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Abstract—In this paper, we propose an adaptive hierarchi-
cal model predictive control (AHMPC) scheme for wave en-
ergy converters (WECs). This AHMPC enables adaptive tuning
mechanism for a model predictive control (MPC) strategy by
estimating the dynamics of a WEC online, so that it can recover
from performance degradation of a WEC due to the dynamics
variations at different sea conditions. The proposed AHMPC
consists of two layers: On the top layer, an efficient cascaded
estimation algorithm is developed to online identify and update
the WEC model adaptively according to the change of sea
states; on the bottom layer, a specially-tailored MPC controller
is implemented based on the updated WEC model to maximize
the energy output subject to constraints for safe operation
requirements. Numerical simulations are provided to show the
efficacy of the proposed AHMPC scheme.

Index Terms—Wave energy converters, parameter estimation,
model predictive control.

I. INTRODUCTION

Ocean waves contain enormous amount of untapped and
spatially concentrated energy: 2TW power can be potentially
extracted from ocean waves worldwide [1]. The topic on
harnessing wave energy has been actively investigated over the
past few decades, and many different types of wave energy
converters (WECs) have been invented. Despite the great
efforts, harvesting wave energy is still at an immature stage
of development compared with other renewable energies, e.g.
wind and solar energies, [2]–[4].

To maximize the energy output, early WEC controller
design methods, e.g. latching control [5], phase control [6],
declutching control [7], have been investigated based on the
impedance matching principle, which suggests that a WEC
controller should be designed to adaptively change the dynam-
ics of a WEC so that its resonance frequency can match the
predominant frequencies of the incoming waves [8]. Recent
studies [9]–[11] show that the WEC control is essentially a
constrained optimal control problem and can be tackled by
model predictive control (MPC) [12], [13] or MPC-like control
algorithms such as pseudospectral control [14]–[16]. Some
causal optimal control strategies have also been developed
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where wave prediction is not used, so that sub-optimality can
be achieved, e.g. [17], [18]. Nonlinear MPC control strategies
have also been developed to tackle nonlinear effects of the
WEC dynamics [14], [19]. For example, the nonlinear WEC
model containing the nonlinear effects from the mooring force
is online linearized for the MPC implementation in [19]; the
nonlinear buoyancy force effect is explicitly incorporated into
the online optimization using the flatness-based pseudospectral
approach in [14]. It is known that the hydrodynamics of a
WEC can vary remarkably with the change of sea conditions,
especially for the frequency-dependent hydrodynamics and
some nonlinear effects. Hence, as recognized in [20], the opti-
mal operation of WECs may not be achieved with the change
of sea states since the existing MPC and MPC-like WEC con-
trol algorithms are mainly designed based on a fixed dynamic
model derived for a particular sea condition. To develop a high
fidelity WEC model to represent the WEC dynamics in a wide
range of sea conditions can be very challenging and the MPC
controller based on an overly-complicated model can cause
heavy computational burden for its online implementation.
Especially for multi-body and multi-float WECs, the order of a
control-oriented model derived from the hydrodynamic model
can become very large, e.g. hundreds of states are contained
in the state space model for a WEC [21]. Thus a trade-off
between the modeling fidelity and complexity must be found
by reducing the order of the model for controller design,
which inevitably introduces the “unmodeled dynamics”. The
MPC controller designed without accounting for such model
mismatch or uncertainties in realistic sea conditions can even
drive the system’s state out of its feasibility region, that is, the
existing MPC or MPC-like control algorithms cannot yield a
feasible solution in the presence of model mismatch. Beyond
the scope of MPC schemes, there are several other control
methods available to tackle the model mismatch problem. For
example, a hierarchical robust control of WECs was proposed
in [22] and an adaptive dynamic programming control was
studied in [18] by lumping the nonlinear effects and modeling
uncertainties into one term to be compensated by an estimator.
More examples can be found in [23] and the references therein.
However, this paper mainly focuses on the model mismatch
problem in the MPC framework to directly achieve the optimal
solution at various sea states.

