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Abstract 

Activities of Daily Living (ADL) are important indicators of both cognitive and 

physical well-being in healthy and ill humans. There is a range of methods to recognise 

ADLs, each with its own limitations. The focus of this research was on sensing 

location-driven activities, in which ADLs are derived from location sensed using 

Radio Frequency (RF, e.g., WiFi or BLE), Magnetic Field (MF) and light (e.g., Lidar) 

measurements in three different environments. This research discovered that different 

environments can have different constraints and requirements. It investigated how to 

improve the positioning accuracy and hence how to improve the ADL recognition 

accuracy. There are several challenges that need to be addressed in order to do this. 

First, RF location fingerprinting is affected by the heterogeneity smartphones and their 

orientation with respect to transmitters, increasing the location determination error. To 

solve this, a novel Received Signal Strength Indication (RSSI) ranking based location 

fingerprinting methods that use Kendall Tau Correlation Coefficient (KTCC) and 

Convolutional Neural Networks (CNN) are proposed to correlate a signal position to 

pre-defined Reference Points (RPs) or fingerprints, more accurately, The accuracy has 

increased by up to 25.8% when compared to using Euclidean Distance (ED) based 

Weighted K-Nearest Neighbours Algorithm (WKNN).  

Second, the use of MF measurements as fingerprints can overcome some additional 

RF fingerprinting challenges, as MF measurements are far more invariant to static and 

dynamic physical objects that affect RF transmissions. Hence, a novel fast path 

matching data algorithm for an MF sensor combined with an Inertial Measurement 

Unit (IMU) to determine direction was researched and developed. It can achieve an 

average of 1.72 m positioning accuracy when the user walks far fewer (5) steps.  

Third, a device-free or off-body novel location-driven ADL method based upon 2D 

Lidar was investigated. An innovative method for recognising daily activities using a 

Seq2Seq model to analyse location data from a low-cost rotating 2D Lidar is proposed. 

It provides an accuracy of 88% when recognising 17 targeted ADLs. These proposed 

methods in this thesis have been validated in real environments. 
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1  Introduction 

1.1 Motivation 

We are spending more and more time indoors within buildings than in the past because 

we work and live more indoors. Indoor spaces within buildings are becoming far more 

complex regarding size, heterogeneity, and as a result are becoming far more 

complicated to localise a person or physical asset, and to navigate within. Indoor 

location determination links increasingly to a range of related indoor Location-based 

Services (LBS), such as: 

• Locating a retail asset - how does someone navigate from position A to B to 

retrieve a physical item or to access a service at a location service Access Point 

(AP) (Chapter 3,4);  

• People tracking – for the owner of an indoor space to better understand better 

if the space is efficiently and effectively being used; for people to monitor how 

much physical exercise, what physical activities they do while working 

(chapter 5). 

• Ambient assisted living-monitoring or using ADL recognition for smart home 

or smart healthcare, monitoring in which rooms someone remains, i.e., is 

someone who needs home care, visiting the kitchen often enough to get food? 

(Chapter 6)  

The focus of this research is on the use of sufficiently accurate IPSs to enable a subset 

of IPS applications referred to as Location-driven ADLs (LD-ADLs). Although, some 

generic ADLs can be location-independent such as walking or standing, as can some 

sports activities such as running or cycling. Other ADLs are Location-Driven, LD-

ADLs, because the location enables the activity. Here are some examples. A 

warehouse, retail space or library primarily supports the ADL to locate, select and 

retrieve a physical asset such as a book or retail goods. Some sports involve specialised 

equipment or physical environment fixtures, e.g., playing table-tennis requires a table, 

Heating water for tea or coffee requires a heating element and power source.  
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The accuracy for location determination to recognise Location-driven ADLs varies 

depending on the type of indoor environment and application. In a retail space, the 

accuracy is needed to follow the correct path between shelving and to locate an item 

within an arm span, about 1.7m. Whereas in a smaller home environment a higher 

accuracy is needed (to 10 s or 100 s of cms) and a location context, e.g., this location 

is where the heating element for boiling water is. It can also involve motion 

characterisation and linking these together. Note also that some ADLs are more 

complex than they seem involving orchestrating several more atomic ADLs into a 

composite one, e.g., making tea can involve getting a clean mug, filling the heating 

element with water, doing some other activity while waiting for the water to boil, 

adding tea, pouring the boiling water, waiting for tea to percolate and then getting and 

adding any milk or sugar. 

To achieve the above goals, this research focusses first on how to improve IPS location 

accuracy in three heterogeneous physical environments, retail, office and a 

home/kitchen type space in order to explore how the type of physical space influences 

and constrains the type of IPS that can be accessed and used in each different type of 

space. Second, this research focusses on how location-driven ADLs can be linked to, 

and enabled due to, this better location accuracy.  

In some cases, the mapping of location to LD-ADL is simple and one-to-one, e.g., the 

layout of a retail space into parallel shelving lends itself to navigating and retrieving a 

physical asset. An appropriate location accuracy is vital because if customers cannot 

easily and accurately find their way to retrieve a physical item or to access a service at 

a service point, they may terminate the service interaction. Subsequently, service 

demand and revenue may decrease. This has a significant societal and economic 

impact. Physical store retailers can use accurately estimated locations to increase their 

profit margins, e.g., to manage shelf replenishment more efficiently, to avoid out-of-

stock incidents, and based on their analysis of shopper’s activities are then more able 

to offer customised promotions [1].  
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An office layout into desktops lends itself to doing desktop activities, commonly 

information-driven activities whilst seated. However, depending on the layout and 

design of the office, additional activities may also be enabled such as having small 

group discussions. Note it is not physically healthy to sit at a desktop for long periods 

and people may move as they require food and drink periodically. Hence, people in an 

office may walk around inside and outside of the office and eat and drink at their desks.  

Hence, there is a one-to-many mapping between location and LD-ADLs. 

Learning and recognising human activities is not only useful and essential for many 

indoor building services and user activities but is also an important indicator of both 

physical and cognitive well-being in healthy and ill humans, e.g., are people taking 

good care of themselves through eating, drinking and exercising periodically [2]? 

Hence, recognising ADLs in vulnerable people who do not work, whilst at home, is 

also important in these types of people. There is also a one to many mapping between 

some locations and LD-ADLs in this type of space too, e.g., someone may sit at a 

kitchen table to read, listen or watch audio and video feeds, to meet others or to eat 

and drink. 

1.2 Challenges 

LBS are information services that are accessible, often via mobile devices and wireless 

communication networks that exploit the ability to make use of the changing 

geographic position of mobile devices. One of the essential parts of LBS is the 

positioning system. However, unlike an outdoor LBS that uses a standard Global 

Navigation Satellite (Positioning) System (GNSS), IPS face different technical 

challenges in contrast to that of outdoor location determination. There is no one proven 

‘global’ standard Indoor Positioning System (IPS) that can be used reliably for all 

indoor LBSs. IPSs have employed a range of methods to estimate a user’s location, 

which is shown in Figure 1-1. This classifies IPS into proximity, inertial, geometric, 

finger-printing and visual (top row) with examples of such classes given in lower rows.  
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Figure 1-1 A taxonomy of methods of the most used IPS 

There are several reasons for the existence of such a range of IPSs. The coverage and 

density of APs that can be accessed in different physical environments vary, e.g., small 

homes may be covered by as little as 1 WiFi AP whereas an office space may be 

covered by 10 s of WiFi APs. Spaces are cluttered in different ways that can attenuate 

AP signals in different ways, e.g., a retail space that contains metal shelving can affect 

WiFi, BLE, MF and light signals severely.  

A higher location accuracy is often needed as physical assets tend to be packed closer 

together than outdoors physical assets; people move, and this increases the location 

determination error. There is no standard global spatial view or map, and a route plan 

that is accessible in a standard way. Similarly, indoor positioning methods have 

different limitations in different types of physical environment. For example, BLE 

trilateration based upon path loss methods (these can also be classified as geometric-

based methods) are unsuitable for Non-Line Of Sight (NLOS) spaces; BLE and WiFi 

fingerprinting methods are affected by solid attenuating objects, including human 

bodies between the RF transmitter and receiver. MF-based fingerprinting methods are 

less affected by attenuation but are most effective in a space that contains lots of 

magnetic anomalies. Optical-based methods require a line of sight, higher data 
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transmission to a server and a high computation data analysis capability in a server. 

Thus, even if different IPSs were compared in a single physical environment, that 

comparison would vary across different types of physical environment with different 

layouts as the structure of physical objects they contain varies, e.g., these attenuate RF 

signals to different degrees as used by RF based IPSs (see also Section 2.2.4). 

The capital and operational cost of installing and maintaining the IPS is also an 

important consideration. In some cases, a specific IPS infrastructure needs to be added, 

installed, to instrument a physical space by adding new types of APs to support that 

IPS service, e.g., BLE beacons. The type of AP determines how light and mobile they 

are and how they can be powered for how long. The physical layout determines where 

APs can be fixed and who has access to that space. Lightweight APs such as BLE 

beacons that are temporarily fixed are essentially untethered can be potentially 

removed by anyone who accesses that space. So, a trade-off needs to be made to select 

the right IPS. Moreover, even if we have ‘accurate-enough’ location determination 

results, how we analyse the data and use them to increase the application activity 

recognition accuracy is also a tough challenge.   

The main challenges of focused indoor positioning methods are as follows: 

⚫ Proximity sensors are the more accurate positioning results they can achieve, 

the shorter their range. However, the short the range requires many more APs 

to give an adequate coverage driving up the cost. 

⚫ Inertial Measurement Units (IMUs) are effective at differentiating different 

types of human motion but less so at determining relative distance from a 

known location because they need to integrate acceleration and speed to do 

this, and the error increases with distance. 

⚫ RF path loss models or RSSI trilateration methods are easy to use and can offer 

highly accurate positioning result when they are used in a free space building 

environment. However, these trilateration methods need to deploy many 

Access Points (APs) such as transmitters or beacons to achieve a high 
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positioning performance, and it will severely be affected if NLOS conditions 

happen, which makes those methods unsuitable for complex RF spaces where 

there are fixed and moving attenuating RF objects. 

⚫ Location fingerprinting methods that rely on processing RF signal strength to 

indicate the location are more suited for NLOS RF signal environments rather 

than those that use RSSI path loss mode-based trilateration, as the latter is more 

susceptible to errors due to attenuation from physical objects in the transmitter-

receiver path. For example, if a person holds an RF receiver is facing 180 

degrees away from the transmitter, the signals will be attenuated going through 

the body, and the received signal strength will appear as if the transmitter is 

much further away using a free-space RF propagation model. Moreover, users 

are using different smartphone receivers, so the heterogeneity of RF hardware 

in smartphone receivers can also increase the position determination error.  

⚫ Unlike typical WiFi or BLE location fingerprinting, another type of location 

fingerprinting method is one that uses MF measurements are relatively 

unaffected by moving humans, providing more time-invariant location 

information, which is better suited to aisle-like spaces, e.g., used by retail 

outlets. However, this needs to be combined with inertial sensors, e.g., 

accelerometer and magnetometer or gyroscope, to calculate the heading of the 

user, and it usually needs time and a vast number of computations to give 

convergence results. 

⚫ Device-free or off-body positioning methods, e.g., using a Lidar or camera, can 

achieve excellent positioning accuracy within 10 cm. However, it also faces 

different problems, for example, multi-person tracking and heavy arithmetic 

computation. It is affected by objects that block the line of sight and cannot 

localise a person behind a nearby physical block (NLOS). This kind of 

technique is also quite expensive and is more suited for scenarios that require 

a high-accuracy, such as healthcare, or automatic driving. Moreover, such 
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techniques will collect vast amounts of data, so how to store, transmit and 

analyse this for real-time LBS applications is also a tough challenge.  

For ADL recognition, there is also the following challenges: 

⚫ If traditional indoor positioning methods can offer accurate-enough estimated 

locations that can be used to recognise location-driven ADLs, e.g., go to the 

kitchen to cook dinner. 

⚫ How to minimise the privacy-intrusion through not directly or indirectly 

identifying individual users. 

⚫ How to collect and label a user’s valid location information and the 

corresponding activities. 

⚫ How to recognise human activities based on the analysed information, and if 

the interleaved ADLs can be recognised. 

1.3 Objectives, Focus and Limitations 

The focus of this research was problem-driven not solution-driven. Its focus was to 

investigate how indoor location-driven activities could be enabled in heterogeneous 

indoor environments using a novel, improved IPS designed for that actual indoor 

environment using the existing state of the art IPS as a baseline. The focus is on 

exploring the application of IPSs in three different types of physical environment 

where LD-ADLs occur that first inherently require an IPS to locate something as part 

of that LD-ADL, e.g., to locate an item in a library or retail like space with shelves. 

Second to identify the physical activities of people who are in an office type space 

where some type people spend a major part of their working life. Third to identify the 

ADLs that occur at home in a kitchen as indicators of physical health. Note also the 

type, ownership and access to the physical environment strongly influences the 

effectiveness of different IPSs that can be used and how they can be installed, operated 

and maintained in that environment and the repeatability of experiments to different 
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degrees. The focus of this research was not to compare the multiple IPS (BLE, WiFi, 

MF and Lidar) solutions in a single indoor environment to find out which of these is 

the most accurate for that one type of environment. Instead, this is added to further 

work as this requires an equipment budget. This PhD came with no equipment budget1.  

This thesis is concerned with indoor location determination methods in different types 

(Library Room, PhD Office, Kitchen) indoor environment, and how to improve their 

positioning accuracy, in order then to enable a higher location-driven ADL recognition 

accuracy. Although there is a wide range of indoor space structures existing, the 

objective of this thesis is on the use of three specific types of indoor space structures 

that are application driven.  

First, the focus is on retail-like space layouts, where items are organised along 

multiple, sometimes parallel, long corridors of person height shelving and the 

application aim is to locate an item on a shelf. The location accuracy needs to be of the 

order of an arm span, such that someone can be directed to where an item is and reach 

it within about 1.7 m from the shelf. Moreover, it is considered that users are usually 

carried smartphones, so a smartphone-based IPS is the first choice, instead of using 

additional specific devices. However, the smartphone hardware heterogeneity issue 

exists. So, a research question for this space concerns how to solve this issue.  

The second type of application and space is an office where work desks are organised 

as an open plan space but where one side of it has spaces for meetings and for preparing 

snacks and drinks. Here, the applications are not so much for the inhabitants to locate 

things as they should quickly familiarise themselves with the use of the space. It is, for 

example, more to do with the managers and owners of the space, for them to 

understand better if it is efficiently and effectively being used. Hence, the research 

                                                 

1 N.B., we bought about 55 Bluetooth beacons from another project grant, about 45 of these became lost in the 

library because of renovation and for other reasons. 
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question in this space concerns how to discriminate the activity routines (about 3 m, 

coarse-grained activity recognition).  

The third and final type of application space focus is on small home buildings where 

high location accuracy is necessary to discriminate between which landmarks for 

activities, e.g., fridge, sink, kettle, therein a user the host is nearby to. Hence, typical 

fingerprinting systems cannot offer such an accurate estimated location (less than 0.5 

m positioning accuracy to discriminative those mentioned objectives), so Lidar was 

used. Here, many home activities occur at furniture units that are on the periphery or 

walls of rooms. This type of space is also of interest as it tends to be used for example 

for sheltered human accommodation, i.e., for the elderly, those in rehabilitation and 

those recovering from severe depression. Hence, eHealth such as care in the 

community applications have the potential for a huge societal impact. It is of interest 

to carers if someone undertakes regular normal routine applications such as making a 

hot drink. If not, this could indicate a health state that needs to be addressed in some 

way. The research questions of this space concern how to accurate localise the user 

without jeopardising the users’ privacy and recognise their activities. 

Each of these spaces has different technical challenges, e.g., to do with security and 

privacy, to do with access and management of equipment such as APs, i.e., how and 

where APs can be located, etc. 

Generally, for the simplicity and elegance to organise different studies, and because of 

different practical constraints, e.g., lack of a large enough number of WiFi transmitters 

to use trilateration to determine the location in a home environment, different 

techniques were used for different IPS applications and spaces. Bluetooth and MF with 

inertial sensors were used for the library location study (as they are smartphone 

compatible, users do not need to bring other sensors); Lidar (high accurate and 

wearable-free) was used for the home environment; WiFi (plenty WiFi APs) was used 

in the office study. Proximity, Ultrasonic, LED (as shown in Figure 1-1), etc were not 

studied. Since RF infrastructures in two experiment testbeds were already deployed 

(WiFi APs), massively deploying devices as RFID, NFC tags, lights would be time-
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consuming and cost a lot for the maintenance work. Moreover, gaining the official 

permission of the space owner, in this case at work, i.e., the university, in order to 

deploy and replace lights (LED) is another barrier. 

Table 1 Details of each experiment in this thesis 

Testbed 

 (Type) 

Accuracy 

(Needed) 

Positioning 

Method 

Behaviour 

(Type) 

Recognition 

Method 

Library 

(Retail) 

< 1.7 m 

(Arm) 

BLE/MF+IMU 

Fingerprinting 

Locating & 

Retrieving Items 
---------- 

PhD Lab 

(Office) 

< 3 m 

(Path) 

WiFi 

Fingerprinting 
Multiple ADLs MD-DTW2 

Kitchen 

(Home) 

< 0.5 m 

(Object) 

2D Lidar 

Positioning 
Multiple ADLs Seq2Seq3 

Table 1 shows the details of each experiment. In the Library room, it was considered 

that since the user has mobile devices, location fingerprinting could be a good solution 

to offer arm span positioning accuracy. So it was adopted in this scenario; In the PhD 

office, as we only need to discriminate different paths, instead of localising a single 

position, so sequential WiFi fingerprints was used; In the kitchen, as it needs to 

discriminate between different things such as a table and a chair, the aforementioned 

location fingerprinting methods cannot offer such an accurate positioning result. 

Moreover, considering the privacy protection, Lidar was used.   

                                                 

2 For more details see Section 5.3. 

3 For more details see Section 6.3. 
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The first and second location fingerprinting indoor positioning studies and 

experiments occurred in Queen Mary University of London (QMUL) Mile End road 

campus Library, from 2015 to 2017. This researcher needed to use this shared public 

space owned by QMUL for the first and second studies. There were limitations in 

where and how Bluetooth beacons used as transmitters could be positioned and fixed 

in relation to the furnishings and fixtures, as permitted by the space owners. It was not 

possible to keep such tethered equipment in a public shared space securely, as they 

could not be permanently fixed and secured. For example, due to decorating work in 

the library, some beacons fixed to the ceiling went missing, and some of them were 

stolen. Also, batteries in the beacons needed to be replaced periodically, else these 

became non-operational. Each of these causes the set of fingerprints that are used to 

determine the location to change and hence to reduce the location accuracy. The 

maintenance of such an additional location-specific device infrastructure to remain 

fully operational is a significant overhead. Although, there are privacy and security 

concerns when monitoring people’s ADLs, because of limited time this was considered 

out of scope for this project. For example, even though 2D Lidar was used to detect 

ADLs and can protect users’ privacy as humans are not identifiable, however, the 

location data was not encrypted. 

Experiments were not carried in vast spaces (more than 500 m2), as it is hard to have 

permission to hold such experiments in my university. Some IPS beacons, e.g., BLE, 

also have a limited range (typically less than 10 m in NLOS scenarios). However, such 

large spaces can be considered as being clusters of smaller spaces [3], then those 

clustered spaces can be treated as several small spaces in which the proposed methods 

can be implemented. 

In this thesis, only some of the most used indoor positioning and machine learning 

methods were explored. There are several another positioning, and recognition 

methods that can be explored (see also further work, Section 7.2). For example, the 

library study, because of beacon maintenance issues, ended before CNN-based 

fingerprinting and MD-DTW-based ADL recognition could be applied to the library 
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data. However, KTCC and CNN location fingerprinting were tested in an office 

environment instead. 

1.4 Thesis Outline 

 

Figure 1-2 How thesis chapters are linked 

In this thesis, how to accurately localise a user before accurately recognising ADLs 

was first investigated.    

The start of the journey of this research was first driven by a problem to provide an 

IPS solution to support a core daily LD-ADL in a retail or library space, to navigate to 

and locate a physical retail or library item such as a book on a shelf. Before, 

researching and developing a solution for this, a comprehensive survey of the related 

state-of-art indoor positioning and recognition was undertaken (Chapter 2). 

As there is no single global IPS that works effectively for all indoor areas, e.g., 

although WiFi seems quite pervasive in some urban areas, WiFi coverage may still be 

quite patchy in some indoor locations for use as a proposed global IPS because there 

may exist areas where the existing number of WiFi APs is limited, e.g., the targeted 

library space under study in late 2016 to early 2017. Subsequently, instead of using 
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WiFi Location Fingerprinting
MD-DTW ADL Recognition
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Seq2Seq ADL Recognition
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WiFi APs in this first study, a wireless network of BLE beacons was deployed, and a 

RSSI ranking-based location fingerprinting method was investigated (Chapter 3, 

Study 1). This entailed planting a series of BLE beacons in a public space that were 

temporarily (insecurely) installed in easy to access locations. This study also 

considered the effect of heterogeneous RF receiver device hardware in order to 

improve location estimation accuracy.  

In study 1, it was found that for a BLE location fingerprinting system, there was a high 

cost to install and maintain this added IPS infrastructure to remain operational for it 

because of issues to do with the orientation, attenuation, security of insecurely or 

temporarily fixed beacons in public areas. This was not maintainable, and a large 

number of BLE beacons became lost. Hence, an alternative, far lower effort IPS 

installation was then investigated for this library indoor space, MF-based location 

fingerprinting method (FPM-MI) was proposed in Chapter 4 (Study 2). This exploits 

perturbations in the geomagnetic field caused by, e.g., structural steel elements in a 

building, to determine locations indoors. 

However, MF location fingerprinting method, as with other positioning methods, also 

has its own limitations: it does not scale well in terms of space size; it is time-

consuming to build the fingerprint map. Hence, another type of IPS was investigated 

that also required less time to build a location fingerprint map and to maintain it – as 

WiFi based system can be used in an area where there is good WiFi AP coverage and 

density. The proposed ranking method mentioned in Study 1 was also validated in this 

WiFi environment. Moreover, several location determination algorithms including AP 

selection, CNN classification and Extended Kalman Filter (EKF), were proposed in 

Chapter 5 (Study 3a) to further increase the positioning accuracy of such a wireless 

RSSI location fingerprinting system. Also, in this chapter, a coarse-grained ADL 

recognition method using Multi-Dimensional Dynamic Time Wrapping (MD-DTW) 

is described (Study 3b).  

Finally, some spaces may have poor WiFi AP coverage, especially in home 

environments, and there exists a requirement to maintain on-body devices which may 
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be problematic for some types of end-users (see Section 2.2.1). Hence, a 2D Lidar 

positioning system that uses Density-based Spatial Clustering of Applications with 

Noise (DBSCAN) was developed, which is off-body or device-free. The system can 

offer centimetre-level location results (Chapter 6, Study 4a). A state-of-art deep 

machine learning model (Seq2Seq) is also introduced, which was adopted for fine-

grained ADL recognition (Study 4b). The only drawback of using this system is that 

it requires a line of sight environment. 

Finally, the last Chapter discusses insights, gives conclusions and outlines possible 

avenues for further work. 

Table 2 A preview of different studies in this thesis 

Study No Type IPS 

Implemented Positioning Algorithm 
ADL 

Recognition 
AP 

Selection 
KTCC CNN EKF FPM-MI DBSCAN 

1-LD Library BLE  √     Single 

2-LD Library MF     √  Single 

3a-LD 

3b-REC 
Office WiFi √ √ √ √   

Multiple 

(MD-DTW) 

4a-LD 

4b-REC 
Home Lidar      √ 

Multiple 

(Seq2Seq) 

Table 2 gives a preview of the different studies described in this thesis to understand 

the structure of this thesis better. LD is short for location determination. REC is short 

for LD-ADL recognition. 

