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Abstract 

Polymer brushes generated via “grafting-from” approach emerged as an attractive 

surface modification tool offering chemical stability, synthetic flexibility and 

unprecedented control over the polymer grafting density, thickness, chemical 

composition and functionality.  They display interesting features to many applications in 

regenerative medicine including cell culture, tissue engineering and as delivery systems 

due to exquisite control of physicochemical and biological properties. Cationic polymer 

brushes are particularly attractive in the field of designing effective vectors for gene 

delivery as polymer brush allows the design and coating of a variety of particles with 

well-defined core-shell architecture and chemistry to efficiently condense and deliver 

nucleic acids. This thesis concentrates on designing safe and efficient gene delivery 

vectors based on ‘graft from’ cationic polymer brush and understanding the interaction 

of nucleic acids with polymer brush.  

Chapter one presented fundamental knowledge of polymer brush and its biomedical 

application. The first part of this chapter describes the definition of polymer brush, the 

preparation strategies, mechanism of atom transfer radical polymerisation and the 

responsiveness of polymer brush including solvent, pH and ionic strength. The second 

part discusses the state-of-art applications of polymer brush in regenerative medicine 

including protein resistant polymer brush for tissue engineering and as drug/gene 

delivery systems. 
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In chapter two, high density cationic polymer brushes was prepared to study the 

interactions with different nucleic acids. We further demonstrate the ease with which 

such coatings allow the design of highly structured nanomaterials for siRNA delivery 

using block copolymer-brush based nanoparticles that allow the protection of 

oligonucleotides by a protein resistant outer block. In particular these nanomaterials 

display a high serum stability and low cytotoxicity whilst retaining excellent knock down 

efficiencies.  

Chapter three aims to fabricate polymer brush from macroinitiator adsorbed to a variety 

of templates with different core sizes, surface chemistries and shapes to further explore 

a more flexible way to generate polymer brushes on different particles as well as 

labelling them with stable fluorescence. Selected candidates were used to study the 

interaction of different brush chemistry coated particles with epidermal cells and for the 

delivery of siRNA. 

In chapter four, three different polymer brushes coated silica nanoparticles (SiO2-

PDMAEMA, SiO2-PDMAI and SiO2-PDMABr) were prepared and the effect of different 

chemistries and pH responsiveness on siRNA transfection kinetics was evaluated. 

Moreover, fluorescently labelled vectors and siRNA were used to visualise siRNA 

complex uptake and siRNA release in HaCaT cells.  

Chapter five summarises the main findings of this thesis and provides suggestions for 

future research. 
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1.1 Polymer brush 

1.1.1   Polymer brush definition 

Polymer brushes are defined as dense layers of chains confined to a surface or interface 

where the distance between grafts (d) is much less than the unperturbed dimensions of 

the tethered (h). At high grafting densities, i.e. when the distance between neighbouring 

grafting points is small, steric repulsion leads to chain stretching and a brush-like 

(scheme 1a) conformation of the surface-tethered chains.1, 2 At lower densities, surface-

tethered polymer chains can adopt various other conformations, which are referred to 

as mushroom (scheme 1b) or pancake (scheme 1c).1, 2 

 

 

Figure 1.1. Illustration of possible conformations of polymers end-tethered to a surface: 

(a) brush-like, (b) mushroom-like and (c) pancake-like. 
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1.1.2   General preparation strategies of polymer brush 

The two main strategies for the preparation of polymer brushes are the grafting to and 

the grafting from strategies3. The grafting to strategy involves attaching prefabricated 

polymers via either physisorption (scheme 2A) 4, 5 or covalent chemical bond (scheme 

2B) 6. However, there are several limitations for the grafting to strategy, which make it 

difficult to produce thick and dense polymer brushes due to the steric repulsions 

between polymer chains. Furthermore, the reaction between the complementary group 

at the surface and the polymer end-group typically becomes less efficient with 

increasing polymer molecular weight. In the grafting from approach (scheme 2C)7, 8, the 

polymerisation is directly initiated from initiator-functionalised surfaces, which allows 

relatively accurate control over brush thickness, composition, and architecture. Living 

controlled surface-initiated polymerisation reactions, including atom transfer radical 

polymerisation (ATRP)9-11, carbocationic polymerisation12, 13, anionic polymerisation14, 15, 

and ring-opening metathesis polymerisation16, 17 are typically required to achieve such 

control. The different polymerisation reactions can be carried out on surfaces 

presenting very different topographies (planar18, curved19, and irregular surfaces20), and 

allow the generation of polymer brushes based on a wide spectrum of different 

monomers. 
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Figure 1.2. Synthetic strategies for the preparation of polymer brushes: (A) 

physisorption of diblock copolymers via preferential adsorption of the red blocks to the 

surface (grafting to approach); (B) chemisorption via reaction of appropriately end-

functionalised polymers with complementary functional groups at the substrate surface 

(grafting to approach); (C) polymer brushes grown via surface-initiated polymerisation 

techniques (grafting from approach).1 

 

1.1.3   Atom transfer radical polymerisation (ATRP) 

Atom transfer radical polymerisation (ATRP), a living polymerisation technique, has 

proven particularly performant for the design of well-defined polymeric materials. ATRP 

is a highly robust and versatile synthetic strategy which enables the preparation of 

polymers with precisely controlled molecular weight, low dispersities (Mw/Mn<1.1) and 

diverse functionalities.21 ATRP technique is particularly suited for the preparation of 

functional bioactive surfaces, including antibacterial22, 23, antifouling24, 25, stimuli 
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responsive26-29, micropatterned30 and biomolecule-coupled surfaces31. Also, it has been 

widely used for the preparation of well-structured functional biomaterials, such as 

hydrogels32-36, cationic gene carriers37-42 and polymer–protein conjugates43, 44.  

 

1.1.3.1   ATRP mechanism 

As is shown in scheme 1.321, ATRP is controlled by an equilibrium between propagating 

radicals and dormant species, predominately in the form of initiating alkyl halides 

macromolecular species (Pn-X). The dormant species unfrequently react, based on the 

rate constant of activation (kact), with transition metal complexes in their lower 

oxidation state, Mtn/L (Mtn represents the transition metal species in oxidation state m 

and L is a ligand). Mtn/L act as activators to intermittently form growing radicals (Pn*), 

and deactivators-transition metal complexes in their higher oxidation state, coordinated 

with halide ligands X−Mtn+1/L. The generated radical can then propagate with vinyl 

monomer (kp), terminated by either recombination or disproportionation (which ATRP 

aims to reduce), or be reversibly deactivated (kdeact). ATRP is a catalytic process and can 

be mediated by many redox-active transition metal complexes (CuI/L and X−CuII/L have 

been the most often used transition metal catlysts, but other studied metals include Ru, 

Fe, Mo, Os, etc) 21, 45-47. 
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Figure 1.3. The mechanism of transition metal-catalysed ATRP.21 

 

1.1.3.2   Factors influencing the rate in ATRP 

ATRP depends largely on the equilibrium between the activation process (generation of 

radicals, kact) and the deactivation process (formation of alkyl halides, kdeact) as described 

above. The equilibrium constants, KATRP=kact/kdeact, determines the concentration of 

radicals and subsequently the rates of polymerisation and termination48, 49. Numerous 

studies have concentrated on measuring kact for polymeric and monomeric and most of 

the values were obtained under various reaction conditions, such as different 

temperatures, solvents, etc. In addition, initiators and ligands can also strongly affect 

the ATRP rate constant. The work from Tang et al.49 presented a large set of KATRP values 

determined for ATRP using various alkyl halide initiators and Cu catalysts with nitrogen-

based ligands and discussed how the structures of the ligands and initiators affect the 

KATRP values. They found the activity of the Cu complex decreases as the ligand is 

changed from Cyclam-B > N4-branched > N4-linear > N3 > N2 (figure 1.4). The ethylene 

group provides a better linkage than the propylene group for the coordinating nitrogen 

in the ligand. They also demonstrate that the activity of the initiator decreases as the 

alkyl group is varied from 3°> 2°> 1°and its R-substituent varied from -CN < -Ph < -C(O)OR > 

-CH3 (figure 1.5). The activities of alkyl bromide initiators are several times larger than 
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those of the corresponding chlorides. This work provides guidance for further design of 

efficient ATRP initiators and ligands. 

 

 

Figure 1.4. ATRP equilibrium constants KATRP for various N-based ligands with the 

initiator EtBriB in the presence of CuBr in MeCN at 22°C. Color key: (red) N2; (black) N3 

and N6; (blue) N4. Symbol key: (solid) amine/imine; (open) pyridine; (left-half-solid) 

mixed; (□) linear; (△) branched; (○) cyclic.49 
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Figure 1.5. ATRP equilibrium constants for various initiators with CuX/TPMA (X=Br, Cl) 

in MeCN at 22 °C. Colour key: (red) 3°; (blue) 2°; (black) 1°. Symbol key: (solid) R-Br; 

(open) R-Cl; (bottom-half-solid) R-I; (△) phenyl; (□) ester; (○) nitrile; (◇) phenyl ester; 

(☆) allyl49. 

 

1.1.3.3   Macroinitiators (MIs) 

Chlorosilane- or alkoxysilane-based small-molecule initiators are commonly synthesised 

by hydrosilylation using reagents that are highly toxic and flammable (e.g., H2PtCl6 and 

HSiCl3), which makes it hazardous to scale up.50, 51 Moreover, silane initiators are prone 

to hydrolysis, making functionalisation of waterborne colloidal substrates somewhat 

problematic. Macroinitiators can overcome some of the disadvantages of conventional 

silane-based small-molecule initiators: they can be conveniently synthesised on a gram 

scale, have excellent chemical stability, and can be rapidly adsorbed onto various 

surfaces such as  silica or metal oxide substrates from aqueous solution at ambient 
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temperature.52-56 However, if their adsorption is not controlled, polyelectrolytic 

macroinitiators can produce polymer brushes with significantly lower grafting densities 

than those grown from silane-based initiators (as evidenced by the slower rate of 

polymerisation observed from corresponding substrates)53.  

Layer-by-layer (LBL) deposition is a thin film fabrication technique. The films are formed 

by depositing alternating layers of oppositely charged materials with wash steps in 

between. Applying LBL technique of both cationic and anionic macroinitiators can 

increase the chain grafting density (Figure 1.6)53.  

 

 

Figure 1.6. LBL electrostatic adsorption of oppositely charged polyelectrolyte 

macroinitiators on oxidised silicon wafers, followed by surface-initiated ATRP of 

HEMA.53 

 

https://en.wikipedia.org/wiki/Thin_film
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The thickness of coatings generated from cationic and anionic macroinitiators layers 

increased in an approximately linear fashion. And the bromoester initiator density (∼4.9 

± 0.2 nm-2 for a 17-layer macroinitiator) was estimated to be comparable to that 

calculated for ATRP initiator monolayers obtained by either thiol or silane chemistry.53 

Increasing the number of macroinitiator layers led to a concomitant increase in brush 

thickness, which is attributed to an increase in the surface initiator density, and leads to 

more densely grafted brushes.53 Since many biopolymers (proteins, nucleic acids and 

DNA) are polyelectrolytes, the LBL are interesting models for biomaterials and it should 

be worthwhile to study the internal structure of these layers in more detail using 

different techniques, including for example neutron reflectivity57 and fluorescence 

microscopy58. 

 

1.1.4   Polymer brush responsiveness 

The conformation and structure of a polymer brushes can be manipulated via a variety 

of external stimuli, e.g. solvent59, temperature60-63, pH64-68, and ions regarding of the 

different architecture69, 70 as well as the chemical composition of the polymer chains. 

These responsive properties potentially allow the development of “smart” surfaces.  

 

1.1.4.1   Solvent 

In a good solvent, the contacts between polymer chains and the solvent will be 

maximised, thus the brushes will tend to swell, while in a poor solvent the brush will 

collapse in order to reduce the interaction with solvent. This solvent effect highly 

contributes to the brush conformation.  For instance, ABC triblock copolymer PDMS-b-
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PS-b-PDMSA was synthesised with a combination of living anionic ring-opening and 

ATRP and covalently bond to a silicon wafer.71 Surface properties of the copolymer 

ultrathin films could be reversibly controlled to present either PS or PDMS segments by 

treatment with toluene, or a mixture of toluene/hexane as shown in Figure 1.7A.71 

Tapping-mode AFM (Figure 1.7B)72 observations revealed that the surfaces of brush 

films immersed in a good solvent for both segments (toluene) and subsequently dried 

under a stream of nitrogen exhibited fractal morphology characteristic for glassy 

polymers. In contrast, the surfaces of brush films exposed to toluene/hexane mixtures 

and dried under nitrogen, were completely featureless. This suggested that, following 

treatment with the solvent of lower affinity towards PS, “soft” PDMS segments were 

preferentially segregating to the surface to form a rubbery surface. 

 

 

Figure 1.7. A: Scheme illustration of PDMS-b-PS-b-PDMSA triblock polymer brush 

treated with toluene and gradually adding hexane and drying with nitrogen to form 

either glassy or rubbery surface; 71 B: Tapping-mode AFM height images of PDMS-b-PS-

b-PDMSA brushes after the following treatments. (left) After immersion in toluene and 

drying with nitrogen; (right) after immersion in toluene, gradual addition of hexane and 

drying with nitrogen imaged under both ultra-light (top) and normal (bottom) AFM 

tapping mode.72 
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1.1.4.2   Response to pH 

In an acidic environment, hydronium ions (H3O+) are abundant, thus, for polyacid 

brushes, such as poly(acrylic acid) (PAA)65 and poly(methacrylic acid) (PMAA)68, the 

brush will be protonated, which usually renders it hydrophobic and collapsed, excluding 

water molecules. However, in base, the deprotonated polyacid brush is negatively 

charged and will swell due to the coulombic repulsion of the negative charges. The pH-

response of polybase brushes (e.g. poly((dimethylamino)ethyl methacrylate) (PDMA), 

poly((diethylamino)ethyl methacrylate) (PDEA), and poly(4-vinylpyridine) (P4VP)) are 

opposite to that of polyacid brushes; their wet thickness decreases with increasing pH 

due to deprotonation of the charged side groups, which will also affect the aggregation 

of the particles when forming brush-particle composition.  

 

 

 

Figure 1.8. pH-responsive morphology changes of the gold/P4VP nanocomposites.7 
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For example, P4VP grafted gold nanoparticles exhibited a two-stage pH responsiveness 

(Figure 1.8)73: at low pH (<3.1), the polymer chains are positively charged due to the 

formation of pyridinium ions. Hence , hence, water is a good solvent and the polymer 

chains extend maximally under the electrostatic repulsion, and these highly charged 

particles are monodisperse in the suspension; at an intermediate pH range (3.8-4.4), the 

pyridinium groups are readily deprotonated, water becomes a poor solvent, thus the 

polymer chains are collapsed onto the gold cores, but the whole particles are also 

monodisperse, this response is reversible due to the protonation/deprotonation 

process of pyridine groups; while at higher pH (>5.5), the very low concentration of H+ 

ions results in a drastic decrease and hence the nanocomposites aggregate. 

 

1.1.4.3   Ionic strength 

When a polymer brush is formed from strong or weak polyelectrolyte molecules, 

electrostatic interactions introduce a rich variety of behavioural regimes.74 The internal 

charge fraction of a brush in the osmotic regime has complex dependencies upon the 

chemical environment. At low salt concentration, negatively charged salt ions may 

exchange with counterions, which may effectively change the pH of the brush and cause 

additional swelling. Therefore, the brush tended to swell at low salt concentration 

before collapsing again in the salted brush regime when increasing the concentration. 

An example of effect of ionic strength on brush conformation is shown in Figure 1.975, 

displaying a power law increase of thickness with salt concentration of 1/3 for low salt 

concentration (and −1/3 at high concentration). This is a key piece of experimental 

evidence for the expected behaviour of weak polyelectrolyte brushes, showing the 
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transition between the osmotic brush and salted brush regimes, and strongly supports 

the validity of the proposed scaling theory75, 76.  

 

 

Figure 1.9. Swelling as a function of salt concentration for a weak polyelectrolyte.75 

 

1.2   Polymer brush applications in regenerative medicine 

Understanding the mechanisms regulating interactions between cells or tissues and the 

artificial material used as scaffold or substrate is of critical importance to develop new 

generation of implants and therapeutics for regenerative medicine. Over the last two 

decades, tuning physicochemical and biological properties of scaffolds and 

biomimicking substrates to understand and control such cell-interface interactions has 

received much attention and some of these concepts have been applied to a wide range 

of applications such as cell culture77-80, cell/tissue engineering81, 82 and drug/gene 

delivery systems83-85. Polymer brushes generated via “grafting-from” approach display 
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interesting features for the design of such biointerfaces79, 86. Polymer brushes can be 

generated via several controlled polymerisation techniques as well as a wide variety of 

initiators for different types of substrates (e.g., silicon, gold, glass, graphene and 

hydroxyapatite) displaying a broad range of surface chemistry. Importantly, such 

chemical modification of scaffolds or implants does not alter bulk mechanical properties. 

The following section will concentrate exclusively on the state-of-the-art of polymer 

brushes applied in cell culture and as delivery systems. 

 

1.2.1   Protein-resistant polymer brushes for tissue engineering and in 

vitro assays 

Polymer brushes are capable of controlling surface protein absorption and of regulating 

specific cell behaviors by manipulating a number of important architectural and 

physicochemical features and the introduction of bioactive moieties or macromolecules. 

The altered interfaces between material and surrounding cells or a tissue should allow 

the control of a few behaviors such as cell adhesion, proliferation, spreading, motility, 

differentiation and recruitment of cells, which are of critical importance for tissue 

engineering and regenerative medicine.  

