + t0 − 1)

)
≤
(
n− r − t0
k − |T | − t0

)
.

By our choice of t0, we have

t0 ≥ C2(max{2r−1, 2r + 1})/ log

(
n− r − k + |T |

k − |T |

)
for all j ∈ [r] and all T ⊂ [r] \ {j}. Hence, for any such j and T , we may apply
Lemma 20 to the pair of cross-intersecting families G1 = (Fj)T[r] and G2 = (Fj){j}[r] ,
with n− r in place of n, C1 = max{2r−1, 2r + 1}, k − r + 1 ≤ k1 ≤ k, k2 = k − 1,
and the above value of t0. This yields

(3.8)
∣∣∣(Fj)∅{j}∣∣∣− ∣∣∣((Fj){j}[r]

)c∣∣∣ ≤ 2r−1 max
T⊂[r]\{j}

∣∣∣(Fj)T[r]∣∣∣− ∣∣∣((Fj){j}[r]

)c∣∣∣ ≤ 0

for each j ∈ [r].
Combining (3.7) and (3.8) yields |F| ≤

(
n
k

)
−
(
n−r
k

)
. By hypothesis, we have

|F| ≥
(
n
k

)
−
(
n−r
k

)
, and therefore |F| =

(
n
k

)
−
(
n−r
k

)
, so equality holds in (3.8)

for each j ∈ [r]. Therefore, by Lemma 20, (Fj)T[r] = ∅ for all T ⊂ [r] \ {j}, i.e.
(Fj)∅{j} = ∅, so Fj ⊂ Dj for all j ∈ [r]. Hence, F ⊂ OR[r], so F = (OR[r])

(k), as
required. �
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