Although several improved indoor positioning methods (BLE, WiFi, MF and Lidar) 

have been proposed, only simple, single, location-driven ADLs were investigated 
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using BLE and MF measurements, e.g., to retrieve a physical asset. In contrast, WiFi 

and Lidar-based positioning systems were investigated to recognise more complex, 

multiple location-driven ADLs.  
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2 Literature Survey  

2.1 Introduction 

Indoor positioning methods are reviewed in Section 2.2. Section 2.3 reviews the 

primary human activities recognition methods. A summary of the analysis is given in 

Section 2.4. 

2.2 Indoor Positioning Methods 

Table 3 Comparison of each positioning methods 

Methods Advantages Disadvantages 

WiFi (Location Fingerprinting) Widely available 

Low coverage areas exist 

Heavy collection effort for 

Radio Map 

BLE (Location Fingerprinting) Easy to deploy 

Beacons are unsecure  

Heavy maintenance effort 

for beacons 

Heavy collection effort for 

Radio Map  

BLE Path loss model Easy to deploy Lower accuracy  

MF (Location Fingerprinting) Ubiquitous 

Heavy collection effort for 

Radio Map  

Not scalable to large areas 

Pedestrian Dead Reckoning (IMU) Ubiquitous Error accumulation 

RFID/NFC (Proximity) Cheap Not scalable to large areas 

Lidar, UWB (AOA/TOA/TODA)  High accuracy 
Lidar affected by NLOS 

Can be costly 

Camera/LED (Recognition) Higher accuracy 
High computational cost 

Privacy invasion 
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Multiple IPSs, as shown in Figure 1-1 have been developed because of the lack of any 

Global Navigation Satellite System (GNSS) that works effectively indoors. Table 3 

gives an overview of the advantages and disadvantages of each method.  

The most popular IPS is a WiFi-based positioning system as it makes use of already 

deployed wireless AP infrastructure of transmitters and common smartphones as 

receivers to determine the position. It is infrastructure-free in the sense that no 

additional infrastructure for positioning needs to be added as the same one that is used 

for wireless local area networking, is used for positioning. Similarly, Bluetooth, e.g., 

BLE, is currently another widely used wireless indoor positioning technology that also 

operates in the 2.4 Gigahertz spectrum that is inexpensive and energy efficient. BLE 

enabled receivers, such as smartphones BLE beacons, e.g., iBeacon, or transmitters 

comes into range (typically less than 10 m in NLOS scenarios). Bluetooth is not 

infrastructure free, in the sense that it is primarily installed for IPSs. However, both 

IPSs need the radio map with corresponding updates, e.g., the layout is changed. But 

as these are the two most common IPSs, they both are the primary positioning systems 

under investigation.   

However, using WiFi or BLE methods for an IPS is challenging as RF transmissions 

at low GHz frequencies are severely affected by attenuation due to the changing 

orientation, the number of moving humans, and other static solid objects such as metal 

furniture between RF receivers and transmitters. Furthermore, such RF methods 

depend on a deployed infrastructure of a fixed topology of RF transmitters, whose RF 

coverage may be variable, creating black spots where there are only weak or no RF 

signals, thus limiting the location accuracy. Hence, these methods still have an average 

accuracy beyond an arm span. Accordingly, more RF received signal invariant 

techniques could overcome this issue and achieve a more accurate IPS. Hence, this is 

in part a driver for techniques that are less invariant to RF attenuation effects. For 

example, MF measurements have been investigated and combined with inertial sensor 

measurements (e.g., with a digital compass to give the bearing). This type of IPS is 

barely influenced by humans and furniture [4]. Its other benefits are that also no 



18 

 

infrastructure requires to be deployed in the area, and location can be determined using 

a normal smartphone.  

Another type RF positioning system, e.g., UWB, a high accuracy positioning solution, 

uses narrow pulses to transmit information, which makes it less affected by multipath 

propagation effects. However, it can be affected by other wide spectrum devices if 

misconfigured, e.g., digital TV [5]. Moreover, as UWB positioning systems are also 

not an infrastructure free system, which means the transmission range, a number of 

deployed UWB devices and battery life need to be considered. UWB systems are 

usually expensive if scaled to large areas [6, 7]. RFID and NFC are also popular RF 

positioning choices, as they are cheap positioning solutions, which small tags that can 

be taken by people to be tracked. However, the proximity and absolute positioning 

techniques need numerous infrastructure components installed and maintained in the 

system working area [8]. 

There are other non-RF methods:  

1) An ultrasonic positioning system that uses ultrasonic technology and 

triangulation location technique to measure the location of a tag carried by a 

person, which can offer a high positioning accuracy. However, the 

performance of this technology is influenced by the reflection and obstacles 

between tags and receivers, which degrades the system accuracy. Moreover, 

like the UWB system, it is time-consuming to deploy and maintain such a large 

number of ultrasonic sensors [9].  

2) A camera positioning system can use a single camera that covers a large area. 

However, it is privacy-invasive and needs a vast amount of computations to 

estimate the location. Moreover, the system is not reliable in a dynamic 

changing environment. Since the positions are based upon the saved vision 

information, this needs to be updated due to changing in the environment such 

as changing the place of your desk in your office [6].  

3) LED positioning system uses Visible Light Communications technology [10] 

to send unique codes to the cameras on smartphones, which can achieve a high 
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positioning accuracy. However, as it requires specialised LED lights, these 

tend to be a better fit for new building or refurbishments. 

4) A 2D Lidar IPS offers the benefit of being very accurate to determine the 

position. Off-the-shelf 2D Lidar positioning systems used to be expensive and 

are highly-integrated platforms that cannot be modified to support new 

applications as they are insufficiently open and flexible to be configured or 

programmed to support different ADL recognition. However, the price of 2D 

Lidar has become more affordable recently, and some are also now more open 

for third-party application development.  

Figure 2-1 is a schematic that shows the additional infrastructures requirements to 

support an IPS, e.g., to install transmitters with respect to positioning accuracy of each 

IPS technique.   

 

Figure 2-1 A rough infrastructure (existed) requirement to change the infrastructure 

to support a positioning system versus the positioning accuracy of each technique (x-

axis, presented as a log scale). 

javascript:;
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2.2.1 Location Fingerprinting using BLE/WiFi RSSI 

A simple way to estimate indoor location is using the RF signal path loss model via 

smartphones. Previous work [11-14] show such methods can provide a 0.53–3.5 m 

positioning accuracy. However, all these experiments were carried out in free space 

areas without considering the complex structure in the indoor environment where there 

is more likely to be RF attenuation, interference and multipath effects. As mentioned 

previously, WiFi is the most common smartphone-based positioning methods, as WiFi 

routers are already deployed in most places such as education campuses, businesses, 

communities, and public facilities. However, the accuracy of general WiFi-based 

positioning methods is not accurate enough [15] to offer a typical arm span location 

accuracy of about 1.7 m for applications such as finding a book or item on a long 

library or retail outlet shelf. This can be compounded by coverage of an insufficient 

number of effective APs in some areas [16].  

There are also several kinds of algorithms that can be used to process the transmitter 

and receiver data in order to determine the location, users, e.g., Gansemer et al. [17] 

present a fingerprinting approach based on Euclidean distance (ED). The algorithm 

uses four threshold parameters to adapt the calculation to the specific measuring 

environment. Zhuang et al. [18] present an approach by combining the channel 

separation polynomial regression model, fingerprinting, and extended Kalman 

Filtering for indoor positioning. Ladd et al. [19] present an approach for positioning 

using a Bayesian inference algorithm. However, most current methods do not consider 

the impact of the WiFi/BLE RSSI variation caused by different radio RF receiver 

circuits [20] embedded in smartphones. As there is no standard for the RF receiver that 

uses different designs of antenna and RF front-end, this could lead to different RSSIs 

being received in the same location [21], which would decrease the positioning 

accuracy. There is some existing work concerning how to mitigate the hardware 

variance problem as follows. Another system proposed in [22], applies unsupervised 

learning for mitigating against heterogeneous RSSI hardware in RF-based 

fingerprinting, which can also improve the location accuracy. However, it needs an 

additional data pre-processing procedure using the Expectation–Maximization (EM) 



21 

 

algorithm [23] to optimise the estimated locations when the radio map is updated. Yaqi 

et al. [24] also looked into the hardware heterogeneity issue and proposed to use the 

Spearman Correlation Coefficient to improve the positioning accuracy. Although this 

improved the positioning accuracy, the validation results were from a simple 

simulation experiment. 

Moreover, with deep learning and reinforcement learning gaining popularity, an 

increasing number of indoor position methods using deep learning have been proposed 

recently. Wang et al. [25] proposed a deep learning based DeepFi positioning method 

using Channel State Information (CSI), which can achieve a 1.8 m average positioning 

accuracy. However, a CSI supported specific network card Intel 53004 is required, 

which cannot be used by smartphones. Zhang [26], also used deep learning,  pre-

trained using a stacked denoising autoencoder to localise users, and claims that it can 

lead to substantial improvement on localisation accuracy in coping with turbulent 

wireless signals. However, it may still be affected by the hardware heterogeneity issue. 

[27] proposes to use semi-supervised deep reinforcement learning in support of IoT 

services – positioning for instance, which can use unlabelled data to train the model. 

However, different measurements from different smartphones may wrongly be 

labelled when using semi-supervised learning. 

2.2.2 Location Fingerprinting using MF measurements 

Unlike RF-based methods, MF measurements location fingerprinting methods are not 

influenced by RF multipath effects yet still use sensors integrated into a typical 

smartphone. [28] used the Nearest Neighbour (NN) for localisation by matching 

                                                 

4  For more details: https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-

wifi-link-5300-brief.pdf. Last accessed in Sep/2018 

 

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf
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measurements collected from a wearable badge which consists of four magnetometers. 

This method does not need to use Pedestrian Dead Reckoning (PDR) to estimate the 

walking distance and direction. However, a large amount of MF measurements needs 

to be collected, and it uses four MF sensors. [29] proposed an IPS using a Particle 

Filter (PF) algorithm, which demonstrates that this is a feasible scheme for indoor 

positioning. [4] proposed an improved PF algorithm to reduce the computational cost 

using fewer particles with similar intensities of terrestrial magnetism rather than 

multiple particles. However, the estimated location accuracy of the first several steps 

is not accurate. [30, 31] presented a multi-source and multi-variate dataset consisting 

of multiple-sensor measurement, e.g. signal strength from WiFi, PDR, and MF 

measurement, which can be fused to enable more accurate positioning information. 

These works that have explored using MF measurements combined with inertial sensor 

measurements as observations for PF algorithms to improve the estimation of the user 

movement, provides a 1.1 - 2.0 m positioning accuracy. However, existing PF 

algorithms have several disadvantages: they are computationally expensive; are less 

suitable for use in non-networked, low resource devices when needed for near real-

time location-based decision-making; measurements need to be linked to the actual 

ground truth location, and this needs to be trained, increasing the computational 

complexity; the estimated location accuracy of the first several human steps is not 

accurate as PF algorithms need time to converge, typically this takes about 16 steps or 

about 9 m [29]. 

2.2.3 2D Lidar Positioning 

As the main purpose of 2D Lidar positioning system is to offer high accuracy location 

determination, which is then used for recognising activities, this will be introduced in 

the following Section 2.3.2. 
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2.2.4 The Need for Multiple IPSs 

Table 4 Summary of representative examples of the accuracy of different IPSs and 

their drawbacks 

Authors Techniques Accuracy Drawback 

Rida [12] BLE (TOA) 1 m Prone to interference 

Faragher [32] BLE (Fingerprinting) 4.8 m Affected by heterogeneity 

Gansemer [17] WiFi (Fingerprinting) 3 m Affected by heterogeneity 

Kim [4] MF (Fingerprinting) 2.8 m High computational cost 

Pratama [33] IMU (PDR) 1.4 m Error accumulation 

Berkovich [31] WiFi/IMU (Fusion) 1.5 m High computational cost 

Chen [34] Ultrasonic (TOA) 1 cm Uses specialised receivers 

Tiemann [35]  UWB (Geometric) 10 cm Uses specialised receivers 

Wang [36] RFID (Proximity) 11 cm Uses specialised receivers 

Jiao [37] Camera (Recognition) 1.37 m Privacy-intrusion 

Kou [38] LED (Recognition) 10 cm High computational cost 

Regarding IPSs, Table 4 summarises the accuracy and drawbacks of existing systems. 

BLE (TOA) has a good accuracy in free space or uncluttered areas but is prone to RF 

interference and attenuation from objects making its accuracy far worse. BLE or WiFi 

(location fingerprinting) both are affected by heterogeneity of RF receiver, e.g., in 

smartphones. However, WiFi can also be computationally costly to calculate the 

position depending on the algorithm used. IMU (PDR) can give a good accuracy, but 

the error accumulation increases rapidly away from a reference point at a known 
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location, meaning this is quite a short-range technique. Multiple sensors can be fused 

to increase accuracy, e.g., WiFi and an IMU but this incurs a higher computational 

cost. Use of ultrasonic, UWB, RFID can give a much higher accuracy. However, this 

uses more specialised receivers than standard ones such as mobile phones. 

Additionally, specialised transmitters need to be added to, and maintained in the 

infrastructure; such devices may be costly, e.g., for UWB. Camera systems can 

determine the location, but they are privacy intrusive for humans. This table also shows 

that most location fingerprinting systems can only achieve 2 to 3m accuracy. More 

detailed information about the accuracy and applications of some different IPSs, 

including commercial ones, can be found in Appendix A. In terms of Table 4, BLE, 

Wi-Fi, MF and Lidar type IPSs have the main benefit that they are not so privacy 

intrusive and are low cost for IPS users - either they can use a standard receiver that 

many users already have, e.g., in a smartphone, that is often considered indispensable 

in the current information age, or they are device free in that they don’t require humans 

to have a receiver. Hence, these were selected for further study in the next chapters to 

consider how their location accuracy can be further improved. 

Because no single standard ideal global Indoor localisation and navigation system 

exists, users must cope with different and varying localisation techniques and 

infrastructures. In addition, different built-up environments have different physical 

constraints support, different modes of locomotion and activities, and thematic or 

logical restrictions like security zones have to be considered. Hence, thus far, a range 

of models for structuring indoor space and localisation methods have been proposed. 

Often localisation technology and sensor characteristics are mixed within these models 

which has the disadvantage that changes to the building structure or sensor 

configurations may affect the entire model. Hence, [39] conclude the following 

minimum requirements for a flexible data model supporting indoor navigation: 

Support for different and multiple localisation methods/infrastructures; Support for 

different navigation contexts; 3D topographic representation of the interior built 

environment (this 3rd requirement is left for future work as the experimental studies 

for this work were undertaken in smaller 2D spaces). [40] ascertain that Indoor 

Positioning Systems (IPSs) will be indispensable in healthcare systems. They also 



25 

 

highlight that of the many IPSs that have been proposed in literature, most of these 

have been evaluated in non-representative environments such as office buildings rather 

than in types of physical spaces where health is monitored such as hospitals (and home) 

that have a differnet physical space topology that affects the location accuracy. 

2.3 Human Activity Recognition Methods 

A second major complementary focus of this thesis is on ADL recognition, which is 

also referred to as Human Activity (HAR). The specific focus is on location-driven 

ADL recognition as the target indoors locations are application-driven.  

2.3.1 ADL Recognition using WiFi 

There are a variety of methods to recognise human activities. However, each of them 

has its limitations. Vision-based methods including video [41] and camera [42] have 

achieved much progress yet face problems of being computationally intensive are 

privacy invasive and are affected by external environmental conditions such as light 

and line of sight conditions. Recognition methods that use wearable sensors [43, 44], 

e.g., accelerometer, are widely applied for fine-grained activities recognition. 

However, the weakness is that they cannot accurately determine the location for 

location-driven activities. RF-based methods such as CSI can capture the changes in 

the radio environment caused by activities. However, they are easily affected by other 

interference sources. Compared to these methods, RF location fingerprinting is less 

affected by NLOS constraints and are less privacy-invasive. Due to the mass use of 

smart devices and densely distributed WiFi routers, WiFi-based location positioning 

and human activity recognition methods are also receiving more research attention in 

recent years. Several WiFi-based activity recognition methods have been proposed as 

follows, including WiFi CSI [45], Doppler Shift [46] and high-frequency RSSI [47]. 

However, little work employs using WiFi location fingerprinting to recognise ADLs.   

The use of WiFi CSI is one such technique that can be used for ADL recognition, e.g., 

E-eyes [48], CARM [49], WiKey [50] and WiFinger [51]. The principle of CSI-based 
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sensing is to make use of channel information in the time and frequency domain, e.g. 

amplitude and phase of each subcarrier at each timestamp and leverage how these 

features change, caused by human activities within the range of transceivers. By 

collecting and extracting features at a training stage, researchers are able to match 

features during testing with those in the training database to infer human motion. 

However, CSI-based methods rely heavily on a relatively stable RF environment (e.g. 

single occupant and no furniture movement). Each environment change would trigger 

an activity profile updating procedure, or it may fail to work. There are also some 

efforts to use detailed physical layer measurements such as Doppler shifts to detect 

human activities such as Wi-Vi [52] for coarser movements and WiSee [53] and 

WiTrack [46] for fine-grained gestures. Because human motion can lead to a pattern 

of Doppler shifts at the wireless receiver, more specifically, a positive Doppler shift 

while moving towards the receiver and a negative Doppler shift while moving away 

from the receiver. Doppler shifts can be mapped to human activities using Doppler 

shift extraction, segmentation and activity classification. However, specialised 

software and hardware are needed to extract Doppler features which results in an extra 

cost and is not suitable for off-the-shelf devices. [47], [54] investigated the feasibility 

of recognising activities by employing WiFi RSSI. The main idea of this work is to 

increase the RSSI sampling rate of a device to approximate the continuous changes of 

the signal affected by human movements. There are many requirements for using this 

kind of solution. Firstly, it requires modified WiFi firmware to obtain a sufficient RSSI 

sampling frequency which, however, is not applicable to most mobile devices. The 

second requirement is to set WiFi transmitters (or routers) in a known location where 

the WiFi signal can be interfered with by human activities. Also, the height of WiFi 

transmitters should be lower than a person’s height. These requirements limit its 

application in practical scenarios. 

Those continuous signal changes-based activity recognition methods share some 

fundamental limitations: they are easily affected by ambient conditions (e.g., multiple 

occupants) and require the use of specialised hardware (e.g., wireless card) which is 

not suitable for off-the-shelf smart receiver devices.  
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2.3.2 Other Location-driven ADL Recognition Choices 

The most popular IPS is either WiFi or BLE-based IPS. The BLE-based system can 

also be deployed in an inverted manner, where the subject wears a beacon with, e.g., 

an accelerometer and magnetometer, and fixed devices in the home receive the beacon 

signal strength and other sensor data from the person. Both WiFi and BLE estimate 

locations using forms of trilateration or by constructing a radio map before the location 

estimation and then matching the current signals to a set of locations in the radio map 

index by, e.g., the RSSI at the receivers. Inside a small home, trilateration does not 

provide good accuracy because of non-line-of-sight issues. Radio maps mitigate these 

inaccuracies, but due to the variations in the signal strength for both WiFi and BLE, 

the estimates still limit the accuracy, typically from 2 to 3 m which is too inaccurate 

and typically needs to be 1 to 2 orders of magnitude lower to differentiate the use of 

physical items such as sink, fridge or kettle in a small house. There is also the issue 

that the use of WiFi and BLE requires the user to carry an on-body device – they are 

not device-free for the mobile host. Some studies have shown that some target users 

such as seniors are more disinclined to use eHealth wearables [55]. There is also an 

issue that such wearables require a degree of maintenance such as recharging batteries 

to keep wearables operational and the need to remember to wear them or carry them 

continually, e.g., leaving on body receiver devices off body with others or in places 

whilst undertaking ADLs, generates false negatives. 

There has been much research investigating how to improve the ADL recognition 

accuracy. For example, the works of [56, 57] demonstrate the benefits of using a hybrid 

approach. [56] deploys BLE in the home using inverted RSSI fingerprinting, step 

counting, magnetometers and focuses on detection of moving path segments (using 

Dynamic Time Warping - DTW) or stationary waits or stays, often referred to as Stay 

Points, or Landmark Places. This has achieved a high accuracy of recognition for 

elementary actions (simple trajectories which can infer actions). Their work also 

suggests that an activity-centric trajectory-based prediction model is a practical 

solution for location estimation in homes that can be extended to design a suitable 

user-friendly IoT application. This is achieved by populating the radio map using 
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sequential RSSI data collected along a pathway (e.g., whilst moving from couch to the 

dining area) or stationary positions (e.g., sleeping on the bed). The location is 

associated with an ADL. However, such a multi-sensor hybrid LBS still suffers from 

the same limitations as the WiFi and BLE methods in terms of insufficient location 

accuracy and require the use of wearables. 

Another ADL recognition choice is to use UWB, which has a high positioning 

accuracy of a few centimetres. Recent reductions in price and size of the transceivers 

make such a deployment, increasingly, a good choice at this time. UWB devices use a 

very large bandwidth and can transmit high data rates over short distances at very low 

power levels. It is not affected by the existence of other communication devices or 

external noise [58]. Although, it can be affected by other wide spectrum devices if 

misconfigured, e.g., WiMAX and digital TV [5]. Like Lidar, distance is estimated 

based upon time. For UWB, location estimation is based on Time difference of arrival 

(TDOA)-based algorithms or Time of arrival or flight (TOA)-based algorithms. The 

use of narrow pulses makes UWB very tolerant to multipath effects. Reflected pulses 

do not overlap in general, hence will not interfere. The systems use 'RAKE' receivers 

to capture energy from multiple paths in the same way as conventional direct-sequence 

spread spectrum receivers. However, despite the high positioning accuracy, it still 

requires the subject to wear a transmitter.  

The final type of off-body sensor that can be used to accurately determine location-

based ADL indoors is light-based: various cameras or a light detection and ranging 

(Lidar) system, which uses pulsed laser light and measures the TOA of the reflected 

pulses with a sensor, can be used. A major weakness with the use of cameras is that 

they are highly privacy-invasive. Until recently, Lidar devices were quite costly to 

purchase. There is also a range of Lidar devices that could be used for ADL such as 

flash Lidars that only face in a single direction [1D], line scanning sensors that swept 

a beam across a scene, taking measurements along a single [2D] plane and 3D Lidar 

[59]. Both 2D and 3D Lidar device can be designed to rotate 360 degrees. The major 

application of Lidar is for mobile unmanned vehicles and robots to track objects 

around them as they move [59] and to support collisions avoidance. To the best of my 
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knowledge, no work has looked at using off-body Lidar devices to recognise ADLs 

derived from accurate location determination, that can be used indoors as well as 

outdoors, and that uses Lidar devices that are 2D rather than 3D. 

In addition, selecting and deploying sensors to accurately measure object locations 

including people, and understanding how to analyse those activities associated with 

those locations, need to be considered. Understanding the activities of a person inside 

a home requires contextual and useful information related to their inherent 

surroundings, which can be mapped to an activity recognition framework. One 

approach to modelling ADLs is based on a task-specific and intention-oriented plan 

representation language such as Asbru [60]. It stems from the modelling of medical 

protocols and monitoring, the application of such protocols [61] and [62] have 

developed a recognition engine to detect ADLs that were modelled using Asbru from 

sensor events, principally RFID tags. The engine generated a range of possible 

compliant ADL task sequences from a stream of sensor data to determine the ADL 

being conducted along with an assessment of their possibility. Another way of 

representing and modelling high tier behaviour is workflows, such as using an 

augmented Petri Net [63]. However, workflows are too prescriptive in their ordering. 

