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Abstract

We present a systematic study on higher-order penalty techniques for isogeomet-
ric mortar methods. In addition to the weak-continuity enforced by a mortar
method, normal derivatives across the interface are penalized. The considered
applications are fourth order problems as well as eigenvalue problems for sec-
ond and fourth order equations. The hybrid coupling, which combines mortar
and penalty methods, enables the discretization of fourth order problems in a
multi-patch setting as well as a convenient implementation of natural boundary
conditions. For second order eigenvalue problems, the pollution of the discrete
spectrum - typically referred to as “outliers” - can be avoided.

Numerical results illustrate the good behaviour of the proposed method in
simple systematic studies as well as more complex multi-patch mapped geome-
tries for linear elasticity and Kirchhoff plates.
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1. Introduction

Isogeometric analysis (IGA) [1] is a family of methods using highly regu-
lar basis functions typical of CAD systems, like non-uniform rational B-splines
(NURBS), to construct numerical approximations of partial differential equa-
tions (PDEs). The idea of using spline functions for the approximation of PDEs
can be found in earlier works, see, e.g., [2], and were extended by the isoparamet-
ric paradigm, with the goal of simplifying the mesh generation and refinement
processes, possibly bridging the gap between CAD and analysis, see also [3, 4].

In general, when dealing with non-trivial engineering applications, the com-
putational domain is represented by several spline patches and thus efficient
techniques to couple different patches are required. To retain the flexibility of
the meshes at the interfaces, mortar methods are a very attractive option, orig-
inally introduced for the coupling of non-matching meshes in spectral and finite
element methods [5, 6, 7]. While mortar finite element formulations are quite
often motivated by the flexibility of domain decomposition techniques or by the
robustness with respect to non-matching meshes in dynamic applications, IGA
leads in a natural way to a multi-patch situation in case of complex geometries,
see, e.g., [8, 9, 10, 11, 12]. A mathematical stability and a priori analysis enlight-
ening the use of different dual spaces can be found in [13]. In this context also
higher-order couplings recently gained attention (see, e.g., [14, 15] for Kirchoff-
Love shells). A discussion of strong C1 couplings in multi-patch settings is given
in [16], whereas weak continuity of the normal stress is realized in [17]. An al-
ternative higher-order coupling method based on least-squares techniques were
proposed in [18] and a pragmatic approach for a crosspoint free setting where
higher order continuity in a weak from is realized can be found in [19, 20]. In
case of crosspoints, the coupling between the interfaces has to be handled with
care.

Here, we investigate the influence of hybrid couplings on fourth order prob-
lems as well as on the eigenvalue approximation of second order problems. In
addition to the weak continuity satisfied in terms of a Lagrange multiplier, we
apply a penalty approach for the jump of normal derivatives at the interfaces
and Neumann boundaries. The weights in the penalization terms are selected
such that both the condition number growth rate of the algebraic system and
the optimal a priori convergence rate are preserved.

Standard mortar methods enforce weak H1-conformity, which is insufficient
to solve fourth order problems, where a stronger coupling, e.g., by using penalty
terms, is needed. While standard penalty couplings for fourth order problems,
where both the jump of the solution and of the normal derivative are penal-
ized, see [21, 22], pose a sufficient coupling, they are inconvenient to implement.
There the consistency terms include third-order derivatives, which are challeng-
ing to transform with NURBS geometries. In contrast, with the hybrid approach
only second order terms need to be computed, which are standard and often al-
ready part of isogeometric software packages, making the hybrid formulation
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easy to implement. In addition, the Neumann penalty presents a flexible way
to treat natural boundary conditions, which in general is a non-trivial task for
plate problems.

Eigenvalue analysis arises in many important applications in science and
engineering, where the amount of eigenvalues of interest can be quite different
from application to application. For example in vibroacoustics one is typically
only interested in the first part of the spectrum, while for explicit dynamics
the approximation quality of the entire spectrum is relevant. Compared to
FEA, it was observed that IGA possesses superior approximation of eigenvalues,
see [23, 24, 25, 26]. Further studies show outliers appearing in the case of reduced
continuity [27] and Neumann boundary conditions [28, 29]. In our tests a major
improvement was shown by a stronger enforcement of the Neumann boundary
condition through a penalty approach, which can recover spectral results closer
to the cases with no outliers. We have to note that the use of penalty introduces
high unphysical modes that however, being completely unphysical, can be safely
removed, e.g., with a low-rank modification technique (see, e.g., [30, 31]). The
better results granted by the proposed method may have a significant impact
in those dynamics problems where high modes play an important role and in
explicit dynamics, yielding a more favourable CFL condition.

