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ABSTRACT
We investigate the possibility of testing Einstein’s general theory of relativity (GR)
and the standard cosmological model via the EG statistic using neutral hydrogen (HI)
intensity mapping. We generalise the Fourier space estimator for EG to include HI as
a biased tracer of matter and forecast statistical errors using HI clustering and lensing
surveys that can be performed in the near future, in combination with ongoing and
forthcoming optical galaxy and Cosmic Microwave Background (CMB) surveys. We
find that fractional errors < 1% in the EG measurement can be achieved in a number of
cases and compare the ability of various survey combinations to differentiate between
GR and specific modified gravity models. Measuring EG with intensity mapping and
the Square Kilometre Array can provide exquisite tests of gravity at cosmological
scales.

Key words: cosmology: theory — large-scale structure of the universe — gravita-
tional lensing: weak — cosmology: observations

1 INTRODUCTION

During the last two decades, observational cosmology has
entered an era of unprecedented precision. The standard
cosmological model (ΛCDM) fits the data extremely well,
but requires that General Relativity (GR) is the correct de-
scription of gravity on all scales and that the matter-density
of our Universe is dominated by the two constituents of the
dark sector, i.e. dark energy in the form of a cosmological
constant and cold dark matter. Dark energy is thought to
be responsible for the accelerated expansion of the Universe
(Riess et al. 1998; Perlmutter et al. 1999) and uncovering
its nature is arguably the most exciting challenge in mod-
ern cosmology. Alternative explanations to the cosmological
constant have been proposed, for example a dynamically
evolving scalar field playing the role of dark energy (see
Copeland et al. (2006) for a review). A different point of
view suggests that late time cosmic acceleration could be
due to modifications to the laws of gravity on the largest
(cosmological) scales (see Clifton et al. (2012) for a review).
In general, exotic dark energy and modified gravity theories
modify the background and perturbation evolution and dy-
namics of the Universe and they have distinct and detectable
observational effects.

In this paper we are going to investigate the possibility
of testing ΛCDM and the laws of gravity at large scales using
the EG statistic, which was first introduced in Zhang et al.
(2007). The definition of EG in Fourier space is

EG(k, z) =
c2k2(φ− ψ)

3H2
0 (1 + z)θ(k)

, (1)

where (φ, ψ) are the scalar potentials in the perturbed

Friedmann-Robertson-Walker (FRW) metric ds2 = (1 +
2ψ)dt2 − a2(1 + 2φ)dx2, θ ≡ ∇ · v/H(z) is the peculiar ve-
locity perturbation field, and H0 is the value of the Hubble
parameter today.

From the above definition it is clear that EG depends on
how gravity behaves on large scales. In GR, assuming that
the background Universe is described by a flat FRW metric
and in the absence of anisotropic stress, we can show that
the Poisson and anisotropy equations can be written as

k2ψ = −4πGa2ρδ

φ = −ψ , (2)

where a is the scale factor, ρ is the background matter den-
sity and δ is the matter density perturbation. In modified
gravity (MG) we can use two scale- and time-dependent
functions µ(k, a) and γ(k, a) to parametrise possible depar-
tures from ΛCDM and write (Hojjati et al. 2011)

k2ψ = −4πGa2µ(k, a)ρδ

φ = −γ(k, a)ψ . (3)

Substituting these expressions in the EG definition (1) and
using the fact that on linear scales we can write θ = fδ,
where f is the linear growth rate, we find (Pullen et al.
2015a)

EG(k, z) =
Ωm,0µ(k, a)[1 + γ(k, a)]

2f
. (4)

For GR, we set µ = γ = 1 and find EG(k, z) = Ωm,0/f(z),
with Ωm,0 the matter density today relative to the critical
density.

In order to measure EG, the estimator in Zhang et al.
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2 Pourtsidou

(2007) involved the ratio between the cross-correlation
power spectrum of galaxies and weak lensing convergence
Pgκ and the cross-correlation power spectrum of galaxies
and velocities Pgθ. The latter is equivalent to the galaxy au-
tocorrelation times the redshift-space distortion (RSD) pa-
rameter β, i.e. βPgg, where β = f/bg with bg the galaxy clus-
tering bias. In Reyes et al. (2010) and Blake et al. (2015) EG

was measured using a real space estimator and the results
were fully consistent with GR. Recently, forecasts for future
galaxy surveys were presented in Leonard et al. (2015).

In Pullen et al. (2015a) a Fourier estimator for EG was
constructed in terms of the galaxy-CMB lensing and galaxy
clustering angular power spectra, also including the RSD
parameter β. Very recently, they reported the largest-scale
measurement of EG using the aforementioned method; they
found EG(z = 0.57) = 0.243 ± 0.060 (stat) ± 0.013 (sys), a
result in 2.6σ tension with the GR prediction at this redshift
(Pullen et al. 2015b).

