
 1 

 

Submission to Journal of Investigative Dermatology 

Title 

A framework for multi-omic prediction of treatment response to biologic therapy for psoriasis  

Authors 

Amy C. Foulkes PhD1, David S. Watson2, Daniel F. Carr PhD3, John G. Kenny4, Richard 

Parslew5, Munir Pirmohamed PhD3, The PSORT Consortium, Simon Anders PhD6, Nicholas J. 

Reynolds MD7, Christopher E.M. Griffiths MD1, Richard B. Warren PhD1† and Michael R. 

Barnes PhD2†  

 

Institutions 

1The Dermatology Centre, Salford Royal NHS Foundation Trust, The University of Manchester, 

Manchester Academic Health Science Centre, M6 8HD, UK. 

2Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary 

University of London, Charterhouse Square, London, UK  

3Wolfson Centre for Personalised Medicine, The University of Liverpool, Liverpool, UK 

4Centre for Genomic Research, The University of Liverpool, Liverpool, UK 

5Dermatology Department, Kent Lodge, Broadgreen Hospital, Liverpool, UK 

6Centre for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany. 

7Institute of Cellular Medicine (Dermatology), Medical School, Newcastle University, Newcastle 

upon Tyne, UK. 

†These authors contributed equally to this work 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/195279931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Corresponding author 

Dr A. C. Foulkes, The Dermatology Centre, Salford Royal NHS Foundation Trust, The 

University of Manchester, Manchester Academic Health Science Centre, M6 8HD. ORCiD 

account 0000-0003-2680-750X. 

Amy.foulkes@manchester.ac.uk 

 

 

Disclosure 

 

ACF has received educational support to attend conferences from or acted as a consultant or 

speaker for Abbvie, Almirall, Eli Lilly, Leo Pharma, Novartis, Pfizer, Janssen and UCB. CEMG 

has acted as a consultant and/or speaker for Abbvie, Almirall, Janssen, Novartis, Sandoz, Rock 

Creek Pharma, Pfizer, Eli Lilly, Sun Pharmaceuticals, UCB, Leo Pharma, Galderma and 

Celgene. RBW has acted as a consultant and/or speaker for Abbvie, Amgen, Almirall, 

Boehringer, Medac, Eli Lilly, Janssen, Leo Pharma, Pfizer, Novartis, Sun Pharma, Valeant, 

Schering-Plough (now MSD) and Xenoport.   NJR has received honoraria, travel support, and/or 

research grants (Newcastle University) from Abbvie, Amgen, AstraZeneca, Bristol-Myers 

Squibb, Celgene, Genentech, Janssen, Leo-Pharma Research Foundation, Novartis, Pfizer, and 

Stiefel GSK 

 

 

 

Author roles and email addresses 

Mr D.S. Watson, Postgraduate researcher  



 3 

D.Watson@qmul.ac.uk  

Dr D.F. Carr, Lecturer in Pharmacology 

d.carr@liverpool.ac.uk 

Dr J.G. Kenny, Sequence Production Manager 

jkenny@liverpool.ac.uk 

Dr R. Parslew, Consultant Dermatologist 

richard.parslew@rlbuht.nhs.uk 

Professor Sir M. Pirmohamed, David Weatherall Chair of Medicine, University of Liverpool 

munirp@liverpool.ac.uk 

Professor N.J. Reynolds, Professor of Dermatology and Honorary Consultant Dermatologist 

Nick.reynolds@newcastle.ac.uk 

Dr S. Anders, Project Group Leader, University of Heidelberg 

s.anders@zmbh.uni-heidelberg.de 

Professor C.E.M. Griffiths, Foundation Professor of Dermatology and Honorary Consultant 

Dermatologist 

Christopher.griffiths@manchester.ac.uk  

Professor R.B. Warren, Professor of Dermatology and Honorary Consultant Dermatologist 

Richard.warren@manchester.ac.uk  

Dr M.R. Barnes, Reader in Bioinformatics, Director – Centre for Translational Bioinformatics 

M.r.barnes@qmul.ac.uk  

 

  

mailto:D.Watson@qmul.ac.uk
mailto:d.carr@liverpool.ac.uk
mailto:jkenny@liverpool.ac.uk
mailto:richard.parslew@rlbuht.nhs.uk
mailto:munirp@liverpool.ac.uk
mailto:Nick.reynolds@newcastle.ac.uk
mailto:s.anders@zmbh.uni-heidelberg.de
mailto:Christopher.griffiths@manchester.ac.uk
mailto:M.r.barnes@qmul.ac.uk


 4 

Abstract 

Biologic therapies have shown remarkable efficacy in psoriasis, but individual response varies 

and is poorly understood. To inform biomarker discovery in the Psoriasis Stratification to 