The paper is structured as follows: In Section 2, we briefly review the iso-
geometric mortar discretization and introduce our hybrid mortar variant. For
fourth order problems a higher order coupling is necessary to achieve solvability
in a nonconforming situation and results are shown in Section 3. Numerical
results illustrate in Section 4 the influence of the penalization for eigenvalue
problems, where the higher part of the spectrum can be significantly improved.
A vibroacoustical example presented in Section 5 presents the application to
fourth order eigenvalue problems, where we are interested in the lowest eigenval-
ues and outliers do not play a significant role. Finally, in Section 6, conclusions
are given.

2. Hybrid mortar formulation

In this section, we introduce the hybrid mortar method, and later show how
it can efficiently be applied to PDEs of second and fourth order. At first, we
briefly recapture the basics of isogeometric mortar methods, and for more details
we refer to [13]. For the ease of presentation, we restrict ourselves to the two
dimensional case. The generalization to one or three dimensions follows the
same lines.

2.1. Standard mortar coupling

Let Ω ⊂ R2 be a bounded domain with Γ̄D ∪ Γ̄N = ∂Ω and ΓD ∩ ΓN = ∅.
Let the domain Ω be decomposed into K non-overlapping subdomains Ωk, i.e.,

Ω =

K⋃
k=1

Ωk, and Ωi ∩ Ωj = ∅ for i 6= j.

3



Here, we limit our presentation to the basic isogeometric concepts and notations
used throughout the paper and refer to [25, 32, 33, 34] for more details. Each of
the subdomains is a NURBS geometry, i.e., there exists a NURBS parametriza-
tion Fk mapping from the parametric space Ω̂ = (0, 1)d to Ωk based on an open
knot vector Ξk and a degree p. Let us consider a PDE of order 2n and p ≥ n.

We set Np(Ξk) as the multivariate NURBS space (associated to Ωk) in the

parametric domain, with the standard NURBS basis functions N̂p
k,i. For a set

of control points Ck,i ∈ Rd, i ∈ I, we define a parametrization of a NURBS
surface as a linear combination of the basis functions and control points

Fk(ζ) =
∑
i∈I

Ck,i N̂
p
k,i(ζ),

and assume the regularity stated in [3, Assumption 3.1].
For 1 ≤ k1<k2 ≤ K, we define the interface as the interior of the intersection

of the boundaries, i.e., γk1k2
= ∂Ωk1

∩ ∂Ωk2
, where γk1k2

is open. Let the non-
empty interfaces be enumerated by γl, l = 1, . . . , L.

For each Ωk, we introduce Hn
∗ (Ωk) = {vk ∈ Hn(Ωk), vk|ΓD∩∂Ωk

= 0}, where

we use standard Sobolev spaces, as defined in [35], endowed with their usual
norms. In order to set a global functional framework on Ω, we consider the
broken Sobolev space V =

∏K
k=1H

n
∗ (Ωk), endowed with the broken norm

‖v‖2V =
∑K
k=1 ‖v‖2Hn(Ωk). For any interface γl ⊂ ∂Ωk, we define H−1/2(γl)

to be the dual space of H
1/2
00 (γl), which is the space of all functions that can be

trivially extended (i.e. by zero) on ∂Ωk \ γl to an element of H1/2(∂Ωk).
In the following, we set our non-conforming approximation framework. On

each subdomain Ωk, based on the NURBS parametrization, we introduce the
approximation space Vk = {vk = v̂k ◦ F−1

k , v̂k ∈ Np(Ξk)}. On Ω, we define the

discrete product space Vh =
∏K
k=1 Vk ⊂ V , which forms a non-conforming space

with respect to Hn(Ω).

On the skeleton Γ =
⋃L
l=1 γl, we define the discrete Lagrange multiplier

product space Mh as Mh =
∏L
l=1Ml. Based on the interface knot vector of one

of the adjacent subdomains, Ml is the spline space of degree p defined on the
interface γl. An appropriate local degree reduction performed at the crosspoints
guarantees the inf-sup stability of the mortar coupling, see [13] for more details,
while preserving optimal order error decay rates.

The coupling bilinear form

b(τ, v) =

L∑
l=1

∫
γl

τ [v]l dσ,

where [·]l denotes the jump over γl, defines the weakly coupled space

Xh = {vh ∈ Vh : b(τ, vh) = 0, τ ∈Mh}.

We note that for second order PDEs (n = 1), this space is weakly-conforming,
while it is still a weakly non-conforming space for higher order PDEs (n ≥ 2)
as there are no restrictions to the normal derivatives across the interface.
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2.2. Hybrid mortar formulation

To improve the global continuity, we penalize the jump in the normal deriva-
tives across the interfaces of a multi-patch geometry and the first normal deriva-
tive on a Neumann boundary part. To avoid locking, we take the local L2-
projection π0

h onto the piecewise constant functions on the (slave) boundary
mesh. Due to the non-conformity of Vh, we require m ≥ n− 1 and note that for
n > 1 consistency terms are necessary, which will be introduced later.