In the next Section we will closely follow the approach
by Pullen et al. (2015a) and generalise their EG Fourier
space estimator to include a different dark matter tracer
than galaxies, namely neutral hydrogen (HI). In Section 3
we describe the various optical galaxy, intensity mapping
and CMB surveys we are going to use to forecast future EG

measurements. We present our forecasts in Section 4 and
demonstrate how they can be used to discriminate between
GR and specific modified gravity models. We conclude in
Section 5.

2 FORMALISM

The Fourier space estimator for EG is constructed as (Pullen
et al. 2015a)

ÊG(`, z̄) =
c2Ĉgκ

`

3H2
0 Ĉ

gθ
`

, (5)

and it can be expressed in terms of the galaxy-convergence
angular cross-power spectrum Cgκ

` , the galaxy angular auto-
power spectrum Cgg

` , and the RSD parameter β = f/bg
(see also Reyes et al. (2010)). Note that it is galaxy bias
free in the linear regime, which evades the issue of possible
degeneracies between modified gravity effects and bias.

In this work, we are going to utilize the above estimator
but using HI instead of galaxies. We will forecast statistical
errors for EG using HI intensity mapping (IM) clustering
and lensing surveys which can be performed in the near
future using the Square Kilometre Array (SKA)1. Intensity
mapping (Battye et al. 2004; Chang et al. 2008; Loeb &
Wyithe 2008; Mao et al. 2008; Peterson et al. 2009; Seo et al.
2010; Ansari et al. 2012; Battye et al. 2013; Switzer et al.
2013; Bull et al. 2015) is an innovative technique which uses
HI to map the large-scale structure of the Universe in three
dimensions. Instead of detecting individual galaxies like the
conventional galaxy surveys, intensity mapping surveys use
HI as a dark matter tracer by measuring the intensity of
the redshifted 21cm line across the sky and along redshift,
treating the 21cm sky as a diffuse background.

1 www.skatelescope.org

Using HI instead of galaxies we can write the Fourier
space EG estimator as

ÊG(`, z̄) =
c2ĈδHIκ

`

3H2
0 Ĉ

δHIθ
`

, (6)

where δHI is the HI density contrast which traces the mat-
ter density as δHI = bHIδ, with bHI the HI bias. The HI-
convergence angular cross-power spectrum using the Limber
approximation (Limber 1954) for scales ` > 10 is given by

CδHIκ
` =

3Ωm,0H
2
0

2c2
bHI(χ̄)(1 + z̄)Pδδ(`/χ̄, χ̄)χ̄−1(1− χ̄/χs) ,

(7)
where χ̄ is the comoving radial distance to redshift z̄, χs
is the comoving radial distance to the background sources,
and Pδδ is the matter power spectrum. When deriving this
formula we assumed that both the foreground lenses and the
background sources distributions can be approximated by
delta functions. This is going to be a valid assumption in the
cases we are going to study, as our chosen foreground redshift
bins are always going to be small enough (∆z = 0.1), and
for the background sources we use either the CMB plane or
21cm sources, both of which can be well approximated by a
delta function distribution.

Then, following the formalism Pullen et al. (2015a) used
for the galaxy clustering case, we construct the velocity-HI
angular cross-power spectrum, to be

CδHIθ
` =

χ̄(1− χ̄/χs)β(z̄)(1 + z̄)

2∆χ−1
ĈδHIδHI
` , (8)

with ∆χ the comoving width of the redshift bin with central
redshift z̄, and

CδHIδHI
` =

1

∆χ
χ̄−2b2HI(χ̄)Pδδ(`/χ̄, χ̄) . (9)

Note that the RSD parameter is β = f/bHI.
The fractional error of EG can be written as

σ2[EG(`, z̄)]

E2
G

=

[(
σ(CδHIκ

` )

CδHIκ
`

)2

+

(
σ(β)

β

)2

+

(
σ(CδHIδHI

` )

CδHIδHI
`

)2]
.

(10)
The error in the measurement of CδHIκ

` is

σ2(CδHIκ
` ) =

(CδHIκ
` )2 + (Cκκ` +Nκκ

` )(CδHIδHI
` +NδHIδHI

` )

(2`+ 1)fsky
,

(11)
where Cκκ` is the lensing convergence power spectrum, Nκκ

`

the lensing reconstruction noise, NδHIδHI
` the noise in the

measurement of the HI clustering angular power spectrum
CδHIδHI
` , and fsky the (overlapping) fraction of the sky

scanned by the surveys used.
Note that in the following we are also going to consider

combinations of galaxy-CMB lensing surveys, like the ones
presented in Pullen et al. (2015a). The formulae for this
case can be recovered by setting δHI → δg and bHI → bg in
the above equations. We should also mention that Eq. (10)
is exact only if β and CδHIδHI