Optimise Relevant Therapy (PSORT) study, we evaluated a comprehensive array of omics 

platforms across three time-points and multiple tissues in a pilot investigation of ten severe 

psoriasis patient, treated with the tumor necrosis factor (TNF) inhibitor, etanercept. We used 

RNA-sequencing to analyse mRNA and small-RNA transcriptomes in blood, lesional and non-

lesional skin and the Somascan platform to investigate the serum proteome. Using an integrative 

systems biology approach, we identified signals of treatment response in genes and pathways 

associated with TNF signalling, psoriasis pathology and the MHC region.  Notably, we found 

association between clinical response and TNF-regulated genes in blood and skin. Using a 

combination of differential expression testing, upstream regulator analysis, clustering techniques, 

and predictive modeling, we demonstrate that baseline samples are indicative of patient response 

to biologic therapies, including signals in blood, which have traditionally been considered 

unreliable for inference in dermatology. In conclusion, our pilot study provides both an 

analytical framework and empirical basis to estimate power for larger studies, specifically the 

ongoing PSORT study, which we demonstrate as powered for biomarker discovery and patient 

stratification. 

 

Introduction 

 

 

The introduction of biologic therapies into clinical practice has led to major improvements for 

patients with severe psoriasis. However, optimal, cost-effective provision of these therapies in a 
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resource-limited healthcare system will necessitate a stratified approach (Griffiths, 2017, 

Lebwohl, 2016).  

Translational research has been revolutionized by the availability of technologies to 

measure features of the genome, transcriptome, and proteome (so called “omics”), primarily 

facilitated by high-throughput sequencing (HTS, formerly next generation sequencing). It is 

likely that data generated by these new technologies will inaugurate an era of stratified care 

founded on comprehensive cellular profiles, rather than individual biomarker molecules 

(Johnston et al., 2017). Such laboratory methods have already been employed in dermatological 

research to identify biomarkers of treatment response in inflammatory skin disease (Correa da 

Rosa et al., 2017, Ungar et al., 2017), but validation of those markers remains elusive and unlike 

our colleagues in oncology, clinical dermatologists have yet to see the integration of omics into 

daily practice. 

Methodological problems have in part hampered the translation of pharmacogenomic 

results into clinical success in dermatology (Jorgensen and Williamson, 2008). Well-designed 

and adequately powered prospective studies are required to identify clinically robust biomarkers. 

Psoriasis Stratification to Optimise Relevant Therapy (PSORT) is an academic-industrial UK 

stratified medicine consortium funded by the Medical Research Council and devoted to 

developing a stratifier of response prediction to biologics , scalable for clinical use for those with 

moderate to severe disease (Griffiths et al., 2015). 

In order to inform the analytical strategy of PSORT, we conducted a pilot study to 

evaluate response to a biologic in psoriasis patients using lesional (PP) and non-lesional (PN) 

skin and blood, and  a range of omic platforms and different analysis pipelines. In addition to 

comparing the performance of each platform and tissue, we used our preliminary data to obtain 
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an empirical estimate of the required sample size to adequately power the full PSORT study. 

Here we report the results of a comprehensive multi-omic pilot study (Figure 1), including RNA 

sequencing (RNA-Seq) of mRNA lesional and non-lesional skin, RNA-Seq from mRNA and 

from miRNA from blood as well as Somascan proteomic data from blood.  

Our tightly phenotyped, rigorously controlled cohort of patients had chronic plaque 

psoriasis and were commencing biologic therapy with the tumor necrosis factor inhibitor (TNFi), 

etanercept. We evaluated the relative merits of each platform and demonstrate a workflow for 

scaled use on large datasets. Novel to pharmacogenomic research in dermatology, we provide 

not only open data but open access to our complete analysis scripts and a fully executable R 

Markdown document for colleagues to evaluate and exactly reproduce the workflow themselves 

(Foulkes et al., 2017). Multi-omic analysis is a highly resource intensive process, particularly 

with the breadth of approaches described here, which are beyond the resources of most projects. 

We use this pilot study to comment on the relative merits of multi-omic approaches and highlight 

platforms that show particular promise in predicting response to therapy.   
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Results 

Patient Characteristics and Analysis of Clinical Response  

Ten patients commencing etanercept therapy were recruited from a prospective clinical 

observational study entitled pharmacogenomic signatures of treatment response in psoriasis. 