The extra penalty term is given as

ch(uh, vh) = CBC cBC(uh, vh) +

L∑
l=1

p−1∑
m=1

Cml cml (uh, vh) + CCP cCP(uh, vh)

with appropriate penalty constants Cml , CBC, CCP ≥ 0 and problem-dependent
boundary terms cBC. In the numerical results, we will not distinguish between
the different penalty constants and simply refer to them by C. The smooth
interface coupling

cml (uh, vh) =

∫
γl

h2(m−n)+1
s π0

h ([∂mn uh]l) π
0
h ([∂mn vh]l) dσ,

and the boundary penalty term (where the penalty boundary part ΓBC ⊂ ∂Ω
denotes the part of the boundary, where ∂nu = 0)

cBC(uh, vh) =

∫
ΓBC

h3−2n π0
h (∂nu) π0

h (∂nv) dσ,

are properly weighted with the local mesh-size hs on the slave side. The in-
dex CP in the bilinear form cCP refers to contributions from the crosspoints. At
the end points of each interface and each corner of the penalized boundary, we
introduce additional point evaluations. More precisely, for each interface γl, we
add the term ∑

x̄∈∂γl

p−1∑
m=1

Cml h
2(m−n+1)
s [∂mn uh]l(x̄)[∂mn vh]l(x̄),

while an analogous term is added on each corner of the penalty boundary
part ΓBC.

As already mentioned, weak C1-continuity can be imposed in terms of an
additional Lagrange multiplier approach. However the choice of the discrete
Lagrange multiplier space is delicate, since uniform stability has to be guaran-
teed. Moreover, it involves a careful handling of the resulting algebraic system.
Hence, we herein propose an alternative penalty approach.

In the following, we show how the hybrid mortar method can efficiently be
applied to PDEs of second and fourth order problems. The necessity of a weak
C1-coupling has different reasons for both problems. For second order eigenvalue
problems, discretizations with minimal regularity show poor results compared
to ones with C1-regularity. In contrast, for fourth order problems C1-regularity
is required to ensure conformity.
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3. Application to Kirchhoff plate problems

In this section, we present the approximation of fourth order problems in
multi-patch situations. We solve the bilaplace equation for clamped Kirchhoff
plates

∆∆u = f in Ω,

u = 0 on ∂Ω,

∂nu = 0 on ∂Ω.

3.1. Consistency terms

While for second order problems, the penalty approach is used only to en-
force additional smoothness, for fourth order problems it is necessary to enforce
conformity. Hence, it must be used in a Nitsche-type version with additional
consistency terms.

We here adapt the symmetric C0 interior penalty Galerkin method for bi-
harmonic formulation of [36, 37]: Find (uh, τ̂h) ∈ Vh ×Mh, such that

abi
h (uh, vh) + b(τ̂h, vh) = f(vh), vh ∈ Vh,

b(τh, uh) = 0, τh ∈Mh,

with

abi
h (uh, vh) =

K∑
k=1

∫
Ωk

D2 uh : D2 vh dx + ch(uh, vh)

+

L∑
l=1

∫
γl

{∂nnuh}[∂nvh] + [∂nuh]{∂nnvh}dσ

+

∫
ΓD

∂nnuh ∂nvh + ∂nuh ∂nnvh dσ,

with the Hessian D2 v : Ω → R2×2 and f(v) =
∑K
k=1

∫
Ωk
fv dx. Since the

boundary conditions include the normal derivative, the whole boundary is in-
cluded in the penalty, i.e., ΓBC = ∂Ω.

We note that the expected convergence rate in the L2 norm is different from
the second order case in the lowest order case p = 2. While Aubin-Nitsche-trick
for conforming approximations can be used as for H1-conforming problems,
even with optimal dual regularity, the dual approximation order is insufficient
to prove the convergence order h3:

|u− uh|20 = (u− uh, u− uh)0 = a(w, u− uh) = a(w − wh, u− uh)

≤ |w − wh|2 |u− uh|2 ≤ ch
2‖w‖3‖u‖3 ≤ ch2 |u− uh|0 ‖u‖3,

with the dual solution w ∈ H4(Ω) and its best-approximation wh. For p ≥ 3
the approximation order is sufficient to show optimal order hp+1 convergence in
the L2(Ω) norm.
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Figure 1: L2-convergence for essential boundary conditions, a one-patch penalty and a two-
patch hybrid penalty setting with the expected order of convergence. Left: p = 2. Right:
p = 3.

3.2. Multi-patch convergence on a square

As a first numerical test, let us consider a problem with a manufactured
solution in order to observe the optimality of the method. Note that all nu-
merical simulations in this article are based on the isogeometric Matlab toolbox
GeoPDEs [38, 39].