If workflows are applied in dynamically changing environments, they require a large 

number of permutations to be explicitly enumerated. Workflows can scale poorly to 

cases where there are many possibilities, and this is often the case for goals performed 

by people [64]. In addition to scalability issues, it can be tough to manage the 

representation of priorities and ordering. Thus, more flexibility is required when 

modelling hierarchal ADLs. The Asbru language is a process representation language 

which has similarities to workflow modelling but has been designed to provide more 

flexibility than workflows. Asbru allows flexibility in how it can represent temporal 

events, namely their duration and sequence. ADLs have some attributes and 

characteristics which make them challenging to represent in a logical framework. 

These characteristics include the variable duration of the same task, variable ordering 

of the tasks, and overlaps with other ADLs. Techniques which attempt to map these as 

a flat structure are problematic because they are unable to model flexible scenarios, 
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such as interweaving ADLs. The ability to monitor interweaving ADLs is a crucial 

advantage over existing ADL modelling methods [65]. 

Table 5 Summary of representative examples of the accuracy of different ADL 

recognition and their drawbacks 

Authors Measurements Scenarios Drawback 

Sigg [47] WiFi RSSI Office room 

Not scalable to large areas 

Requires carrying a receiver 

Wang [66] WiFi CSI Living room Prone to interference  

Nguyen [67] MF Office room 

Not scalable to large areas 

Requires carrying a receiver 

Kwapisz [44]  IMU Indoor/Outdoor Requires carrying a receiver 

Naeem [61] RFID Living room 

Not scalable to large areas 

Requires carrying a receiver 

Tao [41] Camera Living room Privacy-intrusion 

For location-driven ADL recognition methods, most researchers only focus on how to 

improve the location-driven accuracy. However, such estimated locations could be 

used for more than just positioning – for ADL recognition. Hence, WiFi location 

fingerprinting, as an infrastructure-free method was chosen to explore coarse-grained 

ADL recognition, as it can use many more measurements (as there are many more 

APs), than MF measurements. 2D Lidar Positioning as a highly accurate positioning 

solution, which does not require the user to carry a sensor was also chosen to explore 

more fine-grained ADL recognition. 
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2.4 Summary 

This chapter presented literature reviews of indoor positioning and human activity 

recognition methods. The next chapter will introduce the first of the novel ranking-

based location fingerprinting methods. 
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3 BLE Location Fingerprinting 

3.1 Introduction 

The use of a more straightforward BLE RSSI path loss model is first discussed before 

the novel, more accurate, fingerprinting method, in Study 1 based upon KTCC, is 

described in more detail. The main reason for the path loss study experiments (Study 

0) was to study these effects in a simple free-space, in isolation from the more complex 

compound effects when these experiments are performed in a real cluttered space. The  

use of a path loss model for location determination was studied to more clearly 

highlight effects, such as the effect of RSSI loss with distance (which is well-known, 

see Section 3.2), the effect of smartphone or RF receiver orientation with respect to 

the receiver and the effect of objects in between the receiver and transmitter and the 

type of RF receiver hardware (this effect is less well-known). 

In wireless AP-based IPSs, BLE or WiFi RSSI location fingerprinting method is one 

of the most popular positioning methods, as the spreading use of smartphones (RF 

receivers, users do not need to carry additional devices) and the use of BLE or WiFi 

RSSI is ubiquitous in wireless systems, which is the main reason why BLE or WiFi 

RSSI was explored to determine the user location. 

The first wireless location fingerprinting study is to support finding an item, e.g., a 

book, location, navigation and retrieval type activity or service. This requires a  

location accuracy of about an arm-span. It was carried out in the QMUL Main Library, 

where at one time there were only a few WiFi APs that could be scanned (7 APs). So, 

the WiFi RSSIs in receivers was patchy in the area of study – this has since been 

rectified, but there was no time to repeat WiFi measurements in this space. Hence, the 

iBeacon device as a low-energy, low-cost and easy-to-deploy solution was adopted as 

the wireless AP to investigate RF RSSI measurement for location determination as the 

iBeacon topology and placement could be controlled. Moreover, considering that 

traditional WKNN using ED will be affected by the heterogeneity issue, a novel 

WKNN using KTCC with RSSI ranking was investigated. 
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3.2 Location Determination Using a Signal Path Loss Model 

3.2.1 BLE RSSI Path Loss Model Theory 

Power attenuation of an electromagnetic wave occurs when a signal propagates 

through space. This is also known as path loss. In this thesis, the relation between path 

loss and transmission distance have been analysed, based on a commonly used 

logarithmic model [68]: 

PL = 𝑃𝑇𝑥 − 𝑃𝑅𝑥 =  𝑃𝐿0 + 10 nlog10
𝑑

𝑑0
+ 𝑋𝑒           (3.1) 

where  

• PL is the signal strength after total path loss measured in Decibels at a distance 

𝑑 away from the transmitting end-device; 

• 𝑃𝑇𝑥 and 𝑃𝑅𝑥 represent the transmitting power and the received power;  

• 𝑃𝐿0 is the signal strength after path loss at the reference distance 𝑑0,  

• 𝑑 is the distance of the path;  

• 𝑛 is the attenuation factor;  

• 𝑋𝑒 is the normal random variable whose mean is zero. 

The expression can also be expressed as follows: 

𝑃𝑅𝑥(𝑑) = 𝑃𝑇𝑥 − 𝑃𝐿0 − 10nlog10
𝑑

𝑑0
− 𝑋𝑒             (3.2) 

𝑃𝑅𝑥(𝑑) = 𝑃𝑅𝑥(𝑑0) − 10 nlog10
𝑑

𝑑0
− 𝑋𝑒             (3.3) 

where  
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• 𝑃𝑅𝑥(𝑑)  is the received signal strength at a distance 𝑑  away from the 

transmitting end-device; 

• 𝑃𝑅𝑥(𝑑0) is the received signal strength at a reference distance 𝑑0.  

Based on the above expression, a linear least squares algorithm could be used to derive 

the expected parameters from the collected data of a test area (a free space-like indoor 

place). Based on [69], 𝑑0 is usually set to 1 m.  

Instead of training the path loss models for every type of different types of RF receiver, 

e.g., smartphone, which could result in different RSSI values in different types of 

receivers at the same location, using the above equations, a ready-trained distance 

measuring model can be adopted. Based on the empirical coefficient values for 

iBeacon devices from Android Beacon Library5, the distance 𝑑 can also be expressed 

as [70], which was adopted by us to measure the distance between the AP and the 

smartphone: 

𝑑 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1(
𝑃𝑅𝑋(𝑑)

𝑡𝑥𝑃𝑜𝑤𝑒𝑟
)𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡2 + 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡3        (3.4) 

where 𝑡𝑥𝑝𝑜𝑤𝑒𝑟 is the measured signal strength when d0 is set to 1 meter by the 

manufacturer (the txpower of the beacon is -51 dBm).  

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1, 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡2 and 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡3 are different and depend on which 

type of smartphones are being used. For example, the coefficients and equation for 

Nexus 5 are 0.4203, 6.9476 and 0.54992: 

𝑑 = 0.42093(
𝑃𝑅𝑋(𝑑)

−51
)6.9476 + 0.54992             (3.5) 

                                                 

5 For more details: https://altbeacon.github.io/android-beacon-library/. Last accessed in Sep/2018 

https://altbeacon.github.io/android-beacon-library/
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3.3 Study 0 Evaluation: Investigation of Path Loss Effects Caused by 

Distance, Body Orientation to Receiver and Attenuation on RSSI 

Location Determination 

3.3.1 BLE RSSI Path Loss due to Distance of Receiver 

A BLE-based signal path loss model was first tested before the location fingerprinting 

study was carried out, as it is a simple model which can be quickly implemented. This 

pre-experiment was carried out in a hall in QMUL campus (where it is empty). Hence, 

it is considered that this as a free space-like place. An iBeacon device was deployed in 

a fixed point, and RSSI measurements were collected 3 meters away from this beacon. 

 

Figure 3-1 The Bluebar iBeacon device (7.5 cm * 5 cm) 

Figure 3-1 shows the Bluebar6 iBeacon devices which was deployed in the library. 

                                                 

6 Available from bluesensenetworks.com in 2015-06 

file:///C:/Users/mzx/AppData/Roaming/Microsoft/Word/bluesensenetworks.com
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For BLE signals transmitted using three advertising channels (hopping in channel 37, 

38, 39) [16], the RSSI collected by a given device (Nexus 5) can vary up to 9.4 dB as 

shown in Table 6. 

Table 6 shows the estimated distance and error in the pre-experiment. 

Table 6 Estimated distance and error  

Sampling 

Times 

Averaged 30 s 

RSSI (dBm) 

Estimated 

Distance (m) 
Error (m) 

1 -70.2 4.425 1.425 

2 -74.2 6.245 3.245 

3 -68.1 3.688 0.688 

4 -64.8 2.772 0.228 

5 -67.6 3.531 0.531 

6 -73.1 5.684 2.684 

7 -70.4 4.502 1.502 

8 -67.9 3.624 0.624 

9 -67.3 3.441 0.441 

10 -71.1 4.784 1.784 

Data from the Nexus 5 

Average Error 1.315 (m) 

Standard 

Deviation 
1.016 (m) 

Based on the above results, 3 meters away (it is considered that users are usually 3 

meters away from deployed devices) from a beacon can lead to 1.315 m averaged 

distance estimation error, which for the library book searching system may mislead 

users to the wrong bookshelf. 
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Furthermore, this pre-experiment was just carried in a free space-like area without 

considering the signal attenuation caused by human body absorption, the movement 

of people in real time, and the complicated layout of the space in the library with walls 

and metal bookshelves. Hence, using the signal path loss model to estimate locations 

in real-world locations and spaces was abandoned. Instead, the free space path loss 

model was used to first investigate, isolate and highlight the effect of RF receiver and 

the effect of human body orientation and attenuation on location determination.  

3.3.2 BLE RSSI Variation due to Different RF Receiver Types 

 

Figure 3-2 Comparison of BLE RSSI values for different smartphones at the same 

position and orientation 

WiFi RSSI fluctuations can be caused by specific attributes of the hardware and by 

spatiotemporal properties. This also occurs with BLE RSSI [16, 20, 71]. As the BLE-

based RSSI location determination was used, the stability of its RSSI needs to be 

tested. To test the RSSI variation, some measurements were collected out in a free 
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space area (same place where the Section 3.3.1 path loss model pre-experiment was 

carried out) by different RF receivers. The signal strength was simultaneously 

measured by different pairs of mobile devices, 3 meters away from the stationary 

(transmitter) beacon. According to a related study [16], 10 Hz beaconing rates and 

using a mean filter to process the batch data at a normal walking pace can produce 

good RSSI profiles. Thus, the same setting was used in the following experiments. All 

the smartphones were put in the same position and orientation and equipped with the 

Android 5.0 OS. For each pair of devices, the respective RSSI values are shown in 

Figure 3-2.  

In Figure 3-2, the x-axis shows the sampling time (each time 30 s); the y-axis shows 

the RSSI averaged over 30 s. It also indicates that the RSSI measured by different 

types of mobile phones are different (up to 6 dB) at the same position and orientation. 

There are even differences between different smartphones (same type) from the same 

vendor (see right graph in Figure 3-2). This is caused by variations in the RSSI RF 

hardware in different smartphones. Therefore, it is proposed to use the RSSI ranking 

as the fingerprint instead of the raw RSSI measurements as from the Figure 3-2, these 

can be seen that they vary and follow a similar trend. 

3.3.3 BLE Human Body Signal Attenuation and RF Receiver Orientation 

The human body is a good absorber for 2.4 GHz radio signals; Figure 3-3 shows that 

the measured signal strength absorbed by the human body results in an average of 9 

dB reduction in a free space area. This also demonstrates that the path loss model will 

be affected by human body signal absorption, which decreases its location accuracy.  

The issue is also faced by using other fingerprinting methods at the same frequency, 

e.g., WiFi. When RSSI is measured when a human body and the RF receiver held in 

front of it, are facing the RF transmitter, the signal is greater than when the human is 

facing directly away from that transmitter, with his or her back to the transmitter.  

Considering multiple iBeacon devices were deployed in the library. Hence, [72] 

proposed to use RF fingerprint collected four times in four orientations (N, E, S, W) 
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at each location RP in the radio map to mitigate the distortion caused by the human 

body to increase the location accuracy. This technique was adopted by the Study 1 

experiment, the detailed radio map design and validation is proposed in future work 

(see Section 7.2.1.1) as it could mitigate the distortion caused by the human body, in 

turn, increasing the location determination accuracy.  

 

Figure 3-3 Human body reduces the BLE RSSI because it attenuates the RF signal 

3.4 Wireless Location Fingerprinting Methods 

The geometric-based BLE or WiFi positioning methods above rely on simply 

measuring the distance between Mobile Station (MS) and Base Station (BS) using 

RSSI. Because of multipath effects and attenuation of physical objects in the 

transmitter to receiver path, such measured distances are usually inaccurate (see 

Section 3.3.1) in real cluttered spaces, e.g., in a retail-like space. Hence, next the use 

of wireless RSSI location fingerprinting was investigated to support a more accurate 

positioning system compared with the use of a simple path loss model, as the 

complicated indoor spaces will seriously jeopardise the accuracy of such geometric-

based methods. Also, considering the signal strength received by the wireless radio 
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controller embedded in different smartphones could be different, the proposed method 

seeks to improve the positioning accuracy, by being independent of the RSSI hardware 

in smartphones. One novelty of the method is that it is based upon KTCC and uses 

Weighted K-Nearest Neighbours Algorithm (WKNN) to correlate the position with a 

signal strength ranking of multiple low-power iBeacon devices. 

The basic idea of location fingerprinting method is by matching a measurement value 

vector of an unknown place to the pre-recorded fingerprint measurements database, 

namely, the fingerprint map. Moreover, such fingerprints implicitly are affected by the 

multipath effect, which makes it reliable in complicated spaces and could offer a higher 

positioning accuracy than a path loss model. 

 

Figure 3-4 Two phases of the location fingerprinting method 

Figure 3-4 illustrates two phases of general location fingerprinting methods. The 

arrows mean the flow direction of each step in this figure. 

Generally, there are two phases in location fingerprinting. In the training phase, 

fingerprints (BLE or WiFi RSSI from APs, or MF measurements) are collected in pre-

defined locations (RPs), which are used to create a pattern database in the target area. 

Radio/MF 

Map

Offline Training Phase

Search the Closest 
Matches

Online Positioning Phase

Location 
Determination

Collected Measurements 
from Unknow Location

Collect RSSI/MF 
Measurements in 
Known location
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Such fingerprint databases are also named as an RSSI radio map or MF map depending 

on the type of the collected measurements. 

3.4.1 Wireless Location Fingerprinting using ED (WKNN) 

In the online positioning phase, as the baseline positioning method, location 

fingerprinting using ED is first introduced here. The ED is usually used to determine 

and match the closest RPs in the radio map to estimate the location. It can be expressed 

using the following equation: 

EDi = √∑ (𝐴𝑉𝐺_𝑅𝑆𝑆𝐼𝑖
𝑗
− 𝐴𝑉𝐺_𝑅𝑆𝑆𝐼𝑚

𝑗
)
2

N
j=1              (3.6) 

where E𝐷𝑖  is the Euclidean distance, the distance between a Measured/Test Point 

(MP/TP) and a RP. AVG_RSSIi is the averaged RPi
′s RSSI vector in the pre-recorded 

radio map database. AVG_RSSIm is the averaged RSSI vector of a measured point, 

and N is the number of observed APs.  

Then, the following equation (3.7) is used to estimate the coordinates of the TP 

(estimated location) based on WKNN [73], as a shorter ED should have a higher 

weight. K was set to 3 in Study 1, but it can be iterated to find the optimal one (see 

Section 5.4.1.2). (x, y) are the Cartesian coordinates of the selected RP: 

(x̅, y̅) = 
τ1

∑ τk
1

(x1, y1)+ 
τ2

∑ τk
1

(x2, y2)+…+ 
τk

∑ τk
1

(xk, yk)          (3.7) 

where k is a user-defined constant to pick the nearest RPs based on ED, τ is the 

corresponding reciprocal of the ED between a MP and a RP. 
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3.4.2 Wireless Location Fingerprinting using KTCC (WKNN) 

3.4.2.1 KTCC 

WKNN using ED distance measurement is a common algorithm to find the closest 

matching RPs. However, the type of the smartphone used to produce the radio map 

may not be the same one a user uses later for location determination, leading to RSSI 

differences at the same position and orientation. To mitigate against this hardware 

heterogeneity issue, RSSI ranking of multiple beacons is used as they follow a similar 

ranking trend irrespective of the smartphone type. 

The proposed ranking-based method follows the phases shown in Figure 3-4. The main 

difference is that I use KTCC [74] to measure the distance, as it can measure the ordinal 

association between two measured quantities (two RSSI ranking vectors). 

 

Figure 3-5 Concordant and Discordant pairs in the KTCC procedure 

The definition of KTCC is expressed as equation (3.8) or (3.9): 

  τ1 =
(number of concordant pairs)−(number of discordant pairs)

n(n−1) 2⁄
         (3.8) 

τ2 = 1 −
2(number of discordant pairs)

n(n−1)
                   (3.9) 
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where n is the number of APs, and the higher 𝜏 is, the higher ordinal association 

between two quantities, which means the closer they are.  

The Pseudocode to Calculate the KTCC 

Algorithm 3.1: How to calculate KTCC τ2 

Requires:  

A = {RSSIm,j…RSSIm,n}, B = {RSSIi,j…RSSIi,n} 

Return: 𝜏 

Procedure 1: 

Sort Algorithm(A):  

Sort the measured RSSI values in descending order 

if A[j] > A[j-1] 

or using probability comparison (mentioned in Section 3.4.2.2) 

        exchange A[j] and A[j-1] 

Procedure 2: 

binarySet(A):  

Acquire the binary sets of A and B 

Set set = new Set 

Collections of unique elements 

for i = 0 to length(A) – 1 

for j = i+1 to length(A) 

           set add Beacons’ serial number of A[i] and A[j] 

return set 

Procedure 3: 

reversions (set A, set B)):  

Get the number of discordant pairs 

reversions = 0 

for element c in set A: 

if (B do not contain c) 

           reversions ++ 

return reversions 

Procedure 4: 

𝚻(reversions):   

Get the result of KTCC 

return 𝜏 = 1 - 2.0 * reversions / (length(A) * (length(A) - 1)) 
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Then, the rest of procedures of estimating a location are the same as for the ED one, 

using WKNN. The only difference is that the weights are calculated by using equation 

(3.7). There is no need to calculate the reciprocals of using ED, as the higher 𝜏 

(KTCC), the closer they are. 

3.4.2.2 Probability Comparison 

As RSSI ranking is used as the training input rather than using the raw RSSI 

measurements, instead of using ED with RSSI measurements to compare which is 

stronger in the pairwise APs, a joint distribution is used. Let A represents the random 

variable for the RSSI values of AP A in the chosen time frame, and B the 

corresponding random variable for AP B. Assuming the APs are independent, if 

P(𝑅𝑆𝑆𝐼𝐴>𝑅𝑆𝑆𝐼𝐵)>0.5, then AP A is chosen. More specifically if S1 is the set of RSSI 

measurements of AP A and S2 the set of RSSI measurements of AP B in the time 

frame sampled. 

P(𝑅𝑆𝑆𝐼𝐴 > 𝑅𝑆𝑆𝐼𝐵) = ∑ (∑ 𝑃(𝑅𝑆𝑆𝐼𝐴 = 𝑗𝑖
𝑗=−∞ ) ∗ 𝑃(𝑅𝑆𝑆𝐼𝐴 = 𝑖)∞

𝑖=−∞    (3.10) 

As RSSI values fluctuate over time, it is better to use a probabilistic approach [75]. 

3.5 Study 1 Evaluation: BLE Location Fingerprinting 

3.5.1 Library Testbed Setup  

Figure 3-6 shows the ground floor of the QMUL Main Library. The yellow area is the 

target area. Different IPSs could be used with different levels of effectiveness in 

different areas. For example, in the lobby (area A), it could use a path loss model, as 

it is like a free space area, people can easily find the target. In the teaching collection 

room (area B), the layout of this space mimics the layout found in many physical retail 

spaces that store products in shelving with aisles between them. A vital issue for 
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customer navigation is to enter the correct aisle to locate a product; else a longer detour 

can result.  

 

Figure 3-6 The ground floor of the QMUL Main Library 

This study focused on using a BLE location fingerprinting method to localise a user in 

area B, which is an 18.0 m × 30.0 m teaching short-term loan book collection room of 

the QMUL Main Library. 

The training dataset of measured Reference Points (RPs) was collected using 

smartphone1 (LG Nexus5). Test Point datasets (the positioning results of walking 

around the target area, each sample with a 2 s scanning period) were collected for 
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smartphone1, smartphone2 (Galaxy S3), and smartphone3 (BlackView #1). It was 

assummed that if scanned period is less than 2 s, the collected measurements may not 

have the similar data distribution as for the pre-collected RPs and that people cannot 

move too far in 2 s. 

The single ADL in this study is a book searching and navigation, so a RSSI ranking-

based KTCC IPS was implemented with multiple low-energy, low-cost iBeacons to 

create a flexible distribution of transmitters that could be controlled. All (BlueBar) 

iBeacon devices were set to use a 10 Hz advertising rate with the default low power 

setting. Hence, multiple deployed beacons can be detected to get sufficient and strong 

signals for the optimal positioning accuracy [16]. This low power setting also saves 

the battery life of the beacons and reduces the maintenance cost to replace run down 

batteries. 

There are 182 RPs (each RP with 100 samples were manually collected for each 

orientation), which are 0.8 m apart on the x-axis and 1.2 m apart in the y-axis, which 

is shown in Figure 3-7. 200 TPs were also randomly collected in this area. This is to 

keep the RPs in the middle of the gap between two bookshelves. The regular layout of 

setting RPs in the library teaching collection room can also save the fingerprint 

collecting time for finding the coordinates for each RP in the target area. RPs were 

collected at a 1 m height.  

Figure 3-7 also shows the layout of the target Teaching Collection Area and the 

positions where the iBeacon devices are. For the book finding service, because of the 

layout of the aisles along the x-axis, the accuracy in the y-axis is more important than 

x-axis, as this is needed so that the system indicates the right aisle. This can narrow 

the search area and make it easier for users to find their target books combined with 

the indoor map. So, more iBeacon devices were deployed in the y-axis to achieve a 

higher positioning accuracy. All estimated locations will be represented using (x, y) 

coordinates.  
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Figure 3-7 RPs and layout of Teaching Collection Area 

Laser tapes or Laser distance measuring meters (distance measurement range: 10 m) 

were used to acquire the ground truth positions when we manually collected the 

fingerprints in the Library testbed as shown in Figure 3-8 (BOSCH PLR7). 

                                                 

7  For more details: https://www.bosch-do-it.com/ae/en/diy/tools/plr-15-3165140765541-199929.jsp. Last 

accessed in Sep/2018 

https://www.bosch-do-it.com/ae/en/diy/tools/plr-15-3165140765541-199929.jsp
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Figure 3-8 Laser tapes are used to determine the location ground truth 

 

Figure 3-9 Indoor navigation display of the book finding system 
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Figure 3-9 shows the user interface for the indoor navigation of the book finding ADL 

system which was developed for Android phones. 

3.5.2 BLE Location Fingerprinting Positioning Performance 

 

Figure 3-10 Cumulative Distribution Function (CDF) of the error distance of KTCC 

and ED using different smartphones 

 

Figure 3-11 CDF of the error distance of KTCC and ED using smartphone 

BlackView #1 and Galaxy S3 
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Table 7 BLE location fingerprinting positioning performance of ED versus KTCC 

algorithms (Study 1) 

Smartphone Averaged Accuracy Accuracy (90%) 

Type ED KTCC ED KTCC 

Nexus 5 0.78 m 0.87 m 1.37 m 1.45 m  

Galaxy S3 1.32 m 0.98 m 2.82 m 2.19 m 

BlackView #1 1.45 m 1.12 m 2.12 m 1.49 m  

Based on the above results, WKNN using ED determines a slightly better positioning 

result compared to (WKNN using KTCC) for Nexus 5, which collected the radio map, 

with an average positioning accuracy of 0.78 meters. However, Figure 3-10 and Table 

7 shows that KTCC provides a similar higher precision with 0.98 meters accuracy 

(1.12 meters using BlackView #1) compared to a precision of 1.32 meters (1.45 meters 

BlackView #1) using ED for the Galaxy S3 phone. Similar differences were also 

observed for the BlackView #1 phone. 