 

1.2.1.1   Design of protein-resistant polymer brushes 

Protein fouling from physiological fluids (e.g., blood, plasma, and serum) can lead to 

undesirable effects and failure of implants and devices. Poor control of fouling can result, 

for example, in the blockage of flow through separation columns and porous 

membranes87, the non-specific response of affinity biosensors88, the reduced circulation 
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time of nanocarriers in the blood stream due to colloidal instability or opsonization89, 90, 

the attachment of bacteria on contact lenses91 and synthetic implants92, or the failure 

of cardiovascular devices via thrombus formation92. Protein adsorption is considered to 

be a key factor controlling the interaction between polymeric biomaterials and 

physiological fluids and affects important secondary interactions such as cell and tissue 

adhesion or immune response. Therefore, the design of low/anti-fouling surfaces is 

essential for the development of biosensors and regenerative medicine applications 

(e.g., protein biomarkers monitoring, biomedical implant coating to prevent biofilm 

formation and infections).78  

Due to their ultra/low-fouling ability, resisting both protein and cell adhesion, and good 

cytocompatibility, poly (ethylene glycol) (PEG)-based materials have been widely 

studied and used in the biomedical field.93, 94 However, the various factors controlling 

the stability of PEGylated surfaces (and the kinetics and thermodynamics of relevant 

events) are still debated and often not sufficient to protect surfaces from protein 

adsorption is harsh conditions (in particular undiluted physiological fluids)95. Thus, 

alternative antifouling surfaces are needed. Polymer brushes, with their characteristic 

high surface density, ease of formation, robustness in a relatively wide range of 

conditions and versatile architecture and chemistry, have been designed to restrict 

protein adsorption and some of these coatings display ultralow (<5 ng/cm-2) fouling 

from defined single protein solution as well as more complex physiological fluids. 

Brushes based on oligo(ethylene glycol) and zwitterionic side chains are the most classic 

examples of antifouling polymer brushes, but other structures have been developed, 

with excellent performance, suggesting that design rules may be different to those 
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determined for monolayers96. Poly(oligo(ethylene glycol) methacrylate) (POEGMA) 

brushes, with their low fouling properties from fibronectin, lysozyme, BSA, and foetal 

bovine serum (amongst other proteins and samples tested) were the first protein 

resistant brush reported in the literature.97-99 These brushes can be generated from a 

variety of substrates without compromising protein resistance properties100, thus can 

be applied to a wide range of biotechnology platforms and biomedical devices capable 

of performing in physiological conditions prone to generate high protein fouling101, 102. 

The performance of POEGMA to restrict protein adsorption was correlated to brush 

properties such as thickness, grafting density and length of the oligo(ethylene glycol) 

(OEG) side chain.97, 101, 103 

Poly(hydroxypropyl methacrylamide) (PHPMA) brushes and poly(2-hydroxyethyl 

methacrylate) (PHEMA) brushes are other neutral brushes displaying excellent protein 

resistant properties.104 With the appropriate brush thickness of ∼25-45 nm for PHPMA 

and ∼20-45 nm for PHEMA, surfaces can achieve almost zero protein adsorption (<0.3 

ng/cm2, below detection thresholds for techniques such as quartz crystal microbalance 

(QCM) and surface plasmon resonance (SPR) from single-protein solution.104 For 

undiluted human blood serum and plasma, PHEMA brushes with a film thickness of ∼20-

30 nm adsorb less than 3.5 ng/cm2 proteins (Figure 1.10, A1), while PHPMA brushes at 

a film thickness of ∼30 nm adsorb more proteins, between ∼13.5 and ∼50.0 ng/cm2, 

respectively (Figure 1.10, A2).104 However, important differences observed for the 

protein adsorption from different donors are observed and presumably reflect the 

important variations observed in blood composition from one patient to another (Figure 

1.10, B)105. The protein resistance of PHEMA brushes, as for other anti-fouling brushes 
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was found to be strongly influenced by the grafting density106. These studies highlight 

the importance of size-exclusion effects to prevent the infiltration of proteins through 

polymer chains and adsorption to the underlying substrate.106-108 Therefore, providing 

these brushes do not display strong affinity to proteins, their adsorption should be 

suppressed. 

 

 

Figure 1.10. Adsorption of undiluted human blood serum and plasma on PHEMA (A1), 

PHPMA surfaces (A2)104 and fouling from pooled blood plasmas from five single donors 

on six surfaces (B)105, measured by SPR.  

 

A wide range of substrates have been used for polymer brush growth78. This has allowed 

the functionalisation of silicon, gold and other surfaces with POEGMA and PHEMA 

brushes to control protein fouling at the surface of these materials.14,22,109 Other 

materials relevant to the design of biomedical implants have also been coated with 

polymer brushes. For example, polyester block copolymer brushes (e.g., poly(lactic acid) 

(PLA), poly(glycolic acid) (PGA) and poly(Ɛ-caprolactone) (PCL) prepared as the first layer 

and OEG as the outer layer) showed increased resistance to protein adsorption, 

regardless of decreasing rate of brush degradation.110 Si-OEG-PGA brushes were found 

to be relatively more protein resistant compared with both Si-OEG-PLA and Si-OEG-PCL 
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brushes due to the higher density of grafting observed for the OEG component.110 The 

topography of the substrates, for example via the introduction of wrinkled 

morphologies, can also be controlled, depending on the requirement of specific 

applications, independently of antifouling properties of the coatings (e.g., POEGMA 

brushes have been successfully grafted from a thermally triggered shape memory 

elastomers)111. 

Polyelectrolyte brushes, especially polycations, usually have poor biocompatibility due 

to their high surface charge resulting in significant adsorption of biomolecules and 

potential toxicity to cells (in particular for positively charged coatings). In contrast to 

traditional polyelectrolytes, zwitterionic polymer brushes, which have a positively and a 

negatively charged group associated within the same repeating unit, are reported to 

display high resistance to nonspecific protein adsorption. In this area, polymer brushes 

based on carboxybetaine, sulfobetaine and phosphorylcholine have proved particularly 

successful and performant to restrict protein adsorption, even from undiluted fluids 

such as serum, blood or plasms.88, 112, 113 Amino acid-based methacrylate monomers, 

such as cysteine methacrylate (CysMA) were used to prepare novel zwitterionic PCysMA 

brushes via a facile high-yielding thia-Michael addition and exhibit excellent 

antibiofouling performance compared to poly(2-(methacryloyloxy)ethyl 

phosphorylcholine) (PMPC) and POEGMA brushes.114 Similarly, with brush thicknesses 

as thin as 11−12 nm, the adsorption to poly(N-4-(2-methacrylamidoethyl)asparagine) 

(pAspAA) from serum and plasma was reduced to 0.75 and 5.18 ng/cm2, respectively, 

and 1.88 and 10.15 ng/cm2, respectively, for poly(N-5-(2-

methacrylamidoethyl)glutamine) (pGluAA).115 Such adsorption level is comparable to 
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and perhaps slightly lower than that measured for other amino acid based zwitterionic 

polymers such as poly(serine methacrylate) and poly(ornithine methacrylamide) under 

thinner thickness.116 The peptoid system developed by Lau et al. allowed to conveniently 

prepare a set of zwitterionic peptoid brushes with defined spatial separations between 

charged groups and therefore overall charge densities.117 This allowed to study 

structure-property relationships controlling the antifouling behavior of brushes. 

Normally, zwitterionic brushes possess greater swelling at higher ionic strength, which 

in turn will affect protein adsorption. Ion responsive zwitterionic poly(3-(1-(4-

vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (PVBIPS) brushes displayed 

high protein absorption in PBS (∼145 ng/cm2), while flowing with 1.0 M NaCl resulted in 

much lower adsorptions of ∼18 and ∼0.23 ng/cm2 for blood plasma and serum, 

respectively.118 The enhanced antifouling performance could be attributed to 

cooperative effects of enhanced surface hydration and electrostatic screening upon 

increasing the ionic strength of the solution. 

Beyond brush thickness, chain flexibility, packing density and architecture, the 

formation of a stable hydration layer with the brush and associated penetration of water 

into the coating leads to reduced protein binding, primarily due to the enthalpic stability 

of the system. Some neutral but non-zwitterionic brushes display such behavior. 

Poly(hydroxyl propyl methacrylamide) (PHPMAm) brushes indeed displayed excellent 

antifouling properties despite the presence of two proton donor moieties in the 

structure of their repeat unit.96 Similarly, poly(N-acryloylaminoethoxyethanol) (PAAEE) 

brushes, which integrate three proton donor hydrophilic groups displayed strong 

hydration and effectively resisted protein adsorption from single-protein solutions and 
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undiluted human blood plasma and serum (< 0.3 ng/cm2).119 Hence strong hydration of 

polymer brushes was proposed to control the fouling properties of these systems, 

although this remains to be fully characterised.  

 

1.2.1.2   Cell-resistant polymer brushes 

Cells interacting with artificial surfaces typically occurs between extra cellular matrix 

(ECM) molecules adsorbed on the biomaterial and transmembrane integrin receptors 

present on the cell surface. In most cases, non-biofouling surfaces may also resist cell 

adhesion-mediating proteins such as fibronectin, laminin and vitronectin, which will 

subsequently inhibit cell adhesion. Generally, cell-resistant polymer brushes can be 

classified into neutral brushes or zwitterionic brushes. POEGMA brushes displayed 

better cell-resistant properties up to 14 days than oligo(ethylene glycol) self-assembled 

monolayers (SAMs) which showed resistance to cell adhesion at early time point.120 It 

was also found that those with shorter OEG side chain length (4 OEG units) of 

poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMEMA) brushes 

succumbed to 3T3 fibroblast cell fouling (7 weeks) more rapidly than those with longer 

OEG side chains (23 OEG units for 11 weeks cell resistance) in long-term cell culture 

study.121 The underlying mechanism was possibly due to the gradual hydrolysis of the 

ester bonds linking OEG side chain to methacrylate backbone that would lead to a loss 

of antifouling moieties and eventually an increase in protein and cell adsorption,121 

which is quite similar to PEG degradation caused antifouling compromise over extended 

periods of time.122 Cell adhesion occurred preferentially at low grafting density, namely 

the mushroom regime, which allowed the adsorption of ECM proteins such as 
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fibronectin, the while slight or no cell adhesion were observed for denser brushes, the 

so-called brush regime.78 The concentrated PAAEE brushes discussed in 2.1.1 highly 

resist endothelial cells attachment up to 3 days when the film thickness is above 12 

nm.119 Similarly, concentrated polymer brush (CPB, poly(poly(ethylene glycol) methyl 

ether methacrylate) (PPEGMA), PHEMA, and poly(2-hydroxyethyl acrylate) (PHEA)) 

showed excellent HUVECs repellency up to 7 days, whilst significant cell adhesion 

occurred on all the semi-dilute polymer brush (SDPB) samples (Figure 1.11, A).106  

 

   

Figure 1.11. Normalised amount of adherent HUVECs on the brushes for 7 days on semi-

dilute and concentrated PHEMA, PHEA and PPEGMA brushes (A)106; Adhesion of L02 and 

BEL-7402 cells on GNPL, sAuPOEGMA, and GNPL-POEGMA surfaces with and without 

FBS (B)123. 

 

In addition, CPB with higher hydrophilicity (PHEA and PPEGMA brushes) showed better 

cell-resistant properties than less hydrophilic PHEMA brushes with shorter chain 

(CPB(S)).106 Zhang et al.124 also showed low HUVECs adhesion on poly(2-oxazoline) (POx) 

polymer brushes with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and 

poly(2-ethyl-2-oxazoline). Thus, the high grafting density and hydrophilicity of neutral 

polymer brushes are important to achieve cell repellency and it also allows us to control 
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the adhesion and spreading of fibroblasts by tuning the grafting density of PHEMA125 or 

poly(acrylamide) (PAAm)126  brushes. 

It was also found that cells were more firmly attached to topographical surfaces than 

those on smooth surfaces. Shi et al.123 prepared POEGMA brush coated topographical 

gold nanoparticle layer surfaces (GNPL-POEGMA) and smooth Au surfaces (sAu-

POEGMA) by ATRP. It was found that topography promoted L02 and BEL-7402 cell 

adhesion only in the presence of vitronectin and fibronectin, which could be attributed 

to the 3D topographical structure of GNPL-POEGMA that adsorbed the minimal amounts 

of cell adhesive proteins to support initial cell adhesion (Figure 1.11, B). 

Zwitterionic polymer brush films such as polysulfonate and polyacrylate-based polymer 

brushes have been extensively explored as protein resistant and cell-resistant surfaces 

due to the strong hydration layer formed on the surface. Jiang’s group have been 

reported the effective fouling resistance of zwitterionic polymer brushes such as poly-

(sulfobetaine methacrylate) (PSBMA), poly(carboxybetaine methacrylate) (PCBMA)  and 

poly(2-methacryloyloxylethy phosphorylcholine) (PMPC) from pure serum and bacterial 

adhesion.127-131. These brushes have also been studied as ultra-low fouling surfaces 

restricting or suppressing cell attachment. For instance, PSBMA brush grafted 

biomedical grade stainless steel (SUS) showed excellent cell-resistant properties for 

both human MG63 osteoblast and HT1080 fibroblast cells compared with TCP, bare SUS 

and SUS with dopamine (SUS-D) and silane (SUS-Si) assembly layers up to 24 hours.132 

PMPC brush coated silicon wafers can significantly decrease protein and cell adhesion.133, 

134 Interestingly, Brooks et al.126, 135, 136 developed novel monomer containing a choline 

phosphate (CP) head group and 2-(methacryloyloxy)ethyl choline phosphate (MCP), in 
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which CP has the inverse orientation of PC in the cell membranes and can bind to a 

variety of cell membranes driven by the unique CP–PC interaction, display protein 

resistance properties and while simultaneously promote cell adhesion.  

 

1.2.1.3   Patterned anti-fouling brushes for the development of cell-based assays 

The exceptional anti-fouling properties of polymer brushes, combined with the relative 

ease with which initiator molecules can be patterned at the nano- to micro-scale has 

allowed the development of nano- to micro-engineered platforms for cellular assays.137-

141 In particular the ease which polymer brushes can be micropatterned via micro-

contact printing has enabled the design of substrates allowing the control of cell shape 

to study the impact of cell spreading on phenotype. 137, 138, 142,143 Circular adhesive 

islands with varied diameters (10-50 μm) were generated via the patterning of POEGMA 

brushes and allowed the regulation of keratinocyte spreading and shape.143 Cells 

remained rounded on small islands (10-20 m) and were induced to terminally 

differentiate, as evidenced by the expression of markers such as involucrin and 

transglutaminase. In contrast, larger islands (40-50 m) allowed cells to spread, to 

remain proliferative and express stem cell markers. In addition, elliptical islands of 

intermediate sizes (corresponding to the area of 30 m circular islands) allowed cell 

stretching along the main axis of the ellipsoid adhesive pattern and resulted in the 

reorganization of the actin cytoskeleton and decrease in keratinocyte differentiation. 

Importantly, a direct link was made between the reorganization of the cytoskeleton and 

the regulation of the activity of the Serum Response Factor via the cofactor MAL. Hence 

cells can sense the geometry of their adhesive environment very directly, via the 
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reorganization of their cytoskeleton and associated changes in the balance of free and 

polymerised actin. In addition, other physicochemical cues, such as exposure of the cell 

membrane to negative charges from poly(sulfopropyl methacrylate) (PSPMA) brushes, 

were found to modulate geometrical cues.137 Keratinocyte differentiation on Arc-

shaped patterns generated with POEGMA and PSBMA remained basal, comparable to 

that observed for cells spreading on large (50 m) islands. However, cells spreading on 

patterns displaying the same shape but generated from negatively charged PSPMA 

brushes differentiated more frequently. This effect was not observed for large islands in 

which the cell membrane was not in direct contact with the brush, suggesting that 

charge repulsions between the negatively charge coating and the cell membrane 

resulted in the destabilization of the adhesions formed with the patterns. Beyond the 

study of biophysical processes allowing the regulation of cell phenotype, such 

micropatterned platforms are powerful tools for the systematic investigation of 

molecular pathway controlling stem cell fate decision. Hence, keratinocyte microarrays 

were used to identify the impact of histone acetylation on differentiation.144 Further 

analysis of the shape of single cells spreading on micropatterns also highlighted 

important changes in nuclear morphology, depending on the shape and size of the 

micropattern.145 This assay was further used to study the impact of the keratin network 

in regulating nuclear shape. It was found that the keratin network plays an important 

role in nuclear mechanotransduction and in defining nuclear size and shape, in addition 

to the actin cytoskeleton. Another approach to pattern polymer brushes is based on a 

photo-triggered conjugation strategy. POEGMA patterns were precisely controlled by 

combining the highly efficient nitrile imine-mediated tetrazole-ene cycloadditions 

(NITEC) conjugation with the versatility of bioinspired poly(dopamine) (PDA).146 
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Subsequently, rat embryonic fibroblasts (REFs) perfectly followed the pattern focal 

adhesions (evidenced by VASP and paxillin) selectively controlled at the non-irradiated 

regions, while cells were absent from patterned POEGMA brushes (Figure 1.12). Thus, 

patterned anti-fouling polymer brushes allow the study of the cross-talks and synergies 

between geometrical adhesive cues and physicochemical surface properties of polymer 

brushes on cell fate decision. 

 

 

Figure 1.12. Surface patterning of POEGMA brushes on PDA films functionalised with a 

photoactive tetrazole (left); Images of fixed cells adhering between areas 

photopatterned with POEGMA brushes (right).146 

 

In addition to the simple control of single cell shape and spreading, micropatterns can 

also allow the formation of cell clusters with defined sizes, shape and geometry of 

adhesion. POEGMA-functionalised brushes were used to pattern 100 μm adhesive 

islands to which 5-10 keratinocyte clusters adhered (Figure 1.13).140 The cell assemblies 

generated were then found to segregate on different locations of the pattern, 

depending on their fate: differentiated cells were found in the centre of clusters 

whereas stem cells remained at the periphery. In addition, this process was affected by 

the geometry of the adhesive islands. Micro-rings in which a portion of the adhesive 

landscape was replaced by POEGMA brushes allowed stem cells to initially partition at 
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the periphery of the ring but allowed differentiated cells to migrate into the centre of 

the clusters, overlapping with non-adhesive areas. This was allowed by the competitive 

interactions and differential adhesion of differentiated cells and stem cells, which 

typically express different levels of proteins sustaining cell-matrix and cell-cell adhesions 

(i.e. integrins and cadherins). This platform was used to study the role of different 

adhesive proteins in establishing the compartmentalised structured of the micro-

epidermis generated. 