We consider Ω = (0, 2)× (0, 1) and the manufactured solution

u(x, y) = (1− cos(π/2x)− x+ sin(πx)/π) (1− cos(2πy)) .

We compare three cases: two single-patch settings and a two-patch setting
with a non-matching interface. In the first case, both u = 0 and ∂nu = 0
are implemented as essential boundary conditions while in the second case we
apply the penalty method on the boundary. The two-patch setting includes
penalty terms on the interface as well as the boundary. The convergence in the
L2 norm for C = 100 is shown in Figure 1. We see almost identical optimal
error values on the same mesh level and all cases with only the number of
degrees of freedom varying. As the boundary values are fixed, the number of
degrees of freedom for the essential boundary conditions are the smallest, but
the difference with respect to the one-patch penalty case decreases. In the two-
patch setting the number of degrees of freedom is the largest, mainly due to
the artificially constructed nonconforming mesh. However, we note that this
is a quite artificial setting. In many cases, a single-patch discretization is not
possible and a higher-order coupling is essential as seen in the next example.

In Table 1, the L2 error for the two-patch setting is shown for different values
of the penalty constants. We observe robustness within a wide range of penalty
values.

3.3. Beam with holes

We then consider a beam, with three circular cut-outs, as depicted in Fig-
ure 2 and observe the convergence for the manufactured solution u(x, y) =
sin(x) cos(πy). We note that, although atypical in practice, the manufactured
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ndof 91 281 973 3 605 13 861 54 341 215 173

C = 1 0.0039 1.53 · 10−4 5.47 · 10−6 2.60 · 10−7 1.35 · 10−8 7.85 · 10−10 7.04 · 10−11

C = 102 0.0013 4.88 · 10−5 2.60 · 10−6 1.55 · 10−7 9.51 · 10−9 5.92 · 10−10 8.57 · 10−11

C = 104 0.0013 4.98 · 10−5 2.63 · 10−6 1.56 · 10−7 9.54 · 10−9 5.97 · 10−10 1.16 · 10−10

C = 106 0.0013 4.98 · 10−5 2.63 · 10−6 1.57 · 10−7 9.95 · 10−9 5.69 · 10−9 1.83 · 10−8

Table 1: L2 error values for the two-patch setting with p = 3 and a varying value of the
penalty parameter.
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Figure 2: Top left: Initial mesh for the beam with circular cut-outs and its decomposition
into patches; Convergence for the plate equation on the beam with holes and the expected
convergence order for p = 2, 3. Top right: L2 error. Bottom left: H1 error. Bottom right:
H2 error.

solution has nonhomogeneous boundary conditions for practical reasons. How-
ever, this sheds a light on the flexibility in the treatment of the boundary con-
dition, which can be used for practical cases, e.g., when the solution is not
restricted, but the normal derivative is.

The resulting errors in the L2, H1 and H2 norms are shown in Figure 2 for
a penalty value of C = 103. We observe the theoretically expected convergence
order, which equals to the best-approximation order, except for the L2 norm in
the quadratic case. We also observe, that the error stagnates at a level signif-
icantly higher than machine precision, which results from the higher condition
number of fourth order equations.

4. Application to second order eigenvalue problems

In this section, we present the effect on eigenvalue approximations for second
order equations (n = 1). We consider the following Laplace eigenvalue problem
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with Dirichlet and Neumann boundary conditions on ΓD and ΓN, respectively:

−∆u = λu in Ω,

u = 0 on ΓD,

∂nu = 0 on ΓN.

Since the Neumann boundary condition sets the normal derivative, we have
ΓBC = ΓN. We consider the bilinear forms a : V × V → R and m : V × V → R,
such that

a(u, v) =

K∑
k=1

∫
Ωk

∇u · ∇v dx, m(u, v) =

K∑
k=1

∫
Ωk

u v dx

The saddle point formulation of the isogeometric mortar eigenvalue problem
introduces 2 dimMh spurious eigenvalues to the spectrum. We restrict ourselves
to the physical relevant eigenpairs (λh, uh). These are characterized by the fact
that they are also eigenpairs of the constrained mortar formulation, i.e., they
satisfy

a(uh, vh) = λhm(uh, vh), vh ∈ Xh = {vh ∈ Vh : b(τh, vh) = 0, τh ∈Mh}.

In the systematic study of [29], it was shown that the spectrum of an isoge-
ometric discretization shows severe outliers in the case of Neumann boundary
conditions. The same can be expected for interfaces with C0-regularity, see
also [27]. This motivates us to impose higher-order penalty terms in the formu-
lation:

ah(uh, vh) + b(τ̂h, vh) = λhm(uh, vh), vh ∈ Vh,
b(τh, uh) = 0, τh ∈Mh,

with ah(uh, vh) = a(uh, vh) + ch(uh, vh).