` (or Cgg` in the optical galaxy
case) are measured by different, independent surveys — oth-
erwise they should be correlated. However, we can safely use
Eq. (10) for the cases we are going to consider in this pa-
per. That is because the dominant errors are the lensing and
β ones, and the clustering error due to thermal noise (shot
noise) for the upcoming IM (photometric galaxy) surveys we
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Testing gravity with HI intensity mapping 3

will use is very small so it can be neglected. Thus, the com-
bined (βCHI−HI) error increases only slightly via the covari-
ance and our results are practically unchanged (see Pullen
et al. (2015a) for a detailed discussion of this issue for the
optical galaxy case).

Before we move on to our forecasts, we will dedicate the
next Section to the specifications and noise properties of the
various surveys we are going to use.

3 THE SURVEYS

3.1 Galaxy and HI IM clustering

For our forecasts involving galaxy clustering we will consider
two photometric surveys: the ongoing Dark Energy Survey
(DES)2 and the planned Large Synoptic Survey Telescope
(LSST)3. Both of them aim to investigate the nature of cos-
mic acceleration and are able to perform precision galaxy
clustering measurements.

The DES survey parameters are Asky = 5000 deg2

(equivalently, fsky ' 0.1), number density of galaxies ng =
10 arcmin−2, and redshift range 0 < z < 2 with median
redshift z0 = 0.7 (Becker et al. 2015). The LSST survey pa-
rameters are assumed to be fsky = 0.5, number density of
galaxies ng = 40 arcmin−2, and redshift range 0 < z < 2.5
with median redshift z0 = 1 (Abell et al. 2009). For our
forecasts we model the redshift distribution of galaxies as

dn

dz
∝ z2 exp[−(z/z0)3/2] (12)

and use bg(z) =
√

1 + z for the galaxy clustering bias. The

noise term N
δgδg
` = 1/n̄i, where n̄i is the number of galaxies

per steradian in the i-th redshift bin.
For HI clustering using the intensity mapping technique

we will consider the SKA Mid instrument. This can operate
in two observing modes, the single-dish (autocorrelation)
mode and the interferometer mode. Their noise properties
have been described in detail in Bull et al. (2015); Pourtsi-
dou et al. (2015), so we are just going to state the relevant
formulae here. The thermal noise angular power spectrum
for the single-dish mode is given by

CN
` = Ωpix(σpix)2exp[`(`+ 1)(θB/

√
8ln2)2], (13)

where the pixel thermal noise is σpix = Tsys/
√

2Btobs, and
Ωpix ' 1.13θ2B. Tsys is the system temperature, B the
bandwidth of observation, tobs the observation time, and
θB ∼ λ/Ddish the beam FWHM of a dish with diameter
Ddish at wavelength λ. The observation time is given by
tobs = ttot(Ωpix/Ωtot)Ndishes, where ttot is the total survey
time, Ωtot is the sky area the survey scans, and Ndishes the
number of available dishes. For the interferometer mode the
thermal noise power spectrum is given by (Pourtsidou et al.
2015)

CN
` =

T 2
sys[FOV]2

Bttotn(`)
(14)

with FOV ' (λ/Ddish)2 and n(`) the number density of
baselines.

2 http://www.darkenergysurvey.org/
3 http://www.lsst.org/

The HI clustering noise term will be calculated as

NδHIδHI
` =

CN
`

T̄ 2
, (15)

where the mean brightness temperature T̄ (z) is given by

T̄ (z) = 180
ΩHI(z)h(1 + z)2

H(z)/H0
mK . (16)

For our forecasts we will assume that the HI density evolves
with redshift as ΩHI(z) = 4× 10−4(1 + z)0.6 which has been
suggested in Crighton et al. (2015). We are also going to
use the HI bias model bHI(z) from Camera et al. (2013) and
consider Phase 1 of the SKA Mid instrument (SKA1 Mid),
consisting of 130 dishes with 15 m diameter according to
the recently updated specifications (‘re-baselining’) in order
to meet budget constraints (McPherson 2015). The redshift
range is 0.35 < z < 3 (Band 1). The system temperature is
given by (Dewdney 2013)

Tsys = 28 + 66
( ν

300 MHz

)−2.55

K , (17)

with ν the observing frequency. The n(`) distribution is
taken from Bull et al. (2015). The bandwidth B will be
determined by the width of our chosen redshift bins, which
is going to be ∆z = 0.1 for all cases. Finally, we will con-
sider a survey strategy with ttot = 4, 000 hrs and fsky = 0.5.
An important point is the difference in the range of angular
scales that the dish and interferometer mode can observe.
We will analyse this in detail when we present our forecasts
in Section 4.