In addition, similar micro-arrays were used to control and study processes occurring 

during wound healing.138 Cells were patterned into large clusters (400 m) surrounded 

by a POEGMA coating. The brush was functionalised with alkene or alkyne moieties in 

order to allow the coupling of peptide sequences via thiol-ene chemistry.142 This 

enabled the activation of the brush chemistry after cell seeding and formation of 

clusters, via a short photo-triggered reaction, in buffered conditions. When RGD was 

coupled to brushes surrounding cell clusters, they migrated out of the original pattern 

in a peptide-density dependent manner. Similarly, when RGE was used instead, cells 

were unable to escape the pattern. Such platform can therefore allow the systematic 

study of the impact of wound geometry and size as well as some of the biochemistry of 

the wound bed on processes mimicking wound healing. More generally, micro-arrays 

based on polymer brushes, and their exceptional stability over prolonged periods of cell 

culture, offer exciting opportunities for the study of processes, proteins and genes 

involved in controlling cell and tissue function, in vitro and in a human context. 
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Figure 1.13. Probing the level of cell differentiation and the respective positioning of 

stem cells and differentiated cells using arrays of cell clusters.140 

 

Polymer brushes have also been used to control the geometry of cell adhesions at the 

nanoscale147. Colloidal lithography was used to generate nanopatterns of gold discs (100 

– 3000 nm) surrounded by a glass background.148 The surface of the glass was 

subsequently functionalised with polymer brushes (generated via grafting to, as in 

poly(L-lysine) (PLL)-g-PEG, or via a grafting from approach with POEGMA, for improved 

protein resistance and control of adhesion size and geometry). The resulting patterns 

allowed the selective deposition of extra-cellular matrix proteins such as fibronectin to 

the gold nano-islands, which in turn restricted the size of single adhesions. This platform 

allowed to study the role of the geometrical maturation of adhesions on cell spreading. 

Focal adhesions, largely responsible for cell spreading on 2D and quasi-2D interfaces, 
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are indeed micron-sized complexes of proteins that link integrins and the extra-cellular 

matrix to the cytoskeleton. However, they arise from nascent adhesions, consisting of 

few (4-5) integrins clustered together that mature in size and shape. The nanopatterns 

generated allowed to block this process at different stages and allowed to highlight that 

protein recruitment was not impaired but that the stability and dynamics of proteins 

recruited at the adhesion was strengthened as their size matured. This in turns allowed 

the establishment of a more stable cytoskeleton, cell spreading and the control of fate 

decision. 

 

1.2.2   Polymer brushes as delivery systems 

Polymer brushes are attractive in the field of designing effective vectors for drug/gene 

delivery. These systems offer the ability to load drugs into carriers or covalently link the 

drugs to the polymer chains and trigger drug release in diseased tissue via external 

stimulation such as changes in local temperature or pH as well as the controlled 

degradation by cell-released enzymes. Polymer brushes facilitate the design and coating 

of a variety of particles such as gold, magnetic, silica nanoparticles and cellulose 

nanocrystals with well-defined core-shell architecture and chemistry. Cationic polymer 

brushes are also promising vectors and carriers for gene delivery applications.  

 

1.2.2.1   Polymer brushes in drug delivery 

Two important limitations for the delivery of conventional low molecular weight drugs 

are poor water solubility of hydrophobic compounds and systemic toxicity.149-151 To 

tackle these issues, targeted drug delivery systems have been extensively explored as 
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effective means to deliver therapeutics to cells. Polymer-based drug delivery systems 

specifically targeting tissues or cells are particularly attractive for in vivo treatment of 

diseases. Indeed, they offer the possibility to load drugs into a carrier (typical examples 

include micelles and vesicles based on amphiphilic copolymers, dendrimers and cross-

linked microgels/nanogels) or covalently link the drugs to the polymer (e.g. polymer–

protein conjugates, polymer–drug conjugate) before functionalizing the resulting 

loaded carriers with specific ligands, recognised by receptors expressed at the surface 

of the targeted cells (e.g., cancer cells, brain endothelial cells etc.).152-154 Another 

important aspect to take in consideration when designing polymeric carriers is the 

release mechanism, selectively when reaching the target site. Drug release can occur 

either due to vehicle disassembly or via passive diffusion of physically encapsulated 

drugs.155, 156 For covalently linked drugs, conjugation chemistries such as pH sensitive 

linkage, enzyme-cleavable linkage and peptide-based linkage have been employed to 

trigger drug release in diseased tissue (e.g. in cancer).157 Although brushes have a 

relatively low capacity to encapsulate and protect drugs for the delivery of therapeutics, 

owing to their relatively low thickness, some systems based on these coatings have been 

explored for drug delivery applications. 

Thermo-responsive polymer brush-functionalised nanoparticles were explored as a 

potential drug delivery system. This approach is attractive in that it provides a reaction-

free interior for loading of drugs. Copolymer brushes P(OEGMA-co-MEO2MA) grafted 

single-walled carbon nanotubes (SWCNTs) exhibited LCST-dependent Rhodamine 6G 

loading and release properties.158 During the Rh6G-loading process, below the LCST, 

brush chains were extended, thus the Rh6g could be easily adsorbed on 
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SWCNT@P(OEGMA-co-MEO2MA), whereas above the LCST, the collapsed brush chains 

were able to retain some of the molecules. The thermally-controllable Rh6G release was 

confirmed via UV-vis spectroscopy and demonstrated that release rates of Rh6G below 

the LCSTs were faster than those above the LCST. Yavuz et al. anchored densely packed 

poly(N-isopropylacrylamide)-co-poly(acrylamide) (PNIPAAm-co-PAAm) copolymer 

brushes to Au nanocages to trigger the release of doxorubicin and lysozyme with a near-

infrared laser by means of the photothermal effect (Figure 1.14).83 The polymer chains 

collapsed above the LCST, opening the pores of the cage and thus releasing the loaded 

molecules. When the laser is turned off, the local temperature dropped and polymer 

chains relaxed back to their extended state, closing the cage and blocking any further 

release.159 In combination with its high spatial and temporal resolution, this system is 

well suited for in vivo studies, owing to the high transparency of soft tissue in the near-

infrared region. Similarly, drug release can also be triggered by heat generated by high-

intensity focused ultrasound (HIFU), which can penetrate more deeply into soft 

tissue.160 In addition, negatively charged poly(3-sulfopropyl methacrylate) (PSPMA) 

brushes were grafted on hollow silica nanoparticles (HSNPs) with dual functions of 

hydration lubrication and drug delivery. In aqueous conditions, aspirin can be released 

via the pores of HSNPs, due to the swelling of the hydrophilic, charged PSPMA brushes. 

This strategy is a promising approach for the design of injectable joint lubricant fluids 

for simultaneous lubrication and treatment.161 
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Figure 1.14. (a) Illustration of near-infrared laser triggered drug release of PNIPAAm-co-

PAAm copolymer brushes coated Au nanocages; (b) TEM images of Au nanocages 

covered by copolymer brushes; a plot of the concentrations of Dox (c) and lysozyme (d) 

released from the Au nanocages.83 

 

Other stimuli-triggered drug delivery systems include pH-sensitive polymer brush 

coatings.85, 162-165 For instance, poly(4-vinyl pyridine) brush functionalised silica particles 

enabled the load of [Ru(bipy)3]Cl2 and calcein at high pH, at which PVP brushes were 

deprotonated and exhibited a hydrophobic collapsed morphology. At low pH, PVP 

brushes were permeable to molecule transport, leading to the pH-controlled release.165 

Introducing a biocompatible POEGMA layer after a poly(2-(diethylamino)-ethyl 

methacrylate) (PDEAEMA) polymer shell was found to reduce the toxicity of PDEAEMA-

b-POEGMA copolymer brush-grafted silica nanotube, whist not affecting the pH 

controlled release of doxorubicin.166 In addition, the incorporation of multiple stimuli 



33 

 

responsive moieties can greatly expand the application scope of functional polymer 

brush coatings in drug delivery systems. Zhang et al85 developed a pH, reduction and 

light triple responsive drug delivery system based on PDEAEMA brush modified hollow 

mesoporous silica nanoparticles which were considered for potential scaffoldings in 

drug/gene delivery due to their good biocompatibility and large pore volume167-169. This 

design allowed higher DOX loading to be achieved and the resulting particles displayed 

excellent stability during blood circulation. In the presence of a reducing agent or in an 

acidic environment, as well as external UV irradiation.85 As a result of the reversible 

opening and closure of the mesopores by PDEAEMA brushes, drugs were efficiently 

loaded, under mild conditions.85  

Besides non-covalent drug loading and release approaches, bioconjugates of such 

polymer brush delivery systems with proteins and targeting molecules have also been 

designed.170-173 Poly(methacrylic acid) (PMAA) was identified as a suitable candidate as 

its carboxylic groups can stabilise nanoparticles in water at physiological conditions and 

sequentially can be be further functionalised with targeting moieties. Phenylboronic 

acid (PBA) grafted PMAA via SI-ATRP on gold nanoshells (AuNSs) showed saccharide-

sensitivity for controlled release of diol derivatives.172  

Protein resistant polymer brushes may also be used to systematically investigate the 

pharmacokinetics of particles170 in drug delivery or imaging applications, in particular if 

combined with targeting strategies. For example, lanthanide-doped upconversion 

nanoparticles (UCNPs) nanoparticles with a POEGMA shell functionalised with 

Concanavalin A were used for targeting and fluorescence imaging of cancer cells in vitro 

and tumors in vivo.171  
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1.2.2.2   Polymer brushes in gene delivery 

Over the past decade, Gene therapy has shown much promise in therapies for various 

genetic diseases and cancers, such as immunodeficiency174-177, cystic fibrosis178, 179, and 

Parkinson’s disease180-183, also to be used as an alternative method to traditional 

chemotherapy used in treating cancers.  

 

1.2.2.2.1   Mechanism and obstacles of gene delivery 

Gene delivery is the process of delivering genetic-based materials (e.g., DNA or RNA) 

into host cells for applications such as genetic research or gene therapy. It is an 

important and necessary step in gene therapy for the introduction or silencing of a gene 

to promote therapeutic outcomes in patients. A critical part of gene delivery involves 

different delivery mechanism, most often, DNA is transported to the nucleus and RNA 

to the cytoplasm. The process of DNA transfection is complex and imposes challenges 

and demands on the delivery system, to overcome numerous extra- and intracellular 

obstacles to obtain decent transfection (Figure 1.15)184-187.  

 

https://en.wikipedia.org/wiki/Gene_therapy
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Figure 1.15. Extra- and intracellular obstacles in gene transfection. 

 

The mechanism of RNA interference (RNAi) consists in two main stages: post-

transcriptional gene silencing and transcriptional gene silencing. More specifically, 

endogenous double stranded RNA is identified by a ribonuclease protein called dicer, 

which cleaves it into 22-nucleotide (nt) pieces with 2-nt overhangs on the 3ʹ ends (Figure 

1.16).188 These fragments are loaded into the RNA-induced silencing complex (RISC), 

subsequently, the guide strand is directed to the target mRNA, which is cleaved by the 

cleavage enzyme argonaute-2 into small pieces.188 Thus, the process of mRNA 

translation can be interrupted by transporting short interfering RNA (siRNA) to the site 

of action in the cells of target tissues. A summary of the processes is shown in Figure 

1.16.188 
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Figure 1.16. Mechanism of RNA interference.188 

 

1.2.2.2.2   Non-viral gene delivery vectors 

For efficient gene therapy, a gene carrier or vector is needed to escort negatively 

charged nucleic acids through cell membranes. The most challenging task in gene 

therapy is the design of gene delivery vectors with low cytotoxicity and high transfection 

efficiency189-192. Initial research efforts focused on the use of viral carriers, which 

showed high efficiency at delivering. However, numerous safety issues related with the 

use of viruses, such as immunogenicity and mutation of the host genome, encouraged 
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the investigation of non-viral vector delivery system. The commonly used nonviral 

vector systems in gene delivery, including cationic lipsome193, dendrimers194-196, cationic 

polymers197-200, polypeptides201-203 and nanoparticles204-206 (Figure 1.17).  

 

 

Figure 1.17. Non-viral vectors for gene delivery. 

 

The main requirements for a non-viral vector are: 1, good solubility in water/water 

miscible solvents; 2, low toxicity; 3, high gene delivery efficiency; 4, ease of endosomal 

escape; 5, appropriate degradation rate. Cationic polymers and lipids, the two main 

types of non-viral gene delivery vectors, display low host immunogenicity and high 

flexibility allowing the condensation of negatively charged nuclear acid into nano sized 

particles through electrostatic interactions.  

A great number of polycations, including polyethylenimine (PEI)207, poly((2-dimethyl 

amino)ethyl methacrylate) (PDMAEMA)208, 209, poly(l-lysine) (PLL) and polyamidoamine 

(PAAM), have been reported to be capable of delivering genes. Among these cationic 

polymers, PEI homopolymers are widely used as gene carriers. Owing to its high 
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transfection efficiency branched PEI with a molecular weight of 25 kDa is considered to 

be the “gold standard” for polymeric non-viral vectors, however, at physiological pH, 

only 25 % of the amine groups are protonated with the cytotoxic (IC50 = ~ 30 μg/ml)210. 

 

1.2.2.2.3 ‘Grafted from’ cationic polymer brush-based gene delivery vectors 

Recently, polymer brushes have been widely employed for the design of new polymeric 

gene vectors as they allow the design and coating of a variety of particles such as 

nanodiamond, gold, iron oxide, silica nanoparticles and cellulose nanocrystals, with 

well-defined core−shell architecture and chemistry and hence are of high interest as 

vectors and carriers for gene delivery. The cationic monomers involved in ATRP 

synthesis of gene vectors include 2-(dimethylamino)ethylmethacrylate (DMAEMA), (2-

hydroxy-3-(2-aminoethyl)amino)propyl methacrylate (HAEAPMA), 2-

(diethylamino)ethyl methacrylate (DEAEMA), N-(3-(dimethylamino)propyl) 

methacrylamide (DMAPMAA), 2-(diisopropylamino)ethyl methacrylate (DPAEMA), (2-

(methacryloyloxy)ethyl) trimethyl ammonium chloride (MeDMA), N-tert-

butoxycarbonyl-aminoethyl methacrylate (Boc-AEMA) and N,N_-di-(tert-

butoxycarbonyl)-2-(2-aminoethylamino)ethyl methacrylate (Boc-AEAEMA) (Figure 

1.18)211, 212.  
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Figure 1.18. Cationic monomers involved in ATRP synthesis of gene vectors211, 212. 

Among all the monomers, DMAEMA is a monomer unit bearing a tertiary amine weak 

base with a pK of 7.5, falling within the range for optimal transfection. Also, PDMAEMA 

with controlled molecular weights, well-defined chain ends, and in different 

macromolecular architectures (such as block, star, and graft) could be easily made 

through ATRP213-215.  

 

PDMAEMA brushes grafted nanodiamaonds were able to condense plasmid DNA into 

stable nanoparticles and protect DNA from enzymatic degradation.198 The use of 

magnetic particles as cores to grow cationic brushes allows the delivery of gene as well 

as magnetic cell separation and MRI imaging.208, 216, 217 For example, ATRP initiators 

bearing a dopamine group were deposited on oleic acid stabilised superparamagnetic 

maghemite nanoparticles (γ-Fe2O3), via ligand exchange, to prepare PDMAEMA brush 

functionalised γ-Fe2O3 (γ-Fe2O3@PDMAEMA), which showed 2-fold increase in 

transfection efficiency of CHO-K1 cells without increasing cytotoxicity, as compared to 

polyethyleneimine (PEI). Transfected cells were selectively isolated using a magnet 

(Figure 1.19).216 Similarly, also using magnetic sorting, PDMAEMA-bound iron 

oxide/pDNA magnetoplexes exhibited remarkably improved gene expression efficiency 

in the presence of 10% FBS compared to the commercial control, PolyMag/pDNA.217 Due 
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to its biocompatibility and unique conjugated structure and ease of surface 

functionalization, graphene oxide has also been developed as efficient gene delivery 

system. Graphene sheets were functionalised with PDMAEMA brushes (SS–GPDs) via 

ATRP. The resulting nanosheets were found to display increase gene transfection 

efficiencies and lower cytotoxicity compared to the corresponding PDMAEMA 

homopolymers. In addition, the disulfide linkage between PDMAEMA chains and the 

graphene sheet allowed their cleavage under mild reductive conditions.218 Transfection 

efficiencies with such SS–GPDs were affected by the chain length of PDMAEMA brushes 

and increased even at lower N/P ratios with longer  PDMAEMA chains.218 Other types of 

nanomaterials presenting surface hydroxyl groups such as layered double hydroxides 

(LDHs) were also shown to display efficient gene delivery properties after 

functionalization with cationic brushes.219  

 

 

Figure 1.19. γ-Fe2O3@PDMAEMA (B) for transfection CHO-K1 cells compared to PEI 

(A).216 
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The morphology and geometry of polymer brush-functionalised vectors was also found 

to impact the transfection efficiency.84, 220 Thus, a series of gene vectors based on 

PDMAEMA brush-functionalised Au nanoparticles (including Au nanospheres, Au nano-

octahedra (Au NOs), arrow-headed Au nanorods (Au AHNRs), and Au nanorods with 

different aspect ratios (Au NRs and Au LNRs)) were designed to investigate the impact 

of morphology on gene transfection (Figure 1.20).84 It was found that Au nanosphere-

based carriers exhibited the poorest performance, whilst particles with sharper 

morphologies such as arrow-headed Au nanorods were the most efficient. In addition, 

Au nanorods with smaller aspect ratios perform better than longer ones.84  

 

 

Figure 1.20. PDMAEMA-functionalised Au NPs generated via ATRP (Left). Transfection 

efficiencies (luciferase assay) measured for a range of Au NP-PD/pDNA complexes at 

various N/P ratios, in COS7 and HepG2 cell lines.84 

 

Other types of elongated nanomaterials were also found to display efficient gene 

delivery properties. Spindly cellulose nanocrystals (CNCs) coated with PDMAEMA and 

Poly(poly(ethylene glycol)ethyl ether methacrylate) (PPEGEEMA) brushes were 
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prepared as novel non-spherical gene carriers. The cationic PDMAEMA chains 

condensed genes effectively with uncharged PPEGEEMA brushes spread outwards and 

reduce the cytotoxicity significantly.221 Similar types of morphologies were also found 

to affect gene transfection in the silica-based nanomaterials. Hollow nanosphere-based 

vectors exhibited improved gene transfections compared to their solid counterparts.220  

 

1.3   Summary and project overview 

Polymer brushes have emerged as an attractive surface modification tool offering 

chemical stability, synthetic flexibility and unprecedented control over the polymer 

grafting density, thickness, chemical composition and functionality. Surface 

modification strategies of polymer brushes have proved particularly versatile and have 

been applied to a wide range of biomedical fields, including cell culture, tissue 

engineering and as delivery systems. The controlled physicochemical and biological 

properties enabled by the combination of polymer brush architecture and chemistry 

enable an exquisite control of interfacial properties and demonstrate their ability to 

mimic some of the properties and functions of natural ECM. These interfaces also allow 

the study of complex biological behaviors by simultaneously controlling protein 

resistance properties, cell adhesion/detachment et al. This offers interesting 

opportunities for the study of mechanisms controlling cell adhesion and phenotype at 

such interfaces and may result in novel concepts in biomaterials design. In addition, the 

combination of polymer brushes with nanotechnology has already shown its potential 

for applications in drug/gene delivery, via the precise design of brush chemistry, charge 

and architecture for controlled drug/gene encapsulation and release. Nanotechnologies 
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based on these coatings would provide increased basic understandings and the 

development of novel systems for the regenerative medicine and drug/gene delivery 

where finely tuned interfaces and associated physicochemical properties are required. 