From Figure 3-11, it is also seen that when using RSSI ranking with KTCC, there is a 

higher accuracy for BlackView #1 (the averaged positioning accuracy increases by 

22.8%) phone and the Galaxy S3 (increases by 25.8%) in comparison to the ED-based 

method. Therefore, it is concluded that ED can perform well when the same type of 

smartphone used to acquire the radio map is also used later for in-situ location 

determination but not as well when different phones are used. This is caused by 

differences in radio circuits embedded in smartphones, and such RSSI differences can 

be mitigated by using KTCC. This means that KTCC using RSSI ranking is more 

smartphone independent than ED using RSSI. This, in turn, promotes a higher indoor 

positioning accuracy in a more realistic complicated indoor environment.  
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3.6 Summary 

This chapter first presents a study 0, about the use of simple RSSI path loss models in 

order to more clearly study the effect of increasing distance, RF receiver type and body 

and RF receiver orientation with respect to the transmitter. Some of the outcomes were 

used to improve Study 1, that investigated more accurate (than path loss models) 

fingerprinting methods. Instead of using traditional WKNN using ED, a novel BLE 

RSSI ranking-based KTCC location fingerprinting method was proposed. The 

validation results show that this method can mitigate against the diversity of RF 

receivers’ hardware issue.  

Note, Study 1 and its experiments took place in the QMUL Library, from 2015 to 2017, 

it has some critical limitations in where and how BLE beacons as transmitters could 

be positioned and fixed in relation to the furnishings and fixtures, as permitted by the 

space owners (QMUL). Apart from the decorating work in the library, which stopped 

the studies, batteries in the beacons needed to be replaced periodically, else these 

became non-operational. Each of these causes the set of fingerprints that are used to 

determine the location to become less effective and to reduce the location accuracy.  

Hence, a location fingerprinting method that uses MF measurement will be introduced 

in the following chapter to mitigate against these challenges. 
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4 MF Location Fingerprinting 

4.1 Introduction 

IPSs that use wireless RSSI measurements tend not to use just a type of geometric 

model, such as a path loss model but are supplemented by a so-called radio map of 

fingerprints of actual measurements at known locations, in order to gain an increased 

positioning accuracy. However, even this supplemented method for an RSSI IPS is 

problematic as RF transmissions at low GHz frequencies are strongly affected by RF 

attenuation due to the changing orientation, the number of moving humans, and other 

static solid objects such as metal furniture between RF receivers and transmitters.  

Furthermore, such RF methods depend on a deployed infrastructure of a fixed topology 

of RF transmitters, whose RF coverage may be variable, creating black spots where 

there are only weak or no RF signals, thus limiting the location accuracy. Accordingly, 

a more RF invariant technique using MF, combined with inertial sensor measurements 

is proposed, which are barely influenced by humans. Its other benefits are that no 

specific IPS infrastructure (low maintenance) needs to be pre-deployed and positions 

can be determined using a readily available receiver found in a smartphone.  

In this chapter, MF Location Fingerprinting methods using a Particle Filter (PF), as 

this is the most adopted way to localise users using MF, so it was adopted as the 

baseline IPS using MF. Next, a new Fast Path Matching algorithm for MF and Inertial 

sensor measurements (FPM-MI) is introduced in the next Section 4.2. The evaluation 

results and a summary are given in Section 4.3 and 4.4 respectively. 

4.2 MF Location Fingerprinting Methods 

4.2.1 MF Location Fingerprinting using the PF 

Particle filters are also called Monte Carlo Localisation (MCL) can be applied to 

indoor navigation using MF measurements. This technique was first introduced by 
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[76] and then utilised for robotic target-tracking applications [77]. The central idea of 

MCL is to use the Bayesian theorem to represent the posterior distribution of the 

moving targets. When a target moves, Sequential Importance Resampling (SIR) is 

used to approximate the posterior distribution [77]. Since MCL is based on the sample 

representation, the particles are resampled based on recursive Bayesian estimation, i.e., 

how well the actual sensed data correlates with the predicted state so that the posterior 

distribution of the particles converges to the true position. Therefore, it can help to 

better determine the track of a moving target. 

Particle filter 

Algorithm 4.1:  

Initialization: 

    Particles 𝑥0
𝑖  with uniform 𝜔0

𝑖 = 1

𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)
   

for each step 𝑛 = 1, 2, 3… ∶ 

    for 𝑖 = 0 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) − 1:  

        Measurement: 

        Measure magnetic signature 𝑆𝑛 = ‖𝑀𝑛‖  

//Collected from 3-axis magnetometer and 𝑆𝑛 is the norm value 

        Prediction: 

        𝑥𝑛
𝑖  ~ 𝑃(𝑥𝑛|𝑥𝑛−1

𝑖 )) 

        Weight Updating (Gaussian density): 

        𝜔𝑛
𝑖 = 𝑃(𝑆𝑛| 𝑥𝑛

𝑖 ): 

   Resampling: 

      Make Cumulative Distribution Function (SIR) 

      Obtain new particles 𝑥𝑛
𝑖∗  

   Return: ∑ 𝑥𝑛
𝑖∗  × 𝜔𝑛0

𝑖𝑡−1
𝑛=0  

 

Many algorithms for sensing steps have been developed, e.g., [78], which need to be 

implemented in smartphones, but more recently this is supported by the smartphone 
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OS itself as a virtual sensor (step counter). Hence, it8 is used to count steps, which is 

also used in the prediction part in algorithm 4.1 to update the particle states. 

In Algorithm 4.1, the data from the virtual sensors (using a step counter to count steps 

and digital compass to predict headings) is used to predict the relation between each 

particle 𝑥𝑛−1
𝑖  and 𝑥𝑛

𝑖  in the same track (for MF measurements). This can be seen in 

procedure 1 of Algorithm 4.2 (in Section 4.2.2). After detecting each step, the weight 

of each particle needs to be updated, and the weight 𝜔𝑛  is calculated using the 

Gaussian density function as equation (4.1). 

𝜔𝑛 = 𝑃(𝑆𝑛|𝑥𝑛) =
1

𝜎𝑟√2𝜋
𝑒−(𝑆𝑛−‖𝑓(𝑥𝑛)‖)2 2𝜎𝑟

2⁄           (4.1) 

where 𝑃(𝑆𝑛|𝑥𝑛) is the posterior distribution of the latent variable 𝑆𝑛, 𝑓(𝑥𝑛) is the 

estimated model of the location 𝑥𝑛  and measurements (MF strength in the north 

orientation) 𝑆𝑛, the particle number and the standard deviation 𝜎𝑟 are set to 5,000 

and to 2, respectively. They are set the same as define in [4].  

However, even though MCL is effective at tracking moving targets, there are still 

limitations that can be improved. First, the computational cost of Monte Carlo 

localisation can be enhanced. Second, most current existing resampling algorithms are 

inherently inefficient. This occurs when the samples and posterior distribution do not 

fit each other [79].  

Moreover, an accurate model of 𝑆𝑛 and location 𝑥𝑛 also needs to be built for an MF 

location fingerprinting system, which means the systems using the PF require 

expensive arithmetic operations and a long processing time. Hence, it’s unsuitable for 

                                                 

8 For more details: https://developer.android.com/guide/topics/sensors/sensors_motion.html. Last accessed in 

Sep/2018 

https://developer.android.com/guide/topics/sensors/sensors_motion.html
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low ICT resource devices and for near real-time MF location fingerprinting IPS 

deployment [29]. 

4.2.2 MF Location Fingerprinting using FPM-MI 

K-Nearest Neighbours (KNN) algorithm is a widely used positioning algorithm. 

However, as found for the MF heat map for an area, e.g., in QMUL Main Library, 

there are several locations with similar MF intensities, which means using NN (𝐾 =

1) or KNN alone to estimate location will cause significant positioning errors.  

In this algorithm, the KNN for each MF signature 𝑀𝑡  in the fingerprints map, is 

selected using ED. 𝐾 is assigned to be 12 in the scenario (K = 6 is chosen in the 

following figure to better visualize the algorithm), as this enables most (95% of) MF 

measurements in our training dataset, in which MF measurements were collected by 

continuously walking around all shelves, to match their real nearest fingerprint in the 

map, as in some areas, they may have a smooth MF environment with less anomalies.  

n n+1 n+2 n+3 n+4

M3_1

M3_4

M3_2

M3_3

M3_5

M4_1

M4_4

M4_2

M4_3

M4_5

M5_1

M5_4

M5_2

M5_3

M5_5

Path2

Path1

M1_1

M1_4

M1_2

M1_3

M1_5

M1_6

M2_1

M2_4

M2_2

M2_3

M2_5

M2_6 M3_6 M4_6 M5_6
Path5

Path4

Path3KnnSet:
 (K = 6)

Steps:

The lengths of each Path are 2, 4, 1, 3, 3, and the longest path is Path2, so we consider the 
position of M5_2 in the fingerprints map as the location of the user.

Path6

 

Figure 4-1 Explanations of the FPM-MI Algorithm 
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Next, 𝐾  paths are estimated by adding points which meet the constraints of the 

distance and orientation between the new points, and the previously predicted one. In 

this process, the first neighbour point which meets the conditions (for the required 

distance and orientation) is selected, as the points in the first part of the 𝑘𝑛𝑛𝑆𝑒𝑡 have 

a higher weight. The orientation is also measured using the Android OS virtual sensor 

(digital compass).  

Locations will be estimated by comparing the number of satisfied points in the paths 

(points that satisfy the constraints, including path length as shown in Figure 4-1). The 

longest path means the minimal error between the two observations. Thus, it has the 

highest possibility of being the nearest path. So, the longest path is considered as the 

estimated path. The location of the last point in the path will be regarded as the 

estimated location.  

Finally, if the number of satisfied points in the path is less than a threshold, the 

algorithm will expand the tFactor (in procedure 3 of Algorithm 4.2). This is used to 

make sure the algorithm can generate a result if for example, sensor drift happens, each 

time tFactor will add 0.5, as the gap between each RP is 0.5 m, and tFactor will start 

from 0.5), which makes the condition less restrictive. Then it will repeat procedures 3 

and 4.   

The new proposed MF IPS algorithm uses relatively low computation data processing 

in comparison to a pure PF used alone. The former requires far fewer arithmetic 

operations, e.g. the rough number of operations of particle filters to have an accurate 

estimated location is 500000 (20 (number of steps) ∗ 5000 (number of particles) ∗ 5 (1 

(prediction) +  1 (weights-updating) +  2 (re-sampling)  + 1 (return))). To get a 

complete posterior distribution, the number of particles is usually large (n = 5000 in 

the experiments). The rough number of operations of FPM-MI is 248898 (5 (number 

of steps) ∗ (1 (prediction) + 12 (knnset)) + 124 (match the path)  ∗ 12 (number of 

path) + 1 (return)). This is also the worst case for the algorithm, the number of path 

calculation operations can be further reduced by using Dynamic Programming [80].  
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FPM-MI Algorithm 

Algorithm 4.2:  

Requires:  

1. Signatures 𝑃 = {𝑀1 …𝑀𝑡 …𝑀𝑛 } 
2. Fingerprints Map 𝑀 = {𝑀1,1 …𝑀1,4 …𝑀𝑖,4} 

       //𝑗 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  in 𝑀𝑖,𝑗 

3. Steps n and Orientations   𝑂 =  {𝑜1 … 𝑜𝑛}  

Set 𝑘𝑛𝑛𝑆𝑒𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡, 𝑝𝑎𝑡ℎ𝑆𝑒𝑡 = 𝑛𝑒𝑤 Set 

Set k matched𝑃𝑎𝑡ℎ =  𝑘𝑛𝑛𝑆𝑒𝑡[0][𝑖]  

for each step n=1,2,3…∶ 

Procedure 1 - Prediction: 

    𝑋𝑛
𝑖 = 𝑋𝑛−1

𝑖 + H𝑜𝑛
× steplength (0.5 m as default)  

Procedure 2 - Find k-nearest neighbours: 

     𝑘𝑛𝑛𝑆𝑒𝑡 add 𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑓𝑜𝑟 𝑀𝑛     

Procedure 3 - Match the paths:  

for 𝑗 𝒊𝒏 𝑙𝑒𝑛𝑔𝑡ℎ(𝑘𝑛𝑛𝑆𝑒𝑡[𝑖 + 1]): 

   𝑝𝑜𝑖𝑛𝑡 = 𝑘𝑛𝑛𝑆𝑒𝑡[𝑖 + 1][𝑗] 

       //loc means the location coordinates (x, y)  

       𝑑𝑖𝑠𝑡 = ‖𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑝𝑎𝑡ℎ[𝑖]. 𝑙𝑜𝑐 − 𝑝𝑜𝑖𝑛𝑡. 𝑙𝑜𝑐‖ 

       //differences of distance and orientation (direction) 

       if 𝑑𝑖𝑠𝑡 ≤ 𝑡𝐹𝑎𝑐𝑡𝑜𝑟: 

           if 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑜𝑛): //judge the orientation 

              𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡ℎ add 𝑘𝑛𝑛𝑆𝑒𝑡[𝑖 + 1][𝑗]  

              𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 add X𝑘𝑛𝑛𝑆𝑒𝑡[𝑖+1][𝑗] 

              break    

    𝑝𝑎𝑡ℎ𝑆𝑒𝑡 add matchedPath 

Procedure 4 - Return location: 

    Find the maxLength 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡ℎ[𝑖]  

if  𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:  

    return the first maxLength 𝑚𝑎𝑡𝑐ℎ𝑃𝑎𝑡ℎ[𝑖] 

    else update 𝑡𝐹𝑎𝑐𝑡𝑜𝑟 and repeat Procedure 3, 4 
 

where 𝑋𝑛
𝑖 = { 

𝑥𝑛

𝑦𝑛
}  and H𝑜𝑛

= {
cos 𝑜𝑛

sin 𝑜𝑛
}. 
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4.3 Study 2: MF Location Fingerprinting Evaluation 

4.3.1 Stability of the MF Strength 

For constructing the MF fingerprints map and linking it to the ground truth or actual 

locations, the same laser tape that was used in Chapter 3 (see Figure 3-8) is also used 

here. Geographic coordinates were determined using a data collection application, 

installed on a Nexus 5 phone, to collect MF fingerprints in four orientations (N, W, E, 

S) for each RP (240 RPs, 50 samples for each orientation), 0.5 m apart at a 1 m height. 

 

Figure 4-2 Comparison of fingerprints at a time Y and then after two months 

Before testing the performance of this IPS, pre-experiments were carried inside the 

QMUL library to verify the stability of the MF distribution in space and over time. To 

ascertain this, all MF fingerprints were collected in the fingerprints map again by using 

the same smartphone two months after collecting the original fingerprints map. The 

unit of collected measurements of the MF is  μT  in the X, Y, and Z axes of the 

magnetometer on a Nexus 5, smartphone 1. To visualise the results, 20 fingerprints 

were randomly picked (Figure 4-2). The green arrows represent the original 

fingerprints, and the blue ones represent the test data collected in the same position 
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two months later. The red dash lines represent the ED between the two fingerprints, 

which acts as a similarity function to find the k-nearest neighbours of each signature 

in our algorithm. 

The similarity of MF fingerprints was computed using the Cosine Similarity and 

Magnitude Difference equations from [28] as follows: 

Cos 𝜃 =
1

𝑛
∑

𝐴𝑖∙𝐵𝑖

‖𝐴𝑖‖‖𝐵𝑖‖
𝑛
𝑖=1                        (4.2) 

Magnitude =  
∑ ‖𝐴𝑖‖

𝑛
𝑖=1

∑ ‖𝐵𝑖‖
𝑛
𝑖=1

                       (4.3) 

where, A and B represent the fingerprints and test datasets, and n is the number of RPs. 

The result shows that the Cosine Similarity = 0.99, and the Magnitude = 0.97, which 

confirms that the MF did not change much over the two month period. Further, [28], 

also noted that the time-invariance of the MF was even longer, at least six months. 

Hence, the use of MF measurements, tends to be time-invariant, assuming no MF 

affecting fixings in the infrastructure are changed.    

The MF influence caused by electronic devices typically carried by humans such as a 

watch was also examined. This influence is negligible if the distance between the 

magnetometer and other electronic devices is more than 10 cm. This is confirmed by 

[28] which came to a similar conclusion. Furthermore, magnetometers are not easily 

influenced by furniture which contained a small amount of metal. Hence, for some 

user scenarios, some kinds of moved furniture or fixings will not affect the system. 

4.3.2 Differences in MF strength 

Based on the fingerprints collected in four orientations of the same place, the MF 

strength of four orientations are similar in most places, but in some spots, the MF 

strength from different orientations may vary drastically. The MF measurements 
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collected from the west, east and south directions were compared with data north used 

as the reference direction as shown in Figure 4-3. The drastically changed spots were 

close to pillars in the room, so it is believed that the variations are caused by the 

embedded metal in the pillars as they have a high impact within a small radius. This, 

in turn, means an accurate measurements model and geolocation is hard to build as it 

may require considering the orientation.  

 

Figure 4-3 Comparison of MF intensity between North as a reference with the 

remaining three orientations, the bottom right graph shows the range in MF 

intensity differences between N and the other 3 orientations 
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The bottom right figure shows the intensity of the variations between them. This is 

also the reason why fingerprints were collected from four orientations, which would 

increase the data quality in the KnnSet in procedure 2 for the FPM-MI algorithm. 

4.3.3 Positioning Performance 

 

Figure 4-4 Heatmap (north orientation) of MF with respect to the floor plan 



62 

 

Test data was collected by continuously walking around all the shelves in the physical 

space shown in Figure 4-4 (the same setting as mentioned in study 1, see Section 3.5).  

The performance of the FPM-MI and PF algorithms is shown in Figure 4-5. 

 

Figure 4-5 Location accuracy versus no. of steps taken for two algorithms: FPM-MI 

(proposed one) and PF (used as a baseline) 

This indicates that the accuracy of the proposed algorithm increases faster when n <

5 - the change tends to be stable, which also means the proposed algorithm has a good 

positioning accuracy (Average Error is 1.72 m, Error Standard Deviation is 0.5 m, 

Error within 1.89 m with a 90% confidence, when 𝑛 = 5) when walking a fewer steps, 

in contrast to using a PF. 𝑛 = 5 is chosen as the differences between 5 to 17 is not 

much, and the accuracy is decreased when 𝑛 > 17. This may be caused by error 

accumulation by the android inertial sensors as the number of steps increases. The MF-

based system, unlike using BLE, requires no extra AP infrastructure setup. However, 

it also shows that after 20 (human) steps, the PF algorithm performs slightly better 

than the proposed FMP-MI algorithm. However, as a trade-off between computational 

cost and positional accuracy, the performance of the FPM-MI algorithm is sufficient. 
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4.4 Summary 

This chapter explored the use of MF as a sensor input for another type of location 

fingerprinting. A novel path matching algorithm that uses MF and IMU measurements 

was proposed. However, the limitations of this method are as follows. First, its 

accuracy is not as high as RF-based location fingerprinting. Second, it does not scale 

well in terms of space size as there it becomes more likely that several locations with 

similar MF intensities will occur making the mapping of MF signature to a location 

more complex. Third, it is time-consuming to construct the MF measurement map. 

Fourth, the positioning accuracy highly relies on the performance of inertial sensors 

(the robustness is not tested, error accumulation may happen). Hence, this was not 

implemented as an algorithm for the library book finding ADL service. MF 

measurements will be treated as additional RF invariant input data to help increase the 

positioning accuracy in future work (see Section 7.2.1.4). 

As the most popular IPS is a WiFi location fingerprinting system, this type of IPS was 

also explored in a testbed where there was a good WiFi AP coverage and density – see 

the next Chapter 5. 
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5  WiFi Location Fingerprinting and ADL Recognition 

5.1 Introduction 

The basic IPS for WiFi-based upon location fingerprinting is similar to that of BLE, 

see Chapter 3. However, further algorithms are implemented to increase the 

positioning accuracy. 

 

Figure 5-1 The key processes involved in RSSI fingerprinting and ADL recognition 

So far, several improved IPSs have been researched, developed and validated in this 

research to determine the locations of physical assets that users wish to access. A 

default, single, associated ADL is linked to the destination location, in order to access 

or retrieve a physical asset. There is little focus here on the navigation algorithm to do 

this as it is assumed that a standard navigation algorithm can be used such as A* [81] 

or Dijkstra’s algorithm [82]. The more accurately we can determine the location, the 

more accurately we trigger the default ADL. However, during daily life, many 

different locations can be associated with different ADLs, hence determining users’ 

different locations could also be used for recognising different ADLs. Hence, an ADL 
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recognition method that uses MD-DTW is also introduced in this chapter. An overview 

of the key processes involved in RSSI location fingerprinting and ADL recognition is 

given in Figure 5-1. 

In this chapter a Deep Neural Network (DNN) classification algorithm namely, a CNN 

ranking-based location fingerprinting method is next introduced in Section 5.2. 

Section 5.3 will describe a WiFi-based activity recognition method using MD-DTW. 

Lastly, Sections 5.4 and 5.5 will describe the evaluation results and present the chapter 

summary, respectively. 

5.2 Algorithms to Increase WiFi Positioning Accuracy 

5.2.1 WiFi AP Selection  

Due to the increasing availability and high density of heterogeneous wireless APs in 

indoor environments, more networks and APs are becoming available that can be 

detected by users’ mobile wireless access devices. This, however, increases the 

computational cost to estimate locations of the user based upon received signals from 

more and more APs. Because a wireless receiver can receive information, this implies 

that it is within range of a transmitter and gives it a positioning fix in relation to this 

transmitter.  

Using more APs can improve the positioning accuracy due to more RSSI signal 

comparisons by receivers to determine the location. When discovering the transmitters 

or receivers, that are available, the more there are, the more computation and power is 

required to differentiate these locations. Note that some APs are affected more than 

others by interference such that their RSSI values fluctuate more at some locations 

within range of these APs at the frequencies used. This is caused by people moving or 

because of the proximity to other RF sources that are intermittently active in the same 

unlicensed RF frequency spectrum as WiFi, such as BLE devices being used by users 

and by microwave ovens. These effects affect the location determination accuracy. 

Appropriate AP selection not only helps to remove the APs with a more inferior or 
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variable location determination accuracy but also helps to minimise noise levels and 

to improve the computation efficiency. It is a critical challenge of how to choose the 

optimum number of APs for location determination in an AP sufficient scenario. This 

is also related to feature selection or extraction. 

5.2.1.1 AP Selection Based on RSSI Interval Overlap Degree Determination 

As AP selection is of significance in wireless location fingerprinting systems, an 

Interval Overlap Degree (IOD) algorithm is proposed to select APs. There are several 

key characteristics of this proposed method. Firstly, IOD uses the numerical interval 

as a measure to analyse the characteristics of RSSI sample values from APs and to 

reduce the redundancy. Secondly, IOD preserves the original features of samples 

instead of extracting one statistical criterion, e.g., mean or median for AP selection. 

Lastly, IOD achieves a higher location determination accuracy whilst improving the 

computational efficiency. 

The concept of the overlap degree has been used for localisation in [83]. It is used to 

represent the overlapping area of different regions. The overlap areas with maximum 

overlap degrees are the estimated location, and it is postulated that it could also be 

used to discriminate APs.  