3.2 CMB and 21cm lensing

Following Pullen et al. (2015a) we will study the case where
CMB is the background source plane for the lensing con-
vergence measurements. We will calculate the lensing re-
construction noise using the formalism by Hu & Okamoto
(2002). The instrumental noise for a CMB survey is given
by

CN
` = ∆2

T exp[`(`+ 1)σ2/8ln2]. (18)

We will consider a future COrE-like satellite with FWHM
σ = 3.0′ and temperature noise ∆T = 1µK′. We will also
consider the full Planck lensing map (i.e. including temper-
ature and polarization) using the sensitivities given by the
Planck Collaboration (Tauber et al. 2006).

For the 21cm lensing case we will use two different es-
timators depending on the chosen source redshift. The first
one assumes the temperature distribution is Gaussian, which
is a reasonable approximation at the Epoch of Reionization
(EoR), at least while the ionised regions are small. This
Fourier space estimator was developed in Zahn & Zaldar-
riaga (2006) and it is a 3D extension of the CMB lensing
estimator by Hu & Okamoto (2002). More specifically, the
21cm brightness temperature fluctuations are divided into
wave vectors perpendicular to the line of sight k⊥ = l/D,
with D the angular diameter distance to the source red-
shift, and a discretised version of the parallel wave vector
k‖ = 2π

L j where L is the depth of the observed volume.
Considering modes with different j as independent, an op-
timal estimator can be found by combining the individual
estimators for different j modes without mixing them. The

c© 0000 RAS, MNRAS 000, 000–000



4 Pourtsidou

three-dimensional lensing reconstruction noise is then found
to be (Zahn & Zaldarriaga 2006)

Nκκ
` = (`4/4)× jmax∑
j=jmin

∫
d2`′

(2π)2
[l′ · lC`′,j + l · (l− l′)C|`′−`|,j ]

2

2Ctot
`′,jC

tot
|`′−`|,j

−1

, (19)

where

C`,j = [T̄ (z)]2
Pδδ(

√
(`/D)2 + (j2π/L)2)

D2L
and

Ctot
`,j = C`,j + CN

` .

For the EoR case we will use an SKA Low-like interferome-
ter array with uniform antennae distribution for which the
thermal noise power spectrum is given by (Zaldarriaga et al.
2004)

CN
` =

(2π)3T 2
sys

Bttotf2
cover`max(ν)2

, (20)

where `max(ν) is the highest multipole that can be measured
by the array at frequency ν (wavelength λ) and is related to
Dtel, the maximum baseline of the core array, by `max(λ) =
2πDtel/λ; fcover is the total collecting area of the core array,
Acoll divided by π(Dtel/2)2.

Finally, for post-reionization redshifts we will use
SKA Mid in interferometer mode and the lensing estima-
tor developed in Pourtsidou & Metcalf (2014, 2015) using
the intensity mapping technique. This estimator takes into
account the discreteness of galaxies, and models the HI dis-
tribution as a Poisson distribution drawn from a Gaussian
distribution that represents the clustering of galaxies. Fur-
ther details and results for the lensing reconstruction using
this technique and the updated SKA Mid instrument have
been analysed in detail in recent work (Pourtsidou et al.
2015) so we will not repeat them here. We just note that
Nκκ
` for this case involves the underlying dark matter power

spectrum Pδδ, the HI density ΩHI(z) as well as the HI mass
(or luminosity) moments up to 4th order and, of course, the
thermal noise of the instrument.

4 FORECASTS

In this Section we will present our forecasts for the con-
straining power of combinations of intensity mapping, op-
tical galaxy, and CMB surveys using the EG statistic. Our
goal is to show which combinations can measure EG to very
high statistical accuracy (< 1%) and provide exquisite tests
of gravity at cosmological scales. For our fiducial cosmol-
ogy we set the Planck ΛCDM cosmological parameters (Ade
et al. 2014) and assume GR when calculating uncertainties.

We are going to consider two modified gravity models.
The first one is Chameleon gravity type models (Khoury
& Weltman 2004; Brax et al. 2004), in which the scalar
field which drives the cosmic acceleration couples to matter
and acquires an environmentally dependent mass allowing
consistence with local tests of gravity. In these theories the
µ and γ coefficients in Equation (4) can be parametrised
using a three-parameter set (B0, s, β1) (Bertschinger &
Zukin 2008). We calculate the theoretical value of EG for

chameleon gravity using MGCAMB (Hojjati et al. 2011;
Zhao et al. 2009; Lewis et al. 2000). We are also going to con-
sider the popular growth index parametrisation, where devi-
ations from ΛCDM are expressed via the γL parameter and
the linear growth factor can be written as f = Ωm(z)γL (Lin-
der & Cahn 2007), with γL = 6/11 the GR value. Our cho-
sen parameter set for the chameleon model is (B0, s, β1) =
(0.4, 4, 1.2). For the modified growth parametrisation we
take γL = 0.65 — note that we use γL as a trigger param-
eter, i.e. as a phenomenological parameter that is designed
to indicate departures from GR, without the need to specify
a particular theory.