This project focuses on designing safe and efficient gene delivery vectors based on ‘graft 

from’ cationic polymer brush and understanding the interaction of nucleic acids with 

polymer brush. Briefly, cationic polymer brushes will be prepared both on flat surfaces 

(e.g. silicon wafer and gold surface) and particles. The interaction of polymer brushes 

and nucleic acid materials will be systematically investigated. Finally, cationic polymer 

brush-based gene delivery vectors will be prepared and applied to delivering nucleic acid 

materials of interest (Figure 1.21).  

 

Figure 1.21. Overview of the project. 
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Abstract 

The high density of polymer brushes confers on their unique physico-chemical 

properties, in particular for the regulation of biomolecular interactions and the design 

of highly selective coatings for biosensors and protein patterning. Here we show that 

high density poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)  cationic polymer 

brushes enable the stable uptake of high levels of oligonucleotides. This is proposed to 

result from the high degree of crowding and associated increase in entropic driving force 

for the binding of polyelectrolytes such as nucleic acid molecules. We further 

demonstrate the ease with which such coatings allow the design of highly structured 

nanomaterials for siRNA delivery using block copolymer-brush based nanoparticles that 

allow the protection of oligonucleotides by a protein resistant outer block. In particular 

these nanomaterials display a high serum stability and low cytotoxicity whilst retaining 

excellent knock down efficiencies. Polymer brush-based nanomaterials therefore 

appear particularly attractive for the rational design of a new generation of high 

performance theranostics and RNA delivery probes. 
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2.1   Introduction 

Polymer brushes have attracted considerable attention, due to their ease of synthesis 

via controlled radical polymerisations, offering unprecedented control over the coating 

structure and architecture1, 2. Brushes have been applied in the biomedical field for the 

design of highly specific biosensors and the restriction of protein adsorption and cell 

adhesion3. The very dense crowding of polymer brushes has proved extremely 

important to reduce protein adsorption to surfaces, beyond detection levels. This has 

enabled their use for the design of bacterial resistant coatings4-6 and the patterning of 

protein and cell adhesions at the nano- to micro-scale7-10. In contrast, despite the 

exceptional level of control of structure and architecture that can be achieved using 

polymer brushes, including their potential for the design of theranostic probes and the 

systematic study of nanoparticle-cell interactions, polymer brush-functionalised 

nanomaterials have found limited applications in drug and gene delivery, perhaps as a 

result of their limited loading capacity. However, plasmid DNA and RNA (siRNA and 

miRNA) delivery typically only require very low loading levels (a few copies per cell). 

Hence a few articles have recently reported the delivery of plasmid DNA using polymer 

brush-functionalised nanoparticles. For example, PDMAEMA brushes containing only 

tertiary amines which is positively charged at physiological pH were grown from ATRP 

initiator functionalised silsesquioxane11, silica nanoparticles12, nanodiamond13, gold 

nanomaterials14 and magnetic nanoparticle15 cores for the capture and delivery of 

plasmid DNA. Although moderate gene transfection efficiencies were obtained (up to 

55% in some cases), one of the key advantages of polymer brushes is to enable the 

introduction of cores with different chemistry, shapes and sizes (e.g. for imaging 
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properties via fluorescence12, 13 or MRI14, 16, 17), whilst retaining the same coating 

chemistry. Therefore, polymer brush decorated nanomaterials offer exciting 

opportunities for the systematic study of parameters impacting gene delivery and 

transfection (core type, brush chemistry, thickness and grafting density). However, 

relatively poor infiltration of large plasmid DNA molecules (4.0 kbp) through PDMAEMA 

brushes12, implying sub-optimal loading and limiting the design freedom of brush-based 

delivery vectors. 

Here we report the high loading level of small RNA molecules within densely packed 

PDMAEMA brushes and their stabilisation via multiple interactions within such highly 

crowded polycationic environment. Indeed, in contrast to low density polymer coatings 

typically achieved via a “grafting to” approach, the grafting density of polymer brushes 

grown via surface-initiated polymerisation techniques is not limited by 

thermodynamically controlled surface adsorption but is determined by the initiator 

density deposited and the kinetic control of polymerisation and termination reactions. 

As a result of such structural control, we report the use of PDMAEMA brush-

functionalised nanoparticles with high knock down efficiency. In addition, we 

demonstrate the high flexibility of structural design of such nanomaterials, using block 

copolymer brushes, for their stabilisation in complex protein mixtures such as sera and 

the reduction of cytotoxicity.  

 

2.2   Controlling polymer brush growth on flat surface 

The growth kinetics of PDMAEMA brush generated via ATRP was investigated both on 

silicon wafers and gold substrates for later control of the brush growth on silica 
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nanoparticles and SPR chips (gold coated on glass). Progress of the polymerisation was 

monitored by characterising the dry brush thickness via ellipsometry (Figure 2.1).  

 

 

Figure 2.1. PDMAEMA brush growth kinetics on silicon wafer (left) and gold substrate 

(right) (brush thickness measurement as a function of polymerisation time). 

 

The brush growth rate can be controlled by varying the monomer concentration, the 

ratio of Cu(I) to Cu(II), the nature of the ligands, and the solvent composition. In this 

study, addition of ethanol resulted in particularly well-controlled growth of PDMAEMA 

brush especially for thin brushes below 45 nm, as the PDMAEMA brush thickness profile 

is linear with no initial jump. Moreover, by diluting the initiator with its non-reactive 

analogues, the desired grafting density of PDMAEMA can be easily achieved according 

to Equation 2.1.  

 

𝜎 =
𝜌𝑚𝑁𝐴ℎ𝑑𝑟𝑦

𝑀𝑛
                                                       (2.1)              
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Equation 2.1 (PDMAEMA brush density on flat surfaces): ρm is the mass density of 

DMAEMA (1.318 g/cm3), NA is Avogadro’s number, hdry is the dry thickness of the 

brushes, and Mn is the average molecular weight of the tethered polymer chains 18, 19. 

 

2.3   Monitoring the interaction of PDMAEMA brush with 

nucleic acids 

The interactions of double stranded DNA and RNA probes with PDMAEMA brushes was 

investigated via surface plasmon resonance (SPR), in order to establish how brush 

density and nucleic acid probe size control their interactions and infiltration. 30 nm 

PDMAEMA brushes with dense and sparse grafting density (Figure 2.2) were involved in 

this study.  

 

 

Figure 2.2. PDMAEMA brush thickness measurements with 0.50 chain/nm2 density and 

0.12 chain/nm2 density brushes polymerised for the same period of time. 

 

The binding amount of nucleic acid in pmol/cm2 was determined according to equation 
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2.2. The adsorption of DNA probes, with sizes ranging from 10 to 4.5 kbp and a 22 bp 

RNA probe, to PDMAEMA brushes was monitored via SPR (Figure 2.3 A and 2.3B). 

 

B =
𝑅𝑈∗100

𝑀𝑤
                                                                 (2.2) 

Equation 2.2 (binding amount of nucleic acids on PDMAEMA brush in pmol/cm2): RU is 

response unit measured from SPR, and Mw is the molecular weight of the nucleic acid. 

 

Figure 2.3. SPR traces for different nucleic acids adsorbing to dense (A) and sparse 

PDMAEMA brushes (B). 

 

On dense brushes (0.50 chains/nm2 18-20), fast adsorption was observed for all probes, 

but in particular for the shorter 10 bp DNA and 22 bp RNA molecules. Upon washing 

with phosphate-buffered saline (PBS), stable retention was observed, except for the 

smallest DNA probe, implying a weaker entropic drive for the adsorption of such small 

molecules. In contrast, the adsorption profile of nucleic acid molecules to lower density 
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brushes (0.12 chains/nm2) displayed no significant differences in the initial rate of 

adsorption (with the exception of the large plasmid DNA), followed by a relatively fast 

desorption upon washing with PBS, in particular for the 10 bp DNA probe. Hence our 

results imply that nucleic acid adsorption to polymer brushes is kinetically limited by 

molecular crowding but results in considerable stabilisation of adsorbed nucleic acid 

molecules with intermediate sizes. In all cases, the calculated negative charge density 

(phosphates) of molecules adsorbed remained significantly lower (< 7,800 pmol/cm2 for 

22 bp RNA, calculations can be found in table 2.1.) than the positive charge density 

measured for high density PDMAEMA brushes (26,500 pmol/cm2, calculations can be 

found in table 2.2.).  

 

Figure 2.4. SiRNA binding quantification (A); Schematic illustration of nucleic acid 

molecules interacting with PDMAEMA brushes (B). 

 

Therefore, molecular crowding and local desorption/re-adsorption phenomena21 

combined with entropic stabilisation, resulting in stable retention of the corresponding 

molecules in polymer brushes (Figure 2.4B). Entropic stabilisation of oligonucleotides 

may also be enhanced in polymer brushes, due to the frustrated conformation of 
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polymer chains. Surprisingly, this effect was particularly pronounced in the case of 22 

bp RNA molecules (Figure 2.4A), perhaps as a result of additional hydroxyl groups and 

the presence of uridyl bases present on RNA probes22. The short length and stiffer 

structure of RNA molecules, compared with larger DNA molecules and plasmids, is 

typically thought to reduce interactions and condensation, with cationic polymeric non-

viral delivery agents.23-25 Consequently, a higher N/P ratio is typically required to form 

polyplexes with siRNA molecules, to optimise knock down efficiencies.23 Therefore the 

dense crowding of cationic polymer brushes constitutes a unique environment for highly 

stable RNA uptake. 

Table 2.1. Negative charge density calculation for different base pairs of nucleic acids. 

Negative charge density of different bp of nucleic acids 

Nucleic acid (bp) 10 22 100 4000 

Dense brush chain density (pmol/cm2) 78.2 176.5 13.5 0.4 

Dense brush charge density (pmol/cm2) = bp*2*chain density 1564 7766 2700 3200 

Sparse brush chain density (pmol/cm2) 4.1 46.7 8.2 0.3 

Sparse brush charge density (pmol/cm2) = bp*2*chain density 82 2055 1640 2400 

 

Table 2.2. Positive charge density calculation for dense and sparse PDMAEMA brush. 

Positive charge density of PDMAEMA brush 

Brush type Dense brush Sparse brush 

Chain density (chain/nm2) 0.5 0.12 

PDMAEMA molecular weight (Mn) 50000 50000 

DMAEMA molar mass 157 157 

DP=PDMAEMA Mn/DMAEMA molar mass 318 318 

Charge density (charge/nm2) =DP/chain density 159 38 

Charge density (mol/nm2) 2.64511E-22 6.34827E-23 

Charge density (pmol/cm2) 26451 6348 
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2.4   Synthesis and characterisation of PDMAEMA brush coated 

silica nanoparticles 

The high binding capacity of RNA probes within dense PDMAEMA brushes suggested 

their use for siRNA delivery and the regulation of gene expression. Firstly, PDMAEMA 

brush coated 300 nm silica nanoparticles (SiO2-PDMAEMA, measured with DLS in PBS) 

were prepared via ATRP with well dispersed particle size of 443  6 nm in PBS (Figure 

2.5) and zeta potential of 15.8  4.4 mV.  

 

Figure 2.5. Size measurements of SiO2-PDMAEMA in PBS by DLS. 

 

Our previous study has shown PDMAEMA brush thickness on SiO2 can also be controlled 

by stopping the polymerisation at different time points12. The morphology of SiO2-

PDMAEMA was confirmed by transmission electron microscope (TEM) in Figure 2.6, 

which showed an obvious organic layer of PDMAEMA on SiO2 was around 8 nm. The 

appearance of absorbance band at 1730 cm-1 in fourier transform infrared spectroscopy 

(FTIR, Figure 2.7) was characteristic of C=O vibrations for PDMAEMA. The amount of 

PDMAEMA on the surface of SiO2 was determined by thermogravimetric analysis (TGA) 

analysis with 24 % (Table1 and Figure 2.8) weight loss difference compared with initiator 

coated SiO2. According to Equation 2.3, PDMAEMA dry brush thickness on SiO2 was 
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calculated as 28 nm. By cleavage of PDMAEMA chains from silica nanoparticles by 

hydrofluoric acid, the resulting PDMAEMA was characterised by gel permeation 

chromatography (GPC in Figure 2.9) and by using Equation 2.4, the PDMAEMA density 

on SiO2 can be characterised with 0.45 nm-2 which was close to the dense brush on 

silicon wafer. Thus, dense PDMAEMA brush coated silica nanoparticles were prepared 

for further siRNA knock down study. 

 

Figure 2.6. TEM image of SiO2-PDMAEMA nanoparticles. 

 

 

Figure 2.7. FTIR characterisation of SiO2-PDMAEMA. 
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ℎ = 𝑅(
𝑊𝑏𝑟𝑢𝑠ℎ𝜌𝑆𝑖𝑂2

𝑊𝑆𝑖𝑂2
𝜌𝑏𝑟𝑢𝑠ℎ

+ 1)^(1/3) − 𝑅                              (2.3) 

Equation 2.3 (brush thickness on silica nanoparticles): Wbrush is the weight loss 

percentage corresponding to the decomposition of polymer brush component, WSiO2 is 

the residual weight percentage, ρbrush is the mass density of polymer brush (ρPDMAEMA, 

1.318 g/cm3, ρPOEGMA, 1.105 g/cm3), ρSiO2 is the density of bulk SiO2 (2.4 g/cm3), R is the 

radius of SiO2 (150 nm). 

 

 

Figure 2.8. TGA characterisation of SiO2-PDMAEMA, SiO2-POEGMA and SiO2-BCB 

nanoparticles. 

 

δ =

𝑊𝑃𝐷𝑀𝐴𝐸𝑀𝐴
𝑊𝑆𝑖𝑂2

𝜌𝑆𝑖𝑂2𝑉𝑆𝑖𝑂2𝑁𝐴 

𝑀𝑃𝐷𝑀𝐴𝐸𝑀𝐴𝑆𝑆𝑖𝑂2

                                         (2.4) 

Equation 2.4 (PDMAEMA brush density on silica nanoparticles): WPDMAEMA is the weight 

loss percentage corresponding to the decomposition of PDMAEMA, WSiO2 is the residual 

weight percentage, ρSiO2 is the density of bulk SiO2 (2.4 g/cm3), VSiO2 is the volume of SiO2 

nanoparticle calculated from the average diameter of SiO2 (300 nm), NA is Avogadro’s 

number, MPDMAEMA is the molecular weight of PDMAEMA cleaved from SiO2, and SSiO2 is 
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the surface area of SiO2 nanoparticle calculated from the average diameter of SiO2 (300 

nm)12. 

 

 

Figure 2.9. GPC measurement of PDMAEMA chains cleaved from silica nanoparticle. 

 

2.5   SiO2-PDMAEMA knock down efficiency and cell viability 

A keratinocytes cell line expressing actin-GFP was selected for simple quantification of 

siRNA efficiency using GFP siRNA, allowing imaging of endogenous actin after phalloidin 

staining. The fluorescent intensity ratio of GFP (green)/ phalloidin (red) was measured 

after transfection and compared with the ratio of blank cells, which was then 

determined as the knock down efficiency. Transfection assay were tested with different 

N/P ratio (nitrogen to phosphate ratio, where N refers to the nitrogen of PDMAEMA 

brush, P refers to the phosphate of nucleic acids) of 5, 10 and 15, and commercialised 

transfection agent lipofectamine 2000 was used as a positive control. Highest knock 

down efficiencies (66  6 %) were measured at N/P=10, comparable with those 

measured with lipofectamine (Figure 2.10A and 2.10B), whilst there was no significant 
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increase for transfection at N/P=15.  In comparison, green fluorescence in the blank and 

negative control (NC) siRNA groups remained unaltered (Figure 2.10A). However, the 

toxicity of SiO2-PDMAEMA/siRNA complexes was found to be lower than that of 

lipofectamine (Figures 2.10C), in which cell viability at N/P=5 or 10 were maintained 

above 65 %. Indeed, the inherent toxicity of cationic vectors remains an important issue 

to address in the field of gene delivery26, 27 via non-viral cationic vectors. In addition, 

cationic vectors typically display poor stability in complex protein solutions, such as 

serum and blood, limiting the bloodstream circulation time and translation of these 

technologies28. 