In this paper, to address the above problem, we propose
an adaptive hierarchical model predictive control (AHMPC)
framework for WEC systems. On the top layer, a cascaded
adaptive parameter estimation mechanism is designed to iden-
tify and update the frequency-dependent dynamics so that
the WEC model can track the potential variations of the
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WEC dynamics corresponding to the change of sea states.
Then the online updated dynamic model is employed by the
bottom layer, where a specially-tailored MPC is designed
based on the updated model to maximize the energy output
and keep the constraints satisfied for safe operation purpose. In
a WEC model, two frequency-dependent hydrodynamic terms
corresponding to the radiation force and the wave excitation
force mainly contribute to the order of the WEC model. Since
in many real applications, the major source of uncertainties
come from the Froude-Krylov and viscous forces contributing
to the excitation force [24], we focus on the online dynamics
identification for the excitation force and its associated hydro-
dynamics model to improve the performance of the lower level
MPC controller implementation. The framework can also be
extended for the online estimation of the hydrodynamics for
the radiation force. Compared with the existing MPC strategies
for WECs [9], [10], [12], the proposed AHMPC framework
has the following advantages:
• Improved energy output performance and constraint sat-

isfaction can be achieved when the WEC dynamics have
uncertainties due to the change of sea states, compared
with the MPC strategies without adaptation mechanism.

• The WEC modeling effort can be significantly reduced,
which also results in a lower computational load for
online controller implementation.

• A novel cascaded estimation concept is developed to
explicitly estimate the dynamic parameters of wave ex-
citation force model, which is then used to implement
MPC to cope with the change of sea wave conditions.

The paper is organized as follows. Section II presents the
modeling of a point absorber and its control problem. Section
III introduces the cascaded adaptive estimation scheme, which
enables the excitation force dynamic model to be updated on-
line. In Section IV, we present the MPC strategy and formulate
a practical implementable AHMPC framework. Simulation
results are presented in Section V, and finally the paper is
concluded in Section VI.

Notations: We denote the set of all real numbers by R, the
space of n-dimensional vectors and m-by-n matrices by Rn
and Rm×n respectively. I[m,n] is a set of integers from m to
n. Let [a, b] denote the column vector [aT bT ]T , [A,B] denote
matrix

[
AT BT

]T
, He(A) denote (1/2)(A+AT ), u(t) and

w(t) denote the np-steps of prediction control sequence and
wave predictions at time step t respectively, where np is the
number of wave prediction steps. The maximal and minimal
eigenvalues of a square matrix A are denoted by λmax(A)
and λmin(A) respectively. G(s)[r] denotes the filtered signal
of r(t) by a linear proper system G(s). ‖G(s)‖H∞ :=
supω |G(jw)| denotes the H∞ norm of the system G(s).

II. WEC MODELING AND PROBLEM FORMULATION

We use a benchmark point absorber (PB) as shown in Fig.
1 as a case study, which uses the heave motion for harnessing
energy. Note that the proposed AHMPC can be applied to
other types of WECs without lost of generality.

For this PB, a float with a constant radius cylinder on the sea
surface is linked to a piston, which can move in heave motion

still wave level 

wave level 

s
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cylinder energy output

heave axis
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Fig. 1: Schematic diagram of the point absorber

in a cylinder fixed to the seabed. The persistent wave excitation
force drives the float, which results in relative motion between
the piston and the cylinder. The energy can be then captured
by different power take-off (PTO) mechanisms, e.g. a direct
linear generator [25], or a hydraulic motor and converter [26].
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Fig. 2: Dynamics diagram of the point absorber

The free body diagram is shown in Fig. 2 and the dynamic
model can be established via Newton’s second law as

msz̈v(t) = −Fh(t)− Fr(t) + Fexc(t) + Fu(t), (1)

where ms is the float mass; zv and żv are the heave displace-
ment and heave velocity of the float respectively; Fh(t) is the
hydrostatic restoring force calculated by

Fh(t) = kszv(t) (2)

with ks being the stiffness coefficient calculated by ks = ρgS.
Here ρ is the water density; g is the gravitational acceleration;
S is the water plane area of the floating body. Fu(t) is the
PTO force acting on the piston as the control input. Fr(t) is the
radiation force, which can be represented using the Cummings
equation [27] based on the linear potential theory as

Fr(t) = Fd(t) +m∞z̈v, (3a)
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where m∞ represents the added-mass at the infinite frequency,
and Fd(t) is the convolutional term of the radiation force that
can be determined by

Fd(t) =

∫ ∞
−∞

hr(τ)żv(t− τ)dτ, (3b)

with hr(t) being the causal radiation impulse response. To
facilitate the controller design, the convolution term (3b) can
be approximated by a state-space representation as