Remark 1. For the penalized bilinear form ah broken H1 continuity and for
|ΓD| > 0 ellipticity on the kernel of the mortar coupling can be shown. The el-
lipticity trivially follows from the ellipticity of a, while to show continuity, it re-
mains to prove |ch(uh, vh)| ≤ C‖uh‖Vh

‖vh‖Vh
. With standard estimates and sta-

bility of the L2-projection, this reduces to an inverse inequality ‖∂mn vh‖L2(γl) ≤
Ch1/2−m‖vh‖H1(Ωk) for m < p. Then standard trace and inverse inequalities
(see [32, Theorem 4.2]) yield

‖∂mn vh‖2L2(γl)
≤ C‖vh‖Hm(Ωk)‖vh‖Hm+1(Ωk)

≤ Ch1−m‖vh‖H1(Ωk)h
1−(m+1)‖vh‖H1(Ωk).

The point evaluations can be handled analogously using an inverse inequality
between L∞- and L2-norms.

The a priori analysis of the new hybrid mortar approach can be easily worked
out within the abstract framework of non-conforming finite element techniques.

9



The hybrid form allows us to use the Lemma of Strang to show optimal order a
priori bounds for right hand side problems, which are required for optimality of
the approximation for eigenvalue problems. For convenience of the reader, let us
sketch the proof for the first order penalty terms and without loss of generality,
for a single interface γ and no Neumann boundary.

Let a right hand side f be given and denote the solution to the continuous
problem by u ∈ H1

∗ (Ω). Furthermore, we consider uh ∈ Xh the standard mortar
discretization and ûh ∈ Xh the new hybrid solution, which solve

a(uh, vh) = f(vh), and ah(ûh, vh) = f(vh),

for each vh ∈ Xh. Since it is well-known [13], that uh converges with optimal
order, it is sufficient to consider ‖uh−ûh‖Vh

in more detail. Using the coercivity
of ah and a modified Galerkin orthogonality results in

‖uh − ûh‖2Vh
≤ ah(uh − ûh, uh − ûh) = ch(uh, uh − ûh)

≤ c‖h1/2[∂nuh]‖L2(γ)‖h1/2[∂n(uh − ûh)]‖L2(γ).

For the first term, we introduce a suitable best-approximation wh ∈ Xh and use
[u] = 0 for the exact solution:∫

γ

h[∂nuh]2 dσ =

∫
γ

h[∂n(uh − wh)]2 dσ +

∫
γ

h[∂n(wh − u)]2 dσ.

A polynomial inverse estimate is used for the discrete term, while a local ap-
proximation property is used for the second term. Both terms yield an estimate
by ch2s‖u‖2Hs+1(Ω).

The remaining term ‖h1/2[∂n(uh − ûh)]‖L2(γ) can be traced back to the Vh
error by polynomial inverse estimates:

‖h1/2[∂n(uh − ûh)]‖L2(γ) ≤ c‖uh − ûh‖Vh
,

which yields the optimal error estimate ‖u− ûh‖Vh
≤ chs‖u‖Hs+1(Ω).

We point out that the weights in the penalty term are selected such that the
condition number of the algebraic system is still O(h−2).

After a systematical one-dimensional investigation, we study a non-trivial
multi-patch example in the framework of linear elasticity. We compare globally
smooth spaces, C0-couplings and the previously introduced higher-order penalty
couplings and report the normalized discrete eigenvalue λh/λ, which directly
relates to the relative error in the eigenvalue since (λh−λ)/λ = λh/λ− 1. Note
that in the case of pure Neumann boundary conditions, the first eigenvalue is
zero, so we exclude it from the spectrum.

4.1. Influence on eigenvectors and the approximation property

The numerically obtained eigenvalues can be grouped into physical relevant
eigenvalues and unphysical ones induced by the coupling or the boundary. These
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Figure 3: Discrete eigenvectors for a penalty value of 100. Left: 13th. Right: 21st.

spurious eigenvalues are infinite for the mortar case and very large in comparison
to the physical ones in the penalty case. In this work we choose to neglect these
unphysical modes and only show the physical part of the resulting spectrum.
To distinguish between physical and unphysical parts of the spectrum, we use
a heuristic criterion, namely, λhn+1/λ

h
n > 100.

An “outlier reduction technique” based on low-rank modifications, as pro-
posed in [30, 31], conveniently allows to remove unphysical eigenvalues from the
spectrum. Clearly, such a technique does not negatively impact the approxima-
tion properties of the method if the removed modes are actually unphysical and,
therefore, do not significantly contribute to the overall response. In the follow-
ing, we show with an illustrative example how the high-frequency eigenmodes
induced with the C0-coupling contribute to the approximation property of the
space and cannot be simply removed. In contrast, with the penalty coupling,
the highest modes are indeed unphysical and can be then safely removed from
the space.