 

 

Figure 2.10. Knock down efficiency of SiO2-PDMAEMA/GFP siRNA with HaCaT-GFP cells 

at N/P=5, 10 and 15 compared with Lipofectamine 2000/GFP siRNA (or NC siRNA, A and 
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B, scale bar: 50 μm); HaCaT cell viability test with live/dead assay on siRNA complexes 

with different N/P (C).  

 

2.6   Synthesis and characterisation of block copolymer brush 

coated flat surfaces and silica nanoparticles 

In order to address simultaneously cytotoxicity and stability issues, we developed a 

double shell approach enabling the coating of the PDMAEMA shell with a protein 

resistant and cytocompatible POEGMA shell9, 29-31, to reduce protein adsorption and 

shield cell membranes from toxic cationic moieties. However, despite the wide range of 

block copolymer brushes generated and studied on flat substrates1, 32, few reports have 

presented the synthesis of block copolymer brushes from nanoparticles33. In addition, 

“grafting to” approaches do not allow high grafting densities suitable for stable RNA 

loading (Figure 2.4). Hence, we re-initiated POEGMA blocks from the PDMAEMA first 

shell on both flat surfaces and silica nanoparticles (chemical structures on silica 

nanoparticle was illustrated in Figure 2.11) via the growth of a mixed 

PDMAEMA/POEGMA block (1/10 ratio, particles designated as SiO2-BCB).  

 

 

Figure 2.11. Schematic illustration and chemical structures of SiO2-BCB. 
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Ellipsometry tracking of dry brush thickness in Figure 2.12 and 2.13 showed the good 

control on block copolymer brush growth regenerated from both 10 and 30 nm 

PDMAEMA brush. 

 

 

Figure 2.12. POEGMA brush growth kinetics on silicon wafer (left) and gold substrate 

(right). 
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Figure 2.13. Re-initiation kinetics of POEGMA block from PDMAEMA brushes (10 nm (A 

and B) or 30 nm (C and D)) on silicon wafer (left, A and C) and gold substrate (right, B 

and D).  

 

 The obtained SiO2-BCB was well characterised by various techniques. A number-

average hydrodynamic radius of 550  14 nm was determined by DLS as shown in Figure 

2.14A and a reduced zeta potential of 4.4  2.4 mV was characterised compared with 

SiO2-PDMAEMA. Additionally, from FTIR measurements of SiO2-PDMAEMA, SiO2-

POEGMA and SiO2-BCB in Figure 2.14C, it is notable that both characteristic peaks of 

PDMAEMA at 2767 cm-1 and 2820 cm-1 and vibrations at 2870 cm-1 (characteristic of 
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POEGMA) can be found in SiO2-BCB, which indicated the successful synthesis of SiO2-

BCB. The increased organic polymer layer of 16 nm was found under TEM (Figure 2.14B). 

It was in agreement with TGA analysis (Figure 2.8) that more weight loss and increased 

dry brush thickness (Table 2.3) was found with SiO2-BCB.  

 

 

Figure 2.14. Characterisation of particles via DLS, in PBS (A); TEM image of SiO2-BCB (B); 

FTIR characterisation (C). 
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Table 2.3. TGA characterisation and dry brush thickness on SiO2.

 

 

2.7   Block copolymer brushes interactions with nucleic acids 

and serum proteins 

We then characterised RNA loading within the block copolymer brushes generated 

(Figure 2.15). SPR experiments demonstrated that 22 bp RNA molecules rapidly diffused 

through the outer block of the brush and bound to the PDMAEMA block at levels 

comparable to those measured for mono-block PDMAEMA brushes. We confirmed that 

POEGMA brushes did not bind any detectable level of RNA. SPR was also used to 

investigate the binding of proteins (10 % fetal bovine serum, FBS) on polymer brushes. 

Similarly, the protein adsorption of the block copolymer brushes synthesised reduced 

by about 50 %, compared to pure PDMAEMA brushes, in good agreement with 

differential adsorption to PDMAEMA and POEGMA brushes from serum7, 8, 29. Therefore, 

our results indicate that a block copolymer brush structure reduces significantly protein 

adsorption whilst retaining high levels of RNA uptake. 

 



70 

 

 

Figure 2.15. FBS (A and C) and siRNA (B and D) binding levels on PDMAEMA brushes, 

BCB (10 nm PDMAEMA + 10 nm second block) and POEGMA brushes. 

 

2.8   SiO2-BCB serum protein stability and cell viability 

The potential of SiO2-BCB particles to improve the safe delivery of siRNA to cells and to 

resist to aggregation and destabilisation in complex protein solutions was evaluated. We 

first characterised the stability of these colloids in 10% FBS solutions from 0 min to 48 h.  

Particles were then collected by centrifugation and washed three times in PBS before 

characterisation via DLS shown in Figure 2.16. SiO2-POEGMA was also prepared as a 

negative control. In agreement with the high level of protein adsorption measured by 

SPR from 10% FBS solutions (Figure 2.15), SiO2-PDMAEMA particles aggregated and 

sedimented rapidly (with charge reversal +16 mV to -5 mV) within 30 mins. In 
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comparison, SiO2-POEGMA and SiO2-BCB particles did not display notable signs of 

aggregation, even after 48 h (Figure 2.16). Similarly, the cytotoxicity of SiO2-BCB 

remained low (96  4 % viability at an N/P of 10), in contrast to that observed for SiO2-

PDMAEMA and lipofectamine in Figure 2.17A and 2.17B. Together, these results 

demonstrate that the addition of a POEGMA outer block to the PDMAEMA brush 

significantly improves cell viability, in addition to particle stability in the presence of 

serum. 

 

 

Figure 2.16. Serum stability of SiO2-PDMAEMA, SiO2-BCB and SiO2-POEGMA incubation 

with 10 % FBS for different time points measured via DLS. 

 



72 

 

 

Figure 2.17. HaCaT cell viability with SiO2-POEGMA and SiO2-BCB/siRNA complexes 

compared with blank and Lipo/siRNA controls (A and B). 

 

2.9   SiO2-BCB mediated knock down in the HaCaT-GFP model 

and cancer cells  

To determine whether SiO2-BCB retained a high siRNA delivery efficiency, the knock 

down performance of this vector was assessed with our HaCaT-GFP model. Similar 

transfection levels (near 60 %) were measured with SiO2-BCB (N/P=10), SiO2-PDMAEMA 

(N/P=10) and lipofectamine (Figure 2.18A and 2.18B). In contrast, no reduction level was 

observed in any of our controls (Figure 2.18C). Therefore, the addition of a POEGMA 
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outer block did not prevent siRNA delivery and knock down of the targeted gene, despite 

the expected reduction in cell membrane interactions, perhaps as a result of the residual 

positive zeta potential of SiO2-BCB particles. 

 

 

Figure 2.18. Knock down efficiency of SiO2-BCB/GFP siRNA with HaCaT-GFP cells (A, B 

and C). 

 

To demonstrate the application of our brush-based vectors, we investigated their use 

for the knock down of epidermal growth factor receptors (EGFR) in cancer cells, 

receptors often overexpressed in epithelial malignancies34, 35. Gene therapy and knock 

down of EGFR would allow the reduction of tumor growth, in combination to other 

therapeutic strategies36. An optimised N/P ratio of 10 was used as studied in the case of 

SiO2-BCB/EGFR siRNA. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used 

as internal loading control. No obvious EGFR knock down was observed in groups of 

blank cells and Lipofectamine/NC siRNA complex. While after transfection, it was 

demonstrated that SiO2-BCB nanoparticles allowed efficient knock down of EGFR in 
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HeLa and A549 non-small lung carcinoma cells through western blotting in Figure 2.19A 

and 2.19B. Immunofluorescence staining was further applied to detect the expression 

of EGFR visually. Hela and A549 cells were fixed, immunostained with secondary 

antibody identified by alexa 488 (green) after transfection. As shown in Figure 2.19C, 

EGFR in blank cells or cells transfected with negative control siRNA were bright and with 

enhanced signal around cell nucleus. Cells transfected with SiO2-BCB/EGFR siRNA or 

Lipofectamine/EGFR siRNA, the expression of EGFR was weakened significantly, which 

suggested successful knock down of EGFR and were in accordance with western blot 

results. Hence block copolymer brush-based vectors are versatile agents for efficient 

knock down of genes for the treatment of diseases and molecular biology studies. 

 

Figure 2.19. Western blot quantification (A and B) and fluorescent immunostaining (C) 

of EGFR in HeLa and A549 cells after transfectio with SiO2-BCB/EGFR siRNA. 
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2.10   Conclusion  

In conclusion, we showed that the binding of nucleic acid molecules to cationic polymer 

brushes depends both on brush density and size of the nucleic acid sequence. We 

demonstrated that such brushes can be applied to the design of nanoparticles displaying 

a combination of high knock down efficiency, improved protein resistance and solution 

stability, as well as low cytotoxicity. In addition to the ease with which polymer brushes 

can be functionanlised with bioactive moieties (to confer targeting for example) from a 

wide range of nanomaterials conferring imaging capability, degradability or responsive 

behavior, such block copolymer brush siRNA delivery vectors are attractive candidates 

for the design of a new generation of therapeutic platforms. Improving our 

understanding of parameters (chemical and structural) regulating such RNA-brush 

interactions, and the stable assembly and dissociation of RNA molecules from brush-

based vectors, should enable the improved design of new RNA delivery platforms. 
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Experimental section 

Materials 

2-(Dimethylamino)ethyl methacrylate (DMAEMA, Mn = 157.21), oligo(ethylene glycol 

methyl ether methacrylate) (OEGMA, Mn = 300), copper(I) chloride (Cu(I)Cl), copper(II) 

bromide (Cu(II)Br2), 2,2’-bipyridyl (bipy), anhydrous toluene, triethylamine (Et3N) and 1-

undecanethiol were purchased from Sigma-Aldrich and used as received. All chemicals 

and solvents were analytical grades unless otherwise stated. Cu(I)Cl was kept under 

vacuum desiccator until used to avoid oxidisation when exposed to air. Silicon wafers 

(100 mm diameter, <100> orientation, polished on one side/reverse etched) were 

purchased from Compart Technology Ltd and cleaned in a Plasma System Zepto from 

Diener Electronic, for 10 min in air. Gold-coated substrates were obtained through the 

evaporation of a chromium layer (20 nm followed by the evaporation of a gold layer 

(200 nm) using an Edwards Auto 500 evaporator. Silica particles (unfunctionalised) were 

purchased from Bangs Laboratories (supplied as powder, mean diameters of 300 nm). 

The thiol initiator, ω-mercaptoundecyl bromoisobutyrate was synthesised according to 

the literature37, and silane initiator, (3-trimethoxysilyl)propyl 2-bromo-2-

methylpropionate was purchased from Gelest. Surface plasmon resonance (SPR) chips 

(10 x 12 x 0.3 mm) were purchased from Ssens. Triton X-100, gelatin, phallodin–

tetramethylrhodamine B isothiocyanate, PFA (paraformaldehyde), DAPI (4,6-diamidino-

2-phenylindole), phosphate buffered saline (PBS, 150 mM) were purchased from Sigma 

Aldrich. Dulbecco's Modified Eagle Medium (DMEM) medium, OPti-MEM™ medium, 

Fetal Bovine Serum (FBS), trypsin, versene, penicillin-streptomycin, L-glutamine, Alexa 

Fluor goat anti-rabbit 488 and DNA fragmens were from Thermo-Fisher. Collagen type I 
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was from BD Bio-science. GFP siRNA (target sequence CGG CAA GCT GAC CCT GAA GTT 

CAT), EGFR siRNA (target sequence CAG GAA CTG GAT ATT CTG AAA), negative control 

(NC) siRNA (N/A) were purchased from Qiagen®. The EGFP plasmid was purified by using 

a plasmid purification kit from PureLink™, thermo fisher. Anti-EGFR monoclonal 

antibody (rabbit) was purchased from Abcam. Western blot gel, buffers, transfer kit and 

protein ladder were purchased from Bio-Rad. Secondary IRDye® 800CW Donkey anti-

Rabbit IgG (H + L) was from Li-cor. 

 

Polymer brush synthesis on flat surfaces 

The brushes were synthesised from the bromo initiator moieties with the ‘grafting from’ 

method, using atom transfer radical polymerisation (ATRP). 

Deposition of the ATRP silane initiator on silicon wafers. A piece of plasma-oxidised 

silicon wafer was immersed in a solution of silane initiator (30 L), Et3N (50 L), 

anhydrous toluene (30 mL), and left at room temperature overnight. Then the wafer 

was rinsed with ethanol and dried under nitrogen stream. Initiator-coated wafers were 

kept in a dry and dust free nitrogen box until needed. The dry thickness of silane initiator 

layers was near 2 nm, as measured via spectroscopic ellipsometry (JA Woollam, -SE). 

Deposition of ATRP thiol initiator on gold substrates and SPR chips. Gold substrate and 

SPR chips were first plasma-oxidised and immersed in 5 mM thiol initiator ethanoic 

solutions containing two different ratios of ω-mercaptoundecyl bromoisobutyrate to 1-

undecanethiol (100 % and 10 %, depending on the grafting density targeted). The chips 

were left at room temperature overnight, then washed with ethanol and dried under 
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nitrogen. The thiol initiator functionalised chips were used to grow polymer brushes 

freshly. The dry thickness of thiol initiator layers was near 2 nm, as measured via 

ellipsometry. 

Synthesis of PDMAEMA brushes. To study PDMAEMA brush growth and the evolution 

of its thickness as a function of time, a solution of CuBr2 (18 mg, 80 μmol), bipy (320 mg, 

2.05 mmol), and DMAEMA (42 mmol, 6.6 g) in water/ethanol (4/1 (v/v), 30 mL) was 

degassed using argon bubbling for 30 min. CuCl (82 mg, 828 μmol) was added into this 

solution quickly and the resulting mixture was sonicated to ensure fully dissolve of CuCl 

and further degassed for 30 min before polymerisation. Initiator-coated silicon/gold 

substrates (1  1 cm2 each) were placed in reaction vessels and degassed via four cycles 

of high vacuum/nitrogen gas refilling. Subsequently, 1 mL of DMAEMA solution was 

transferred to reaction vessels under inert atmosphere via a syringe. The polymerisation 

was stopped at different time points (2.5, 5, 10, 20, 30 min) by immersing the coated 

substrates in deionised water, followed by washing with copious amounts of ethanol 

and drying under a nitrogen stream. The dry thickness of PDMAEMA brush was 

measured via ellipsometry afterwards. PDMAEMA brush growth kinetics can be found 

in Figure. 2.1. For the preparation of sparse PDMAEMA brushes on gold substrates, the 

thiol initiator was diluted with 1-undecanethiol at a ratio of 1:9.  

Synthesis of POEGMA brushes. The procedure of POEGMA brush synthesis was similar 

as for PDMAEMA brushes except for the difference in monomer solution: the OEGMA 

solution consisted CuBr2 (18 mg, 80 μmol), bipy (320 mg, 2.05 mmol), and OEGMA (42 

mmol, 12.6 g) and CuCl (82 mg, 828 μmol) in water/ethanol (4/1 (v/v), 30 mL). Kinetics 

for POEGMA brush growth was also studied at time points of 2.5, 5, 10, 20, 30 min.  
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Synthesis of block copolymer brush (BCB). For preparation of block copolymer brush, 1 

mL DMAEMA solution (composition is the same as in PDMAEMA brush synthesis) was 

add to each reaction vessel containing the initiator-coated silicon wafers, gold 

substrates or SPR chips under inert atmosphere. After polymerisation for the time 

corresponding to the targeted thickness (10 nm, 4 min polymerisation, or 30 nm, 20 min 

polymerisation), according to PDMAEMA brush growth kinetics), 10 mL of OEGMA 

monomer solution (composition is the same as in POEGMA brush synthesis) was 

injected and left to polymerise for different time points before the reaction was stopped. 

Total dry thicknesses were measured afterwards by ellipsometry. 

 

Synthesis of polymer brush coated silica nanoparticles 

Initiator deposition. Anhydrous toluene (4 mL) kept under nitrogen was added to 200 

mg 300 nm silica nanoparticles. The particles were sonicated for 10 min and were shaken 

until the suspension turned cloudy and homogenous. The silica particles were then 

centrifuged at 4000 rpm x 15 min and the toluene was aspirated out. The sonication and 

centrifugation process were repeated three times and the particles were finally 

dispersed in 4 mL anhydrous toluene. The initiator grafting process was carried out by 

adding 200 μL Et3N, 40 μL silane initiator to the 4 mL silica dispersion and stirring 

overnight. Then the silica particles with silane initiator (SiO2-silane) were washed with 4 

mL ethanol three times and stored in final water/ethanol (4/1 (v/v), 10 mL)) in the fridge 

until needed for polymerisation.  
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Synthesis of PDMAEMA brushes on silica nanoparticles (SiO2-PDMAEMA). The 

polymerisation solution was prepared as described previously by dissolving DMAEMA 

(6.6 g, 42 mmol), bipy (320 mg, 2.05 mmol), CuBr2 (80 mmol) and CuCl (0.082 g, 828 

µmol) in half of the total polymerisation solvent (water/ethanol 4/1 (v/v), 15 mL). 10 mL 

SiO2-silane dispersion obtained were degassed for 30 minutes with argon bubbling while 

stirring. An equal volume of DMAEMA monomer solution was added to the SiO2-silane 

suspension. Polymerisation was allowed to proceed under argon at RT for 20 min to get 

30 nm of PDMAEMA brush on SiO2. To terminate the polymerisation, the particle 

dispersion was diluted using deionised water and bubbled with air until the color 

changed from dark brown to blue (oxidisation of CuCl). The particles were recovered via 

centrifugation, washed successively with water and ethanol to get rid of the catalysts 

and residual monomer, during which, sonication was applied to reduce the aggregation 

and finally the particles were dispersed in 10 mL deionised water and stored in the fridge.  