Figure 1 provides an overview of the study and patient characteristics for included participants 

are shown in Table 1. Participants were assessed at baseline, week one and week 12 of therapy 

and response to therapy was determined using the Psoriasis Area and Severity Index (PASI), 

with a response defined as a reduction of PASI by at least 75% from baseline (PASI75) and non-

response defined as failure to achieve a reduction of at least 50% from baseline (PASI50). 

Supplementary Figure 2 demonstrates a scatterplot of PASI at baseline vs. PASI at week 12.  

 

Multi-omic analysis 

Using samples from each participant at each time-point (one biopsy sample per library), we 

performed RNA-Seq on mRNA from lesional skin (60m paired reads/sample), non-lesional skin 

(60m paried reads/sample), and blood (30m paired reads/sample). We additionally performed 

RNA-Seq on miRNA from blood (10m single reads/sample) and Somalogic proteomic 

assessment on serum samples. As exploratory data analysis is a key first step in multi-omics, we 

first constructed a sample similarity matrix to compare mRNA transcriptomes across tissues, by 

calculating the pairwise Euclidean distance between all mRNA samples (Supplementary Figure 

2). Samples were clearly separated by tissue, although less distinction was seen between PP and 

PN skin samples, in part reflecting strong intra-subject effects and treatment effects between 

baseline and 12 weeks. Next we examined transcriptome structure on a tissue by tissue basis 

using two different projection methods.  Principal component analysis (PCA) demonstrated clear 
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separation between skin and blood along the first principal component, as expected 

(Supplementary Figure 3a). The second principal component separated lesional from non-

lesional samples, albeit with one data point corresponding to a participant’s week 12 observation. 

This patient showed good response to therapy, suggesting putative detection of remission at 

mRNA transcriptome level. Similar, although less distinct tissue separation was seen by another 

projection method, t-distributed stochastic neighbour embedding (t-SNE) (Supplementary Figure 

3b). Tissue-wise projection plots across all platforms were dominated by intra-subject signatures, 

as anticipated (Supplementary Figures 4 and 5). These unsupervised methods do not appear to 

separate patients by treatment response, indicating that supervised techniques may be required to 

detect a response signal in these data. 

Response differential expression analysis by platform 

Differential expression analyses (DEA) to investigate the effects of etanercept treatment over 

time were performed for each platform (mRNA-Seq, miRNA-Seq and SOMAscan proteomic 

assessment), and tissue type (lesional skin, non-lesional skin and blood) using a common limma 

analytical framework. Access to our complete analysis script and fully executable R Markdown 

document allows reproduction of this workflow with evaluation of these results (see Materials 

and Methods and Supplementary File). We imposed a 10% false discovery rate (FDR) threshold. 

We selected this cut-off because power calculations suggest the modest sample size of the study 

will impede our sensitivity to detect differential expression. A 10% FDR threshold is therefore 

likely to underestimate the true number of differentially expressed genes or proteins in our 

dataset.  
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A summary of differential expression of mRNA, miRNA and protein across time and across 

tissue types may be found in Figure 2, whilst all differentially expressed molecules are 

summarised in supplementary table 1. 

Heatmaps of the top 1% gene expression changes from lesional skin, non-lesional skin, and 

blood are shown in Supplementary Figure 6. The top 1% of genes cluster by response to 

treatment across lesional, non-lesional skin and blood. Similar results were seen with supervised 

and unsupervised cluster assignments. 

  

Upstream regulator analysis 

Acknowledging that our study is not powered for discovery, we used the Upstream Regulator 

Analysis function in Ingenuity Pathway Analysis (IPA) to evaluate upstream regulator signals at 

a systems-level that may be responsible for the observed gene expression changes. Upstream 

regulators are defined as any molecule that can affect the expression of another molecule, 

including transcription factors, cytokines, miRNAs and drugs. The activation state for each 

regulator was predicted based on global direction of changes in the DEA for previously 

published targets of this regulator. The predicted top 30 regulators across all tissues and time 

points are shown in a hierarchically clustered heatmap in Figure 3. Results demonstrate a range 

of pro-inflammatory signalling and drug pathways, including a highly conserved, pan-tissue TNF 

signature, strongest at baseline in blood and at week-1 in lesional and non-lesional skin, and 

substantially diminished at week-12 across all tissues. A similar pattern is also seen in Figure 3 

hierarchically clustered with TNF in Interferon α-2 and γsignalling, in addition to NFΚβ 

signalling. This is an interesting proof of concept of the ability to detect a biologic drug response 

at a systems level which we discuss further below.      
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Platform comparison 

Baseline Omic Platform Concordance 

We performed supervised and unsupervised PAM clustering on baseline samples for each tissue 

across all platforms, relating the differentially expressed genes from each platform to response 

and informing where drivers of prediction to response have commonalities. Cross-platform 

concordance was evaluated using the mutual information between cluster assignments, indicating 

a wide range of concordance values among supervised clusters (Figure 4a). Lesional mRNA and 

blood mRNA concordance was highest at 0.88 bits.  