ẋr(t) = Arxr(t) +Br żv(t) (4a)
Fd(t) ≈ Crxr(t) (4b)

and can be parameterized using [28], [29].
Similarly, following [11], [30], the wave excitation force

Fexc(t) can be determined by

Fexc(t) =

∫ ∞
−∞

he(τ)zw(t− τ)dτ (5)

with he(t) as the noncausal excitation impulse response. The
convolution term (4) can be approximated by a linear time-
variant system De(s) with a state-space realization as

ẋe(t) = Aexe(t) +Bezw(t) (6a)
Fexc(t) ≈ Cexe(t+ tc) (6b)

with tc as the causalizing time shift [30].
With (2) and (3a), the WEC model satisfies

mz̈v(t) = −kszv(t)− Fd(t) + Fexc(t) + Fu(t), (7)

where m := ms +m∞ is the lumped mass.
By defining the state x1 := zv , x2 := żv , x :=

[x1, x2, xr, xe], disturbance input w(t) := Fexc(t) and control
input u(t) := Fu(t), we derive a linear time variant state-space
model of WEC as

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (8)

where the matrices of the state-space model are

A =


0 1 0 0

−ksm 0 −Crm
Ce
m

0 Br Ar 0
0 0 0 Ae

 , Bu =


0
1
m
0
0

 , Bw =


0
0
0
Be

 .
With the motion dynamics as shown in Fig. 2, the extracted

power at time t can be expressed by

P (t) = −u(t)x2(t) (9)

and the extracted energy output for a period from 0 to T is

E(t) =

∫ T

0

−u(t)x2(t)dt. (10)

For the safe operation of a WEC, the heave motion needs to
be restricted to

|x1(t)| ≤ Φmax, (11)

where Φmax is the heave displacement limit and the control
input u(t) provided by the PTO mechanism should also be
constrained by

|u(t)| ≤ umax, (12)
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Fig. 3: Sketch of hierarchical adaptive MPC for WECs

where umax is the maximal control input that can be provided
by the PTO mechanism. Eqs. (11) and (12) in the WEC control
problem can be treated as state and control input constraints,
respectively. The satisfaction of these constraints also helps
to reduce the maintenance cost and fatigue loading, and thus
decreases the unit electricity cost. In summary, the WEC
constrained optimal control problem can be implemented by
online resolving the following optimization problem:

min
u(t)

∫ T

0

−u(t)x2(t)dt

s.t. ẋ(t) = Ax(t) +Buu(t) +Bww(t)

|x1(t)| ≤ Φmax, |u(t)| ≤ umax.

(13)

Remark 1: It can be seen from (8) that the order of the
WEC model is mainly contributed by the frequency-dependent
dynamics. On the one hand, whilst a high fidelity model of
such dynamics can cover a wide range of sea states, the large
model order inevitably increases the computational burden,
which may invalidate the implementation of advanced control
algorithms such as MPC and MPC-like control methods. On
the other hand, if the frequency dependent terms are described
by a low-order model based on a particular sea state, the
WEC performance degradation may occur when the sea state
changes. This issue becomes even much more prominent for
multi-motion and multi-float WECs (see e.g. [21]). In this
paper, we assume that one of the frequency-dependent term
is fixed, while the dynamics of the other term is adaptively
updated so that the proposed method can cope with the
dynamics variations over a large range of sea states.

III. CASCADED ESTIMATION FOR EXCITATION DYNAMICS

In this section we propose a cascaded estimation method
to estimate the dynamic model associated with the excitation
force for demonstration purpose, since the modeling uncer-
tainties may mainly come from the Froude-Krylov and viscous
forces [24] . Note that the method can also be extended to the
estimation of the dynamic model associated with the radiation
force. The technical challenge lies in the fact that the excitation
force Fexc(t) is not directly measurable. Hence, we first design
a dynamic estimator to estimate Fexc(t) by using x1, x2, u, xr,
which is followed by another adaptive parameter estimator
to approximate the convolutional term corresponding to the
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frequency-dependent excitation force dynamics De(s), i.e.
Ae, Be, Ce. In this case, we assume the dynamics associated
with the radiation force is not changing significantly and thus
radiation force can be calculated and used for the estimation
of the excitation force Fexc(t). In the simulation, we will
show how this inaccurate estimation of the radiation force can
influence the control performance.