We consider p = 2 in one dimension on a uniform grid with 21 degrees of
freedom once Dirichlet boundary conditions are imposed. Figure 3 compares two
selected eigenvectors obtained in the standard case with a C0 point and in the
penalty case. While the last eigenvector looks similar in both cases (Figure 3,
right), some of the first 20 ones for the C0 case are different from those for the
penalty, as they are non-smooth (see, e.g., Figure 3, left).

Let us denote the eigenvectors as uh,i ∈ Vh for the standard case with a C0

point and ûh,i ∈ Vh for the penalty case, with i = 1, . . . , 21, and note that both
sets span Vh. Removing the largest eigenvalue by a low-rank modification is
equivalent to restricting the solution to the subspace of the first 20 eigenvalues:

V ′h = span{uh,i ∈ Vh, i = 1, . . . , 20}, V̂ ′h = span{ûh,i ∈ Vh, i = 1, . . . , 20}.

In Figure 4, we study the best-approximation properties of these reduced spaces
by computing the L2-projection of two smooth splines vh ∈ Vh onto the spaces
V ′h and V̂ ′h. We see a significantly better approximation in the penalized space

V̂ ′h, while we clearly see the non-smoothness of the approximation in V ′h. This
can also be seen in terms of the relative L2 error of the projection, which is
presented in Table 2 for different choices of penalty. With growing values of the
penalty parameter, the target splines are approximated more and more precisely.
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penalty value 0 0.01 1 10 100 10 000

Example 1 0.0185 0.0170 0.0019 2.0590 · 10−4 2.0800 · 10−5 2.0823 · 10−7

Example 2 0.0118 0.0107 0.0011 1.1822 · 10−4 1.1928 · 10−5 1.1940 · 10−7

Table 2: Relative L2 projection error for the two smooth splines shown in Figure 4 for different
values of the penalty.
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Figure 4: L2 best-approximation (penalty value 100).

This confirms that the imposition of higher regularity through a penalty
approach constitutes a simple way to recover the approximation properties of
a C1 space. This may have important implications, e.g., in dynamics problems
where high modes participate to the response of the analyzed structure. It also
yields a better CFL condition, which allows larger stable time integration steps.
In particular in the IGA framework, this is relevant also when a consistent mass
is used, since lumped mass is known to be limited to second-order accuracy even
for higher orders. This is the reason why there is a strong research interest in
predictor-multicorrector explicit algorithms (see, e.g., [40, 41]) making use of
the consistent mass for the evaluation of the residual vector and techniques to
directly assemble an approximate (banded) inverse of the consistent mass [30,
31].

4.2. One-dimensional results

In this subsection, we report on one-dimensional results obtained with higher-
order penalty couplings. On the unit line, the set of eigenvectors with pure
Neumann conditions is given by un(x) =

√
2 sin(nπx), with the corresponding

eigenvalue λn = n2π2, n = 0, 1, . . ., see [26].
As it is well-known [24] finite elements fail to approximate the higher part of

the spectrum while IGA with maximal regularity allows to obtain good results.
However IGA with reduced regularity, e.g., introduced by a C0-line or by a
weak mortar coupling across multiple-patches, also introduces outliers at the
high frequency end of the spectrum. By penalizing the jumps in the normal
derivatives, the number of these outliers can be significantly reduced. Due to
the Neumann boundary conditions, we also see outliers for the smooth space.
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However, the penalty can reduce even these outliers and we end up with better
results than with the original smooth spline space, see Figure 5. The results for
degrees 4 and 5 are similar to those shown for degree 2 and 3 and, therefore,
are not reported here.
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Figure 5: One-dimensional discrete spectrum. Left: Entire normalized discrete spectrum for
p = 2. Middle: Zoom of the last part of the normalized discrete spectrum for p = 2 Right:
Zoom of the last part of the normalized discrete spectrum for p = 3.

4.3. Application to linear elasticity

Now, we apply the penalty method to a non-trivial example of elasticity.
We reconsider the two-dimensional beam with three circular cut-outs, see the
top left of Figure 2, clamped on the left side, with Neumann boundaries on the
remaining edges including the circular holes.

We solve the eigenvalue problem of linear elasticity:

−divσ(u) = λu in Ω

where the linearized stress and strain are given by σ(u) = 2µ̄ε(u) + λ̄ tr ε(u)I
and ε(u) = (∇u +∇u>)/2, respectively. The Lamé parameters depend on the
elastic modulus E = 1 and Poisson’s ratio ν = 0.3 as µ̄ = E/(2 + 2ν) and
λ̄ = νE/((1 + ν)(1 − 2ν)). For the equations of elasticity, the surface traction
σ(u)n plays the role of the normal derivative in the Laplace setting. Hence, the
normal derivative in the penalty terms is replaced by σ(u)n.