Machine Learning Models 

We built a series of random forest models to predict continuous response using baseline data 

from each tissue-type and platform (Figure 4b). Predictive power was detected across platforms 

using this methodology, demonstrating additional signal to the differential expression analyses. 

The proteomics assay, in which we found no significant differentially expressed proteins at 

baseline using traditional marginal techniques (i.e., looking at each feature separately), proved 

the most predictive platform for response when modelled using random forests; however 

differences between data types were generally insignificant. The recursive feature elimination 

algorithm we used for these models (see Methods) may provide an alternative approach to 

biomarker discovery, offering new insight into omic signatures of response. Our top performing 

model achieved a RMSE of 0.123, which is just under 75% of the standard deviation of our 

(winsorised) delta PASI distribution.  

Power calculations for a prospective observational study 
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Using the method of Guo et al. (Guo et al., 2014) and parameters derived from this pilot study, 

we calculated the requisite sample size to achieve 90% power to detect differential expression 

associated with response. Using the pilot data presented here as a guide, we project that 17,000 

genes are likely to pass a reasonable expression filter, and that some 1% of these genes will 

prove prognostic in a sufficiently large cohort. The top 1% of genes in our baseline measures had 

an average read count of ~100 prior to normalisation; a minimum log fold change of 

approximately 0.72 after modelling; and a global dispersion estimate of 0.137, as estimated by 

the empirical Bayes procedure of McCarthy et al. (2012). Imposing a 5% FDR threshold and a 

target log fold change of 1.5, we find that a study would require 41 subjects to achieve 90% 

power to identify transcriptomic markers of biologic response for patients with chronic plaque 

psoriasis. Relaxing the number of differentially expressed genes to 5%, we can maintain 90% 

power with 34 subjects. We present power curves projected across an expected range of fold 

changes at 1% and 5% DE in supplementary figure 7.  

 

Discussion 

In this study we present a framework for multi-omic analysis of biologic response. Our results 

are transparent and fully reproducible via companion markdown documents. This makes our 

analysis framework suitable for larger studies of similar nature, such as the PSORT program. We 

emphasise that this proof of concept study is not powered for discovery; however, our results do 

suggest that signals of response to therapy in patients with severe psoriasis treated with the TNFi 

etanercept may be systemically detectable in lesional skin, non-lesional skin and blood at 

baseline, prior to commencement of therapy. Evidence of differential expression correlated with 
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treatment response was observed across all tissue types and time points, but differed across omic 

platforms.   

The choice of the TNFi etanercept related to the timing of study design (in 2010) and the 

observed rates of etanercept response were within the range observed in studies of larger cohorts 

(Leonardi et al., 2003). Prior pharmacogenomic evaluations of patient cohorts have centred on 

the use of genetic or genomic techniques, predominantly  using skin biopsies, although several 

studies have used  skin and blood (Chow et al., 2016, Suárez-Fariñas et al., 2012), with 

consideration of detection of response early in treatment. Whilst no prospective biomarkers have 

yet been validated in adequately powered cohorts, there has been substantial progress, with the 

creation of predictors or classifiers of response (Correa da Rosa et al., 2017). Here, we evaluate 

multiple, complementary omics techniques. We wished to appraise the value of techniques that 

would allow minimally invasive detection of biomarkers of response, including from blood, 

which is routinely taken for patients with severe inflammatory skin disease.  

Our focus was RNA-Seq technology as the gold standard for gene expression profiling. RNA 

sequencing provides counts of all the genes expressed in a sample including microRNAs 

(miRNAs) and other potentially important noncoding RNA species. Use of high quality RNA 

inputs (RIN>8 ensured high quality libraries, which passed relatively stringent QC thresholds. In 

comparison to array-based technologies, RNA-Seq is able to detect low abundance targets; cell-

specific transcripts and alternative splice forms. RNA-Seq is an open platform that is not reliant 

on pre-specified probes and hence it has a capability to identify novel transcripts. We selected 

and RNA-Seq platform to enable direct comparison with other open access research data and to 

data from a future larger validation cohort. RNA-Seq is now becoming the platform of choice for 

transcriptome analysis; especially as costs of HTS techniques reduce over time. RNA-Seq 
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allowed for the same technique to be applied across evaluation of tissue types, and to our 

knowledge forms the first pharmacogenomic assessment using RNA-Seq directly comparing 

samples from lesional skin, non-lesional skin and blood, in addition to proteomics assessment, in 

psoriasis.  We have evaluated a range of exploratory visualisations of our pilot data, which 

showed differing performance, for example a comparison of PCA and t-SNE visualisation of 

lesional vs. non-lesional skin highlighted the former method’s greater sensitivity to local effects. 