As in Pullen et al. (2015a) we quantify our results by
calculating the signal-to-noise ratio (SNR) defined as

SNR2(EG) =
∑
`,zi

[EGR
G (zi)]

2

σ2[EG(`, zi)]
(21)

where zi are the foreground redshift bins. The χ2 value to
discriminate GR and modified gravity models is written as

χ2(EG) =
∑
`,zi

[EMG
G (`, zi)− EGR

G (zi)]
2

σ2[EG(`, zi)]
, (22)

with EMG
G (`, zi) the EG prediction for the specific modified

gravity models under consideration.
Below we present our results for the various combina-

tions of surveys we have considered; the results are also sum-
marised in Table 1.

4.1 Galaxy clustering × CMB lensing

We will start by considering photometric galaxy cluster-
ing surveys (DES and LSST) combined with CMB lensing
with the Planck and CoRE-like satellites. CMB lensing is
“cleaner” than galaxy-galaxy lensing, avoiding issues like in-
trinsic alignments and source redshift uncertainties. Photo-
metric galaxy clustering surveys have been found to be able
to discriminate between GR and modified gravity models
more effectively than spectroscopic surveys (Pullen et al.
2015a). That is because the RSD error, which is better mea-
sured by spectroscopic surveys, is not the dominant source of
error in Equation (10). Hence, reducing the shot noise error
by having higher number densities with a photometric sur-
vey is more important than precise RSD measurements. In
our forecasts, we will assume a 17% RSD error for DES (Ross
et al. 2011), ie. σ(β)/β = 0.17 in Equation (10), and 10% for
LSST, and consider the wavenumber range 100 6 ` 6 500,
since most of the signal for EG comes from linear to quasi-
linear scales for this case (Pullen et al. 2015a).

We combine the DES and LSST galaxy clustering pho-
tometric surveys with CMB lensing measurements using the
Planck and COrE-like satellites. Our forecasts for the mea-
surement errors are shown in Fig. 1. The DES × Planck
cross-correlation gives SNR = 41, while DES × COrE gives
SNR = 85. That is because the COrE-like satellite has a
noise level more than an order of magnitude lower than
Planck. Taking LSST instead of DES we expect the results
to improve significantly, as LSST covers a much bigger sky
area and has increased number density of galaxies (the RSD
measurement is also better). Indeed, we get SNR = 95 using
Planck and SNR = 198 using the COrE-like satellite. In the
LSST × COrE case we reach fractional errors smaller than

c© 0000 RAS, MNRAS 000, 000–000



Testing gravity with HI intensity mapping 5

Table 1. Forecasts of the signal-to-noise ratio (SNR) and χrms =
√
χ2 between GR and the modified gravity models under consideration

for the various survey combinations we consider. For the chameleon gravity model we set (B0, s, β1) = (0.4, 4, 1.2), while for the modified

growth model we use γL = 0.65 (see text for further details).

Survey zc zs SNR χrms[Cham] χrms[γL]

DES × Planck (full) 0.0–2.0 zcmb 41 4.3 1.5
DES × COrE-like 0.0–2.0 zcmb 85 8.9 3.0

LSST × Planck (full) 0.0–2.5 zcmb 95 10.1 3.1

LSST × CoRE-like 0.0–2.5 zcmb 198 21.1 6.4
LSST × SKA Low-like 0.0–2.5 zEoR = 7 238 25.0 8.9

LSST × SKA1 Mid 0.0–2.5 3 47 4.8 2.1

LSST × SKA2 Mid 0.0–2.5 3 127 12.9 5.8

SKA1 Mid(sd) × Planck (full) 0.35–3.0 zcmb 34 3.5 1.3

SKA1 Mid × Planck (full) 0.35–3.0 zcmb 92 10.6 2.0

SKA1 Mid × CoRE-like 0.35–3.0 zcmb 200 23.1 4.6
SKA1 Mid × SKA Low-like 0.35–3.0 zEoR = 7 227 25.3 6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.2

0.3

0.4

0.5

0.6

0.7

E
G

(z
)

DES x CMB Lensing
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β1 =1.2

γL =0.65

Planck
COrE
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0.2

0.3

0.4
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)
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γL =0.65

Planck
COrE

Figure 1. EG forecasts for the DES (top) and LSST (bottom)

photometric optical galaxy surveys cross-correlated with the final

Planck lensing map and with the COrE-like lensing map. The
Chameleon and modified growth predictions are also shown.