Assume 𝑅𝑆𝑆𝐼1𝑖 = {𝑅𝑆𝑆𝐼1
1𝑖, 𝑅𝑆𝑆𝐼2

1𝑖, … , 𝑅𝑆𝑆𝐼𝑘
1𝑖}  denotes k possible measurements 

from the i-th AP at the first RP. The numerical interval of 𝑅𝑆𝑆𝐼1𝑖 can be defined as: 

[𝑚𝑖𝑛(𝑅𝑆𝑆𝐼1𝑖),𝑚𝑎𝑥(𝑅𝑆𝑆𝐼1𝑖)] . this numerical interval can be visualised as the x, 

number, axis (the blue stripes) in Figure 5-2. The RSSI values of 𝐴𝑃𝑖 at each RP can 

all be displayed as numerical intervals. The issue is how to discriminate RPs from each 

other using 𝐴𝑃𝑖. 

IOD can be employed as a criterion to discriminate numerical intervals effectively as 

shown in Figure 5-2. 𝐼𝑂𝐷(𝑁𝐼1, 𝑁𝐼2) can be calculated as 

𝐼𝑂𝐷(𝑁𝐼1, 𝑁𝐼2) =
1

2
(

𝑂𝐼(𝑁𝐼1,𝑁𝐼2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼1)
+

𝑂𝐼(𝑁𝐼1,𝑁𝐼2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼2)
)                               (5.1) 
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In this example, there are four overlap relationships between two numerical intervals. 

Figure 5-2 also shows how to compute the 𝑂𝐼(𝑁𝐼1, 𝑁𝐼2) in these four cases. The 

value of 𝑂𝐼(𝑁𝐼1, 𝑁𝐼2) will be zero when there is no overlap. 

 

Figure 5-2 Schematic of the Interval Overlap Degree (IOD) proposed to select 

efficient APs. The red part denotes the Overlap Interval (OI), and the grey part is the 

non-overlap interval. 

IOD is defined as the mean of the proportion of the overlap interval between two 

numerical intervals accounts in each of these two numerical intervals (see equation 

5.2). The lower the IOD, the more significant is the difference between two numerical 

intervals, which means these RPs are more accessible to differentiate. 

The RSSI samples from the same AP are different for different RPs. If 𝑅𝑆𝑆𝐼𝑖𝑎 =

{𝑅𝑆𝑆𝐼1
i𝑎, 𝑅𝑆𝑆𝐼2

i𝑎, … , 𝑅𝑆𝑆𝐼𝑘
i𝑎} denotes the RSSI sample values collected at i-th RP from  

𝐴𝑃𝑎  and 𝑅𝑆𝑆𝐼𝑗𝑎 = {𝑅𝑆𝑆𝐼1
j𝑎

, 𝑅𝑆𝑆𝐼2
j𝑎

, … , 𝑅𝑆𝑆𝐼𝑘
j𝑎

}  represents the RSSI samples 

collected at j-th RP from 𝐴𝑃𝑎 . 𝐼𝑂𝐷𝑖𝑗
𝑎  stands for the IOD between 

𝑅𝑆𝑆𝐼𝑖𝑎 𝑎𝑛𝑑 𝑅𝑆𝑆𝐼𝑗𝑎 . The higher 𝐼𝑂𝐷𝑖𝑗
𝑎 is, the smaller the difference between 
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𝑅𝑆𝑆𝐼𝑖𝑎 𝑎𝑛𝑑 𝑅𝑆𝑆𝐼𝑗𝑎. This means it is more difficult to discriminate i-th RP and j-th RP 

using 𝐴𝑃𝑎 . So our target is to select APs with the lowest IOD. If 𝑁  is the total 

number of RPs, then there are 
1

2
∗ 𝑁(𝑁 − 1)RP combinations in all. Let 𝐼𝑂𝐷𝑓−𝑎 

represent the final IOD of 𝐴𝑃𝑎. It can be calculated as follows: 

𝐼𝑂𝐷𝑓−𝑎 = ∑ ∑ 𝐼𝑂𝐷𝑖𝑗
𝑎𝑁

𝑗=𝑖+1
𝑁−1
𝑖                     (5.2) 

After figuring out the final IOD of all APs, them will be ranked in ascending order and 

select the top 𝑘 APs with the lowest IOD. 

5.2.1.2 Design Choices for AP Selection 

1) AP Selection based on Standard Deviation 

[84] introduced a Standard Deviation (SD) based AP selection algorithm. This used 

the SD of the collected RSSIs of a TP to analyse the signal stability of APs. The theory 

is that a lower SD value indicates that the mean of RSSIs transmitted from the AP is 

more stable and suitable to process pattern matching. Assuming 𝑅𝑆𝑆𝐼𝑖
𝑗
 denotes the j-

th RSSI value of 𝐴𝑃𝑖 and 𝑅𝑆𝑆𝐼𝑖̅̅ ̅̅ ̅̅ ̅ is the mean value of RSSIs from 𝐴𝑃𝑖. 𝑆𝐷𝑖 denotes 

the SD of 𝐴𝑃𝑖 which can be calculated as follows: 

𝑆𝐷𝑖 = √
1

𝑛−1
∑ (𝑅𝑆𝑆𝐼𝑖

𝑗
− 𝑅𝑆𝑆𝐼𝑖̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑗=1                  (5.3) 

Then, these values of each AP’s SD are sorted in ascending order and selecting the top 

k APs with the smallest SD as a lower SD value – leads to a RSSI series from the AP 

that is more stable. SD is a criterion to reflect the amount of variation of a set of data 

values relative to the mean value. However, SD is not suitable for a situation where 

outliers exist. Moreover, this method requires online selection of APs for all the TPs, 

which needs an extra computational cost.  

2) AP Selection Based on Information Gain 
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In information theory and machine learning, Information Gain (IG) is often used as a 

criterion for feature selection. For fingerprint-based positioning, AP selection is also 

regarded as feature selection. [85] proposed an AP selection strategy based on IG. The 

idea of selecting AP using IG is as follows:  

If 𝑁𝑡 is the number of APs (𝐴𝑃𝑗 , 1 ≤ 𝑗 ≤ 𝑁𝑡) that can be detected at each RP (𝑅𝑖, 1 ≤

𝑖 ≤ 𝑆) in an indoor space. The IG of 𝐴𝑃𝑗  can be described by 

𝐼𝐺(𝐴𝑃𝑗) = 𝐻(𝑅) − 𝐻(𝑅|𝐴𝑃𝑗)                   (5.4) 

where 𝐻(𝑅) is the entropy of a RP and can be demonstrated by 

𝐻(𝑅) = −∑ 𝑃(𝑅𝑖)𝑙𝑜𝑔𝑃(𝑅𝑖)
𝑆
𝑖=1                   (5.5) 

where 𝑃(𝑅𝑖) is the prior probability of 𝑅𝑖. There are S RPs in total, 𝑃(𝑅𝑖) = 1/𝑆 

was set for each RP since the probability of each RP is viewed within a uniform 

distribution. 𝐻(𝑅|𝐴𝑃𝑗) is the conditional entropy of a RP given the RSSI of 𝐴𝑃𝑗 . It 

can be calculated accordingly as follows: 

𝐻(𝑅|𝐴𝑃𝑗) = −∑ ∑ 𝑃(𝑅𝑖|𝐴𝑃𝑗 = 𝑣)𝑙𝑜𝑔𝑃(𝑅𝑖|𝐴𝑃𝑗 = 𝑣)𝑆
𝑖=1𝑉       (5.6) 

where v  denotes one possible RSSI value from 𝐴𝑃𝑗  and V  are all the possible 

values from 𝐴𝑃𝑗 . Then the conditional probability can be shown as follows: 

𝑃(𝑅𝑖|𝐴𝑃𝑗 = 𝑣, 𝑣 ∈ 𝑉) =
𝑝(𝐴𝑃𝑗=𝑣|𝑅𝑖) 𝑝(𝑅𝑖)

𝑃(𝐴𝑃𝑗=𝑣)
              (5.7) 

The discriminative ability means the ability that an AP can distinguish RPs from each 

other. For decision tree classifiers, the higher the IG value, the better the classification 

ability of this feature. Therefore, a higher IG value for the AP means a strong 

discriminative ability towards RPs. If IG values of all APs are sorted in descending 

order, the top k APs with highest IG values will be chosen. 
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The main merits of IG are that IG makes good use of the diversity of the data samples 

and takes the discriminative ability of each AP into consideration. Nevertheless, IG is 

more likely to choose the AP with more collected sample values, some of which are 

unstable and more physically environmentally sensitive, leading to a degradation of 

positioning accuracy. 

3) AP selection based on Mutual Information (MI) 

Another information theory-based method is Mutual Information (MI), which is used 

by [86] for selecting APs. The MI of two random variables is a measure of the mutual 

dependence between the two variables. The higher the MI, the more information these 

variables share which also means redundant information. Redundant information does 

not bring any useful information but increases the amount of computation. Thus, the 

primary target of this MI-based AP selection method, which is also the difference with 

using IG is that MI picks out the APs with the least amount of redundant information.  

If 𝑀𝐼(𝐴𝑃𝑎, 𝐴𝑃𝑏) denotes the MI of 𝐴𝑃𝑎 and 𝐴𝑃𝑏 and it can be described by 

𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏) = 𝐻(𝐴𝑃𝑎) + 𝐻(𝐴𝑃𝑏) − 𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏)          (5.8) 

where 𝐻(𝐴𝑃𝑎)  and 𝐻(𝐴𝑃𝑏)  are the information entropies of 𝐴𝑃𝑎  and 𝐴𝑃𝑏 

respectively. 𝐻(𝐴𝑃𝑎, 𝐴𝑃𝑏) expresses the joint entropy of 𝐴𝑃𝑎 and 𝐴𝑃𝑏. 

𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏) = −∑ ∑ [𝑃(𝑅|𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2)𝑙𝑜𝑔𝑃(𝑅)]𝑉1𝑉2
         (5.9) 

where R represents (𝑅𝑆𝑆𝐼𝑎 = 𝑣1, 𝑅𝑆𝑆𝐼𝑏 = 𝑣2). 

The first step is to identify the AP pairs with the least MI. If 𝑁𝑡 is the number of APs 

in the space, there exists 𝑁𝑡(𝑁𝑡 − 1)/2 AP pairs. Assuming (𝐴𝑃𝑎,𝐴𝑃𝑏) is the choice, 

then add another 𝐴𝑃𝑐  to compute the MI of 𝐴𝑃𝑐  and (𝐴𝑃𝑎 ,𝐴𝑃𝑏) . In this case, 

(𝐴𝑃𝑎, 𝐴𝑃𝑏 , 𝐴𝑃𝑐) with the least MI will be chosen. The process can be described by 

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴𝑃𝑧

𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏 , … , 𝐴𝑃𝑘)                  (5.10) 
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where 𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏 , … 𝐴𝑃𝑘) is calculated by 

𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏 , … 𝐴𝑃𝑧)   = 𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏 , … ) + 𝐻(𝐴𝑃𝑘) − 𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏 , … 𝐴𝑃𝑘) (5.11) 

Following the above procedures, a group including k APs with the smallest 

𝑀𝐼(𝐴𝑃1, 𝐴𝑃2, … 𝐴𝑃𝑘) will be chosen. The MI method can efficiently reduce RSSI 

redundant information. 

4) Dimensionality reduction based upon Principal Component Analysis (PCA) 

Instead of choosing a subset of APs, [87] replaces the elements with a subset of 

Principal Components (PCs), which are obtained by a transformation of the measured 

RSSI. The theory of the paper is based on the use of PCA to find an effective 

transformation such that the retained information in the chosen PCs can be maximised.  

(

𝑦1

⋮
𝑦𝐿

)

𝐿∗1

= (

𝑎11 𝑎12

𝑎21 𝑎22

⋮ ⋮
𝑎𝐿1 𝑎𝐿2

… 𝑎1𝐷

… 𝑎2𝐷

⋮ ⋮
… 𝑎𝐿𝐷

)

𝐿∗𝐷

(

𝑥1

⋮
𝑥𝐷

)

𝐷∗1

          (5.12) 

The concept of using PCA, which is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a 

set of values of linearly uncorrelated variables called principal components. This is 

used to reduce the dimensions where combining APs. In other words, information 

reorganisation is adopted, rather than AP selection. As shown in equation (5.12), the 

principal components [𝑦1, 𝑦2 …𝑦𝐿]
𝑇 are produced by a transformation with real 

numbers. With appropriate weightings (transformation matrix A), the RSSI 

information transmitted into Y from X can be maximised. Matrix A is determined by 

using PCA, as it has the ability to present data through minimising the least squares 

error (see equation 5.13) [87], i.e., Y = AX, �̂� is the reconstruction of X from Y, 

�̂� = 𝐴𝑇𝑌, PCA seeks to minimise the mean square reconstruction error 

𝐽𝜖 = 𝐸 {‖𝑋 − �̂�‖
2
}                       (5.13) 
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The property guarantees that it can retain the maximised information when dimensions 

are reduced (a test dataset can be used to choose PCs). PCA can be realised using 

eigenvalue decomposition of a data covariance (or correlation) matrix or singular value 

decomposition of a data matrix, usually after mean centring (and normalising or using 

Z-scores) the data matrix for each attribute.  

Although RSSI-based AP selection and positioning methods can be affected by a RF 

receiver hardware diversity issue, it can still be used for IPSs that tend to use a single 

type of receiver positioning system, e.g., BLE tag-based person locating system.  

5.2.1.3 Ranking-based AP Selection Based on Genetic Algorithm 

The proposed IOD AP selection algorithm will be compared with IG, MI, and PCA. 

However, those algorithms are not designed for AP ranking-based methods. To solve 

this, it is proposed to use a Genetic Algorithm (GA) to select APs, which uses the value 

of the bit (0 or 1) to represent whether or not an object, e.g., AP, is selected, and it is 

fit for AP selection. Moreover, unlike those algorithms, GA can directly find the 

optimal AP list, instead of iterating through all APs to find the optimal APs. 

 

Figure 5-3 An overview of the GA algorithm 

Initialisation
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Reproduce
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The main principle of GA is that it is based on natural selection, the process that drives 

biological evolution [88]. The GA repeatedly modifies a population of individual 

solutions. At each step, the GA selects individuals at random from the current 

population to be parents and uses them to produce the children for the next generation. 

After continuous generations, it evolves toward an optimal solution.  

The main procedures of our GA are as follows: 

1. Selection 

This procedure is to select the individuals, namely, parents, which contribute 

the population to the next generation (see Figure 5-3). In this case, the 

algorithm will randomly generate a specific number of selected APs lists, then 

converts them to a binary vector (see Table 8), 1 means the AP is selected, 0 

means this AP is not selected. Individual solutions are selected using a fitness 

function (in this case, the performance when using a validation dataset), 

where fitter solutions will have more chance to be selected.   

Table 8 An example of selected AP lists 

num 𝐴𝑃1 𝐴𝑃2 𝐴𝑃3 ⋯ ⋯ ⋯ 𝐴𝑃𝑛−2 𝐴𝑃𝑛−1 𝐴𝑃𝑛 

1 0 1 1 ⋯ ⋯ ⋯ 0 0 1 

2 1 1 1 ⋯ ⋯ ⋯ 1 1 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

m 0 0 0 ⋯ ⋯ ⋯ 0 1 1 

2. Crossover  

This procedure combines two parents to form children for the next generation. 

Based on the assumption that the good performance of positioning accuracy 

using KTCC is correlate with the specific sub-groups of AP rankings, which 

also makes GA a good fit for the ranking-based AP selection, as in the 
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crossover procedure (part of the AP lists will be switched, the Reproduce part 

shown in the above figure), the parents will change sub-groups (DNA 

segment) to achieve a better positioning performance in the new generation. 

3. Mutation 

In this procedure, random changes will be applied to individual parents to 

form children, i.e., single segment randomly changed from 1 to 0 or 0 to 1 

based on the mutation rate. 

The design of the fitness function is the next design issue. There are two ways to build 

fitness functions. The first one is to use the results of IG, MI, IOD, or combined them 

together as the fitness function. However, as RSSI measurements were collected at 

each RP and TP 20 times, there is enough data to build both a validation and a test 

dataset. In this case, the performance of the validation dataset can be used as the fitness 

function.    

5.2.1.4 AP Selection Based on Appearance Ratio 

In the office testbed, a total of 106 APs were detected in a pre-recorded radio map. 

However, if all of those APs were used, it will not only increase the computational 

cost to estimate locations but also reduce the location estimation accuracy as some 

may be in places that are more susceptible to RF. For example, fingerprints are 

collected at each RP for 20 times (2 seconds active scanning each time，the same 

reason as mentioned in Section 3.5.1), not all APs can be detected at each time. If 𝐴𝑃𝑎 

is detected once, this measurement is recorded, if not, a value, e.g., -100 will be filled 

(this is to keep the input uniform to the CNN model). In this case, if AP selection 

algorithms are directly used, those AP selection algorithms would select the missing 

APs identified with -100 values (dBm), which will decrease the accuracy.  

To solve this, it is proposed to select the APs using the appearance ratio first (when 

this ratio is set to 90%, 67 APs are selected), then using the proposed AP selection 

algorithms on those selected APs. The idea of appearance ratio is simple, at each RP, 
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several scans are recorded, then based on appearance ratio (appearance times divided 

by total scanned times) to select APs at each RP, then all selected APs are combined, 

which is in order to mitigate the filling values. 

5.2.2 RSSI Ranking based Location Fingerprinting using CNN 

DNN models are usually categorised as supervised ML algorithms because the 

network approximates (classification) a target function (but it can be unsupervised, 

e.g., using autoencoder [89]). This algorithm optimise a loss function representing the 

difference between the network’s outcome and the label of each sample. An activation 

function is used to define the output of each node that is fed further in the network. 

Different types of activation functions (e.g., relu, tanh [90]) and DNN model (e.g., 

CNN, Recurrent Neural Network - RNN) exist, with different performance results, 

according to the application domain. Figure 5-4 gives an example of deep neural 

network architecture. 

 

Figure 5-4 An example of a Deep Neural Network Architecture (The input layer 

with 5 inputs, 15 neurons in each hidden layer, 10 outputs in the output layer) 
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DNN models have been applied successfully to solve complicated issues, e.g., facial 

recognition, financial trading, driverless car, virtual personal assistants, and machine 

translation. CNN is one of the most successful models of DNN [89] – it is good at 

feature extraction. It has already been shown that the RSSI ranking-based location 

fingerprinting can mitigate against the RF receiver heterogeneity issue (see Section 

3.4.2), which means the RSSI ranking relation between different APs could also help 

to match the data pattern, which means CNN can also be used to extract such a ranking 

feature. Hence, CNN was adopted to estimate locations in this thesis instead of using 

a simple deep neural network. Also, the use of regression with CNN could be used to 

estimated location (where outputs are directly estimated coordinates). 

   

Figure 5-5 The architecture of our CNN Model (one example of using 33 RSSI 

ranking inputs, and 112 outputs (RPs)) 

Several IPS employ deep learning algorithms to estimate user location [91]. However, 

most of those methods just use raw RSSI measurements as the input data to train their 

positioning models, which does not consider the RF heterogeneity receiver impact and 

the consequent need to collect data from different smartphones. To mitigate against 

this hardware heterogeneity issue, RSSI ranking is used as our input. 

For classification problems using deep neural network models, it is common to use a 

so called softmax layer at the top of the network. For example, given 3 possible classes, 
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the softmax layer has 3 nodes denoted by pi , where 𝑖 = 1, 2, 3 . 𝑝𝑖  specifies a 

discrete probability distribution, therefore, ∑ 𝑝𝑖 = 13
𝑖 . Let ℎ be the activation of the 

penultimate layer nodes (𝑘), 𝑊 is the weight connecting the penultimate layer to the 

softmax layer, the total input into a softmax layer, given by a, is 

𝑎𝑖 = ∑ ℎ𝑘𝑊𝑘𝑖𝑘                         (5.14) 

𝑝𝑖 =
exp (𝑎𝑖)

∑ exp (𝑎𝑗)
3
𝑗=1

                        (5.15) 

Then, the outputs of softmax layer 𝑝𝑖  will be treated as the weight in WKNN to 

estimate the user location. 

Figure 5-5 shows the architecture of the CNN model. Keras 9  (Tensorflow as a 

backend) was used to implement the CNN model. The model consisted of two 1D 

convolutional layers and one max-pooling layer. After the convolutional layer, the 

model has a fully connected layer that is used to connect to the Softmax layer. The 

outputs of the Softmax layer become the weights in the location determining phase.                 

For example, after using the GA-based AP selection algorithm, 33 APs are selected. 

Then, the model inputs are a ranking of these APs. After the hyper-parameters (e.g., 

layer number, learning rate), were tuned, the following structure was found to be 

effective. The first convolutional layer has a depth of 100 and a filter size of 15. The 

filter size of the pooling layer is 3 with a stride of 2, which will mitigate against the 

overfitting issue [92] of the model. The filter size of the convolution layer is 7, and the 

depth is 20. Next, the fully connected layer has 200 neurons, and tanh [90], as a popular 

activation choice, is used as the non-linearity function. Adam [93] as an adaptive 

optimisation algorithm was used as it does not need to set a fixed learning rate. In the 

end, the softmax layer is used to classify the test points. 

                                                 

9 For more details: https://keras.io/. Last accessed in Sep/2018 

https://keras.io/
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5.2.3 Using Kalman Filters to Further Improve the Accuracy 

Since the locations can be estimated using the already proposed location determination 

methods, a fusion algorithm (Kalman Filter/Extended Kalman Filter) can also be 

applied to further improve the positioning accuracy.  

5.2.3.1 Kalman Filter 

Kalman filter is an algorithm that uses a serial observed measurements over time, 

containing statistical noise and other inaccuracies, and produces estimates of unknown 

variables that tend to be more accurate than those based on a single measurement alone, 

by estimating a joint probability distribution over the variables for each timeframe 

[94], which is usually applied in control system and robot navigation. As in this 

research, a motion model and estimated locations could also be fused using such a 

filter to further increase the positioning accuracy, it was investigated. 

There are two phases when applying a Kalman filter. Firstly, the Kalman filter 

produces estimates of the current state variables, along with their uncertainties. Once 

the outcome of the next measurement (necessarily corrupted with some amount of 

error, including random noise) is observed, these estimates are updated using a Kalman 

gain (weighted average), with more weight being given to estimates with a higher 

certainty. The algorithm is recursive, which only uses the present input measurements 

and the previously calculated state and its uncertainty matrix, no additional past 

information is required. Hence, the Kalman filter was adopted to increase the real-time 

positioning accuracy. In order to use the Kalman filter, a state vector needs to be 

defined for the moving target (user or robot) at time t as 

o(t) = [𝑝(𝑡)
𝑣(𝑡)

]                         (5.16) 

where 𝑝(𝑡) = [𝑥, 𝑦]𝑇  and 𝑣(𝑡)= [𝑣𝑥(𝑡), 𝑣𝑦(𝑡), ]
𝑇

 in our scenario, which is also 

based on the assumption that the movement of the moving target is smooth, no abrupt 

changes happen, and the movement is approximately a uniform linear motion. 
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As the states of the user in a discrete-time way (sampling interval), the time interval 

between consecutive measurements is defined as δt. The notation of time t will change 

to k, indicating that t = k ∗ δt. Thus, according to [94], to predict the position and 

velocity, the following five equations need to be calculated: 

�̂�𝑘
− = A�̂�𝑘−1 + 𝐵𝑢𝑘−1                    (5.17) 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄                     (5.18) 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1                 (5.19) 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘

−)                  (5.20) 

            𝑃𝑘 = (1 − 𝐾𝑘𝐻)𝑃𝑘
−                     (5.21) 

where 

• �̂�𝑘
− is the state estimate, and �̂�𝑘 is the updated state estimate. 

• A is the transfer matrix between states at consecutive time steps, which can be 

expressed as 

A = [

1 0
0 1
0 0
0 0

δt 0
0 δt
1 0
0 1

]                 (5.22) 

• B is the control-input model which is applied to the control vector 𝑢𝑘, since 

there is no control-input, 𝑢𝑘 = 0. 