 The individual genes identified in differential expression analyses were not further 

evaluated, since our study is not powered for discovery and this approach has been 

comprehensively reported elsewhere (Li et al., 2014).  However, at a systems level, upstream 

regulator analysis (IPA) of DEGs associated with clinical response across tissues and timepoints, 

indicated that changes in genes controlled by the target of the drug, TNF, were the most 

predictive of response. Although this might seem intuitive, previous reports have linked 

etanercept response to interleukin (IL)-17 signaling rather than TNF early response genes (Zaba 

et al., 2009). In blood, in addition to TNF regulation,  we also saw a strong interferon signature 

associated with response to etanercept, which has previously been reported in association with 

etanercept response in skin (Johnston et al., 2014) and also with TNF activation in inflammatory 

diseases (Mavragani et al., 2007, Zou et al., 2003). Comparison of TNF and interferon signatures 

across time points in association with response also shows an interesting pattern, with strong 

signals in blood at baseline, and in skin at 1 week, potentially indicating the genomic response to 

TNFi therapy (Figure 3). Concordance of baseline omic platforms in prediction of response 

demonstrated the strongest association between lesional skin mRNA and blood mRNA. Few 

response associated genes were seen in common across tissues and time points, notably all genes 

associated in more than one tissue were located in the major histocompatibility complex (MHC) 
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(Supplementary Table 1). This correlates with previous genetic findings (Talamonti et al., 2013) 

supporting an immunologic basis to both treatment response and psoriasis pathology (Krueger, 

2002).   

 

Whilst it is difficult to either identify or validate stable subgroups within small cohorts, we are 

confident this approach will be more informative in a larger study and preliminary evidence here, 

suggests that blood biomarkers may be an informative and less invasive predictor of response. 

We used our dataset to empirically inform a power calculation for the prospective study PSORT; 

where 80 participants are being recruited for assessment of each of adalimumab and ustekinumab 

. This demonstrates that the PSORT study is adequately powered to detect moderate to large 

treatment effects in most scenarios.    

We encourage researchers to access our data in ArrayExpress (accession number TK) and 

review our supplementary R Markdown documents on GitHub to learn more about our pipeline 

and to fully reproduce our results. Data sharing and open source analytics are the obvious 

solution to the reproducibility crisis that plagues clinical and omic research today, and is 

becoming more commonplace in fields which are advancing stratified medicine (Omberg et al., 

2013).We believe that open access to data and code should be the norm in life science research, 

not the exception (Foulkes et al., 2017). 

Our study went beyond analysis of a single technology appraisal of treatment prediction 

in one cohort to provide a scalable framework for predictive and inferential analysis of multi-

omic data for clinical dermatology. Despite our small sample size, we were able to detect 

consistent signals of differential expression and build machine-learning models that in 

adequately powered studies, may offer complementary information to clinical factors in the 
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prediction of outcome. We suggest this ability to detect signals  is in part due to the use of a 

single clinician for cohort ascertainment and sample processing thereby  minimising clinical 

confounders and batch issues and allowing bioinformatics expertise to synergise with clinical 

research strategy from conception through analysis. These results have implications for ongoing 

studies. Our exploration has provided the framework for the generation of a large-scale omics 

dataset from PSORT. The signals we have detected will be examined for validity using the same 

robust analytical pipeline in PSORT, which we demonstrate is substantially powered to detect 

true biomarkers of response to therapy. Likewise as omics techniques are applied to other 

dermatological diseases such as atopic eczema (Suarez-Farinas et al., 2015)at the same time as 

an expansion in biologic therapies  is occurring (Blauvelt et al., 2017), genomic approaches to 

personalisation and stratification of therapies may have broad applicability. 
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Materials and Methods 

 

Prospective observational study 

 

Ten participants commencing etanercept therapy (50mg by subcutaneous injection administered 

once weekly) were recruited to take part in a prospective clinical observational study entitled 

‘Pharmacogenomic signatures of treatment response in psoriasis’ (UK Research Ethics 

Committee reference 11/NW/0500; protocol available in supplementary materials). Patients had 

a diagnosis of chronic plaque psoriasis of early onset (≤ 40 years) disease, were White of 

European ancestry (to third generation) and had not received prior systemic or biologic 

treatments in at least two weeks (or four x t½ of last treatment, whichever was longer). Of the 10 

participants, nine were naïve to biologic therapy. Patients completed detailed demographic 

questioning, including reporting information on comorbidities and concomitant medication. 