We note that for such applications, the different penalty parameters must
be well-balanced to ensure a good separation of the physical and unphysical
eigenvalues. In this example, it turned out best to only consider the Neumann
penalty terms, since the outliers of the Neumann boundary dominate the spec-
trum. For practical applications, balancing the different penalty terms can be
performed on a coarse mesh with low cost.

As we have no exact solution, we compare the results to a computed refer-
ence solution. The results for a quadratic discretization are shown in Figure 6.
Here we have chosen a penalty parameter of C = 105 and note that a large
penalty parameter guarantees a clear separation of the physical and unphysical
eigenvalues. We see that the proposed method provides a significant overall
improvement of the discrete spectrum also in the framework of elasticity. In
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particular, the maximal outlier is reduced to less then half of its value. In-
deed we see that, even though 12 interfaces are present, the Neumann outliers
are dominating the spectral approximation and are removed by the proposed
penalty.
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Figure 6: Left: Normalized discrete spectra for the linear elastic beam with circular cut-outs.
Right: Zoom to the last 20% of the spectra.

5. Vibroacoustical application with a fourth order eigenvalue problem

Figure 7: Bridge of a violin
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Figure 8: Multi-patch representation of the
bridge with 16 patches

As a final example, let us consider a vibroacoustical example. The bridge
of a violin [42] shown in Figure 7 has an important influence on the acoustics
of the instrument. As the geometry is rather thin (thickness of approx. 1 mm),
a plate mode is convenient for an analysis of the out-of-plane eigenmodes. In
vibroacoustics one is interested in the first part of the spectrum, so we solve the
biharmonic eigenvalue problem

∆∆u = λu in Ω,

u = 0, ∂nu = 0 on ΓD,

∂2
nu = 0, (∇∆u+ Ψu) · n = 0 on ΓN,
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1st eig.value: 0.0221 2nd eig.value: 0.136 8th eig.value: 9.71

Figure 9: Plot of the first, second and eighth eigenmodes with the corresponding eigenvalue

with Ψu = (∂x∂
2
yu, ∂y∂

2
xu)> and homogeneous Dirichlet conditions applied to

the bottom of the two ‘feet’ and natural boundary conditions on the remaining
boundary parts. We consider such isotropic material laws, that the resulting
eigenproblem can be rescaled to the one stated above. In this case, changing
the elastic modulus only influences the eigenvalue and not the eigenmode, which
allows us to solve the unweighted bilaplace equation. For the more general case,
we refer to [43]. More complex models can also take into account the different
behaviour of wood in both coordinate directions by considering an orthotropic
Kirchhoff plate.

Since the first part of the spectrum is not influenced by the outliers, we do not
use the penalty to improve the high eigenmodes as for the previous eigenvalue
problems. Instead, we use the penalty to be able to solve the fourth order plate
problem with the H2-nonconforming mortar space. Thus, we use the bilinear
form abi

h introduced in Section 3.1, which includes the first order penalty and
consistency terms for the plate problem and solve the following problem. Find
(uh, τ̂h) ∈ Vh ×Mh, λh ∈ R, such that

abi
h (uh, vh) + b(τ̂h, vh) = λhm(uh, vh), vh ∈ Vh,

b(τh, uh) = 0, τh ∈Mh,

The use of a penalty on the normal derivative to solve the plate eigenvalue
problem is also applied in a FEM context by the C0-IPDG method [37].

The geometry is represented by 16 patches coupled across 16 interfaces as
shown in Figure 8. However since some patches have corners, there are C0-lines
within some patches, where the penalty coupling needs to be applied as well,
yielding a total of 28 interfaces for the penalty coupling, where we chose C = 10.

A selection of eigenmodes and the corresponding eigenvalues on mesh level 3
for p = 3 with 33,440 degrees of freedom are shown in Figure 9. In all cases we
see smooth results thanks to the hybrid coupling and in particular no spurious
oscillations are observed. The first 50 eigenvalues on several mesh levels as
well as an estimated error are shown in Figure 10. Here, we see a very good
approximation of the relevant eigenmodes for vibroacoustics already on the first
meshes. On the finest mesh, level 3, the relative error of all first 50 eigenvalues
is below 1%.
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Figure 10: First 50 eigenvalues of the biharmonic equation for the violin bridge. Left: discrete
eigenvalues on the reference mesh level 4. Right: estimated error values.