Synthesis of POEGMA brushes on silica nanoparticles (SiO2-POEGMA). The procedure 

of POEGMA brush synthesis was similar to that used for PDMAEMA brushes except for 

the difference in monomer solution. For OEGMA polymerisation on silica nanoparticles, 

the monomer solution was: OEGMA (12.6 g, 42 mmol), bipy (320 mg, 2.05mmol), CuBr2 

(80 mmol) and CuCl (0.082 g, 828 µmol) in 15 mL solvent (water/ethanol 4/1 (v/v), 15 

mL). 

Synthesis of block copolymer brushes on silica nanoparticles (SiO2-BCB). For 

preparation of block copolymer brushes on silica nanoparticles, 2.5 mL DMAEMA 

monomer solution was added to an equal volume of degassed SiO2-silane dispersion 

under inert atmosphere. After achieving 30 nm of PDMAEMA brush (polymerisation for 
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20 min), 50 mL OEGMA monomer solution was injected and left to polymerise for 120 

min according to figure S10 to generate a second block containing POEGMA and 

PDMAEMA (molar ratio of 10) with a thickness of 30 nm. Polymerisation was stopped, 

and particles were purified in the same way as for SiO2-PDMAEMA. 

 

Polymer brush coated nanoparticle characterisation 

Size and zeta potential measurement. The size and zeta potential of PDMAEMA, 

POEGMA and block copolymer brush coated silica nanoparticles were measured with a 

Malvern zetasizer nano ZS. Samples were prepared by dispersing particles in PBS until 

obtaining a slightly cloudy solution and then sonicated for 10 min with shaking at regular 

intervals. Each sample was measured in triplicates (three independent samples from at 

least two batches of particles) at 25°C and the average result was taken as the final 

hydrodynamic diameter or zeta potential. 

Thermogravimetric (TGA) measurement. By using TGA, the dry mass of polymer on 

silica nanoparticles was determined. Herein, the TGA was performed in air using a TA 

Instruments Q500. All samples were heated from room temperature to up to 1000 °C at 

a heating rate of 10 °C/min and dried under vacuum at room temperature prior to TGA 

runs. It was assumed that the mass change from 100 °C to 900 °C was due to the burning 

of the organic polymer brush coatings and the remainder was non-combustible silica 

particles. The polymer brush thickness on silica nanoparticles was calculated according 

to TGA results in Figure 2.8 and equation 2.3. 
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Fourier transform infrared - attenuated total reflectance (FTIR-ATR). FTIR was used to 

characterise the different chemical groups expected within the respective materials 

through obtaining an infrared spectrum.  ATR-FTIR spectroscopy in this study was 

carried out using a Bruker Tensor 27 with an MCT detector (liquid N2 cooled). Spectra 

were taken at a resolution of 4 cm-1 with a total of 128 scans per run. FTIR spectroscopy 

was carried out on bare SiO2, SiO2-PDMAEMA, SiO2-POEGMA and SiO2-BCB, results in 

Figure 2.14. 

Brush density measurement on silica nanoparticles. PDMAEMA brush density on silica 

nanoparticles can be determined by Equation 2.4, knowing the weight percentage 

(characterised by TGA) and molecular weight of PDMAEMA on silica nanoparticles. For 

molecular weight characterisation, PDMAEMA was cleaved from silica nanoparticles and 

characterised with gel permeation chromatography (GPC). Briefly, 5 mL SiO2-PDMAEMA 

particle suspension (20 mg/mL) was added to 25 mL 10 % hydrofluoric acid solution and 

stirred at room temperature for 4 h. The cloudy particle suspension turned clear after 

silica cores dissolved completely. The solution was then transferred to a 3.5 KD 

Spectra/Por® dialysis bag, dialysed with deionised water and freeze dried afterwards. 

GPC measurements were carried on an Agilent 1260 infinity system operating in 

dimethylformamide (DMF) with 5 mM ammonium tetrafluoroborate at 50 °C and 

equipped with refractive index detectors and variable wavelength detectors. The 

instrument was calibrated with linear narrow polystyrene standards in a range of 550 to 

46,890 g/mol. 2 mg of PDMAEMA cleaved from silica nanoparticles was dissolved in 2 

mL of DMF completely and filtered before GPC characterisation.  
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Transmission electron microscopy (TEM). TEM measurements were carried out using a 

JEOL 2010 transmission electron microscope with a LaB6 filament, operated at 200 kV. 

Samples were prepared by dropping the diluted brush coated silica nanoparticle 

suspension on a copper grid with porous carbon film and drying at room temperature. 

 

Characterisation of interactions between polymer brushes and nucleic 

acids 

SPR was used to evaluate the interaction between nucleic acid molecules (10 bp DNA, 

100 bp DNA, 22 bp RNA and 4.5 kbp plasmid) and polymer brushes with a Biacore 3000. 

SPR chips were coated with polymer brushes prior to mounting on a substrate holder. 

Mounted chips were docked, primed with PBS and equilibrated with PBS at 10 μL/min 

flow rate until a stable baseline was obtained. 50 μL nucleic acid solutions (plasmid DNA 

or RNA) were injected at 10 μg/mL. Once the injection was finished, washing with PBS 

was continued at 10 μL/min flow rate. The nucleic acid adsorption level was measured 

after washing with PBS for 15 min. Nucleic acid adsorption studies via SPR was carried 

out with chips coated with 30 nm brushes, at densities of 100 % and 10 % for PDMAEMA, 

POEGMA brushes and 100 % density of block copolymer brush (PDMAEMA, 10 nm, + 

POEGMA, 10 nm). All measurements were carried out in triplicates (three separate chips 

freshly prepared). 
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Characterisation of protein adsorption to polymer brushes 

Proteins adsorption to polymer brush coated SPR chips. SPR was used to investigate 

the binding of proteins on polymer brushes. Similar methods to those used for the 

characterisation of nucleic acid adsorption were used, but chips were exposed to 50 μL 

of 10 % FBS during injection of the protein samples. Measurements were carried on 10 

nm PDMAEMA, POEGMA brushes and 100 % density of block copolymer brushes 

(PDMAEMA, 10 nm, + POEGMA, 10 nm). All measurements were carried out in triplicates 

(three separate chips freshly prepared). 

Nanoparticle aggregation in serum solutions. SiO2-PDMAEMA, SiO2-POEGMA and SiO2-

BCB were dispersed in 10 % FBS (PBS) solution for 30 min, 2 h, 24 h and 48 h respectively. 

Subsequently, particles were centrifuged and washed three times and redispersed in 

PBS before characterisation via DLS. Changes in size after incubation in FBS solutions 

indicated the aggregation of particles following protein adsorption. Each sample was 

measured in triplicate at 25°C. 

 

Cell viability assay 

HaCaT Cell culture and passage. DMEM media supplied with 10 % FBS, 1 % Penicillin-

Streptomycin (P/S) and 1 % glutamine was used to culture HaCaT cells in 37oC/5 % CO2 

incubator. To harvest HaCaT cells (T75), cells were washed twice with pre-warmed PBS 

solution and then cells were detached from the flask by trypsinisation (versene/trypsin, 

4/1 v/v, 5 mL, 37°C). 15 mL of DMEM medium was then added to the flask to quench 

the trypsin. Cells were transferred to a 50 mL centrifuge tube and centrifuged at 1200 
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rpm for 5 min. After discarding the supernatant solution, the pellet was resuspended in 

10 mL FAD medium and the concentration of cells was measured with a 

haematocytometer.  

Cell viability test. Cells were seeded at a density of 50 k cells per well (in 500 µL of DMEA 

medium) in 24-well plates 24 h prior. SiRNA (with a final concentration of 50 nM/well) 

complexed with SiO2-PDMAEMA, SiO2-POEGMA, SiO2-BCB at N/P=5, 10, 15 and 

Lipofectamine/siRNA were added into each well for 4 h in serum free OPTI-MEM 

medium and then the medium was replaced by full culture DMEM medium for further 

24 h incubation. Cell viability was carried out by live/dead assay in which, cells were 

incubated in 500 µL DMEM medium of 4 mM calcein AM and 2 mM ethidium 

homodimer for 30 min prior to imaging. Fluorescence imaging was used to capture the 

live-dead cells, and these were counted via ImageJ to obtain the percentage of live cells 

of total number of cells.  

 

Transfection assay 

Establishment of stable HaCaT Cells expressing green fluorescence protein (HaCaT-

GFP). Stable HaCaT cell lines expressed EGFP-actin were generated by transfection with 

linearised plasmids for EGFP-actin (Clontech, Mountain View, CA) as previously 

described (Sharili 2016)38. Cells were transfected using Lipofectamine 2000 according to 

the manufacturer’s instructions and selected with 0.5 mg/mL G418 until a stable GFP 

positive population was established. 
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Knock down assay with SiO2-PDMAEMA and SiO2-BCB. The protocol for culturing and 

passaging HaCaT-GFP cells was the same as for HaCaT cells. HaCaT-GFP cells were 

seeded at a density of 50 k/well on glass cover slips pre-treated with collagen in 24 well 

plates, 24 h prior to the transfection assay. A final siRNA concentration of 50 nM/well 

was used for all transfection assays described in this report. 100 µL SiO2-PDMAEMA/GFP 

siRNA (or SiO2-BCB/GFP siRNA) complexes were prepared at N/P=5, 10 and 15, in serum 

free OPTI-MEM medium. After removing the DMEM medium, cells were washed twice 

with pre-warmed serum free OPTI-MEM medium and another 400 µL was added. 100 

µL siRNA complex was then added dropwise to each well and mixed by shaking gently. 

Cells were incubated with siRNA complexes for 4 h in the incubator and the medium was 

then replaced by 500 µL full culture DMEM medium for a further 24 h of incubation. 

Lipofectamine® 2000 complexed with GFP siRNA/negative control (NC) siRNA (protocol 

according to the manufacturer's instruction with a final siRNA concentration of 50 

nM/well) was used as a positive/negative control. The transfected cells were washed 

with PBS three times, fixed in paraformaldehyde (PFA, 4 %, 10 min) and permeabilised 

with Triton X-100 (0.2 %, 5 min). Cells were then stained with TRITC-phalloidin (1:1000) 

and DAPI (4,6-diamidino-2-phenylindole, 1:1000) in blocking buffer (10% FBS and 0.25% 

gelatin from cold water fish skin, Sigma-Aldrich) and kept at room temperature for 1 h. 

Cover slips with fixed cells were mounted on glass slides before imaging with a Leica 

DMI4000 fluorescence microscope.  

SiO2-BCB/EGFR siRNA on cancer cells (immunostaining and western blot). Cancer cells 

used in this study were HeLa cells and A549 cells. The culture medium and protocol were 

similar with HaCaT cells except for shorter trypsinisation times. Both cancer cells were 
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transfected with SiO2-BCB/EGFR siRNA, lipofectetamine/EGFR siRNA and 

lipofectetamine/NC siRNA at N/P ratio of 10. After transfection, cells were washed with 

PBS, fixed and permeabilised. Non-specific protein binding was blocked by incubating 

the cover-slips for 1 h in blocking buffer (10% FBS and 0.25% gelatin in PBS). 

Subsequently, the cover-slips were incubated with anti-EGFR monoclonal antibody 

(anti-EGFR, 1:200, Abcam) in blocking buffer for 1 h at room temperature. After washing 

with PBS three times, cells were then incubated with Alexa Fluor 488-conjugated 

secondary antibody (goat anti-rabbit, 1:1000, Thermo-Fisher), phalloidin (1:1000) and 

DAPI (1:1000) in blocking buffer for 1 h at room temperature. Samples were washed and 

mounted onto glass slides prior to imaging. The relative protein abundance across 

samples was determined for western blot. After transfection, cells were harvested, 

lysised and the protein content was quantified (Pierce™ BCA Protein Assay Kit, Thermo-

Fisher). Equal protein loadings was further confirmed by GAPDH. Bands were separated 

on a 4% to 15% SDS-PAGE gradient gels (Bio-Rad) and semi-dry transferred on to PVDF 

membranes. Blots were incubated with blocking buffer (5 % milk powder and 5 % FBS in 

TBS buffer) at room temperature for 1 h before incubating with an anti-EGFR 

monoclonal antibody 1:1000 (identical to that used for immunostaining) in blocking 

buffer at 4 °C overnight. After washing three times with TBS + tween buffer, secondary 

IRDye® 800CW Donkey anti-Rabbit IgG (H + L) (1:15000, Li-cor) in blocking buffer was 

applied for a  further 1 h incubation at room temperature. Bands were visualised using 

an Odyssey® imaging system (Li-cor). 
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Statistics 

Data are reported as averages ± stdev for groups of at least three replicates, or as 

individual values with the average indicated. An unpaired, two-tailed Student’s t test 

was used for assessing of statistical significance (*p<0.05, **p<0.01, ***p<0.001). 
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CHAPTER 3 

Preparation of Fluorescent Polymer 

Brushes on Different Templates with 

Macroinitiators 
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Abstract 

Macroinitiators represent an attractive alternative to conventional small-molecule 

initiators such as silane and thiol, since they can be synthesised on a large scale with 

relative ease and applied to a variety substrates to achieve dense polymer brush 

coatings. Herein, a cationic copolymer macroinitiator was synthesised by the statistical 

copolymerisation of 2-(dimethylamino)ethyl methacrylate (DMAEMA) with 2-

hydroxyethyl methacrylate (HEMA) via ATRP and used for coating a variety of templates 

including 70 nm, 300 nm silica nanoparticles, graphene oxide and calcium carbonate. A 

controlled linear PDMAEMA brush growth was achieved by tuning the adsorbed 

macroinitiator layers and polymerisation conditions. We further demonstrate the ease 

of labelling fluorescence on the templates by deposition a negatively charged and stable 

fluorescent polyelectrolyte during the layer-by-layer process. Additionally, the resulting 

nanomaterials can be applied to study cell-nanomaterials interactions and promote 

siRNA delivery. Thus, this novel methodology is of particular interest for fabricating 

labelled nanomaterials with controlled polymer brush shells for biomedical applications. 
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3.1   Introduction 

The unique properties of polymer brushes generated via surface-initiated 

polymerisation confer its great interests in many biomedical applications as they allow 

to tailor diverse architectural and functional features: grafting density, thickness of 

coatings and chemistry.1 Majority of the ‘grafting from’ polymerisation process such as 

atom transfer radical polymerisation (ATRP) requires surface functionalisation of 

initiators. Generally, ATRP initiators are attached to surfaces via either covalent 

chemical binding (e.g. mono-functional initiator: thiol–gold (or other noble metal) 

bonding or silane–silanol bonding) or physical adsorption (e.g. polyelectrolyte 

macroinitiators (MIs)).2 However, the synthesis of silane initiators typically involves 

using expensive and toxic reagents (e.g. H2PtCl6 and HSiCl3) and cannot be applied in 

aqueous solution due to hydrolytic cleavage.3, 4 In addition, thiol-gold bonds are prone 

to spontaneous redox cleavage over various time scales.5 

To overcome the limitations of mono-functional initiators, MIs were developed, which 

typically adsorb to surfaces via non-covalent bindings such as hydrophobic, hydrogen 

bonding and electrostatic interactions.6, 7 The production process of MIs is much easier 

and safer than silane and thiol initiators that MIs can be synthesised on a large scale in 

mild conditions, 3, 4 which is an obvious advantage for high-surface-area substrates such 

as colloidal particles8, 9. Long shelf lives also seem to be less problematic. Moreover, MIs 

are more flexible for generating polymer brushes independently of surface chemistry, 

size and shape. It has been shown in previous reports to use MIs to coat a range of 

substrates7, 10 and generate polymer brushes via ATRP. 
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Fluorescent materials offer great potential for many applications in both basic and 

applied research, such as microscopy, cellular studies, delivery systems, diagnostics and 

sensing as fluorescence microscopy is selective, rich in contrast and quantitative.11, 12 

Approaches have been developed to label particles, substrates and scaffolds with 

fluorescent molecule via conjugation chemistry13-15 (e.g. click chemistry, thiol-ene 

coupling, esterification etc.) that display high labelling efficiencies. However, this 

process on the other hand often requires additional chemical modifications of the 

templates or their polymeric coatings. Fluorescent conjugated polyelectrolytes (FCP) 

have drawn particular attention for their applications in   polymer light-emitting diodes 

(PLEDs)16-19, solar cells20, 21 and biosensors22-24. As a result of highly electron-delocalised 

backbones, FCP has larger absorption extinction coefficient and more efficient 

intramolecular/intermolecular energy transfer than small fluorophores and fluorescent 

proteins.25-27 These unique properties are particularly attractive in the field of 

biomedical imaging27 to avoid photo bleaching28 when samples are irradiated during 

long exposure times. Yet, FCP haven’t been explored to label particles from which to 

generate polymer brushes for biomedical applications. 

In this research, we aimed to fabricate polymer brush from MI adsorbed to a variety of 

templates (70 nm, 300nm silica nanoparticles, graphene oxide sheets and micro-size 

calcium carbonate) with different core sizes, surface chemistries and shapes. Firstly, the 

layer-by-layer coating process of positively charged MI and anionic FCP on templates 

and polymer brush growth kinetics were investigated. The fluorescent polymer brush 

coated templates were then carefully characterised via zetasizer, FTIR, TGA, confocal 

imaging and TEM. Selected candidates were used to study the interaction of different 
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brush chemistry coated particles with epidermal cells. Eventually, cationic polymer 

brush coated silica nanoparticles were applied for the delivery of siRNA. 

 

3.2   Synthesis of macroinitiator(MI) and fluorescent conjugated 

polyelectrolyte 

 

 

Figure 3.1. Reaction scheme for the three-step synthesis of the cationic macroinitiator 

used for the surface ATRP. 

The MI was synthesised via a three-step reaction as described in Figure 3.1, H1-NMR was 

used to characterise the chemical composition of the purified products after each step. 