Disease severity and response to therapy were assessed using the PASI, Physician Global 

Assessment (PGA) and DLQI. Clinical samples including blood and skin biopsies were collected 

at baseline, one week (following the second injection of etanercept) and 12 weeks of treatment. 

Adherence to therapy was assessed, including witnessed/administered injections at the initial 

visit, self-reporting of timings of injections between visits and monitored drug levels at the final 

visit. The same physician and research nurse conducted all research visits (ACF and JH). 
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Laboratory methodology 

Skin and blood sampling and RNA extraction 

Samples including lesional and non-lesional skin samples, as well as whole blood, were 

taken at each participant visit. Skin biopsies (6mm punch biopsies) were taken from lesional 

(edge of a plaque) and adjacent (minimum distance of 2cm) non-lesional skin from 

photoprotected sites on the lower back or upper buttock at each visit. Repeat biopsies were taken 

at a minimum distance of 2cm and biopsy sites were recorded. The full laboratory methodology 

is available in Supplementary material. mRNA was extracted from skin biopsies using Qiagen 

Rneasy mini kits. The RNA extraction protocol for skin is provided in the Supplementary 

material. mRNA and miRNA were extracted from blood using miRNeasy blood kits according to 

manufacturers’ protocol. RNA was quantified and quality controlled (assuring a RIN>8) using 

the Agilent RNA 6000 Nano Kit (Agilent Technologies, Waldbronn, Germany) using the 

manufacturer’s protocol.   

RNA Sequencing 

Following quality control, sequencing of mRNA extracted from skin samples was performed at 

GSK, Stevenage and from blood samples at the Centre for Genomic Research, University of 

Liverpool using the Illumina HiSeq 2500 platform. Libraries were prepared with the TruSeq 

Stranded Total RNA Sample Preparation Kits. The first step involved removal of ribosomal 

RNA (rRNA), conducted using biotinylated Ribo-Zero rRNA removal beads. For RNA extracted 

from skin, the Ribo-Zero Gold kit was used to deplete samples of cytoplasmic and mitochondrial 

rRNA. For RNA extracted from blood, the Globin-Zero kit was used to deplete globin-encoding 

mRNA in addition to the rRNA species targeted with Ribo-Zero Gold. The Globin-Zero 
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depletion is essential for removal of the highly abundant adult globin mRNAs from RNA 

extracted from blood samples. 

Somalogic proteomic analysis 

Serum was extracted from whole blood immediately after bleeding and centrifuged at 200g for 7 

minutes, collected into unheparinized centrifugation tubes and kept on ice and at 4°C throughout 

processing.  After separation, serum was snap frozen in liquid nitrogen and stored at -80ºC. 

SOMAmer assays were carried out on 65 microliters of whole serum using standard procedures 

(Somalogic, Boulder, Colorado; PMID: 22022604). The assay used for this study was based on a 

1310 target human protein platform, the complete list is available at the company’s website 

(http://somalogic.com/resources/somascan-assay-support/somamer-reagent-characterization-

data/) and assayed proteins are listed in the proteome data submission (accession: XXX). The 

proteins in this assay panel include cytokines (20%), growth factors (13%), receptors (21%), 

proteases (17%), protease inhibitors (5%), kinases (20%), structural proteins (1%), and hormones 

(3%). 47% of the proteins that are surveyed are secreted proteins, 28% are extracellular domains, 

and 25% are intracellular proteins. 

 

Genomic data analysis workflow 

The RNA-Seq data is available in ArrayExpress (Accession: XXX). The analysis code is 

available in our public GitHub repository (https://github.com/C4TB/markdown-etn_pilot). 

Executable R scripts and R Markdown documents are available as Supplementary files in order 

to allow complete reproduction of our analysis workflow. All analyses were conducted in R 

version 3.4.0. 

Definition of response 
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A positive response to treatment is defined as meeting a PASI 75 (categorical) but continuous 

(linear) models to assess response were also used (see below). One participant was a non-

responder to therapy, determined as not meeting a PASI 50. The ratio of the decrease in PASI to 

the baseline value over 12 weeks is denoted delta PASI and provided a continuous variable for 

modelling of response for differential expression analyses. The non-responder was an extreme 

outlier (more than two and half standard deviations away from the average value of the delta 

PASI distribution) and considering the objective of this study as a pilot for a larger study, we 

elected to impose a cap for minimum and maximum values of two median absolute deviations 

away from the sample median. This process is called Winsorisation, a widely used method for 

adjusting outliers, preferable to trimming when sample sizes are small (Tukey and McLaughlin, 

1963). This changed the delta PASI score for our sole non-responder from -0.05 to 0.37. This 

patient’s results remained the most extreme in our data, but Winsorisation provided a more 

robust response distribution for linear modelling.  