A. Estimation of excitation force Fexc(t)

To estimate the convolutional term of the excitation force
Fexc(t), we find from (7) that the unknown excitation force
Fexc(t) can be taken as a ‘virtual input’ of the system. Hence,
inspired by [31], we can further tailor the principle of unknown
input observer and propose an adaptive estimator framework
for Fexc(t), whose framework is shown in Fig. 4.
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Fig. 4: Adaptive estimator framework for F̂exc(t) in (14)

Lemma 1: The estimated excitation force F̂exc(t) con-
structed by

F̂exc :=
m

κ
(x2−

1

κs+ 1
[x2])+

ks
κs+ 1

[x1]− 1

κs+ 1
[µ] (14)

can exponentially converge to its true value Fexc(t) provided
that the filter constant κ > 0 is designed to be small enough.
Here µ denotes the lumped variable µ := u− Crxr.

Proof: With µ := u− Fr, Eq. (7) can be rewritten as

mẋ2 = −ksx1 + Fexc + µ. (15)

By applying a low-pass filter 1/(κs+1) on both sides of (15),
we have

mẋ2g = −ksx1g + Fexc,g + µg, (16)

where x2g := 1
κs+1 [x2], x1g := 1

κs+1 [x1], µg := 1
κs+1 [µ] and

Fexc,g := 1
κs+1 [Fexc], respectively. From the notation for the

filter, we can verify that ẋ2g :=
x2−x2g

κ . By comparing (16),
(15) and (14), we can verify that the proposed estimator is
equivalent to the filter version of Fexc(t), that is

F̂exc(t) = Fexc,g. (17)

From the property of the filter 1/(κs+1), we can represent the
estimator given by Fexc,g := 1

κs+1 [Fexc] in the time-domain
as

Ḟexc,g = − 1

κ
Fexc,g +

1

κ
Fexc, (18)

which gives the estimation error eFexc := Fexc − F̂exc,g as

ėFexc = Ḟexc − Ḟexc,g = − 1

κ
eexc + Ḟd. (19)

Then by choosing a Lyapunov function as V = 1
2e

2
exc, the

derivative of V can be computed by

V̇ = eFexc ėFexc ≤ −
1

κ
e2
Fexc + |eFexc |$ ≤ −

1

2κ
e2
Fexc +

κ

2
$2,

(20)
where $ := sup |Ḟexc(t)| defines the upper bound of the
radiation force variation. The above inequality implies that
V (t) ≤ e− t

κV (0) + κ2

2 $
2. Consequently, we can obtain from

the definition of V that

|eFexc(t)| ≤
√
e−

t
κ e2
Fexc

(0) + κ2$2

which further indicates that eFexc → 0 exponentially as κ→ 0.
This completes the proof.

Lemma 1 shows that the excitation force Fexc(t) can
be online estimated via the proposed estimator (14), where
fast (exponential) convergence can be strictly achieved. This
tackles the difficulty in identifying the excitation force in
(6). Hence, the estimated force F̂exc can be used in the
identification of the excitation force dynamics De(s) in the
next subsection.

B. Adaptive dynamics estimation (ADE) of excitation force

From the excitation force given in (6) and the analysis in
[30], the excitation force dynamics De(s) can be represented
by

De(s) =
F̂exc
w

=
bms

m + · · ·+ b1s+ b0
sn+1 + ansn + · · ·+ a1s+ a0

. (21)

Hence, the problem to be addressed is to estimate the
unknown coefficients ai, bj for i = 0, 1, . . . , n and j =
0, 1, . . . ,m, n ≥ m in the above excitation force dynamics.
To implement the online estimation algorithm, we present the
above dynamics in the time-domain. For this purpose, we se-
lect a Hurwitz polynomial Λ(s) = sn+1+λns

n+· · ·+λ1s+λ0,
and then filter (21) by 1/Λ(s) as

sn+1

Λ(s)
[F̂exc] + an

sn

Λ(s)
[F̂exc] + · · ·+ a0

1

Λ(s)
[F̂exc]

= bm
sm

Λ(s)
[w] + · · ·+ b0

1

Λ(s)
[w].