• 𝑃𝑘
− is the estimated covariance matrix of time step k based on the output of 

time step k-1. 

• Q is the covariance matrix of the Gaussian noise for the process of getting the 

a priori estimation from the transfer matrix A and R is the covariance matrix 

of the Gaussian noise in the measurements of the moving target’s states. In 
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practice, Q and R might change with each time step or measurement, but it is 

just assumed that they are constant [95]. 

• 𝐾𝑘 is the Kalman gain which describes the influence of the measurement on 

the final posterior estimation. 

• 𝑧𝑘 is the measurement of the moving target’s position, H is the observation 

matrix, in practice, H might also change with each time step or measurement, 

but it is assumed that they are constant. H in this case is defined as:  

H = [
1 0
0 1

0 0
0 0

]                  (5.23) 

5.2.3.2 Extended Kalman Filter 

Although Kalman Filtering has been applied in a wide range of areas and has achieved 

significant success, its implementation has a constraint that the dynamic system must 

be linear. However, this condition is hard to satisfy since some dynamic systems in the 

real world may be more complicated and hence cannot be summarised with a linear 

function. Hence, the Extended Kalman Filter (EKF) as an extension of the Kalman 

Filter has been developed for such a nonlinear system [96]. 

EKF is able to estimate and update the states of a nonlinear system by linearising it 

with the help of a first-order Taylor-expansion. In other words, when predicting the 

state in the next time step using a state transition function, instead of finding the 

transfer matrix, it is found that the partial derivatives of the state transition function 

and observation function, represented by a Jacobian matrix. In contrast to KF, the state 

o(t) for EKF is defined as 

o(t) = [

𝑝(𝑡)

𝑣𝑒𝑙(𝑡)
𝜃(𝑡)

]                       (5.24) 

where 𝑝(𝑡)  is the same as for KF, 𝑣𝑒𝑙(𝑡)  differs from KF’s 𝑣(𝑡) ; in equation 

(5.24), 𝑖𝑡′s a scalar indicating the speed of the moving target; 𝜃(𝑡) represents the 



81 

 

heading orientation of the moving target. So, the new state transition equations for 

each parameter in the state o(t) in the 2D scenario will be (update location):  

x(t) = x(t − 1) + vel(t − 1) ∗ sin (𝜃(t − 1))* δt         (5.25) 

y(t) = y(t − 1) + vel(t − 1) ∗ cos(𝜃(t − 1))* δt         (5.26) 

𝑣𝑒𝑙(𝑡) = 𝑣𝑒𝑙(𝑡 − 1)                   (5.27) 

𝜃(𝑡) = 𝜃(𝑡 − 1)                     (5.28) 

which make the system non-linear. By finding a matrix of partial derivatives of the 

four above equations, the linearised model of the system can be derived [96] to 

estimate or update the states of the moving target. 

5.3 WiFi Location Fingerprinting-based ADL Recognition 

Location fingerprinting for WiFi, just as for BLE, typically works in two phases, which 

is shown in Figure 3-4. A radio map is established in an offline phase where the RSSI 

signals from multiple APs are collected and mapped to known locations. Then a 

matching process against the radio map is conducted in an on-line phase. The accuracy 

of traditional location fingerprinting methods which employ a single-point to match 

with the radio map is about 2 – 3 m. In contrast, the research in [97] proposed a path-

based (or profile-based) method assisted with using sequential MF measurements to 

improve navigation accuracy increases by up to 11.5-21.6% compared to using single-

point matching. Khuong, et al, [67] proposed to use sequential MF measurements to 

predict daily routes to increase the positioning accuracy. However, most researchers 

tend to overlook the use of the sequential WiFi measurements, which could offer more 

data than using MF measurements. Hence, one objective of this thesis is to investigate 

the feasibility of using sequential WiFi RSSI measurements for location-driven ADL 

recognition.  
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5.3.1 Activity Recognition using Path Fingerprints 

In this research, the aim is to recognise coarse-grained ADLs using a WiFi fingerprint 

matching method (as it can offer more measurements compare to MF measurements) 

to determine a location that is mapped to, or linked to an ADL. Since trajectories of 

human mobility contain the cue to infer ADLs, path matching can help us to find the 

closest trained path as well as its corresponding activity. Unlike using location 

fingerprinting methods to localise a single-point location, which is mentioned in 

Section 3.4, the path-based matching method uses RSSI ranking vectors from multiple 

historical points to match the routine database. Assume 𝐿 is a path with a set of 

locations, 𝐿 = {𝑙1, 𝑙2, ⋯ , 𝑙𝑖, ⋯ , 𝑙𝑛}, used as a trajectory of human mobility, where n 

points are used to represent the path. At the training stage, RSSI ranking vectors 

(represented by using the MAC address), i.e., 𝑅𝑖 = {𝑀𝐴𝐶1, 𝑀𝐴𝐶2, ⋯ ,𝑀𝐴𝐶𝑚} will 

be collected at each point 𝑙𝑖 along the predefined path 𝐿, where 𝑚 is the number of 

detected APs. Then the coordinates of these points 𝑙𝑖 ∈ 𝐿  as well as their RSSI 

ranking vectors will be sorted by a set order (i.e., heading direction) and will be saved 

as a path fingerprint (i.e.,𝐿𝑗 = {[𝑝𝑜𝑠1, 𝑅1], [𝑝𝑜𝑠2, 𝑅2],⋯ , [𝑝𝑜𝑠𝑖 , 𝑅𝑖],⋯ , [𝑝𝑜𝑠𝑛, 𝑅𝑛]}, 

where 𝑝𝑜𝑠𝑖 is the corresponding ground truth or estimated coordinates). Many path 

fingerprints such as this constitute the path database. For the online or operational 

stage, suppose a user has already walked several steps, therefore, the new trajectory 

can be represented by 𝐿𝑛𝑒𝑤 = {𝑙1
′ , 𝑙2

′ , ⋯ , 𝑙𝑘
′ } with a k length, and 𝑙𝑘

′  stands for the 

current (last) location. The corresponding RSSI ranking vectors of 𝐿𝑛𝑒𝑤  are 

{𝑅1
′ , 𝑅2

′ , ⋯ , 𝑅𝐾
′ }. The matching process is to find the closest paths in the route database. 

Since the lengths of different paths are usually different, MD-DTW [98] is employed 

to calculate the distance (in this case, ED or KTCC) between them. Then, the closest 

predefined path will be considered as the corresponding activity.  

5.3.2 Multi-Dimensional Dynamic Time Warping 

Dynamic Time Warping (DTW) is a well-known algorithm to evaluate the comparison 

between two-time series with different lengths [99]. This is used to help recognise 
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specific defined ADLs. Suppose two time-series 𝑃  and 𝑄 , ( 𝑃 = 𝑝1, 𝑝2, … 𝑝𝑖,

… 𝑝𝑛, 𝑄 = 𝑞1, 𝑞2, … , 𝑞𝑗 , 𝑞𝑚). To align these, a matrix can be established. Each element 

of the matrix stands for the distance (typically the ED, but in this case, KTCC is used) 

between 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗. The main target of DTW is to find the warping path 𝑊 (𝑊 =

𝑤1, 𝑤2, …𝑤𝑘, …𝑤𝐾). As shown in Figure 5-6, 𝑊 starts from 𝑤1 and ends at 𝑤𝐾 

(max(n,m) < K < m + n − 1). Then the path direction only has three cases at each 

𝑤𝑘. The step length is restricted to the warping path to adjacent cells. The distance 

between P and 𝑄 is 
1

𝐾
∑ W𝑘

𝐾
1 .  

 

Figure 5-6 An example of the warping path 

This ordinary DTW can effectively classify two time-series from a single source. 

However, in many cases, signals have multi-dimensions and will be employed at the 

same time, which can be used to better align two time-series for a single measurement 

dimension. Therefore, [98] proposed an improved MD-DTW method which was used 

in gesture recognition by a camera. Assume P𝑆  and Q𝑆  are two time-series S-

dimension features, i.e., P𝑆 = 𝑝1
𝑆, 𝑝2

𝑆, … 𝑝𝑖
𝑆, … , 𝑝𝑛

𝑆, Q𝑆 = 𝑞1
𝑆, 𝑞2

𝑆, … 𝑞𝑗
𝑆, … , 𝑞𝑚

𝑆 . Then 

the elements of distance matrix turn Dis𝑛,𝑚 = ∑ (𝑝𝑖
𝑆 − 𝑞𝑗

𝑆)2𝑆
𝑠=1 . Considering the range 

difference of S-dimension feature values, normalising each dimension of feature 

values can effectively remove the difference. Usually, each dimension of feature 

values are separately standardised to a zero mean and unit variance.    
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Compared to the location path (the path of the ground truth or the estimated locations 

using location fingerprinting methods) matching scheme, ranking-based matching 

adds a process of RSSI to rank MAC address vectors from multiple points. Hence, 

fused matching can be implemented by using two different variables, locations and 

sorted RSSI ranking MAC address vectors.  

Their feature matrix 𝐹𝑃𝑜𝑠 and 𝐹𝑅 are denoted as below.   

𝐹𝑃𝑜𝑠 = [

𝑥𝑙1 𝑦𝑙1
𝑥𝑙2 𝑥𝑙2

⋮
𝑥𝑙𝑞

⋮
𝑥𝑙𝑞

] 𝐹𝑅 =

[
 
 
 
 
𝑀𝐴𝐶𝑙1

1 𝑀𝐴𝐶𝑙1
2 ⋯ 𝑀𝐴𝐶𝑙1

𝑁

𝑀𝐴𝐶𝑙2
1 𝑀𝐴𝐶𝑙2

2 ⋯ 𝑀𝐴𝐶𝑙2
𝑁

⋮
𝑀𝐴𝐶𝑙𝑞

1
⋮

𝑀𝐴𝐶𝑙𝑞
2

⋮
⋯

⋮
𝑀𝐴𝐶𝑙𝑞

𝑁
]
 
 
 
 

         (5.29) 

The 𝑥𝑙  and 𝑦𝑙  are the estimated locations, instead of the ground truth locations. 

Based upon a pre-experiment, by using estimated locations, a higher recognition 

accuracy (increased by about 20%) can be achieved with respect to using the ground 

truth locations. It is postulated that the bias of estimated location could also help to 

increase the recognition accuracy, namely, the designed path matching accuracy. 

A single feature sequence has been used for path matching [97, 100]. However, there 

is no work that fuses these two feature sequences for path matching, since multiple 

feature sequence fusion could provide more information compared to a single feature 

to increase the accuracy of path matching. What’s more, the fusion method can also 

be extended into scenarios with multi-source information. For example, smartphones 

can collect signals not only from WiFi, but other sensors such as magnetic field 𝐹𝑀𝐹 

and BLE. Therefore, the multi-source fusion feature matrix can be denoted by 𝐹𝐹 

(5.30). In this case, by only fusing 𝐹𝑃𝑜𝑠 and 𝐹𝑅 can be viewed as a good test for path 

matching by using multi-source features.  

𝐹𝐹 =

[
 
 
 
𝐹𝑃𝑜𝑠

1 𝐹𝑅
1 𝐹𝑀𝐹

1 …

𝐹𝑃𝑜𝑠
2 𝐹𝑅

2 𝐹𝑀𝐹
2 ⋯

⋮
𝐹𝑃𝑜𝑠

𝑞
⋮ ⋮

𝐹𝑅
𝑞 𝐹𝑀𝐹

𝑞 ⋯
]
 
 
 

                   () 
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The fusion process is as follows. Firstly, as the range of KTCC results is from 0 to 1, 

instead of standardising each type measurement, I normalised the distance between the 

estimated coordinates, which min-max normalisation can map the distance values to 

the range of 0 to 1 to and make each type of result be within the same scale. Equation 

(5.31) shows the normalised the distance (z̃). Then, in the phase of path matching, 

MD-DTW (uses sum of the distances of each type measurements as a new distance) is 

utilised to find the best match. In this case, to recognise the trajectory of human 

mobility, it needs to find the path which minimises the distance between the current 

path and the pre-trained path (i.e., MD − DTW = argmin {
1

𝐾
∑ W𝑘

𝑆}𝐾
1 ).  

z̃ =
𝑧−min (𝑧)

max(𝑧)−min (𝑧)
                      (5.31) 

where z equals to 𝑠𝑞𝑟𝑡 ((𝑥𝑖 − 𝑥𝑗  )
2
+ (𝑦𝑖 − 𝑦𝑗)

2
), this is the ED of two-dimensional 

coordinates. 𝑖 and 𝑗 represent different index of estimated coordinates.  

5.4 Study 3-a and 3-b: WiFi Location Fingerprinting and ADL 
Recognition Evaluation 

5.4.1 WiFi Location Fingerprinting Positioning Performance   

5.4.1.1 PhD Office Testbed Setup 

A field experiment was conducted in a 13.0 m × 30.0 m QMUL PhD office. The 

training dataset was collected using smartphone1 (LG Nexus5)10; validation and test 

datasets were collected from both smartphone1 and smartphone3 (BlackView #1)11. 

                                                 

10 For more details: http://www.lg.com/uk/mobile-phones/lg-D821. Last accessed in Sep/2018 

11 For more details: http://www.blackview.hk/blackview-78/. Last accessed in Sep/2018 

http://www.lg.com/uk/mobile-phones/lg-D821
http://www.blackview.hk/blackview-78/


86 

 

 

Figure 5-7 The 3D layout of the PhD office 

Over 106 APs (106 different MAC addresses) were detected during the training data 

collection procedure. it is postulated some of them are dummy ones, as they have 

similar signal strength, and only three physical WiFi routers can be seen in this office. 

Hence, this is also another reason why the use AP selection algorithms is beneficial. 

Figure 5-7 shows the layout of the office; Figure 5-8 shows the coverage of the WiFi 

APs of the PhD office. The colour bar in the right part means the number of APs and 

its corresponding colour. 

 

Figure 5-8 The coverage of the WiFi APs of the PhD office 
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At each RP, the varying RSSI measurements (and hence varying AP ranking) was 

collected for 20 times, with a 2 second scanning period each time using an active 

scanning mode. It should be noticed that it is true that the more time that is spent to 

collect measurements, the more accurate the data distribution that is acquired in turn, 

leading to a more accurate positioning accuracy. However, as a trade-off to promote 

more rapid radio map construction, measurements for 40 seconds at each RP was 

collected.  

Then these 2 seconds scan measurements were integrated into a RSSI or its ranking 

vector by using averaging or a total probability comparison, which can maximally 

avoid the filling values, as if one AP was not detected, a value -100 will be filled in 

the experiment, as our methods require a uniform input (as shown in Figure 5-8, not 

every AP can be scanned at each RP or TP). Hence at each RP, it has 20 RSSIs or its 

ranking vectors. 

The 112 blue RPs shown in Figure 5-9 are the training dataset, which is used to train 

our positioning models; positioning accuracy of validation and test dataset is evaluated 

by using the rest 70 red TPs. RSSI measurements were collected at TPs at different 

times, a total 20 times. The RSSI of each AP or the moving pattern of persons in the 

office may be slightly different so the robustness of the system needs to be tested. Half 

of the collected TP measurements will be treated as a positioning validation dataset, 

and the rest dataset will be treated as a positioning test dataset for the GA-based AP 

selection algorithm.  

 

Figure 5-9 The office testbed and its RPs and TPs layout 
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Figure 5-9 also shows the 2D layout of the office. The blue dots are RPs, which are 

1m apart. The red dots are TPs, the distance between each TP is 0.5m. This training 

dataset (RP) was collected over the night with no people around using our fingerprints 

collection UAV with a 1m hovering height, which is shown in Figure 5-10. Validation 

and test datasets are collected by the author manually holding the phone at a 1m height. 

 

Figure 5-10 The office WiFi fingerprint collection drone (UAV) 

Figure 5-10 shows the fingerprint collection UAV. As yet, it is still a prototype, which 

cannot be used to collect and update the radio map automatically. The data was 

collected point by point by manually controlled the UAV. A fully automatic UAV will 

be part of future work to help collect and update the radio map (see Section 7.2.1.1).  

5.4.1.2 WiFi Location Fingerprinting Positioning Performance 

In the office testbed pre-experiment, two different types of radio map were used; one 

used averaged RSSI at each RP, which makes a relatively stable feature of each RP, 

another type used multiple scan measurements, which maintains the data diversity 
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(distribution). Then, repeated estimating locations were undertaken by changing the 

parameter K in WKNN. Figure 5-11 shows that the accuracy (averaged positioning 

accuracy, the unit is m) is related to the 𝑘. So, 𝑘 with the best performance of using 

validation dataset can be investigated to increase the positioning accuracy. However, 

k = 4 is chosen for the rest experiments, as it is a huge computational burden to iterate 

all the k numbers. The best performances of KTCC, KTCC (using a total probability 

comparison, see Section 3.4.2.2), ED, and ED (using averaged RSSI measurements) 

are 2.57 m (k = 8), 3.74 m (k = 84), 2.44 m (k = 23), and 2.18 m (k = 32), respectively. 

This also shows ED with averaged RSSI performs better than using multiple scan 

measurements. KTCC using ranking fingerprints based on a total probability 

comparison, performs worse than KTCC using multiple scan measurements. This may 

cause KTCC to became sensitive to a varying RSSI, which causes a varying RSSI 

ranking. The focus here is on ranking-based RSSI AP selection algorithms. So, in the 

following experiments, the multiple measurements radio map will be used for our 

proposed ranking methods. Moreover, it can offer more training data to train our CNN 

models. 

 

Figure 5-11 The positioning accuracy using different Ks in WKNN  



90 

 

Furthermore, the best positioning performances of above methods (same order) using 

a total of 106 APs are 2.91m, 3.84m, 2.77m, and 2.51m, which by using an appearance 

ratio method (67 APs are selected from all 106 APs using appearance ratio) only, the 

positioning accuracy increased by 11.6%, 2.6%, 11.9%, and 13.1%, respectively. By 

using appearance ratio 39 APs (36.8% of the total AP amount) can be deleted.  

Next, three AP selection algorithms, SD, IG and MI (see Section 5.2.1) were employed 

to act as baseline algorithms to compare with this proposed IOD algorithm. Figure 

5-12 shows the positioning accuracy of the four algorithms. IOD in the magenta colour 

shows the best performance compared to the other algorithms when the number of APs 

is 21 or more. Moreover, the best positioning accuracy is 2.13 m for the IOD appears 

when using 37 APs, whose positioning accuracy is 12.6%, 18.0%, and 24.1% higher 

than using IG, MI, and SD, respectively. Starting at 27 APs, all those algorithms tend 

to be stable, and the gap between them is reducing, which means they have a similar 

positioning accuracy. 

 

Figure 5-12 The location accuracy of four AP selection algorithms IOD, InfoGain, 

MI and SD with respect to the number of APs used 
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Based on the results, it is concluded that using an AP selection algorithm will not only 

reduce the computational cost but also increase the positioning accuracy. The proposed 

IOD AP selection algorithm performs better than using IG and MI, but PCA performs 

better than our IOD method based on the results shown in Figure 5-13. However, PCA 

is not a ‘real’ AP selection algorithm as it needs to calculate PCs after each scan, which 

has a higher computational cost than using AP selection algorithms when doing online 

positioning. The PCA method will be treated as the baseline positioning method to 

compare with our ranking-based methods. As the best positioning accuracy of PCA is 

2.01 m (black dashed line), which is higher than the best positioning accuracy of our 

IOD algorithm (2.13 m) when using 37 APs and when using only 2-dimensional 

converted coordinates.  

 

Figure 5-13 Performances of using IOD and PCA 

However, those AP selection algorithms (IOD, IG, MI, PCA) are not designed for 

RSSI ranking-based AP selection. To solve this, the GA-based algorithm was proposed 

to select APs, which can directly find the optimal AP list, instead of iterating the 

number of all APs to find the optimal APs for each specified number. Figure 5-14 

shows the performance relation between using the validation dataset and test dataset. 

Tthe best performance of using the validation dataset will be used to select APs. It also 
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shows the improved accuracy when using the proposed GA, as its positioning accuracy 

converges after 28 training epochs to 1.92 m. Then, the selected AP list (33 APs) will 

be used for the KTCC and CNN methods. 

 

Figure 5-14 Improved positioning accuracy using GA 

 

Figure 5-15 Improved positioning accuracy using CNN 
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Figure 5-15 shows the performance of using our CNN model with GA selected APs. 

It also shows with more the training, the positioning accuracy increased, then 

decreased, which means that this relates to how ‘accurate’ the model was trained. The 

best positioning accuracy achieved to 1.88 m, where the corresponding classification 

accuracy is 57%. It is not so simple that the higher classification accuracy the higher 

positioning accuracy becomes. This may also be caused by an insufficient collected 

fingerprints in radio map. An ‘overtrained’ model could also cause a decreased 

positioning accuracy, which means a balance between classification accuracy and 

positioning accuracy needs to be observed. This similar positioning accuracy also 

means that fewer hyper-parameters tuning needed traditional algorithm (e.g., using 

WKNN, only 𝑘 is needed to be tuned) has the ability to compete with the state-of-art 

neural network in the field of IPS. However, it is possible to achieve a higher 

positioning accuracy by tuning the hyperparameters of neural networks with more 

training data. So, methods can be chosen based upon the requirements. In this 

experiment, KTCC was used to do the rest experiments, because of its simplicity.  

Both KTCC and CNN-based methods perform 3.5% and 6.4% better than the PCA 

baseline method, whose accuracy is 2.01m. 

 

Figure 5-16 Improved positioning accuracy using EKF is combined with KTCC 
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As measurements are collected from several designed paths, the EKF model can be 

deployed to increase the positioning accuracy by using a uniform motion model. The 

positioning accuracy increased from 1.94 m to 1.42 m, when the EKF was applied. 

Figure 5-16 shows the improved positioning accuracy using EKF.   

To test our proposed RSSI ranking location fingerprinting method using KTCC again 

(the first experiment, see Section 3.5.2), a repeat experiment was carried out in the Lab 

testbed. Figure 5-17 shows that for the using a different phone (BlackView #1), the 

proposed method (averaged positioning accuracy 2.42 m, 90% in 4.52 m) performs 

better than using the ED method (3.18 m, 90% in 4.51 m), which also proves that our 

ranking method is more robust and mitigates the RF receiver heterogeneity issue. 

 

Figure 5-17 Accuracy comparison using a different phone 

5.4.2 WiFi ADL Recognition Performance 

9 specific activities (detailed trajectories see Appendix B)have been identified which 

can be inferred from analysing the moving paths of the user. The 9 activities are listed 

in Table 9. These activities are divided into two classes based upon the region in which 

the activities occur. It can also be considered that it relies on the different length of the 
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paths to categorise activities (it is assumed that the more different measurements, the 

more easily it can be matched). 

Table 9 List of Class A and B activities 

Classes Task ID Activities Path 

Class A 

1-3 Leave the office From user desk to exit 

4-6 Have a meeting From user desk to meeting room 

7-9 Print documents From user desk to printing room 

10-12 Go to kitchen From user desk to kitchen 

Class B 

13 Eat food From microwave to dinner table  

14 Make tea  From fridge to kettle 

15 Drink tea From kettle to dinner table 

16 Heat food From firdge to microwave 

17 Have a drink From fridge to dinner table 

 

Figure 5-18 Overview of Class A (office) ADL 
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Figure 5-19 Overview of Class B (kitchen) ADL 

The activities within the Class A that have the longer paths mainly refer to the user 

mobility from the office area (detailed location is user’s desk) to other areas (outside 

of the office, printing room, meeting room and kitchen) which are shown in Figure 

5-18. The Class B activities with shorter paths (fewer steps) reflect user mobility 

within the kitchen which are shown in Figure 5-19. 