Differential expression analyses 

RNA-sequencing reads were pseudo-aligned using kallisto (Bray et al., 2016) and aggregated to 

gene level with the tximport package (Soneson et al., 2015). Differential expression analyses 

were performed for each platform and tissue type (skin and blood) using the limma software 

package (Smyth, 2004) after read count data had been transformed and precision weighted using 

the voom method (Law et al., 2014). We accounted for the intra-subject correlations inherent to 

our study’s repeated measures design by taking advantage of that software’s duplicate correlation 

function (Smyth et al., 2005). Because library quality varied across samples, we incorporated 

array weights into our voom models (Liu et al., 2015). We employed a robust empirical Bayes 
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shrinkage procedure to mitigate the effects of hypervariable genes (Phipson et al., 2016), and 

estimated FDR using Storey’s q-value method (Storey and Tibshirani, 2003).  

Upstream regulator analysis 

Functional analysis of systems-level upstream regulators responsible for observed differential 

gene expression related to response was performed using the Upstream Regulator function in 

Ingenuity Pathways Analysis (IPA; Ingenuity Systems), using all genes with nominal response p 

 0.05 as input. For all gene set enrichment analyses, a right-tailed Fisher’s exact test was used to 

calculate a pathway p-value determining the probability that each biological function assigned to 

that data set was due to chance alone. All enrichment scores were calculated in IPA using all 

transcripts that passed QC as the background data set. Upstream regulator analysis is based on 

prior knowledge of expected effects between regulators and their known target genes according 

to the IPA database. The prediction of activation state is based on the global direction of changes 

of differentially expressed genes, a z-score is calculated and determines whether gene expression 

changes for known targets of each regulator are correlated with what is expected from the 

literature for an activation of this pathway. In this exploratory analysis we emphasized power 

over type 1 error, using a nominal z score threshold of z > 2 to indicate activation or z < -2 to 

indicate inhibition. 

 

Clustering 

Supervised and unsupervised clusters differ with respect to how genes were filtered across the 

two groupings. For our supervised analysis, we filtered out the bottom half of probes by 

association with biologic response, as determined by moderated t-tests. With unsupervised 

clusters, we filtered by the leading fold change between each sample pair, as implemented in 
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limma (Ritchie et al., 2015). Next, we projected the data in two dimensions using t-SNE (Van 

Der Maaten et al., 2008). Finally, we clustered the samples using k-medoids, also known as the 

PAM algorithm (Kaufman and Rousseeuw, 1990). Ideally, optimal cluster number k would be 

established via a resampling procedure such as consensus clustering (Monti et al., 2003). 

However, given our limited sample size, we chose to fix k = 2, separating samples into two 

groups that would ideally correspond to responders and non-responders. Cross-platform 

concordance was evaluated using the mutual information between cluster assignments, a 

dependency metric that ranges from 0 to 1 bit when k = 2.  

Predictive Models 

We built and evaluated a series of random forest models using continuous response 

measures to compare the predictive power associated with different platforms. To do so, we 

created a pipeline using tools from the caret package for classification and regression training 

(Kuhn and Johnson, 2013).  

Continuous models, designed to predict a patient’s percent change in PASI, were tuned 

using the root mean square error (RMSE) loss function, which is standard for linear regressions. 

Response was defined by a winsorised the delta PASI distribution, as explained above. We 

selected variables using the two-loop RFE algorithm outlined in (Kuhn and Johnson, 2013). For 

each platform, we tested 20 different subsets of probes, with dimensionality determined by an 

exponential function so that relatively low-dimensional subsets of the feature space were 

explored more closely than high-dimensional subsets. Performance was evaluated using 10-fold 

cross-validation. Lower RMSE values indicate more predictive models.  
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Tables and legends 
 

 

Table 1.  

 

Summary of clinical characteristics of included participants 

 

Variable Patients (n = 10) 

Age, mean (years) 43 

Sex F 2, M 8 

Weight, kg (mean ± SD) 94.3 ± 17.7 

BMI (mean ± SD) 30.6 ± 5.5 

Age at onset of psoriasis (years) mean ± SD 17 ± 11 

Baseline PASI; mean ± SD 20.3 ± 8.8 

PASI at week 12; mean ± SD 6.8 ± 3.9 

Baseline DLQI; mean ± SD  20.1 ± 9.3 

DLQI at week 12; mean ± SD 4.5 ± 3.4 

 

 

 



 27 

Figure legends 

 

Figure 1.  