(22)

Adding −Λ(s)
Λ(s) [F̂exc] to both sides of (22), we can obtain the

parameterized form as

F̂exc = ΘTΦf (23)

where

Θ := [λn − an, . . . , λ1 − a1, λ0 − a0, bm, . . . , b1, b0]T

Φf :=

[
sn

Λ(s)
[F̂exc], . . . ,

s

Λ(s)
[F̂exc],

1

Λ(s)
[F̂exc],

sm

Λ(s)
[w], . . . ,

s

Λ(s)
[w],

1

Λ(s)
[w]

]T
.

Eq. (23) shows that the unknown parameter vector Θ is
in a linearly parameterized form with F̂exc(t) and w(t) as
the output and input respectively. Then we can develop the
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Fig. 5: Adaptive estimator framework for excitation dynamic
De(s)

following adaptive parameter estimation scheme to online
estimate Θ.

Denote the auxiliary matrix P and auxiliary vector Q as
follows {

Ṗ = −lP + ΦfΦTf , P (0) = 0

Q̇ = −lQ+ Φf F̂exc, Q(0) = 0
(24)

where l > 0 is a forgetting factor parameter to be designed.
The adaptive law for updating the unknown parameter Θ̂ is

proposed as
˙̂
Θ = −ΓW, (25)

where W := P Θ̂−Q and Γ > 0 is the learning gain.
To prove the convergence of the adaptive algorithm (25),

the following lemma is needed:
Lemma 2: The variable W := P Θ̂−Q used in (25) can be

equivalently represented as

W = −P Θ̃, (26)

where Θ̃ = Θ− Θ̂ is the estimation error.
Proof: One can solve the matrix equation (24) and obtain

its solution as{
P (t) =

∫ t
0
e−l(t−r)Φf (r)ΦTf (r)dr

Q(t) =
∫ t

0
e−l(t−r)Φf (r)F̂d(r)dr

(27)

From (27), we may find that Q = PΘ. Then by substituting
Q = PΘ into W = P Θ̂−Q , one can obtain (26).

It is clearly shown in Lemma 2 that the derived variable W
in the adaptive law includes the parameter estimation error Θ̃,
such that the estimation convergence can be achieved using
the adaptive law (25) driven by the variable W .

Before proving the convergence of the proposed adaptive
law, we need to investigate the positive definiteness of the
matrix P .

Lemma 3: [32] The condition λmin(P ) > σ > 0 holds for
any constant σ > 0 (i.e. P is positive definite) provided that
the regressor Φf is persistently excited (PE).

The main convergence property of the proposed adaptive
law (25) can be given as follows:

Theorem 1: Consider the adaptive law (25) and the regressor
Φf is PE, the estimation error Θ̃ exponentially converges to
zero.

Proof: We select a Lyapunov function as V =
1
2 Θ̃TΓ−1Θ̃, and calculate its time derivative along (25) as

V̇ = Θ̃TΓ−1 ˙̃Θ = −Θ̃TP Θ̃ ≤ −σ‖Θ̃‖2 ≤ −µV, (28)

where µ = 2σ/λmax(Γ−1) denotes a positive constant. Now,
from the Lyapunov’s Theorem, we know that Θ̃ can exponen-
tially converge to zero. Consequently, one can find that the
estimated parameter Θ̂ converges to their true value Θ.

Using the estimated parameter Θ̂, one can calculate the
coefficients ai, bj embedded in the excitation force dynamics
based on (23). Hence, the online estimation of the unknown
excitation dynamics has been achieved.

IV. MPC DESIGN AND PRACTICAL CONSIDERATIONS

A. MPC formulation

In this section, we design a MPC controller at the bottom
layer of the proposed AHMPC framework to maximize the
energy output while handling the state and input constraints.
Using the estimated radiation force dynamics, we have the
online updated WEC model

ẋ(t) = Â(t)x(t) +Buu(t) + B̂w(t)w(t), (29)

where

Â =


0 1 0 0

−ksm 0 −Crm
Ĉe
m

0 Br Ar 0

0 0 0 Âe

 , Bu =


0
1
m
0
0

 , B̂w =


0
0
0

B̂e


with Âe, B̂e and Ĉe as the corresponding state-space repre-
sentation of the estimated excitation dynamics D̂e(s).