1%. We also note that the SNR results using DES/LSST
and the full Planck lensing map provide a consistency check
of our calculations as they are in agreement with the ones
found in (Pullen et al. 2015a) using the same surveys.

4.2 Galaxy clustering × 21cm lensing

In this Section we will first consider the combination of
galaxy clustering surveys with the weak gravitational lens-
ing of the 21cm emission from the Epoch of Reionization.
This has similar advantages to using the CMB, for exam-
ple precise source redshifts and the fact that we can use the
full z-range of galaxy tracers. An additional advantage of
21cm lensing is that one is able to combine information from
multiple redshift slices, which makes the lensing reconstruc-
tion noise calculated using an SKA Low-like instrument sig-
nificantly lower than the one using the 2D CMB lensing
estimator and a Planck -like satellite (Zahn & Zaldarriaga
2006). The possibility of measuring the lensing signal from
the EoR has been studied in the past (Zahn & Zaldarriaga
2006; Metcalf & White 2009; Pourtsidou & Metcalf 2015).
Here we repeat these calculations assuming that the bright-
ness temperature follows a Gaussian distribution, which is
a reasonable approximation at the EoR, at least while the
ionised regions are small.

We consider an SKA Low-like instrument with collect-
ing area Acoll = 0.5 km2 and maximum baseline Dtel = 4 km
which scans half of the sky in ttot = 10, 000 hrs. Current
SKA Low plans include scanning a very small sky area so
our chosen survey strategy is very optimistic, but we feel
it is worth demonstrating the science potential of such an
instrument. Another very interesting possibility if the pro-
posed survey strategy is followed is constraining the stan-
dard cosmological parameters using 21cm lensing measure-
ments (Metcalf & White 2009).

In our forecasts the reionization redshift is assumed to
be zEoR = 7 and the observation bandwidth is B = 8 MHz.
An important issue with high redshift (low frequency) obser-
vations is the large foreground contamination. It has been
shown that foreground subtraction techniques will remove
the first parallel k modes (McQuinn et al. 2006). We model
this effect by using jmin = 4 instead of jmin = 1 in Equa-
tion (19). Combining the above with galaxy clustering and
β measurements with LSST we find SNR = 238 and reach
fractional errors smaller than 1%. That is indeed much bet-
ter than Planck and even exceeds the performance of a
CoRE-like satellite. Considering a pessimistic case for the
foreground contamination with jmin = 10, the lensing re-
construction noise doubles and we find SNR = 208, which
still exceeds the performance of a CoRE-like satellite.

c© 0000 RAS, MNRAS 000, 000–000



6 Pourtsidou

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.2

0.3

0.4
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0.7

E
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(z
)

LSST x 21cm Lensing
GR
β1 =1.2
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Figure 2. EG forecasts for the LSST photometric optical galaxy
survey cross-correlated with 21cm lensing measurements from the

EoR at redshift zEoR = 7 with an SKA Low-like instrument, and

with SKA2 Mid 21cm lensing measurements at source redshift
zs = 3 using the intensity mapping method. The Chameleon and

modified growth predictions are also shown.

We are also going to consider the lensing of 21cm emis-
sion from post-reionization redshifts (in particular zs = 3)
probed by the SKA Mid array. In order to get results com-
petitive with CMB lensing, we need to consider Phase 2 of
the array — we model the thermal noise for this case like
the one of Phase 1 but one order of magnitude smaller. We
also take fsky = 0.5, total observation time ttot = 4, 000 hrs
and B = 20 MHz — note that these numbers are realistic
considering the current SKA Mid plans and the possibility
of commissioning it to perform an intensity mapping survey.
Combining with LSST we find SNR = 127. Our forecasts for
the measurement errors are shown in Fig. 2. Note that if we
use SKA1 Mid (i.e. Phase 1 of the array) we find SNR = 47.

4.3 HI IM clustering × CMB / 21cm lensing

In this Section we will investigate the combination of HI
clustering surveys using the intensity mapping method with
CMB and 21cm lensing surveys. As shown in Pourtsidou
et al. (2015), there are exciting prospects for performing
clustering measurements using intensity mapping surveys
with the SKA and its pathfinders. Note that we will assume
a 10% error in the RSD parameter β measurement, which
is a very conservative estimate of the level of precision that
should be achievable with an intensity mapping survey using
SKA1 Mid (Raccanelli et al. 2015; Bull 2015).

We will start by considering the SKA1 Mid instrument
in single dish (sd) mode. An important point we need to
stress is that the range of scales probed depending on the
mode the instrument operates in (single dish or interferom-
eter) is different. Using the single dish mode we can probe
very large scales, hence we are going to use `min = 10 and
`max = 2πDdish/λ for our forecasts (Bull et al. 2015). For
example, `max ∼ 220 at z ∼ 1. Using the full Planck map we
find SNR = 34. Since the results are not competitive with
our previous forecasts, and because of the issue of possibly
severe systematic uncertainties when probing ultra-large an-

gular scales (like in the single-dish mode), we are going to
move on to consider the interferometer mode.