Firstly, the random co-polymer of DMAEMA and HEMA was synthesised by ATRP using 

a molar ratio of 4 (DMAEMA: HEMA=4) and DP target = 20. According to 1H-NMR the 

monomer conversion exceeded 95% and the ratio of DMAEMA: HEMA was 

approximately 4 : 1. Secondly, the hydroxyl (OH) groups of HEMA were esterified by 

bromoisobutyryl bromide (α-BiBB) to introduce an ATRP moiety. The α-BiBB reaction 

was efficient with full conversion of the OH-groups according to 1H-NMR as both the 4 

and 5 peaks shifted to 9 and 10 in Figure 3.2. Finally, the ternary amine groups in the 

DMAEMA-units were quaternised by methyl iodide. Quaternised amines are 
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distinguishable in 1H-NMR through peaks 14. The result was in agreement with the 

previous report. The synthesised compound was subsequently used as MI. 

 

 

Figure 3.2. 1H NMR spectra for the synthesis of the cationic macroinitiator: DMA-HEMA 

statistical copolymer (A, deuterated chloroform), copolymer after grafting ATRP initiator 

(B, deuterium oxide), and the quaternised macroinitiator (C, deuterium oxide). 
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3.3   Layer-by-layer on silicon wafer and polymer brush growth 

kinetics 

Polymer brush growth kinetics was first studied on silicon wafers. In order to estimate 

the number of MI layers allowing to achieve a high grafting density of brushes, the 

kinetics of polymerisation was compared to that of brushes initiated from mono-

functional silane initiators. The general idea is illustrated in Figure 3.3, in which 

polyelectrolytes were deposited on silicon wafer via LBL. 

 

Figure 3.3. Scheme illustration of layer-by-layer (LBL) process of macroinitiator (MI), 

fluorescent conjugated polyelectrolyte (FCP) / Poly(sodium 4-styrenesulfonate) (PSS) on 

silicon wafer and brush polymerisation. 

 

Firstly, positively charged MI (2 mg/mL in 0.5 M NaCl) was deposited on plasma treated 

silicon wafers. To prepare the negatively charged polyelectrolyte solution, FCP was 

dissolved in DMSO before mixing with the other negatively charged 
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poly(styrenesulfonate) PSS NaCl solution due to the poor solubility of FCP in aqueous 

salt solution. The ratio and concentration of FCP to PSS was optimised to ensure full 

solubility of FCP in mixed solvent and still retain adequate fluorescence. Thus, the 

coating of the negatively charged layer was a mixture of PSS (2 mg/mL in 0.5 M NaCl) 

and FCP (0.5 mg/mL in DMSO) at a volume ratio of 10:1 (PSS:FCP). By repeating the 

above process, multiple layers of MI coated on silicon wafers were obtained. 

Ellipsometry measurements allowed the quantification of polymer adsorption after 

deposition of each layer as shown in Figure 3.4A. An increasing of dry thickness was 

detected with around 3 nm for one layer of MI, 8 nm for two layers of MI and 14 nm for 

3 layers of MI. Subsequently, these MI coated chips were used to investigate PDMAEMA 

brush growth kinetics. Different layers of MI and polymerisation solvent were 

systematically studied and compared with mono-silane initiator. As shown in Figure 3.4B, 

with one layer of MI (blue dots) in water/ethanol (volume ratio of 4, dielectric constant 

of 69), very thin layer of PDMAEMA brush (below 10 nm) was generated after 120 min 

polymerisation. By increasing the layer of MI to two (green dots), the polymerisation 

was faster compared with one layer at the initial time points, however, the reaction 

slowed down after 20 min with no obvious increase of thickness. The maximum 

thickness was obtained at 120 min with around 20 nm PDMAEMA. With three layers of 

MI (red dots), a jump of thickness increase was detected within the initial 10 min, where 

PDMAMEA brush thickness reached 40 nm. Whilst we could not fit the ellipsometry data 

after that point (showed as red crosses), indicating the formation of a thicker, but more 

heterogeneous coating. Substrates coated with mono-silane initiators, with 

polymerisation in the same solvent, monomer concentration and catalytic system, were 

used as controls (black dots). In order to control the growth of PDMAEMA brush with no 
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initial thickness jump, polymerisation conditions were optimised as shown in Figure 3.4C. 

Thus, a less polar solvent mixture (DMF/water with a volume ratio of 4, dielectric 

constant of 49) was used. PDMAEMA polymerisations from two layers of MI (orange 

dots) and mono-functional silane (purple dots) were compared. Though the 

polymerisation was not as fast as in water/ethanol at early time points, the brush growth 

turned out to be more controlled, with a linear increase in thickness, at longer time 

points. With two layers of MI in DMF/water, 30 nm PDMAEMA brushes were obtained 

with 60 min polymerisation, which was comparable to the brush thickness obtained 

from mono-functional silane initiators at the similar time point. 

 

 

Figure 3.4. Thickness changes of layer-by-layer on silicon wafer tracking by ellipsometry, 

layer 1: Si-MI, layer 2: Si-MI-FCP, layer 3: Si-MI-FCP-MI, layer 4: Si-MI-FCP-MI-FCP, layer 

5: Si-MI-FCP-MI-FCP-MI (A); PDMAEMA brush kinetics study in H2O/ethanol (V:V=4) with 

one layer of MI (blue dots), two layers of MI (green dots), three layers of MI (red dots 

and red cross (out of measurement spectrum)) and mono-silane initiator (black dots) (B); 

PDMAEMA brush kinetics study in DMF/water (V:V=4) with two layers of MI (orange 

dots) and mono-silane initiator (purple dots) (C). 
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3.4   Polymer brush growth from different templates via 

macroinitiator 

Growing polymer brushes from MI gives more flexibility as it allows to control and retain 

brush chemistry and structure independently of the template size, shape as well as 

surfaces chemistry. Moreover, templates can be easily labelled with stable and bright 

FCP during LBL without additional chemical modification. To systematically study MI 

deposition and polymer brush growth on different templates, spherical silica 

nanoparticles with two different sizes (70 nm and 300 nm respectively), graphene oxide 

sheets (GO) and micro-size cubic calcium carbonate (CaCO3) were used. 

 

Figure 3.5. Scheme illustration of LBL process of macroinitiator (MI), FCP/PSS on 

different templates and brush polymerisation. 
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The general method was similar to that used for the coating of silicon substrates, whilst 

different incubation times and purification protocols were used (for example to help 

sedimentation or prevent aggregation). Two layers of MI were deposited for all 

templates before brush polymerisation, as it showed more controlled brush growth 

according to the kinetics study on silicon wafers. Zeta potential measurement, although 

not strictly speaking applicable to non-spherical nanomaterials using the models used 

for data analysis, is a convenient tool to monitor the deposition of each polyelectrolyte 

coating, as they indicate the charge reversal that is anticipated after each layer 

deposition. Figure 3.6A shows the zeta potential change during LBL deposition and after 

polymerisation of PDMAEMA and POEGMA brushes. A clear trend of charge reversal 

after each layer confirms the successful deposition process of MI and PSS/FCP.  

 

 

Figure 3.6. Zeta potential change on SiO2, graphene oxide and calcium carbonate after 

LBL and polymerisation with PDMAEMA and POEGMA (A); Size changes by DLS 

measurement of layer-by-layer and polymerisation on 70 nm SiO2 (B) and 300 nm SiO2 

(C). 

 

After polymerisation of POEGMA, the zeta potential became nearly neutral as the 

formed POEGMA brush do not carry any charges. The slightly positive zeta potential 

values may result from the only partial screening of the cationic MI layers by POEGMA 
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brushes. In contrast, after PDMAEMA polymerisation, the zeta potential of templates 

remained positive due to the positive charge PDMAEMA itself. Size measurement was 

also carried out to track the change in size of silica nanoparticles, as shown in Figure 

3.6B (70 nm) and 3.6C (300 nm). Sizes of silica nanoparticles increased slightly whilst 

retaining good dispersity after deposition of each layer of polyelectrolytes. More 

pronounced size changes were observed after PDMAEMA polymerisation and the 

associated swelling of the brush in water. 

 

 

Figure 3.7. Fluorescent images of particles after polymerisation. 

 

During the LBL process, a stable blue fluorescent conjugated polyelectrolyte was 

introduced in the coating of the second layer, thus allowing the visualisation of the 

coated templates by fluorescent microscopy. As shown in Figure 3.7, all templates were 

coated with FCP successfully showing bright and stable blue colour, which was useful in 

application for the cellular tracking of particles without further chemical modification of 

the templates. After PDMAEMA brush growth, silica nanoparticles were observed by 

TEM, which showed the formation of clear organic layers around SiO2 compared with 

bare silica nanoparticles for both 70 and 300 nm in Figure 3.8.  
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Figure 3.8. TEM images of SiO2-2MI-PDMAEMA for both 70 nm and 300 nm compared 

to bare silica nanoparticles. 

 

The FTIR data of SiO2(300) and GO after coating with PDMAEMA and POEGMA brush 

demonstrated successful polymerisation of both brushes from MI as the spectra contain 

characteristic peaks of PDMAEMA at 1730 cm-1 (C=O stretching), 2767 cm-1 and 2820 

cm-1 (CH2 stretching of –N(CH3)2). Vibrations at 1730 cm-1 (C=O stretching) and 2870 cm-

1 (CH2 stretching) were peaks for POEGMA brush in Figure 3.9.  For CaCO3, as the volume 

fraction of polymer brush is negligible compared with that of CaCO3, characteristic peaks 

were not detectable in FTIR spectra. 

 

 

Figure 3.9. FTIR measurement of bare SiO2(300) and GO and after polymerisation of 

PDMAEMA and POEGMA. 
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To determine the amount of polymer brush on SiO2(300) and GO, thermal analysis was 

carried out. According to Figure 3.10, the amount of MI coated on SiO2 was 7 wt% 

compared with bare silica nanoparticles. After polymerisation, the weight percentages 

of PDMAEMA and POEGMA brush on SiO2 are 18 % and 43 % respectively, which equal 

to 20 nm PDMAEMA brush and 60 nm POEGMA brush according to Equation 2.3 in 

chapter 2. For GO, the main weight loss of GO occurs between 100–250 °C and the loss 

is mainly due to decomposition of the oxygen-containing functional groups. Based on 

TGA curves, the weight percentage of MI on GO was 10 %. After polymerisation, the 

percentage of PDMAEMA and POEGMA brush on GO was 30 % and 35 % respectively. 

 

 

Figure 3.10. TGA measurement of SiO2(300) and GO before and after polymerisation 

with PDMAEMA and POEGMA brush.  

 

3.5   Cell viability test 

The cytocompatibility of all brush coated nanomaterials was evaluated via live/dead 

assay. HaCaT cells were exposed to PDMAEMA/POEGMA brush coated templates at a 

concentration of 10 μg/mL for 4 h in serum free OPTIMEM medium and then the 
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medium was replaced with full culture medium for a further 24 h. Live cells appeared 

green and dead cells were seen red in colour. The images of live/dead cells and the 

quantified cell viability were shown in Figure 3.11  

 

 

Figure 3.11. Cell viability of PDMAEMA/POEGMA brush coated templates incubated 

with HaCaT cells by live/dead assay. 

 

Generally, POEGMA brush coated templates showed much better cell viability than 

PDMAEMA brush coated particles due to the excellent protein resistant properties of 

POEGMA brush, whilst dense positive charged PDMAEMA brush presented cell toxicity 

in our previous work. With smaller core size, 70 nm silica nanoparticles with PDMAEMA 
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showed slightly more toxicity than 300 nm silica nanoparticles. This could be the result 

from the increase in surface area of the corresponding particles. GO showed higher cell 

toxicity than other particles on both polymer brush coatings which was possibly due to 

the high aspect ratio and surface area compared to silica particles. When it was coated 

with dense cationic polymer brushes, the interaction between cells and materials was 

promoted and enhanced. For CaCO3, no obvious cytotoxicity was found due to the larger 

and heavier nature of CaCO3, on which the amount of polymer brushes was negligible 

that cannot be detected by either FTIR or TGA measurements. 

 

3.6   Cellular interactions 

The interaction between nanomaterials and cells is one of the important issues towards 

understanding the nature of nanomaterials-mediated biological effects. Several routes 

have been discovered to reveal the mechanism of cellular uptake of nanomaterials, 

including phagocytosis, macropinocytosis, clathrin-mediated endocytosis, caveolin-

mediated endocytosis, and non-clathrin- and noncaveolin-mediated endocytosis.29 

Considering the effect of surface charge of nanomaterials on their cellular uptake, in this 

study, positively charged PDMAEMA brush and neutral POEGMA brush coated SiO2 (300 

nm) and graphene oxide were involved to study the interaction with HaCaT-GFP cells. 

Coating of FCP also allows the visualisation of nanomaterials via fluorescence 

microscopy. 

 

SiO2-PDMAEMA and SiO2-POEGMA were incubated with HaCaT-GFP cells at 10 μg/mL in 

serum free OPTIMEM medium for 4 hours before replacing with full culture medium for 
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further 24 h culture. Cells were then fixed and visualised under confocal microscopy as 

shown in Figure 3.12A. There was no clear evidence in co-localisation of silica 

nanoparticles and cells between the different charges (chemistries) of the coatings.  

 

 

Figure 3.12. Confocal images (A) and SEM images (B) of SiO2-PDMAEMA and SiO2-

POEGMA particles incubated with HaCaT-GFP cells. 

 

As this result is surprising, considering the known protein resistance of POEGMA brushes 

and their absence of interactions with most biomacromolecules and cells, SEM was 

carried out to further explore cell-nanomaterials interactions. After incubating with 

SiO2-PDMAEMA and SiO2-POEGMA the same as described above, HaCaT-GFP cells were 

fixed, dehydrated, dried and coated with gold before SEM scanning. According to SEM 

images in Figure 3.12B, more PDMEAMA coated particles were observed at the cell 

membrane than POEGMA coated particles. Compared with confocal images in which the 

nanoparticles visualised were those internalised inside cytoplasm, under SEM, only 

those on the cell membranes can be observed. This may suggest although less POEGMA 
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coated particles can land and interact with cell membranes due to the protein resistant 

nature of POEGMA coatings, they were still able to be internalised by the cells. Moreover, 

it may also result from the neutral surface charge of the POEGMA coated particles, 

which can cause more particle aggregations that were much easier to observe than 

single or small accumulations of positively charged SiO2-PDMAEMA. In additions, under 

SEM, more cell membrane damage was displayed with SiO2-PDMAEMA particles, whilst 

no obvious membrane morphology change was observed with SiO2-POEGMA compared 

with blank cells. This also correlates with the cytotoxicity of PDMAEMA brush coated 

silica nanoparticles showed in Figure 3.11. 

 

3.7   SiRNA delivery with PDMAEMA brush coated silica 

nanoparticles 

Positively charged PDMAEMA brush coated SiO2 (300) was selected for applications in 

siRNA delivery. A keratinocyte cell line expressing actin-GFP was selected for simple 

quantification of siRNA efficiency, using GFP siRNA (allowing imaging of endogenous 

actin after phalloidin staining). A transfection assay was carried out with nanomaterials 

and RNA sequences mixed at different N/P ratios of 5, 10 and 15. The commercial 

transfection agent lipofectamine 2000 was used as a positive control and non-targeting 

siRNA and blank cells were used as a negative control. The fluorescent intensity ratio of 

GFP (green)/ phalloidin (red) was measured and compared with the ratio of blank cells 

which was then determined as the knocking down efficiency. Highest knock down 

efficiencies (53  8 %) were measured at N/P=15, slightly less efficient with those 

measured with lipofectamine (64  6 %, Figure 15). 
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Figure 3.14. Knock down efficiency of SiO2-PDMAEMA/GFP siRNA with HaCaT-GFP cells 

at different N/P ratio. 

 

In comparison, green fluorescence in the blank and negative control (NC) siRNA groups 

remained unaltered. In our previous study in chapter 2, a slightly higher transfection 

efficiency (66  6 %) of SiO2-PDMAEMA functionalised from mono-silane initiator was 

observed. It could result from a slightly thinner PDMAEMA brush (20 nm) that achieved 

in this study compared with previous one (28 nm) in chapter 2.  
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3.8   Conclusion 

In this work, we have developed a novel route to graft polymer brushes and label stable 

fluorescent dye from templates with different core sizes, shape and surface chemistry 

using a cationic MI and FCP via LBL and ATRP. Polymer brush growth kinetics was 

systematically investigated and optimised by coating different layers of MI and 

conducting polymerisation in solvents of different polarity. Detailed characterisation 

techniques were applied during the LBL process and after polymerisation to ensure the 

successful preparation of PDMAEMA or POEGMA coated templates. For particle-cell 

interactions, POEGMA brush coated nanomaterials displayed improved 

cytocompatibility compared to PDMAEMA brush coated templates. PDMAEMA brush 

coated silica nanoparticles were applied to deliver siRNA to HaCaT-GFP cells, successful 

knock down was observed and compared with commercialised product. In summary, we 

demonstrated that the LBL of MI and FCP can offer a greater flexibility in the growth and 

design of polymer brushes and their labelling from templates with a wide range of 

shapes, sizes and chemistries without additional chemical modification. Moreover, we 

showed that the resulting nanomaterials can be applied to study cell-nanomaterials 

interactions and promote siRNA delivery. We believe this novel methodology will 

provide a simple way of fabricating labelled nanomaterials with controlled polymer 

brush shells for biomedical applications. 
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Experimental section 

Materials: 

2-(Dimethylamino)ethyl methacrylate (DMAEMA, Mn = 157.21), oligo(ethylene glycol 

methyl ether methacrylate) (OEGMA, Mn = 300), copper (I) chloride (Cu(I)Cl), copper (II) 

bromide (Cu(II)Br2), 2,2’-bipyridyl (bipy), anhydrous toluene, triethylamine (Et3N) and 

poly(styrenesulfonate) were purchased from Sigma-Aldrich and used as received. All 

chemicals and solvents were analytical grades unless otherwise stated. Cu(I)Cl was kept 

under vacuum until used. Silicon wafers (100 mm diameter, <100> orientation, polished 

on one side/reverse etched) were purchased from Compart Technology Ltd and cleaned 

in a Plasma System Zepto from Diener Electronic, for 10 min in air. Silica particles (300 

nm, unfunctionalised) were purchased from Bangs Laboratories (supplied as powder). 

Silica particles (70 nm) were synthesis according to previous report. Calcium carbonate 

were synthesis according to previous report. Graphene oxide was synthesis by Maria. 