To implement the MPC controller, the updated WEC model
needs to be discretized with sampling time ts into

x(k + 1) = Adx(k) +Budu(k) +Bwdw(k). (30)

To achieve non-casual control, tp seconds of wave elevation
prediction are assumed to be available, which can be obtained
using a short term wave forecasting technique, e.g. auto-
regressive (AR) [33]. Here, np satisfies tp = npts for sampling
interval ts. The MPC strategy in the bottom layer can be
reformulated as

min
u

np−1∑
k=0

v(k)u(k) + qz2(k) + ru2(k) (31a)

s.t. x(k + 1) = Adx(k) +Budu(k) +Bwdw(k) (31b)
z(k) = Czx(k), v(k) = Cvx(k) (31c)
|z(k)| ≤ Φmax, |u(k)| ≤ umax, for k ∈ I[0,np−1],

(31d)

where Cz := [1 0 01×(nr+ne)]; Cv := [0 1 01×(nr+ne)];
Φmax and umax are the heave displacement limit and control
input limit defined in (11) and (12), respectively. Note that
similar to [11], [12], a modified stage cost is adopted, where
the first term −v(k)u(k) represents the power at time k that



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2889767, IEEE
Transactions on Sustainable Energy

can be absorbed by the PTO mechanism; the last two terms
qz2(k) + ru2(k) are used to penalize the heave displacement
z(k) and control input u(k) respectively; the weights q and r
are tuning parameters to guarantee the convexity of cost (31a)
and also influence the feasibility and stability of the system.
More details on choosing the weights q and r can be found
in [11], [12].

To implement the MPC, the optimization problem (31) is
converted into a quadratic programming (QP) problem in the
following. The predicted state trajectory at time t can be
expressed by

x(t+ k|t) = Akdx(t) +Mku(t) + Ckw(t) (32)

for k ∈ I[0,np−1], whereMk ∈ Rnx×np and Ck ∈ Rnx×np are
defined by

Mk :=
[
Ak−1
d Bud Ak−2

d Bud . . . Bud 0 . . . 0
]

Ck :=
[
Ak−1
d Bwd Ak−2

d Bwd . . . Bwd 0 . . . 0
]
.

Lemma 4: The optimization problem (31) can be solved by
the following QP

u∗(t) = arg min
u(t)

uTHu(t) + u(t)TF

s.t. Au(t) ≤ B.
(33)

where the coefficients H ∈ Rnp×np , F ∈ Rnp×1, A ∈ R4np×1

and B ∈ R4np×1 are defined by

H := rInp + He([CvM0, CvM1, . . . , CvMnp−1]) (34)

+ q

np−1∑
k=0

(CzMk)TCzMk

F := q

np−1∑
k=0

(CzMk)TLk + [K0,K1, . . . ,Knp−1] (35)

A :=



CzM0

...
CzMnp−1

−CzM0

...
−CzMnp−1

Inp
−Inp


,B :=



Φmax − L0

...
Φmax − Lnp−1

Φmax + L0

...
Φmax + Lnp−1

umax12np×1


(36)

where Kk := CvA
k
dx(t) + CvCkw(t); Lk := CzA

k
dx(t) +

CzCkw(t); 1np×1 is a np-by-1 column vector with each
element as 1; Mk and Ck are defined in (33); Cv and Cz
are defined in (31).

Proof: The proof can be shown by some straightforward
matrix manipulations. See e.g. [11], [12] for more details.

B. Observer design and implementation of AHMPC

In Subsection IV-A, the MPC design is based on the
assumption that full information of state x(t) is available at
time t. However, the states associated with the radiation dy-
namics Dr(s) and excitation dynamics De(s) are not directly
measurable and in this case only the heave displacement and
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Fig. 6: the proposed adaptive MPC framework

heave velocity are assumed to be measurable, i.e. the measured
output is

y(t) = Cx(t) (37)

where C := [I2, 02×(nr+ne)]. The pair (A,C) are assumed
to be observable. To estimate the full state information, we
design a Luenberger observer

˙̂x(t) = Âx̂(t) +Buu(t) +Bww(t) + L(y(t)− Cx(t)). (38)

Here x̂(t) is the estimated state and L is the observer gain to be
properly designed such that after some “warm-up period”, the
difference between the actual state x(t) and estimated state
x̂(t) becomes negligible. The proof of the convergence of
the above observer can be found in the existing literatures,
e.g. [11], [12]. The implementation of the proposed AHMPC
framework is schematically illustrated in Fig. 6.