Using SKA1 Mid in interferometer mode we get much
better results. In this case we can let `max = 500 like in the
case of the optical galaxy surveys we analysed above, while
the minimum multipole at each redshift is `min = 2πDdish/λ.
This gives `min ∼ 330 at z ∼ 0.3 and `min ∼ 110 at z ∼ 3,
while `min = 100 for the optical galaxy surveys. Using the
full Planck map we find SNR = 92, while with COrE we
reach SNR = 200, achieving fractional errors < 1% in the
EG measurements. This result implies that (assuming the
problem of foreground contamination is alleviated) Phase 1
of the SKA can perform an intensity mapping survey with
HI clustering measurements that are directly competitive
with the galaxy clustering precision measurements by LSST.
Note that considering Phase 2 of the SKA (which we model
like SKA1 but with the noise level decreased by an order
of magnitude) does not considerably improve the results, as
the CMB lensing and β errors dominate. Our forecasts for
the measurement errors using the interferometer mode are
shown in the top panel of Fig. 3.

Finally, we consider the case where HI clustering mea-
surements performed with SKA1 Mid are combined with
the 21cm EoR lensing case we studied previously using an
SKA Low-like instrument. We find SNR = 227, with frac-
tional errors in the EG measurements below 1%. Our fore-
casts for the measurement errors for this case are shown in
the bottom panel of 3.

As we have already mentioned, our signal-to-noise and
χrms results are summarised in Table 1. We can see that
we are able to differentiate between general relativity and
modified gravity at the level of several σ in a number of
cases. The discriminating power of the measurements we
have considered is larger for the Chameleon model, as it does
not converge to the GR value at high redshifts (z > 1), while
the modified growth model does. We will further comment
on our results in Section 5. Before we conclude, we will show
the clustering and noise terms for the various surveys we
have considered.

4.4 Noise terms comparison

To consolidate our results, we compare the noise terms used
for the various survey combinations studied in this work.

The top panel of Fig. 4 compares the tracer density
power spectra and noise terms for DES (dotted-dashed
magenta line), LSST (dashed red line), SKA1 Mid single-
dish mode (dotted green line) and SKA1 Mid interferome-
ter mode (solid black line) for the bin with central redshift
zc = 1. Here we note that because of the non-uniform n(`)
antennae distribution the SKA1 Mid (int) noise curve is flat
at large scales while at smaller scales (which we do not show
here as they are not used) it increases as ∼ `2. Therefore,
at the scales of interest for EG the SKA1 Mid (int) instru-
ment has its minimum thermal noise value; however, the
minimum `-scale it can probe is larger than the one of the
optical galaxy surveys considered. The solid black curve is
the angular power spectrum Cδδ = CδHIδHI/b2HI = Cδgδg/b2g
at zc = 1.

The bottom panel of Fig. 4 compares the lensing con-
vergence power spectra and noise terms for the COrE-like
satellite (blue dotted-dashed line) and the SKA Low-like in-
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Figure 3. EG forecasts using the SKA1 Mid instrument cross-

correlated with the final Planck lensing map and with the COrE-

like lensing map (top) and the SKA Low-like 21cm lensing EoR
map (bottom). The Chameleon and modified growth predictions
are also shown.

terferometer (dashed black line). As we have already men-
tioned, the P lanck noise is approximately one order of mag-
nitude higher than COrE, while the SKA2 Mid noise level
for HI sources at zs = 3 is about three times higher than
COrE (and, of course, the lensing convergence power spec-
trum is also lower at lower redshifts).

5 DISCUSSION AND CONCLUSIONS

In this work we considered HI intensity mapping clustering
and lensing as probes of the clustering bias-free EG statistic
which can be used to test general relativity on cosmological
scales. We forecasted the ability of various survey combi-
nations -including intensity mapping, (photometric) optical
galaxy and CMB lensing surveys- to test GR and constrain
modified gravity theories, in particular Chameleon gravity
and modified growth index parametrisation models.