 

Study Overview 

 

Participants were assessed at baseline, week one and week 12 of therapy. Participant sampling 

comprised blood testing, urine collection, lesional and non-lesional skin biopsies (from 

photoprotected sites on the lower back/buttock, from the edge of plaques and at a minimum 

distance from previous biopsy sites). RNA-Seq was conducted on mRNA from blood, lesional 

and non-lesional skin and miRNA from blood. Proteomic assessment was conducted on serum. 

 

Figure 2. 

*Composite figure of below figure and table  

Differential expression of mRNA, miRNA and protein across time and across tissue. 

a)The number of biomolecules declared differentially expressed between responders and non-

responders at 10% FDR for each tissue, time point, and platform. The number of tests vary 

between platforms, mRNA (19304), miRNA (3632), protein (1129) b) Model metrics for random 

forests; we report mean (SD) predictive error and number of features retained after recursive 

feature elimination for each data platform and response type. Continuous response models were 

evaluated using root mean square error (RMSE), while categorical models were tuned with cross 

entropy loss. Asterisks denote the top performing data platform for each class of random forests. 

 

Figure 3 Top upstream regulators across genes differentially expressed in relation to etanercept 

differential expression (p<0.05) response in psoriasis. Top 30 upstream regulators demonstrated. 

The prediction of activation state is based on the global direction of changes of genes with 

differential expression p<0.05. The nominal limit of significance (z-score < -2 or > 2) is 

indicated by the Activation z-score colour scale.  
Figure 4 Concordance of platforms at prediction of PASI 75. a) Heatmap depicting the 
concordance of cluster assignments across platforms as determined by supervised methods.  
b) Box plots demonstrate the distribution of cross-validated root mean square error (RMSE) 
over ten folds for a series of random forests models with recursive feature elimination trained to 
predict the change in PASI using only baseline samples. Lower RMSE values indicate more 
predictive models  
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Supplementary material 

 

Supplementary file: Response analysis markdown document 

 

Supplementary Figure 1. 

Clinical response observed over 12 weeks of TNFi therapy; Baseline PASI vs. PASI at week 12 

of therapy. This figure plots baseline vs. 12 week PASI scores for each patient. The black line 

has an intercept of 0 and a slope of 1, representing zero improvement over the course of 

treatment. The blue line has an intercept of 0 and a slope corresponding to the line of best fit 

through the data points. To obtain a least squares estimate of our study’s average delta PASI, we 

calculate the difference in slope between the black and blue lines: 69%. (The mean of our delta 

PASI distribution is 64%A).  

 

Supplementary Figure 2. Exploratory data analysis of mRNA transcriptome data.  Sample 

similarity matrix depicting samples clustered by pairwise Euclidean distance. 
 
Supplementary Figure 3. Exploratory visualisation of the skin and blood transcriptomes. a) 
Principal component analysis of all skin and blood mRNA samples across all time points, b) t-
stochastic neighbour embedding (t-SNE) clustering of all skin and blood samples across all time 
points. 

 

Supplementary Figure 4. Exploratory visualisation of the psoriasis skin transcriptome.  

a)Principal component analysis of lesional and non-lesional skin mRNA samples; b) t-stochastic 

neighbour embedding (t-SNE)  of mRNA from lesional and non-lesional skin samples 

 

Supplementary figure 5. Exploratory visualisation of blood mRNA and miRNA transcriptomes 

and proteome. a) Principal component analysis (PCA) of mRNA from blood samples; b) PCA of 

miRNA from blood samples; c) PCA of proteome from blood samples; d) t-stochastic neighbour 

embedding (t-SNE) of mRNA from blood samples; e) t-SNE of miRNA from blood samples; f) 

t-SNE of proteome from blood samples. 

 

Supplementary Figure 6. Heatmaps  depicting the top 1% of gene expression changes measured 

by mRNA-Seq in association with the change in PASI in lesional skin (4a), non-lesional skin 

(4b) and blood (4c). Cells are colored by scaled Pearson distance. Annotation tracks atop the 

figures show continuous and categorical response, as well as supervised and unsupervised cluster 

assignments.  

 

Supplementary figure 7. Power curves projected across an expected range of fold changes based 

on the assumption that a) 1% or b) 5% of genes are likely to prove prognostic. Power 

calculations were performed using the method of Guo et al. (2014) and parameters derived from 

this pilot study, we calculated the requisite sample size to achieve 90% power (grey dotted line 

on plot) to detect differential expression associated with response. 

 

Supplementary Table 1. Summary of differential expression of mRNA, miRNA and protein 

(q<0.1) across time and across tissue types (Serum, Blood, Lesional Skin, Non-Lesional Skin) 

 