Since the activity recognition accuracy is related to the path length (the path length can 

be presented by a number of sequential fixed points in that path, i.e., the number of 

rows, the 𝑞  in 𝐹𝑐  and 𝐹𝑅 ) and dimension of feature matrix, these two classes 

activities can constitute a comparative test for the effect of path length on recognition 

accuracy. As shown in Figure 5-18, the starting point of activities is the user desk 

(purple pentagram). User can walk from desk to the aisle along the green line, blue 

line and red line. Thus, if a user wants to move to the printing room, he can go to the 

aisle firstly following three different lines and then goes to the printing room from the 

aisle. This means the printing activity has 3 paths and so do the activities of leaving 

the office, having a meeting and going to the kitchen. There are 12 paths in all for 

Class A activities. 
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As for the activities in the kitchen shown in Figure 5-19, each activity refers to a line 

in a different colour (make tea - red line; heat food - blue line; drink tea - yellow line; 

eat food - pink line; have a drink - green line). Compared to the paths shown in Class 

A, the paths in shown in Class B (inside a kitchen) is finer. For each activity in Class 

B, only 1 path was chosen for each activity to test the performance of the method (as 

it is short and has no alternative paths). Hence, for Class B, there are 5 paths in total. 

During the experiment, it is repeatedly collected activities for 20 times so that there 

were (12+5)*20 = 340 paths.  

Table 10 WiFi location-driven activity recognition accuracy (as a %) 

Percent 

Single Dimension 

 DTW 

Fusion MD  

DTW 

C1 C2 mix C1 C2 mix 

Estimated location 44.6 30.0 40.3 -- -- -- 

Ranking Vectors 77.9 62.0 73.2 -- -- -- 

Fused Vectors -- -- -- 79.8 76.0 79.5 

Table 10 shows the activity recognition accuracy when using a single input data 

dimension (it only uses sequential estimated locations or ranking vectors) method and 

fusion (uses both estimated locations and ranking vectors) method. C1 stands for the 

class A activities, C2 stands for class B activities, and mix stands for the total C1 and 

C2 activities. From the results, it can be seen that the recognition accuracy of C1 is 

better than that of C2 which indicates that the activities with shorter paths are harder 

to be recognised than the activities with longer paths. This can also explain the 

degradation of recognition accuracy for the mixed set compared to that of C1. This 

also means that the longer path, the higher recognition accuracy.  

Moreover, the proposed fusion MD-DTW performs the best recognition accuracy 

compare to the single dimension-based method; the Class of C1, C2 and the mix 

recognition accuracy of the fusion-based method is improved 78.9 % (C1 estimated 

location) and 2.4 % (C1 ranking), 153.3 % (C2 estimated location) and 22.5 % (C2 
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ranking), and 97.3 % (mix estimated) and 8.6 % (mix ranking) compared to estimated 

location and ranking vector-based single dimension methods respectively. It also 

means ranking-based fingerprints can do more than just localisation; it can also be 

explored to recognise ADLs.  

 

Figure 5-20 Confusion matrix of the recognition results 

Figure 5-20 Confusion matrix of the recognition results give the confusion matrix for 

using the proposed method to recognise the designed activities. The worst performance 

(15%) is to recognise the print document activity (80% data are wrongly recognised to 

activity 8 – the same type activity as 7, but a different path). However, it is acceptable 

as the final output still will be the print document activity. The reason of this is the 

path 7 and 8 share a lot of common points (step or distance) and the same start point 

and end point, which make them hard to discriminate. This also happens to path 3 and 

path 7, path 14 and path 16, and path 15 and path 17. However, it is found that if the 
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paths have more than 4 different steps (2 m), the recognition accuracies of most paths 

become 100%, which means it has a high probability to discriminate paths with a 2 m 

(distance) difference. 

However, it is not simply related to the distance, a more detailed relation between steps 

(distance) and the number of common steps and recognition accuracy will be 

considered in the future (see Section 7.2.1.1). 

5.5 Summary 

In this chapter, RSSI ranking location fingerprinting methods were repeatedly tested 

and validated in an office environment using WiFi RSSI along with AP selection and 

EKF algorithms. Such algorithms could not only reduce the computation cost but also 

increase the positioning accuracy. 

Moreover, such RSSI ranking is also used to recognise ADLs using MD-DTW. 

However, the results show that this kind of recognition method faces the following 

challenges (they are also the reasons that I have explored the 2D Lidar-based 

recognition system): 

1. The user needs to carry sensors (smartphone) all the time, if not, a user’s 

movement cannot be tracked. 

2. There is a need to accurately determine the start and end points for the ADL, 

as it affects the ADL recognition accuracy. 

3. The recognition accuracy of a short ADL path seems inadequate. 

Hence, the next chapter will introduce a far more accurate 2D Lidar positioning system 

and its ADL recognition method. 
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6 2D Lidar Positioning and ADL Recognition 

6.1 Introduction 

The final study is to investigate the use of off-body, light-based sensors to investigation 

determine the location of users, accurately and hence to determine location 

determination ADLs. Light detection and ranging, Lidar, also referred to as LiDAR, 

LADAR or LIDAR, uses pulsed laser light to measure the TOF reflected pulses with 

a sensor. Until recently, towards the end of this PhD, Lidar devices were quite costly 

to purchase and investigate prior to this. It is postulated that the rise of autonomous 

vehicles, was part a driver for a greater production and a lower cost for Lidar devices. 

The motivation for investigating this additional technique is twofold: first, as stated in 

the introduction and survey, Lidar offers greater accuracy than some common, current 

mainstream IPS techniques based upon RF RSSI and MF. Second, many IPS 

techniques require participants to carry on body devices, e.g., smartphones, - humans 

are not device free in order to receive IPS signals. Although in the current information 

age, mobile devices are on the increase, an issue is humans get older; seniors can 

simply forget or may not be able to attach physically and to carry their location 

transceiver devices (see Section 2.3.2). Hence, the final IPS is in contrast to the ones 

investigated so far, an off-body device-free technique – Lidar. There are a range of 

Lidar devices that could be used for location determination and location determination 

ADL recognition, such as flash Lidars that only face in a single direction (1D), line 

scanning sensors that sweep a beam across a scene, taking measurements along a single 

(2D) plane and 3D Lidar [59]. Both 2D and 3D Lidar devices can be designed to rotate 

360 degrees to pulse laser light.  

The primary application of Lidar is for mobile unmanned vehicles and robots to track 

objects around them as they move and to support collisions avoidance. To the best of 

my knowledge, no work has looked at using off-body low-cost (2D rather than 3D) 

Lidar devices to recognise ADLs. There are two main reasons that 3D Lidar is not used 

to recognise ADLs. First, the higher cost of 3D Lidar prohibits the deployment in our 

scenarios; Second, 3D Lidar can also offer more fine-grained 3D point cloud 
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information, which may also jeopardise user’s privacy (the visualisation of 3D Lidar 

measurements are similar to camera videos). Next, an innovative method is introduced 

for recognising daily activities using a sequence to sequence model [101] to analyse 

location data from a 2D Lidar measurement.    

6.2 2D Lidar Off-body Positioning 

6.2.1 2D Lidar Measurement Collection based upon Hausdorff Distance  

A low cost, 2D, rotating Lidar system called RPLIDAR (version A1) from Slamtech12  

was used and configured to continuously scan a physical space until the user switches 

it off. 2D Lidar is height sensitive to what it can detect. A good height for horizontal 

pulses is to hit the upper mobile host, e.g., human torso, and to have a direct line of 

sight to all the indoor landmarks of interest, else the ADLs at these landmarks will be 

missed. Lidar uses a type of laser to emit the light pulses to detect distance. This is a 

Category 1 laser13, the safest category, which cannot emit levels of optical radiation 

above the exposure limits for the human eye under any exposure conditions. 

For many location-driven ADLs, there is often no mobile host presence in a space for 

much of the day, e.g., for residential rooms such as a kitchen, there is often no user 

presence for much of the day. Hence, much of the recorded measurements contain no 

user activities leading to a massive, largely redundant positioning dataset. Hence, to 

solve this problem, a threshold based on Hausdorff distance [102] is used, which 

measures how far two subsets of a metric space are from each other representing two 

time sequential scans. Hence, it can be used to detect the presence of a user.  

                                                 

12 Available from https://www.slamtec.com/en/Lidar/A1.  

13 IEC-60825-1: Safety of laser products International Electrotechnical Commission. Edition 1.2, August 2001 

https://www.slamtec.com/en/Lidar/A1
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First, the raw Lidar radial distance and angle measurements will be converted to 

Cartesian coordinates. The position of Lidar is denoted by the origin point (0,0). Then 

the Hausdorff distance between two different scans 𝐼  and 𝐽  is calculated. The 

Hausdorff distance between Lidar scans 𝐼 and  𝐽 is defined as: 

𝐻𝑑(𝐼, 𝐽) = max {𝑠𝑢𝑝𝑖∈𝐼𝑖𝑛𝑓𝑗∈𝐽𝑑(𝑖, 𝑗), 𝑠𝑢𝑝𝑗∈𝐽𝑖𝑛𝑓𝑖∈𝐼𝑑(𝑖, 𝑗)}         (6.1) 

where 𝑠𝑢𝑝 represents the supremum, and 𝑖𝑛𝑓 represents infimum. 𝑑(𝑖, 𝑗) means 

the ED between a point 𝑖 in the scan 𝐼 and point 𝑗 in scan 𝐽. 

 

Figure 6-1 How the Hausdorff distance works (in millimeters) 

The origin point (0,0) is where the Lidar is located, and the distance measurement unit 

is millimetres. The black points are from a scan (e.g., scan 1), without any moving 

objects. The red points are from a scan (scan 27) where a user walks into the kitchen. 

Mobile host movement causes the blue lines, which is shown in Figure 6-1. The length 
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of the light blue line means 𝑠𝑢𝑝𝑥∈𝑋𝑖𝑛𝑓𝑦∈𝑌𝑑(𝑠𝑐𝑎𝑛27, 𝑠𝑐𝑎𝑛1) , which is also the 

directed (or forward) Hausdorff distance between scan 27 and scan 1. The distance of 

the dark blue line equals the directed Hausdorff distance between scan 1 and scan 27 

- 𝑠𝑢𝑝𝑥∈𝑋𝑖𝑛𝑓𝑦∈𝑌𝑑(𝑠𝑐𝑎𝑛1, 𝑠𝑐𝑎𝑛27). When a mobile host moves, the kitchen boundary 

beyond the user from the Lidar device is not detected as the mobile host blocks the 

light beam. Based on this feature, Hausdoff distance with a threshold is used to 

determine if recording the 2D Lidar measurements. 

Instead of using the Hausdorff distance, I also tried to differentiate between two scans 

based on comparing distances at each angle. However, a small angle difference can 

lead to a considerable difference in distance, which is shown in Figure 6-1 (the points 

in the grey circle with a small angle difference, but with a considerable distance). 

6.2.2 2D Lidar Measurements Pre-processing 

 

Figure 6-2 Converted 2D Lidar map (one example single scan, in millimeters) 
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The raw measurements were collected from the 2D Lidar chosen consists of time, 

distance, angle, and quality. Because of the noisy and uncertain sensor measurements, 

occupancy grid mapping [103] is used, an algorithm often adopted by mobile robots, 

to address the uncertainty of the Lidar measurements, and to construct a consistent 

map (floor plan). 

The difference between Figure 6-2 and Figure 6-1 is that the original point was 

changed to make sure all coordinates of both x and y of Lidar points coordinates are 

above 0, which will make it easy to convert the point map to an occupancy grid map, 

as all the coordinates of the grid map are positive.   

In our 2D Lidar-based off-body positioning system, occupancy grid map is used to 

address the problem of generating a consistent map from noisy and uncertainty of our 

2D Lidar measurements. The principle of the grid cells is to represent the map as a 

field of random variables, arranged in an evenly spaced grid cell. Each variable is 

binary and corresponds to the occupancy of the location it covers. The occupancy grid 

mapping algorithms implement the approximate posterior estimation for those random 

variables: p(m|𝑧1:𝑡, 𝑥1:𝑡), where m is the map, 𝑧1:𝑡 is the set of measurements from 

time 1 to t, 𝑥1:𝑡 is the set of the robot poses from 1 to t, however, in our case, 𝑥1:𝑡 is 

fixed, as the position of our 2D Lidar is fixed. In the map, 𝑚𝑖 will be denoted the grid 

cell with index 𝑖, which is often in 2D maps. The notation 𝑝(𝑚𝑖) represents the 

probability of an occupied cell 𝑖. Thus, the posterior of a map is that 

p(m|𝑧1:𝑡, 𝑥1:𝑡) = ∏ p(𝑚𝑖|𝑧1:𝑡, 𝑥1:𝑡)𝑖                 (6.2) 

Due to this factorisation, a binary Bayes theorem (occupied or not) can be used to 

estimate the occupancy probability of each grid cell in the map. The Log odds was 

used to represent the probability that each grid cell is occupied, as in this case, it can 

merely use addition and subtraction to update the probability based on the new 

measurement (see equation 6.8). The Odd(s) will be 

Odd(s) =
𝑝(𝑠=1)

𝑝(𝑠=0)
                         (6.3) 
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where 𝑝(𝑠 = 1) means the probability of the grid cell is occupied, 𝑝(𝑠 = 0) means 

the probability of the grid cell is free (not occupied). The sum of 𝑝(𝑠 = 1) and 𝑝(𝑠 =

0) equals 1.  

When there is a new measurement z~{0,1}, Odd(s) is updated as follows: 

Odd(s|z) =
𝑝(𝑠=1|𝑧)

𝑝(𝑠=0|𝑧)
                       (6.4) 

Then, based on the Bayes’ theorem: 

𝑝(𝑠 = 1|𝑧) =
𝑝(𝑧|𝑠 = 1)𝑝(𝑠=1)

𝑝(𝑧)
                  (6.5) 

𝑝(𝑠 = 0|𝑧) =
𝑝(𝑧|𝑠 = 0)𝑝(𝑠=0)

𝑝(𝑧)
                  (6.6) 

Odd(s|z) =
𝑝(𝑧|𝑠=1)

𝑝(𝑧|𝑠=0)

𝑝(𝑠=1)

𝑝(𝑠=0)
=

𝑝(𝑧|𝑠=1)

𝑝(𝑧|𝑠=0)
Odd(s)           (6.7) 

logOdd(s|z) = log
𝑝(𝑧|𝑠=1)

𝑝(𝑧|𝑠=0)
+ logOdd(s)             (6.8) 

where the 1st part of equation (6.8) is the measurement model, where looccu =

log
𝑝(𝑧=1|𝑠=1)

𝑝(𝑧=1|𝑠=0)
 and lofree = log

𝑝(𝑧=0|𝑠=1)

𝑝(𝑧=0|𝑠=0)
. Both are constant. If in the initial state, 

no grid should be occupied. So, logOdd(s) = log
𝑝(𝑠=1)

𝑝(𝑠=0)
= log

0.5

0.5
= 0. 

For example, looccu = 0.8 , lofree = −0.7 , the higher the value, the higher 

probability that this grid cell is occupied. 

To build the occupancy grid map, it needs to collect several scans, then calculate the 

occupied probability of each grid cell. Bresenham line generation algorithm [104] was 
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used to determine which grid cells are passed by the light beam, namely, which grid 

cells are free. 

 

Figure 6-3 How occupancy grid mapping works 

The basic rules of Bresenham line generation algorithm are that, first, transforming the 

equation of a line from the typical slope-intercept form into something different (see 

equation 6.12); next, using the new equation to draw a line based on the error 

accumulation.  

The slope-intercept form is shown as follows: 

f(x) = y = mx + b                       (6.9) 

where m is the slope and b is the intercept of the y-axis. y equals to 

y =
(∆𝑦)

(∆𝑥)
𝑥 + 𝑏                        (6.10) 

Then, 
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(∆𝑥)y = (∆𝑦)𝑥 + (∆𝑥)𝑏                   (6.11) 

f(x, y) = 0 = Ax + By + c = (∆𝑦)𝑥 − (∆𝑥)y + (∆𝑥)𝑏       (6.12) 

where 𝐴 = ∆𝑦, 𝐵 = −∆𝑥, 𝐶 = (∆𝑥)𝑏. For any f(x, y) not equals to 0, this means 

that (x, y) is not on the line; if f(x, y) > 0, this means that (x, y) is above the line; 

if f(x, y) < 0, this means that (x, y) is below the line. 

I set the starting point (𝑥0, 𝑦0) on the line, then f(𝑥0, 𝑦0) equals to 0. Because of the 

property of the grid map, all coordinates are integers. Then, there will be several cases, 

for example, if the slope 𝑘 ≤ 1 (the rest cases, e.g., 𝑘 > 1 can be converted to this 

form by swap x and y), the problem is to find out whether the next point should be at 

(𝑥0 + 1, 𝑦0) or (𝑥0 + 1, 𝑦0 + 1). To solve this problem, the midpoint between these 

two points can be used: f (𝑥0 + 1, 𝑦0 +
1

2
) . If the value of f (𝑥0 + 1, 𝑦0 +

1

2
)  is 

positive, then the ideal line is below the midpoint and closer to the point (𝑥0 + 1, 𝑦0 +

1). The difference is as follows: 

D = f (𝑥0 + 1, 𝑦0 +
1

2
) − f(𝑥0, 𝑦0)               (6.13) 

D = [A𝑥0 + B𝑦0 + C + A +
1

2
B] − [A𝑥0 + B𝑦0 + C + A]       (6.14) 

D = A +
1

2
B                        (6.15)  

where A = (∆𝑦) , B = −(∆𝑥) , C = (∆𝑥)𝑏 . If D is positive, (𝑥0 + 1, 𝑦0 + 1)  is 

chosen, else, (𝑥0 + 1, 𝑦0) is chosen. 

For the rest midpoints, (using the second midpoint as an example)  

f (𝑥0 + 2, 𝑦0 +
1

2
) = f (𝑥0 + 1, 𝑦0 +

1

2
) + A = D + A             (6.16)   

or f (𝑥0 + 2, 𝑦0 +
3

2
) = f (𝑥0 + 1, 𝑦0 +

1

2
) + A + B = D + A + B      (6.17)   
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So, it can accumulate error, then, 𝐷𝑛𝑒𝑤 = 𝐷𝑜𝑙𝑑 + 𝐴 (𝐷𝑜𝑙𝑑 < 0) 𝑜𝑟 𝐷𝑜𝑙𝑑 + 𝐴 +

𝐵 (𝐷𝑜𝑙𝑑 > 0) . The point is chosen based on the value of D, if D is positive, 

(𝑥𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 1, 𝑦𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 1) is chosen, else, (𝑥𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 1, 𝑦𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) is chosen. 

It can also multiply 2 to everything with no consequence, e.g. 2D = 2A + B , 

2 (f (𝑥0 + 2, 𝑦0 +
1

2
)) = 2A + 2f (𝑥0 + 1, 𝑦0 +

1

2
), which makes it easy to calculate, 

as all variables are integers. 

 

Figure 6-4 An occupancy grid map where each grid cell equals 10*10 cm2 

Figure 6-4 shows our grid map after choosing an occupancy rate (4 is chosen as the 

map barely changed based on the visualisation of training data). The real layout of the 

space is the same as shown in Figure 6-11. 

6.2.3 Multiple Target (User) Tracking 

On occasion, when using Lidar, a few outliers will also show up in the processed 

location-based ‘image map’. This reduces the localisation and recognition accuracy, 

especially when more than one mobile user is present in the same room. So, DBSCAN 
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[105] is used to reduce such anomalies and to represent different mobile users as 

clusters. 

 

Figure 6-5 DBSCAN is used to reduce noise and to cluster users (for minPts=2) 

DBSCAN is a clustering algorithm based on regional data density, which is often used 

for outlier detection. It also marks outliers lying in low-density regions for removal. 

The algorithm requires two parameters; one is a radius ε, another one is minPts. Points 

are classified as follows: 

• A core point means at least minPts points are within a ε radius. Each cluster 

consists of at least one core point. In this case, I set minPts=2, ε=2 (this is 

considered the human width is over 20 cm) when using the converted grid map.  

• A non-core point means the point that can directly reach is less than minPts 

core points. The non-core points can be counted into the same cluster or delete 

them – it does not matter. They cannot be used to reach more points. 
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• All points that are not reachable from any other point are considered as noise 

points (outliers). 

Then, the nose points will be removed, and the rests clusters will be treated as users. 

Then, the nose points will be removed, and the rests clusters will be treated as users. 

This can support to locate multiple users in the same time. However, it cannot identify 

who is who if there are more than one user. So, how to identify the users will be another 

issue which needs to be solved in the future. Note that it is presumed that not many 

users will appear in the same room, with one blocking the other.  

6.3 2D Lidar Off-body ADL Recognition 

6.3.1 Stay Point Recognition 

In the 2D Lidar off-body ADL recognition experiment, the location data was 

segmented into fixed time periods of 30 seconds and then identify points where the 

host stays for at least a few seconds, so-called stay points. The 30 s was chosen as a 

trade-off between the time taken to move between landmarks and to allow sufficient 

time to link and analyse a small chain of landmarks visits that may be stay points 

together as simple ADLs, versus creating and having to analyse much more complex 

ADL chains. A stay point recognition algorithm [106] was used to identify key 

landmarks in this time segment, as our basic assumption is that staying at a location 

means that this point is significant. The subject may well pass other landmarks, but 

these are not necessarily relevant to the activity being performed. 

The basic idea for stay point recognition is as follows: 

The trajectory is represented as the set: 

S = {𝑙𝑜𝑐𝑘 = (𝑡𝑘, 𝑙𝑘)|k = 1,2. . n}              (6.18) 
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where l is the cartesian coordinates, t is the timestamp. 

I transform the data into the following equations: 

f(𝑡𝑘) =  𝑡𝑘 − 𝑡𝑒                      (6.19) 

Z= g(𝑓(𝑡𝑘))                       (6.20) 

Z = g(𝑓(𝑡𝑘)) =  ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑛, 𝑙𝑛−1)
𝑘
𝑛=2             (6.21) 

where 𝑡𝑒  is the time when the subject enters a space of interest, e.g., the kitchen, 

distance is the ED. The horizontal axis in Figure 6-6 represents f(𝑡𝑘) is the time when 

the subject enters the kitchen and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑘, 𝑙𝑘−1) is the ED between two points. 

In equation (6.20), it subtracts the time of entry because no data collection is logged 

when the kitchen is empty. 

 

Figure 6-6 Z transformation representing when a user enters the kitchen. The 

horizonal axis (one example from the recognition experiment) represents 𝐟(𝒕𝒌) and 

the vertical axis represents Z, which is a monatomic increasing curve. 
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As g(𝑙𝑘) increases, its first derivative will be always greater or equal to zero, which 

is shown in Figure 6-7. The stay-points should be where g is horizontal, i.e. the local 

minima of the derivative of the curve. To identify the local minima, it checks the zero-

crossing of the second derivative, as the second derivative may not equal to zero as g 

is a discrete function. Figure 6-7 depicts the second derivative, and the red boxes 

means the selected regions. 

 

Figure 6-7 The first derivative of the z transformation curve 

 

Figure 6-8 The second derivative of the curve 
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The red boxes not only include the stay points but also include inflections, which are 

caused when you walk slowly, then speedily. 

To reduce the inflections, it uses a confidence value to recognise the stay point. Based 

on paper [106], a single confidence value of data point was used as: 

C(𝑃𝑖) = 100 g’ ≤ 0.01                    (6.22) 

Else: C(𝑃𝑖) = 100 −
 g’−0.01

0.01
                 (6.23) 

C(𝑃𝑘, 𝑃𝑤) =
∑  C(𝑃𝑖)

𝑤
𝑖=𝑘

𝑤−𝑘+1
                    (6.24) 

where g’ is the first derivative. It is set C(𝑃𝑘 , 𝑃𝑤) in C(𝑃𝑖, 𝑃𝑗). i, j are the boundary 

points of zero-crossing of region k; w is the confidence level of this sub-region, above 

80. The center of those points will be treated as the stay points. 

6.3.2 Sequence-to-Sequence (Seq2Seq) Model 

The target objective is to recognise location-driven human daily activities, the inputs 

are sequential estimated locations, in this case, 2D Lidar measurements. A natural 

choice to data analysis choice to classify sequential measurements is to use a RNN 

model. Long short-term memory (LSTM) with a 10 encoding space was selected as 

the basic algorithm of the Seq2Seq model to recognise activities. 