V. SIMULATION

In this section, we present numerical simulations to show
the efficacy of the proposed AHMPC framework. The model
parameters of the PB to be studied are the same as those in
[30] and are summarized in Table I.

TABLE I: The parameters used for the PB model

Description Notation values
Stiffness ks 3866 N/m
Float mass ms 242 kg
Added mass ma 83.5kg
Total mass m 325.5 kg
Input force limit umax 1500 N
Heave displacement limit Φmax 1 m
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The dynamics of radiation force can be expressed by

Dr(s) =
75.1s2 + 394s+ 36.5

1 + 4.41s2 + 17.7s+ 17.9
. (39)

To demonstrate the robustness of the proposed AHMPC
framework, we deliberately introduce model mismatch caused
by the variation of dynamics for modeling excitation force
with the change of sea states in the simulations. We assume the
accurate transfer function of the impulse function of excitation
force is

De(s) =
313s2 − 3425s+ 23945

1 + 3.24s2 + 7.22s+ 5.57
(40)

and the inaccurately modeled excitation force dynamics are
assumed to be

D̄e(s) =
280s2 − 3025s+ 21515

1 + 4.91s2 + 9.03s+ 5.6
. (41)

Here we assume the modeling uncertainties due to the model
order reduction and the nonlinear effects are lumped together
and these uncertainties become prominent for a typical range
of sea wave periods. The parameters are deliberately chosen
in (41) to reflect such a modeling mismatch.

We next show the necessity for using the proposed cascaded
estimator to address the modeling uncertainties and their
influence on the control. For this purpose, simulations with
three different controllers are compared:

1) With model mismatch, MPC with adaptive estimation
of excitation force dynamics, which is referred as “with
ADE”.

2) With model mismatch, MPC without adaptive estimation
of excitation force dynamics, where only the nominal
model (41) with modeling uncertainties is used in the
control, which is referred as “without ADE”.

3) No model mismatch, MPC with the accurate model of
excitation force dynamics De(s) (40), which is referred
as “no model mismatch”.

A 500 second sea wave generated with JONSWAP spectrum
is used [34], whose corresponding wave elevation profile is
shown in Fig. 7. The peak wave period and significant wave
height are 3 second and 1 m, respectively.
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Fig. 7: Wave elevation profile

The low-pass filter of the excitation force estimator (14)
is implemented with κ = 0.015. The polynomial used
in the adaptive excitation force dynamics estimation (22)
is selected as Λ(s) = s3 + 30s2 + 300s + 1000, and
the parameters in the proposed adaptive law for excitation
force dynamics estimation are selected as: l = 0.05; Γ =
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Fig. 8: Excitation force estimation

Fig. 9: Adaptive excitation dynamics De(s) Estimation

diag(0.4, 0.6, 0.04, 20000, 100000, 800000). The parameters
used in the MPC are set as q = 100, r = 1× 10−4.

Fig. 8 shows the profiles of the excitation force estimation,
which indicates that the proposed excitation force estimation
is accurate. Based on the estimated excitation force and the
measured heave velocity x2, an adaptive estimator is applied
to estimate the excitation force dynamics. Fig 9 shows the
excitation force dynamics estimation results, which indicate
that the unknown coefficients in De(s) can be precisely
estimated online after a transient convergence period around
30 s.

Fig. 10 shows the H∞ norm difference between the true
excitation force dynamics and the estimated excitation force
dynamics, ‖De(s)− D̂e(s)‖H∞ , which is used to measure the
model accuracy of excitation force dynamics (this method was
used in [35] to measure the accuracy of hydrodynamic model).
We can see that ‖De(s) − D̂e(s)‖H∞ is reduced from 1401
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Fig. 10: H∞ norm difference between the true excitation force
dynamics De(s) and the estimated excitation force dynamics
D̂e(s). (‖De(s)− D̂e(s)‖H∞). [35]
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to 82 in the first 30 s, which represents a decrease of 94.15%
modeling error. Fig. 11 shows the bode diagram of the accurate
De(s) described in (40), the inaccurate D̄e(s) described in
(41) (Blue) and D̂e(s) corrected using the proposed ADE
mechanism for 30 s (Red). We can see the model mismatch is
significantly reduced, especially between 1-10 rad/s. Figs. 10-
11 indicates that the proposed cascaded estimation approach
can reconstruct the dynamics of unmeasurable excitation force
rapidly, which in turn can help to improve the control perfor-
mance when it is incorporated into the MPC design.
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Fig. 11: Bode diagram of accurate De(s) (40) (Red); inac-
curate D̄e(s) (41) (Blue); corrected D̂e(s) after using ADE
mechanism for 30 s (Black).