6. Conclusions

In this paper, we have studied, in the framework of isogeometric analysis,
the effects of higher-order penalty terms for multi-patch geometries and Neu-
mann boundaries on second and fourth order partial differential equations. In
the context of fourth order problems, the hybrid coupling poses a flexible dis-
cretization for multi-patch geometries and can include complicated boundary
conditions. For second order eigenvalue problems, the hybrid coupling reduces
so-called outlier eigenvalues, which is relevant in several applications such as,
e.g., explicit dynamics.
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[22] I. Mozolevski, E. Süli, A priori error analysis for the hp-version of the
discontinuous Galerkin finite element method for the biharmonic equation,
Comput. Methods Appl. Mech. Eng. 3 (2003) 596–607.

[23] J. A. Cottrell, A. Reali, Y. Bazilevs, T. J. R. Hughes, Isogeometric analysis
of structural vibrations, Comput. Methods Appl. Mech. Eng. 195 (41–43)
(2006) 5257 – 5296.

[24] T. J. R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of
discrete approximations in structural dynamics and wave propagation:
Comparison of p-method finite elements with k-method NURBS, Comput.
Methods Appl. Mech. Eng. 197 (4950) (2008) 4104 – 4124.

[25] J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards
Integration of CAD and FEA, Wiley, Chichester, 2009.

[26] T. J. R. Hughes, J. A. Evans, A. Reali, Finite element and NURBS approx-
imations of eigenvalue, boundary-value, and initial-value problems, Com-
put. Methods Appl. Mech. Eng. 272 (2014) 290 – 320.

[27] V. Puzyrev, Q. Deng, V. Calo, Spectral approximation properties of isoge-
ometric analysis with variable continuity, Comput. Methods Appl. Mech.
Eng. 334 (2018) 22 – 39.

[28] S. Takacs, T. Takacs, Approximation error estimates and inverse inequal-
ities for B-splines of maximum smoothness, Math. Models Methods Appl.
Sci. 26 (07) (2016) 1411–1445.

[29] D. Gallistl, P. Huber, D. Peterseim, On the stability of the Rayleigh–Ritz
method for eigenvalues, Numer. Math. 137 (2) (2017) 339–351.

[30] R. R. Hiemstra, A. Reali, G. Sangalli, M. Tani, J. A. Evans, T. J. R.
Hughes, Efficient isogeometric collocation for explicit structural dynamics:
High-order mass lumping and outlier removal, in preparation.

[31] A. Reali, T. J. R. Hughes, IGA collocation, aka “the ultimate reduced
quadrature IGA method”: Some results, applications, and open problems”,
in: WCCM XII & APCOM VI - 12th World Congress on Computational
Mechanics and 6th Asian Pacific Congress on Computational Mechanics,
Seoul, 2016.

18



[32] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, G. Sangalli,
Isogeometric analysis: Approximation, stability and error estimates for h-
refined meshes, Math. Models Methods Appl. Sci. 16 (7) (2006) 1031–1090.

[33] L. Piegl, W. Tiller, The NURBS Book, Springer, 1997.

[34] L. Schumaker, Spline Functions: Basic Theory, 3rd Edition, Cambridge
University Press, Cambridge, 2007.

[35] P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, Philadel-
phia, 2011.

[36] S. C. Brenner, L.-Y. Sung, C0 interior penalty methods for fourth order
elliptic boundary value problems on polygonal domains, J. Sci. Comput.
22 (1) (2005) 83–118.

[37] S. C. Brenner, P. Monk, J. Sun, C0 interior penalty Galerkin method for
biharmonic eigenvalue problems, in: R. M. Kirby, M. Berzins, J. S. Hes-
thaven (Eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Springer International Publishing, Cham,
2015, pp. 3–15.

[38] C. de Falco, A. Reali, R. Vázquez, GeoPDEs: A research tool for isogeo-
metric analysis of PDEs, Adv. Eng. Softw. 42(12) (2011) 1020–1034.

[39] R. Vázquez, A new design for the implementation of isogeometric analysis
in Octave and Matlab: GeoPDEs 3.0, Comp. Math. Appl. 72 (3) (2016)
523 – 554.

[40] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, G. Sangalli,
Isogeometric collocation for elastostatics and explicit dynamics, Comput.
Methods Appl. Mech. Eng. 249-252 (2012) 2 – 14.

[41] J. A. Evans, R. R. Hiemstra, T. J. R. Hughes, A. Reali, Explicit higher-
order accurate isogeometric collocation methods for structural dynamics,
Comput. Methods Appl. Mech. Eng. 338 (2018) 208 – 240.

[42] T. Horger, B. Wohlmuth, L. Wunderlich, Reduced basis isogeometric mor-
tar approximations for eigenvalue problems in vibroacoustics, in: P. Benner,
M. Ohlberger, A. Patera, G. Rozza, K. Urban (Eds.), Model Reduction of
Parametrized Systems, Springer International Publishing, Cham, 2017, pp.
91–106.

[43] A. Reali, H. Gomez, An isogeometric collocation approach for Bernoulli–
Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Eng. 284
(2015) 623 – 636.

19