Our results show that fractional errors < 1% in the EG

measurement can be achieved in a number of cases, namely
SKA1 Mid (LSST) HI intensity mapping (galaxy) clustering
combined with COrE CMB lensing or, alternatively, with
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Figure 4. Top: A comparison of the clustering noise terms for
the various surveys considered for the bin with central redshift

zc = 1. Note that Cδδ = CδHIδHI/b2HI = Cδgδg/b2g . Bottom: A
comparison of the lensing noise terms for various surveys consid-

ered. We show the most competitive lensing measurements, i.e.
using CMB lensing with a COrE-like satellite, and 21cm lens-
ing from the EoR with an SKA Low-like instrument. See text for

further details.

a SKA Low-like EoR 21cm lensing survey. Looking at the
corresponding χrms values in Table 1, which are well above
unity, we see that these surveys can provide strong con-
straints on the modified gravity models parameters. The
modified growth index model is more difficult to constrain
as its expectation EG value becomes indistinguishable from
GR at z > 1 — that is why the χmrs(γL) values are larger
when using LSST (instead of SKA1 Mid), as LSST cov-
ers the z < 0.35 range where the differences between the
growth parametrisation model and GR are more pronounced
(the optical galaxy surveys also cover a bigger `-range than
SKA1 Mid in interferometer mode). It would therefore be
very beneficial if the SKA1 Mid clustering and RSD mea-
surements were extended to include the low redshift regime,
0 < z < 0.35 (Band 2).

The EG statistic is clustering bias free, but its statistical
error is affected by the bias and it is useful to comment on
how sensitive it is to changes in the analytical formulae we
have used. For example, considering a factor of 2 smaller
bias (i.e.

√
1 + z/2 for the galaxy case and the analogous
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8 Pourtsidou

expression for the HI case), we still get less than a percent
fractional errors in our most competitive cases and the total
signal-to-noise ratio is reduced by about 3% (on the other
hand, a larger bias increases the SNR very slightly). That
is because a smaller (larger) bias increases (decreases) the
contribution of the shot / thermal noise terms.

In terms of the required precision in the RSD measure-
ments (∼ 10%), the intensity mapping method appears to
be quite advantageous. We already mentioned that in or-
der to produce competitive EG measurements using optical
galaxy surveys one needs to use photometric instead of spec-
troscopic surveys, but measuring RSD this way is difficult
(Pullen et al. 2015a). On the other hand, using intensity
mapping and the SKA excellent redshift information is au-
tomatically provided and one can get results competitive
with the ones by upcoming spectroscopic surveys like Euclid
(Raccanelli et al. 2015; Bull 2015). Furthermore, a very re-
cent paper on measuring EG using number counts (Dizgah
& Durrer 2016) showed that the usually neglected lensing
contribution to galaxy number counts (which affects the gg
and gκ spectra) is important -especially at high redshifts-
and renders EG bias dependent. Intensity mapping does not
suffer from this problem, because there is no magnification
term at linear order as surface brightness is conserved.

Another feature of modified gravity (and exotic dark
energy) theories can be scale dependence. For example, EG

is found to be strongly scale dependent in the case of f(R)
gravity theories (Pullen et al. 2015a), so one could also use
EG(k) measurements to constrain scale dependent gravity.
In this work we have mild scale dependence only in the case
of Chameleon gravity, so we just averaged over the wavenum-
ber range at each redshift bin for our predictions. However,
this is a potentially very interesting subject and we plan to
investigate it in future work.

An important point we need to stress is the need to
control systematics. Future measurements will reach an un-
precedented level of statistical precision (< 1% ) and if sys-
tematic effects are not correctly identified and removed the
total error will be much larger. Details about systematics
when combining galaxy surveys with CMB lensing can be
found in Pullen et al. (2015b). In HI intensity mapping clus-
tering and lensing surveys the biggest problem is the pres-
ence of galactic and extragalactic foregrounds. These can
be orders of magnitude brighter than the HI signal but they
have a smooth, power-law frequency dependence, in contrast
to the fluctuating signal, so they can be removed (Morales,
Bowman & Hewitt Morales et al.; Liu & Tegmark 2011;
Alonso et al. 2015). In order to identify systematics and
test the various foreground removal techniques it is essen-
tial to perform auto- and cross-correlation clustering and
lensing studies using intensity mapping and optical galaxy
surveys. For this purpose we can exploit SKA pathfinders
like MeerKAT (Pourtsidou et al. 2015). These studies will
also give us precise measurements of the mean HI bright-
ness temperature T̄ (z), which is assumed to be known in
our forecasts.

To conclude, the intensity mapping technique, although
still in its infancy, is in principle ideal for testing general rel-
ativity and the standard cosmological model on large scales.
Intensity mapping surveys performed with the Square Kilo-
metre Array have the advantage of excellent redshift resolu-
tion and they can map a large fraction of the sky across a

wide range of scales and redshift, achieving very high signal-
to-noise measurements. At large scales in particular, an in-
tensity mapping survey with SKA1 can be directly compet-
itive with state-of-the art photometric optical galaxy sur-
veys like LSST. Combining this with CMB lensing using
COrE-like satellites or 21cm lensing from the EoR with an
SKA Low-like array we can perform exquisite tests of grav-
ity and, consequently, help unravel the secrets of the dark
sector of the Universe.
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