Fig. 12 shows the states and control input responses with
the proposed MPC scheme. We can see that both input
and state constraints are strictly satisfied with the proposed
adaptive MPC method. Finally, Fig. 13 provides the extracted
energy output of the above mentioned three control methods
respectively. One can find that with the help of the proposed
adaptation element, the proposed AHMPC with estimators
(Case 1) can achieve almost the same energy output as that
with precise WEC model information (Case 3), whilst the
MPC with only a fixed nominal model (Case 2) leads to
significantly reduced energy output. All of these simulation
results verify the efficacy of the proposed AHMPC scheme.
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Fig. 12: State and Input response: “With ADE” (Blue); “With-
out ADE” (Red); “No model mismatch” (Cyan).

To further test the robustness of the AHMPC subject to the
radiation force dynamics uncertainties, we intentionally intro-
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Fig. 13: Energy outputs: “With ADE” (Blue); “Without ADE”
(Red); “No model mismatch” (Cyan).
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Fig. 14: Bode diagram of accurate Dr(s) (39) (Red); inaccu-
rate D̄r(s) (42) (Blue).

duce the model mismatch for the radiation force dynamics.
The following inaccurate model

D̄r(s) =
65.1s2 + 350s+ 38.5

1 + 6.5s2 + 24s+ 21
(42)

is used for the controller design. The Bode diagrams of this
model and the original model are compared in Fig. 14. To
demonstrate the efficacy of the AHMPC, Fig. 15 shows the
comparison of the energy outputs for 4 cases: when there
are no model mismatch for both radiation force dynamics
and excitation force dynamics, the maximum energy output
is 1.83× 105 J; the mismatch of the radiation force dynamics
can cause a slight decrease of energy output to 1.76× 105 J;
when the excitation force has also model mismatch, the energy
output drops to 1.46×105 J. However, the proposed AHMPC
framework can increase the energy output to 1.70 × 105 J.
This result shows: i) the proposed AHMPC can dramatically
recover the control performance when the WEC system is
subject to modeling uncertainties from both radiation force and
excitation force, and ii) the radiation force estimation plays a
less important role in influencing the energy output compared
to the excitation force.

VI. CONCLUSIONS

A new adaptive hierarchical MPC framework consisting
of a cascaded estimation of frequency-dependent dynamics
for a WEC and a MPC for WEC control is proposed. To
demonstrate the efficacy of the proposed framework, a simple
and effective robust estimator is first developed to estimate the
excitation force by assuming the radiation force dynamics is



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2889767, IEEE
Transactions on Sustainable Energy

0 50 100 150 200 250 300 350 400 450 500

Time (s)

0

5

10

15

20
E

ne
rg

y 
(J

)
104

No model mismatch: 1.83 105 J

No D
e
(s) mismatch, D

r
(s) mismatch: 1.76 105 J

With ADE, D
r
(s) mismatch: 1.70 105 J

Without ADE, D
r
(s) mismatch: 1.46 105 J

Fig. 15: Energy outputs: Accurate Dr(s) and De(s) (Black);
Accurate De(s) and inaccurate Dr(s) (Cyan); inaccurate
Dr(s) and De(s), but using an ADE mechanism to update
De(s) (Blue); inaccurate Dr(s) and De(s), no ADE mecha-
nism (Red).

fixed, and then the estimated excitation force is used as the
input to an adaptive law to estimate the unknown coefficients
associated with the excitation force dynamics. This cascaded
estimation method can achieve satisfactory estimation perfor-
mance and can address the modeling uncertainties of the WEC
dynamics due to the variations of sea conditions. Then the es-
timated WEC model is incorporated into a well-tailored MPC
to maximize the energy output and guarantee the satisfaction
of constraints. The proposed idea of estimating the excitation
force can be used to deal with unknown radiation force in
a similar way. Extensive simulations demonstrate and validate
the efficacy of the proposed AHMPC framework. Although the
point absorber is used as a case study, the proposed approach
can be extended to the control of other types of WECs, and
even other energy maximization control problems.
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