Then the research question is how to build the corresponding output activities. Since 

for example, a kitchen has various landmarks, such as a table, sink, fridge, and 

microwave, 2D Lidar can be used to track motion between landmarks and to detect the 

continued presence at a landmark – a so-called stay point. One solution to define those 

output activities can be based on those landmarks, as most activities happen near those 

landmarks. However, there could be different landmarks in each user’s house. So, the 
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aforementioned stay point recognition algorithm was used to recognise those key 

landmarks.    

 

Figure 6-9 The sequential coordinates represent the encoder input; then the decoder 

outputs the corresponding activities, where <EOS> represents the end of the action 

sequence. 

Seq2Seq is a general-purpose encoder-decoder model, which is initially built for 

machine translation [101], but has also been used for a wide variety of tasks, e.g., 

image captioning and text summarisation. The reason Seq2Seq model is chosen is that 

the sequential location information is analogous to a translation problem. Each 

sequential location information belongs to different corresponding activities. 

Because activities can take different amounts of time, selecting fixed periods, such as 

30 seconds, and then mapping each selected fixed period to one activity does not work. 

There can, for example, be more than one activity in 30 seconds. Hence the use of a 

simple neural network also does not work. To collect training data, data were 

segmented using stay points and then annotate the stay points and annotate the sub-

sections of each segment with the elementary activities. Lidar measurements were 

collected in a kitchen. The user is asked to label the stay points and related activities. 

Then the trajectory of every 30 s will be the input data to train the Seq2Seq model. The 

corresponding activity will be the labelled data, e.g., in a 30 s time slot, the 

corresponding activities are {from table to fridge, use fridge, prepare to cook}, then 

these activities can be represented as {2, 3, 8} (see the list prior to Figure 6-17), then 

(3,2) (4,5) (5,7) (6,9) <EOS>

Walk to fridge

<START>

Take a beer <EOS>ENCODER

DECODER
User Coordinates
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based on the activity number, this was converted into a one-hot encoding14, where 

categorical variables are converted into a 0/1 form, which then forms the input to the 

Seq2Seq model. 

6.4 Study 4-a and 4-b: 2D Lidar Off-body Positioning and ADL 
Recognition Evaluation 

6.4.1 2D Lidar Off-body Positioning Performance 

Because of the challenges with using on-body devices such as accompanied (mobile 

phones), or attached (wearables) devices, which may become detached or run out of 

power, which may be less usable by some types of users such as the elderly and 

because office type indoor spaces may not be representative of living spaces which 

some types of users do not frequent, e.g., the elderly, a device-free or an off body 

positioning device was investigated – Lidar.  

 

Figure 6-10 2D (PRLIDAR) Lidar IPS device 

                                                 

14 For more details: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html. 

Last accessed in Sep/2018 

 

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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The Lidar that used was a 2D PRLIDAR, which is shown in Figure 6-10. It supports 

5-10Hz Adaptive Scan Frequency and a 0.2 to 10 m distance range. The Lidar scanning 

rate was modified to 6 Hz, which means six positioning results can be acquired in one 

second. All these scans are converted into a grid map, then compared to each other. As 

the Lidar was deployed in a fixed position, e.g., to scan a kitchen, the detected 

boundary of the kitchen should be matched most grids of the last detected boundary; 

if not, the scan will be deleted. The rests measurements in this 1s time period can still 

offer high centimetre-level accuracy in confidence.   

The experiment area is a kitchen shown in Figure 6-11, is about 20 m2, which is the 

same layout as shown in Figure 6-4. Lidar was deployed on the table. 

 

 Figure 6-11 The 3D View of the kitchen testbed 

Figure 6-12 visualises one trajectory of the user, that is the user walked from the door 

to the table, then walked to the fridge. Since the 2D Lidar-based off-body positioning 

system can offer centimetre positioning accuracy, the actual positioning results of the 

user would like a ‘tail’, instead of a single-point, which is shown in Figure 6-13, which 

is caused by the human body width. However, our activity recognition methods only 

require a series of single position result. In this case, it uses the averaged result to 

represent the user and use a circle to represent the user.   
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Figure 6-12 One trajectory of a user, tracked using the Lidar system 

 

Figure 6-13 The actual shape of a user path displayed in the grid map 
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Figure 6-14 Two users are recognised in the kitchen 

 

Figure 6-15 Two clusters will merge into one if two users are close enough 
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Figure 6-14 shows that two users are recognised and tracked using Lidar. However, if 

two users are close enough (within a ε radius, i.e., 20 cm), two clusters generated using 

DBSCAN will merge into one cluster, which is shown in Figure 6-15. If this happens, 

the system will use the coordinates of the merged cluster (dashed black circle) to 

represent the position of both users. For example, in Figure 6-15, the black dots 

represent user 1 walked from a ‘top door’ to the ‘back’ door, the red dots represent 

user 2, who walked from the back door to the fridge. These users passed each other in 

the position of the dashed black circle, and the two clusters merged into one. 

Based on the result, the system can discriminate different users’ trajectories. However, 

it cannot discriminate who the user he/she is. This will be discussed in the future. 

6.4.2 2D Lidar Off-body ADL Recognition Performance 

For the localisation part, the system works well. Based on the comparison, each data 

point can be classified into the real grid (grid map). However, if two users are close 

enough (less than 20 cm), two clusters may merge into one, but this was not a major 

issue. Moreover, a mobile human or host that is detected by the system could become 

undetected within a later period in the same sequence, that did not leave via a door 

stay point. It could then perhaps assume this has changed its vertical position, e.g., 

fallen, as the Lidar scan is set to a certain height (1.1m in our case). 1.1 m is chosen as 

a trade-off between being low enough to detect kitchen units that are offset from a 

room wall, so it can detect if the user is close to them, versus being high enough to 

detect an upright human. If a user becomes undetected, at the height of less than 1.1m 

for a period during a sequence, it could presume the mobile user or host has fallen 

down on the floor. 

For human activity recognition, stay point was used as the reduced set of important 

landmarks and as an activity connector. So, the first step is to recognise a mobile host’s 

stay points, then ask an observer to label the stay points and the activity category for 

the ground truth. The collected dataset consisted of a total of 536 times 30 s time slots 
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of acquired Lidar measurements happened in the kitchen. Of this, 100 times 30 s was 

used for the test set and the rest for the training set. The next step is to use the sequential 

location data as inputs to train the model, where the corresponding label data represents 

the labelled activities (see Figure 6-9). 

In Figure 6-16, the grey grids represent a user’s trajectory over a period. The black 

ones mean the recognised stay points. As an example, I only visualise part of the 

dataset. Here, six stay points (landmarks) are identified. I asked an observer to label 

those stay points and to point out the related activities to provide the ground truth. 

There are several ways to label ADLs. First, several elementary ADLs was set, i.e. 

eating, drinking or use the fridge, then ask the user to label the corresponding 

sequential location data. Another way is to ask the user to label personalised activities. 

In our experiment, there are 17 activities labelled by a mobile host based upon daily 

simple kitchen activities. 

 

Figure 6-16 Labelled stay points in a home kitchen scenario as detected by Lidar 



121 

 

There are several ways to label activities; one is to set several elementary activities, 

i.e. eating, drinking or use the fridge, then to ask the user to label the corresponding 

sequential location data. Another way is to ask the user to label personalised activities. 

In our experiment, there are 17 activities labelled by the user based on daily data 

collection, which is 1) from door to table, 2) from table to fridge, 3) use fridge, 4) 

fridge to warehouse, 5) prepare cat food, 6) warehouse to back door, 7) go out for cat, 

8) no one in the kitchen, 9) open back door, 10) back door to fridge, 11) prepare to 

cook, 12) oven to fridge, 13) fridge to back door, 14) use breadboard (drawer), 15) use 

oven, 16) go out back door, 17) washup.  

 

Figure 6-17 Recognition confusion matrix 

Note that the labelled activities can include several different hierarchical levels. For 

example, ‘food pantry’ as a stay point was recognised. Within a specific 30 s, a human 

user can either move from the food pantry to backdoor or stay at or very near to the 
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food pantry. Actions can also be labelled differently. A mobile host is not only near a 

stay point, but ADLs are associated with a stay point, e.g., preparing cat food in the 

food pantry or putting something into the food pantry. Moreover, if the user is not 

willing to label or wrongly label the activity or there is a new activity, the system 

cannot correctly predict the activity. 

Although the sequence recognition accuracy is reasonable at 88%, when the predicted 

sequences are the same as the ground truth ones, a few activities from the total activity 

sequence are wrongly recognised, which is shown in Figure 6-17. The darker the blue, 

the more accurate the recognition. 1 to 17 represent the 17 labelled activities. The 

hypothesis is that those activities that involve interactions with fewer, clearer to detect 

stay points, can achieve a better recognition accuracy than those activities with more 

stay points that can be linked to multiple ADLs. Interweaving ADLs like activity 7 

and 11 only achieve 78% and 83% recognition accuracy, which is relatively lower than 

other activity recognition accuracy. This is because they are involved in more stay 

points, which can be classified into other activities. However, it is still acceptable and 

means the model has the ability to discriminate interweaving ADLs.   

6.5 Summary 

In summary, this chapter first introduces the 2D Lidar-based off-body positioning 

system, which includes three parts: 1) using a Hausdorff distance threshold to collect 

data to identify when there are periods of no human activity, e.g., humans who work 

away from home are not likely to be present in the kitchen in much of the day; 2) Lidar 

measurements are processed to construct a grid map, which will decrease the 

uncertainty of using raw measurements; 3) multiple targets can be tracked using 

DBSCAN, as multiple users may present in the kitchen at the same time. Then, that 

processed location information will be treated as the input data in the human activity 

recognition methods.  

High positioning accuracy 2D lidar measurements of a kitchen at different times were 

collected to test the proposed Seq2Seq based recognition method (also to solve the 
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problems of using WiFi to recognise ADLs). Traditional ADL recognition usually 

requires mobile hosts to carry sensors to generate the data that are analysed via an 

enumeration of hierarchical plans. In contrast, it was proposed, developed and 

validated that 2D Lidar measurements could be used to accurately determine ADLs. I 

combined the use of Lidar with the state-of-art Seq2Seq RNN model to classify ADLs 

linked to the Lidar generated stay points and transitions between stay points. The 

validation shows that a 2D Lidar location determination method can provide an 

accurate localisation accuracy and a good accuracy (88%) in recognising seventeen 

location-driven daily activities. The next chapter gives the conclusion and future work. 
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7 Conclusion and Further Work  

7.1 Contributions 

This thesis concerns the problem of improving the location estimation accuracy of 

mobile targets indoor using reasonable solutions in different indoor scenarios (see 

Table 1). Then based on the improved estimated locations to offer high-quality LBS, 

in our case, high accuracy location determination ADL recognition.  

The principal, novel, contributions aspects of this research are:  

⚫ A novel smartphone independent indoor positioning method using RSSI 

ranking from multiple low-energy iBeacon devices has been proposed, which 

is validated in a library room and a PhD office that contain many metal 

bookshelves and parallel aisles. Moreover, WiFi RSSI ranking, with KTCC 

and CNN was also tested in an office environment and validated. These 

systems could also be suitable for scenarios with the Internet of Things (IoT), 

as the growing number of transmitters embedded in smart objects can also be 

treated as wireless APs. 

⚫ RSSI location fingerprinting procedures were studied, which includes 1) how 

to build fingerprints database; 2) how to select APs to reduce the data 

dimensions; 3) how to use the state-of-art deep learning algorithms to achieve 

a higher positioning accuracy.  

⚫ An additional contribution to improve location fingerprinting is that I also 

investigated how the MF anomalies can be used to estimate accurate location 

information. A novel Fast Path Matching algorithm for MF measurements 

(FPM-MI) algorithm (see Section 4.2.2) was proposed that only requires a 

person to walk a much shorter distance of about 3 m in order to have an arm 

span location accuracy. In contrast, a conventional Particle filter (PF) algorithm 

requires someone to walk 9 m before it can get such a location fix. The system 
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was validated in the same library, with multiple metal shelves and pillars. The 

positioning accuracy is within 1.8 meters, with a 90% confidence and with no 

extra infrastructure setup to support the target IPS application.  

⚫ A novel multi-source information fusion method for ADL recognition that 

fuses estimated locations and RSSI ranking of the routine was proposed. It can 

also be extended in multi-source signal scenarios (e.g. MF measurements) to 

upgrade the route recognition accuracy.  

⚫ Device-free sensing methods such as 2D Lidar can also be used for recognition 

of location-related human activities without anyone needing to carry a single 

sensor in a specific area. Although a camera can also achieve similar goals, it 

is far more privacy-invasive. Hence, an innovative method for recognising 

daily activities using a Seq2Seq model, which is widely used in the field of 

Natural Language Processing (NLP) was proposed to deal with sequential 

location data from a 2D Lidar, as it is considered that recognising ADLs is 

analogous to a translation problem. The results obtained indicate that this 

method can provide an accurate positioning accuracy and good accuracy (88%) 

in recognising 17 targeted location-driven daily activities.    

This PhD project resulted in the following publications. 

1. Z. Ma, S. Poslad, J. Bigham, X. Zhang, and L. Men, “A BLE RSSI ranking 

based indoor positioning system for generic smartphones,” in IEEE 16th 

Wireless Telecommunications Symposium (WTS), 2017, pp. 1–8. 

2. Z. Ma, S. Poslad, S. Hu, and X. Zhang, “A fast path matching algorithm for 

indoor positioning systems using magnetic field measurements,” in IEEE 28th 

Annual International Symposium on Personal, Indoor, and Mobile Radio 

Communications (PIMRC), 2017, pp. 1–5. 
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3. Z. Ma, J. Bigham, S. Poslad, B. Wu, and E. Bodanese, “Device-Free, Activity 

during Daily Life, Recognition Using a Low-Cost Lidar”. IEEE Global 

Communications Conference (GLOBECOM) 2018. (Travel Grant) 

4. B. Wu, Z. Ma, S. Poslad, “An efficient wireless access point selection 

algorithm for location determination based on RSSI interval overlap degree 

(IOD) determination,” in IEEE 17th Wireless Telecommunications 

Symposium (WTS), 2018, pp. 1–8. 

5. B. Wu, Z. Ma, S. Poslad, and Y. Dong, “Using WiFi Fingerprint Based 

Location Awareness for Activities of Daily Living Recognition”. In 5th 

International Conference on Behavioral, Economic, and Socio-Cultural 

Computing (BESC), 2018. 

6. F. Lv, H. Yang, Z. Ma, and S. Poslad. “Indoor Activities Classification System 

Based on Android phone and Machine Learning.” Computer Programming 

Skills and Maintenance 2017, 02 (2017): 40-43. 

7.2 Outlook / Further Work 

This section will outline several potential research directions to extend the proposed 

indoor positioning and recognition methods further.  

7.2.1 Indoor Positioning Methods 

7.2.1.1 Fingerprints Collection Robot and Radio Map Design and Testing 

Although a fingerprint collection robot (prototype) was developed, which was 

mentioned in Chapter 5, to help construct radio maps, the robots are still not 

‘intelligent-enough’, as they need to manually set the designed path, which the robots 

can follow. However, this also faces challenges when knowing where it is in the 

building to label the fingerprints and how to avoid moving objectives. So, mobile robot 
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SLAM [107], [108] multiple sensors fusion [109], [110] and collision-free path 

replanning [111], [112] could be studied to achieve this goal. 

Moreover, as shown in the paper [72], the human body attenuation issue exists, the 

orientations and places of collected fingerprints at each RP should be considered. So, 

how to design and sample fingerprints, e.g., collecting 4 orientations (N, W, S, E) or 

sequential path fingerprints will be another aspect of the future work. Such designed 

radio map will also be open-source to promote more indoor positioning research, the 

radio map of the Lab testbed is available in http://iot.eecs.qmul.ac.uk. 

7.2.1.2 WiFi Round Trip Time 

Google has launched the first developer preview build of Android P version in 2018. 

Some new features were published, which WiFi Round Trip Time (RTT) was one of 

them. The IEEE 802.11mc is more commonly known as RTT, which allows computing 

devices to measure the distance to its nearby WiFi APs and to determine the user 

locations. With more than three nearby WiFi APs, geometric-based algorithms 

methods can be applied to estimate locations, no radio map is required in free space 

like spaces, avoiding the radio map construction work in those places, which is time-

consuming and laborious and make RSSI location determination with less 

maintenance work. Also, with the growing number of deployed WiFi APs, the 

positioning accuracy can be further increased. However, not all devices, at this time, 

only the Google Pixel line of smartphones have the hardware support for this feature15. 

7.2.1.3 AOA-supported BLE 5 Positioning Beacon 

An iBeacon device with designed antenna array can make it possible to compute Angle 

of Arrival (AOA) based on phase differences, which can be used to locate users. 

                                                 

15 For more details: https://en.wikipedia.org/wiki/Pixel_(smartphone). Last accessed in Sep/2018  

http://iot.eecs.qmul.ac.uk/
https://en.wikipedia.org/wiki/Pixel_(smartphone)
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Moreover, the BLE Special Interest Group presented the BLE 5 version16 on 16 June 

2016, which is the latest version of the BLE wireless communication standard. It is 

used for communication between various smart home and IoT devices as it is a high-

speed (up to 2Mbps), long-range (up to 400 m), low-power consumption standard. The 

increased range and low-power consumption mean BLE 5 can play a crucial role in 

making beacons more practical and appealing. It also means that the designed AOA-

supported beacons can be situated further away with increased accuracy.  

7.2.1.4 Smartphone-based Sensor Fusion Indoor Positioning System 

A smartphone-based sensor fusion IPS proposal17 was submitted and accepted by 

Indoor Positioning and Indoor Navigation (IPIN) 2018, a world-leading indoor 

positioning and navigation conference. The main idea of this proposal is how to fuse 

the positioning methods which are mentioned in this thesis. e.g., multi-dimension 

location fingerprinting using both wireless selected AP ranking and MF 

measurements; fusing (EKF and PF) the predicted PDR result with the estimated 

location using the location fingerprinting.   

7.2.1.5 Fusion Positioning for Augmented Reality 

Google’s Tango-based 18  consumer smartphone has a significant impact on many 

applications, especially in the area of indoor positioning, as it can offer centimetre 

positioning accuracy using a Tango-based smartphone. However, it can only run on 

just two types of smartphone. Now, Google is releasing ARCore19, which will bring 

                                                 

16 For more details: https://en.wikipedia.org/wiki/Bluetooth#Bluetooth_5. Last accessed in Sep/2018 

17 For more details: http://ipin2018.ifsttar.fr/. Last accessed in Sep/2018 

18 For more details: https://en.wikipedia.org/wiki/Tango_(platform). Last accessed in Sep/2018 

19 For more details: https://developers.google.com/ar/discover/. Last accessed in Sep/2018 

https://en.wikipedia.org/wiki/Bluetooth#Bluetooth_5
http://ipin2018.ifsttar.fr/
https://en.wikipedia.org/wiki/Tango_(platform)
https://developers.google.com/ar/discover/
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the power of Tango to millions of more Android smartphones. This can bring a great 

opportunity to indoor LBS applications. Khuong and Luo [113] proposed to fuse 

traditional smartphone-based positioning methods with Tango, which can mitigate the 

Tango failure issue (e.g., insufficient light). This can also be explored with ARCore. 

7.2.1.6 3D Indoor Positioning 

As indoor spaces at work, leisure and for retail get more complex, there is an increasing 

need to address 3D positioning to identify which floor a physical asset is on that 

triggers a LD-AD. This also requires models and representations of 3D topographic 

indoor spaces [39]. 

7.2.2 ADL Recognition 

7.2.2.1 More Advanced Machine Learning Methods  

As I have considered that location-driven ADL recognition could be analogous to a 

translation problem, which also faces the challenge of insufficient specified labelled 

training measurements, as not all those ADLs can happen and are recorded for each 

data collection. Such a challenge could be solved by using state-of-art machine 

learning methods, e.g., one-shot learning [114], in which the training data will be 

paired with other data to expand the dataset, and then trained by a siamese network;  

7.2.2.2 CSI/Radar-based methods 

ADLs were thus far recognised based only on location information. More advanced 

data fusion can be considered, e.g., using location information with inertial sensors 

measurements to recognise far more fine-grained activities. Moreover, as most indoor 

positioning methods are using radio signals, such signals could also be parsed by using 

WiFi CSI [49], [45] or specialised Radar [115], [116] to recognise ADLs. Then, those 

measurements could also be fused to achieve a higher ADL recognition accuracy.    
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7.2.2.3 GPS-free outdoor positioning and ADL recognition 

Low-Power Wide-Area Network (LPWAN) is a type of wireless telecommunication 

wide area network that is designed to enable long-range communication of low bit rate 

things. Among LPWAN, LoRaWAN20 is a medium access control (MAC) protocol 

built on top of the LoRa technology developed by LoRa Alliance, which allows low-

powered devices to communicate with the internet-connected applications via 

LoRaWAN gateways in a bi-directional manner. In LoRaWAN, the characteristic of 

periodic data uplink transmissions from the low-powered devices to the LoRaWAN in 

various monitoring and reporting applications provide great potential for location 

estimation of these devices without any hardware implementation and power 

consumption of positioning module. With the more deployed gateways, the more fine-

grained LoRa RSSI fingerprints can be collected, which means a higher outdoor 

positioning results can be achieved. This could also be used to recognise outdoor 

activities. 

 

                                                 

20 For more details: https://www.thethingsnetwork.org/docs/lorawan/. Last accessed in Sep/2018 

https://www.thethingsnetwork.org/docs/lorawan/
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Appendix A 

Table 11 Some representative positioning companies and its solution (public data) 

Solutions Techniques    Accuracy Application 

WiFiSLAM WiFi      2.5 m Indoor LBS 

Estimote BLE    2 m Indoor LBS 

Meridian WiFi/BLE      1~3 m Indoor Navigation 

Sensewhere WiFi/BLE    < 10 m Indoor LBS 

Iway WiFi/GSM      2~3 m Indoor LBS 

Loctronix GSM    15 m Emergency Services 

Pointr BLE      1~3 m Indoor LBS 

9Solutions BLE/RFID      1~2 m Security/Health 

NaciFloor RFID      50 cm Robots 

Ubisense UWB    15 cm Indoor LBS 

Zebra UWB/RFID      < 1 m Outdoor/Indoor LBS 

Prozyx UWB+IMU      10 cm Positioning Modules 

ByteLight LED    5-10 cm Indoor LBS 

IndoorAtlas Magnetism      1~3 m Indoor LBS 

Cricket  Ultrasonic      1~3 cm Indoor Navigation 

Velodyne Lidar      1~3 cm Positioning Modules 

LPR-2D Radar    20 cm Outdoor/Indoor LBS 

Google VPS Camera      < 3 m Outdoor/Indoor LBS 
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Appendix B 

This section describes all the training trajectories used in Chapter 5. 

 

Class A-1 (7.5 m)                      Class A-2 (6.5 m) 

  

 

 

Class A-3 (12.5 m)                      Class A-4 (8 m) 
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Class A-5 (9 m)                         Class A-6 (16 m) 

  

Class A-7 (10 m)                        Class A-8 (11 m) 

  

Class A-9 (18 m)                     Class A-10 (13.5 m) 
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Class A-11 (14.5 m)                  Class A-12 (21.5 m) 

 

Class B-13 (2 m) 

 

Class B-14 (1.5 m) 
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Class B-15 (2.5 m) 

 

Class B-16 (2 m) 

 

Class B-17 (3.5 m) 