Triton X-100, gelatin, phallodin–tetramethylrhodamine B isothiocyanate, PFA 

(paraformaldehyde), DAPI (4,6-diamidino-2-phenylindole), phosphate buffered saline 

(PBS, 150 mM) were purchased from Sigma Aldrich. Dulbecco's Modified Eagle Medium 

(DMEM) medium, OPti-MEM™ medium, Fetal Bovine Serum (FBS), trypsin, versene, 

penicillin-streptomycin, L-glutamine and hoechst 33342 were from Thermo-Fisher. 

Collagen type I was from BD Bio-science. GFP siRNA (target sequence CGG CAA GCT GAC 

CCT GAA GTT CAT) and negative control (NC) siRNA (N/A) were purchased from Qiagen®. 
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Synthesis of macroinitiator (MI): 

The synthesis of macroinitiator was reported previously by Chen et al.9 Briefly, it was 

prepared in a three-step reaction in Figure 1. First, a copolymer of DMAEMA and HEMA 

was synthesised via ATRP, then the hydroxyl groups of HEMA was esterified with 2-

bromoisobutyryl bromide and finally DMAEMA was quaternised by methyl iodide. A 

typical procedure for preparation of the macroinitiator was described below.  

Firstly, a solution of DMAEMA (16.9 g, 107.6 mmol), HEMA (3.43 g, 26.4 mmol), 2-

propanol (50.39 g), ethyl α-bromoisobutyrate (1.3 g, 6.6 mmol), Cu(II)Br (0.15 g, 0.6 

mmol) and 2,2′-bipyridine (bpy, 2.60 g) was degassed with argon for 40 min with 

continuous stirring at room temperature. The Cu(I)Br catalyst (0.97 g, 6.7 mmol) was 

added under nitrogen to start the polymerisation. After 15 h, the reaction was 

terminated by exposure to air. To remove the spent Cu(II) catalyst, the reaction mixture 

was diluted with DCM and passed through a basic Al2O3-colume. The resulting solution 

was then concentrated and precipitated into diethyl ether. The purified white DMA-

HEMA copolymer was filtered, dried under vacuum at room temperature, and 

characterised by 1H NMR spectroscopy. The final product contained 80 % DMA and 20 % 

HEMA. 

Secondly, esterification of the hydroxy groups of the DMA-HEMA copolymer with excess 

2-bromoisobutyryl bromide was carried out. Thus triethylamine (TEA, 26.4 mmol), 

DMAP (26.4 mmol), and THF (50 mL) were mixed and cooled to 0 °C, followed by the 

addition of 2-bromoisobutyryl bromide (0.0528 mol). A solution of the DMA-HEMA 

statistical copolymer (12 g) in THF (50 mL) was added dropwise to this yellow reaction 

solution over a period of 1 h under dry nitrogen. Subsequently, the reaction 
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temperature was allowed to rise slowly to room temperature and the esterification was 

stirred for a further 18 h. The reaction was terminated by addition of EtOH and the white 

HBr-salt was removed by centrifugation (8000 rpm, 10 min and 15 °C). The product was 

carefully concentrated using a rotary evaporator below 30 °C and the product was 

precipitated in diethyl ether (cooled by dry ice). The off-white product was re-dissolved 

in THF and the purification procedure was repeated once. The product was 

characterised by 1H-NMR. 

Finally, quaternisation was achieved by dissolving this esterified copolymer (6 g) in DMF 

(50 mL). Then, methyl iodide (2 mL) was added to this stirred solution and quaternisation 

was allowed to continue for 24 h at 20 °C. This reaction mixture was added to a large 

excess of THF, and the isolated cationic macroinitiator was redissolved in water and 

freeze-dried overnight to obtain an off-white solid and then characterised with 1H NMR. 

 

Synthesis of fluorescent conjugated polyelectrolyte (FCP) 

Fluorescent conjugated polyelectrolyte was a gift from Prof. Guoli Tu in Wuhan National 

Laboratory for Optoelectronics, Huazhong University of Science and Thchnology in China, 

detailed synthesis and characterisation can be found in the reported literature18. 

 

Layer-by-layer MI on silicon wafers 

A piece of plasma-oxidised silicon wafer was immersed in a solution of positively 

charged MI (2 mg/mL in 0.5 M NaCl) for 1 h at room temperature. Then the wafer was 
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rinsed with copious of DI water and dried under nitrogen stream. The sample was named 

as Si-MI. A mixed solution of negatively charged polyelectrolytes was prepared by mixing 

10 mL PSS (2 mg/mL in 0.5 M NaCl) with 1 mL FCP (0.5 mg/mL in DMSO) under votex. 

Then Si-MI was immersed in the above solution for 1 h at room temperature before 

washing with DI water and drying with nitrogen stream. The sample was names as Si-

MI-FCP. By repeating the process of each polyelectrolyte, different layer of MI coated 

silicon wafers can be obtained. Herein, one layer of MI (Si-MI), two layers of MI (Si-MI-

FCP-MI, Si-2MI) and three layers of MI (Si-MI-FCP-MI-FCP-MI, Si-3MI) were prepared to 

study polymer brush growth kinetics. The dry thickness of each step was measured via 

spectroscopic ellipsometry (JA Woollam, -SE).  

 

Polymer brush growth kinetics on different layers of macroinitiator 

To study PDMAEMA brush growth and the evolution of its thickness as a function of time, 

a solution of CuBr2 (18 mg, 80 μmol), bipy (320 mg, 2.05 mmol), and DMAEMA (42 mmol, 

6.6 g) in water/ethanol (4/1 (v/v), 30 mL) or in DMF/water (4/1 (v/v), 30 mL) was 

degassed using argon bubbling for 30 min. CuCl (82 mg, 828 μmol) was added into this 

solution quickly and the resulting mixture was sonicated to ensure fully dissolve of CuCl 

and further degassed for 30 min before polymerisation. MI-coated silicon wafers (1  

1 cm2 each) were placed in reaction vessels and degassed via four cycles of high 

vacuum/nitrogen gas refilling. Subsequently, 1 mL of DMAEMA solution was transferred 

to reaction vessels under inert atmosphere via a syringe. The polymerisation was 

stopped at different time points (2.5, 5, 10, 20, 30, 60 and 120 min) by immersing the 

substrates in deionised water, followed by washing with ethanol and drying under a 
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nitrogen stream. The dry thickness of PDMAEMA brush was measured via ellipsometry 

afterwards.  

 

Layer-by-layer MI on different particle templates 

Particles of different size, shape and surface chemistry were investigated to coat MI and 

generate polymer brushes. Sphere silica nanoparticle (SiO2, 70 nm and 300 nm), micro-

sized cubic calcium carbonate (CaCO3) and graphene oxide sheets (GO) were applied in 

LBL process. Briefly, 10 mL MI solution (2 mg/mL in 0.5 M NaCl) was prepared and stirred 

vigorously. 10 mL particle suspension (0.5 mg/mL in DI water) was added to MI solution 

dropwise and slowly. The resulting suspension was left for stirring at RT for 4 h. The 

particles were then centrifuged at proper conditions (8000 rpm x 15 min for 70 nm SiO2 

and GO, 4000 rpm x 15 min for 300 nm SiO2, 2000 rpm x 5 min for CaCO3) before the 

supernatant was aspirated out. Particles were then washed with 10 mL DI water. The 

above process repeating for three times. MI coated particles (SiO2(70)-MI, SiO2(300)-MI, 

GO-MI and CaCO3-MI,) were resuspended to 10 mL DI water and added dropwise to 10 

mL PSS/FCP mixed solution described before whilst with vigorous stirring for 4 h at RT. 

The washing and centrifuging process was the same as described above. Eventually, all 

the particles were coated with two layers of MI, namely SiO2(70)-MI-FCP-MI (SiO2(70)-

2MI), SiO2(300)-2MI, GO-2MI and CaCO3-2MI respectively before polymerisation. 
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Polymer brush growth on different particles 

PDMAEMA brush. The polymerisation solution was prepared as described previously by 

dissolving DMAEMA (6.6 g, 42 mmol), bipy (320 mg, 2.05 mmol), CuBr2 (80 mmol) and 

CuCl (0.082 g, 828 µmol) in half of the total polymerisation solvent (DMF/water 4/1 (v/v), 

15 mL). 10 mL particle-2MI dispersion in DMF/water 4/1 (v/v) obtained in above were 

degassed for 30 minutes with argon bubbling while stirring. An equal volume of 

DMAEMA monomer solution was added to the suspension. Polymerisation was allowed 

to proceed under argon at RT for 60 min. To terminate the polymerisation, the particle 

dispersion was diluted using deionised water and bubbled with air until the colour 

changed from dark brown to blue (oxidisation of CuCl). The particles were recovered via 

centrifugation, washed successively with water to get rid of the catalysts and residual 

monomer and finally the particles were dispersed in 10 mL deionised water and stored 

in the fridge.  

POEGMA brushes. The procedure of POEGMA brush synthesis was similar to that used 

for PDMAEMA brushes except for the difference in monomer solution and 

polymerisation time. For OEGMA polymerisation, the monomer solution was: OEGMA 

(12.6 g, 42 mmol), bipy (320 mg, 2.05mmol), CuBr2 (80 mmol) and CuCl (0.082 g, 828 

µmol) in 15 mL solvent (DMF/water 4/1 (v/v), 15 mL). The reaction was kept in room 

temperature for 120 min before termination. 
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Polymer brush coated particle characterisation 

Size and zeta potential measurement. Zeta potential measurement was applied to track 

the change of polyelectrolyte layer on all the particles after each LBL process and 

polymerisation. Size measurement was applied to only silica nanoparticles (both 70 nm 

and 300 nm) after each LBL step and polymerisation with a Malvern zetasizer nano ZS. 

Samples were prepared by dispersing particles in DI water until obtaining a slightly 

cloudy solution and then sonicated for 10 min with shaking at regular intervals. Each 

samples were measured in triplicates at 25°C and the average result was taken as the 

final hydrodynamic diameter or zeta potential. 

Thermogravimetric (TGA) measurement. By using TGA, the dry mass of polymer 

particles was determined. Herein, the TGA was performed in air using a TA Instruments 

Q500. All samples were heated from room temperature to up to 1000 °C at a heating 

rate of 10 °C/min and dried under vacuum at room temperature prior to TGA runs.  

Fourier transform infrared - attenuated total reflectance (FTIR-ATR). FTIR was used to 

characterise the different chemical groups expected within the respective materials 

through obtaining an infrared spectrum.  ATR-FTIR spectroscopy in this study was 

carried out using a Bruker Tensor 27 with an MCT detector (liquid N2 cooled). Spectra 

were taken at a resolution of 4 cm-1 with a total of 128 scans per run. FTIR spectroscopy 

was carried out on polymer brush coated silica nanoparticles and graphene oxide. 

Scanning electron microscopy (SEM). SEM measurements were carried out using a JEOL 

2010 transmission electron microscope with a LaB6 filament, operated at 200 kV. 
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Samples were prepared by dropping the diluted brush coated silica nanoparticle 

suspension on a copper grid with porous carbon film and drying at room temperature. 

Transmission electron microscopy (TEM). TEM measurements were carried out using a 

JEOL 2010 transmission electron microscope with a LaB6 filament, operated at 200 kV. 

Samples were prepared by dropping the diluted brush coated silica nanoparticle 

suspension on a copper grid with porous carbon film and drying at room temperature. 

Fluorescent imaging. Due to the coating of fluorescent conjugated polyelectrolyte, 

particles were able to be visualised by fluorescent microscope. Herein, Zeiss LSM710 

Confocal and Elyra supperresolution microscope was applied to detect the fluorescent 

particles after polymerisation. Briefly, samples were prepared by dropping the particles 

suspension on a glass slide and drying at RT before mounting to another coverslip. 

 

Cell viability 

HaCaT Cell culture and passage. DMEM media supplied with 10 % FBS, 1 % Penicillin-

Streptomycin (P/S) and 1 % glutamine was used to culture HaCaT cells in 37oC/5 % CO2 

incubator. To harvest HaCaT cells (T75), cells were washed twice with pre-warmed PBS 

solution and then cells were detached from the flask by trypsinisation (versene/trypsin, 

4/1 v/v, 5 mL, 37°C). 15 mL of DMEM medium was then added to the flask to quench 

the trypsin. Cells were transferred to a 50 mL centrifuge tube and centrifuged at 1200 

rpm for 5 min. After discarding the supernatant solution, the pellet was resuspended in 

10 mL FAD medium and the concentration of cells was measured with a 

haematocytometer.  



119 

 

Cell viability test. Cells were seeded at a density of 35 k cells per well (in 500 µL of DMEA 

medium) in 24-well plates 24 h prior. Templates coated with PDMAEMA and POEGMA 

brush with final concentration of 10 ug/mL were added into each well for 4 h in 0.5 mL 

serum free OPTI-MEM medium and then the medium was replaced by full culture 

DMEM medium for further 24 h incubation. Cell viability was carried out by live/dead 

assay in which, cells were incubated in 500 µL DMEM medium of 4 mM calcein AM, 2 

mM ethidium homodimer and hoechst 33342(for staining cell nucleus) for 30 min at 

37 °C prior to imaging. Fluorescence imaging was used to capture the live-dead cells and 

these were counted via ImageJ to obtain the percentage of live cells of total number of 

cells.  

 

Particle-cell interaction 

Fluorescent. The protocol for culturing and passaging HaCaT-GFP cells was the same as 

for HaCaT cells. SiO2(300) and GO coated with PDMAEMA and POEGMA brush with final 

concentration of 10 ug/mL were added into each well for 4 h in 0.5 mL serum free OPTI-

MEM medium and then the medium was replaced by full culture DMEM medium for 

further 24 h incubation before imaging. 

SEM. After uptaken silica nanoparticles with different polymer brush coating, cell 

samples were characterised via SEM to check the morphology. Cells seeded on class 

coverslips were fixed after 24 h particle uptake with 2.5% glutaraldehyde in PBS for 2 h 

at room temperature. Then washed 3 times with 0.1 M PBS and dehydrated with a series 

of ethanol washings by increasing the ethanol content from 20% to 100%, each wash 
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repeated twice for 5 min. Critical Point Drying was then performed (EMS 850 Critical 

Point Dryer) to dry the cell samples and then they were coated with Gold (SC7620 Mini 

Sputter Coater, Quorum Technologies) for 60 s coating at 20 mA process current before 

SEM imaging. 

 

Transfection assay 

HaCaT-GFP cells were seeded at a density of 35 k/well on glass cover slips pre-treated 

with collagen in 24-well plates, 24 h prior to the transfection assay. A final siRNA 

concentration of 50 nM/well was used. 100 µL SiO2-PDMAEMA/GFP siRNA complexes 

were prepared at N/P=5, 10 and 15, in serum free OPTI-MEM medium. After removing 

the DMEM medium, cells were washed twice with pre-warmed serum free OPTI-MEM 

medium and another 400 µL was added. 100 µL siRNA complex was then added 

dropwise to each well and mixed by shaking gently. Cells were incubated with siRNA 

complexes for 4 h in the incubator and the medium was then replaced by 500 µL full 

culture DMEM medium for a further 24 h of incubation. Lipofectamine® 2000 complexed 

with GFP siRNA/negative control (NC) siRNA (protocol according to the manufacturer's 

instruction with a final siRNA concentration of 50 nM/well) was used as a 

positive/negative control. The transfected cells were washed with PBS three times, fixed 

in paraformaldehyde (PFA, 4 %, 10 min) and permeabilised with Triton X-100 (0.2 %, 5 

min). Cells were then stained with TRITC-phalloidin (1:1000) and DAPI (4,6-diamidino-2-

phenylindole, 1:1000) in blocking buffer (10% FBS and 0.25% gelatin from cold water 

fish skin, Sigma-Aldrich) and kept at room temperature for 1 h. Cover slips with fixed 
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cells were mounted on glass slides before imaging with a Leica DMI4000 fluorescence 

microscope.  
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CHAPTER 4 
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Coated Silica Nanoparticles for SiRNA 
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Abstract： 

Long-term and efficiency siRNA delivery is of particular interest during gene therapy to 

avoid repeated administration of siRNA therapeutics and other biological research 

which requires long-term RNA transfection. To achieve more sustained RNA delivery, 

three different types of polymer brushes: PDMAEMA brush coated silica nanoparticles 

SiO2-PDMAEMA, SiO2-PDMAI (quaternised with methyl iodide) and SiO2-PDMABr 

(quaternised with acid cleavable acetal molecule) were prepared and investigated for 

their binding affinity to oligonucleotides and long-term siRNA transfection ability. SiO2-

PDMAI exhibited the longest and highest siRNA transfection among the three vectors 

with improved cell viability. The results from co-localisation study revealed that SiO2-

PDMAI has the best siRNA retention ability.  
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4.1   Introduction 

Gene delivery relies on the encapsulation of DNA/RNA coding for a gene of interest, 

which is ideally delivered to targeted cells, providing the treatment of both inherited 

and acquired diseases.1 Short interfering RNA (siRNA)2, 3 is proposed to be at the centre 

of the next-generation therapeutics because of its merits of having unrestricted 

application to target any protein, simple manufacturing process, and low cost.4 However, 

effective therapies using siRNA for a sufficient period of time has been restricted due to 

the lack of an efficient delivery systems (but some siRNA based therapies are currently 

in late phases of clinical trials).5, 6 SiRNA typically achieves only transient silencing, which 

is limited to relatively short time frames.7 Hence, repeated administration of siRNA 

therapeutics8 is required during the process of gene therapy (especially for some chronic 

diseases9), which is relatively constraining for patients, and can lead to poor therapeutic 

efficiency. 

The interest in designing non-viral vectors for gene delivery has never waned as they are 

less hazardous in terms of antigen-specific immune responses compared to viral vectors, 

although in general transfection efficiency of non-viral vectors are lower.10, 11 

Encapsulation of naked RNA by cationic polymers12, polypeptides13, or lipids14 such as 

Lipofectamine 2000 have been a major player in commercial products although their 

present high cytotoxicity15 and short-term transfection16 is restrictive. Previously, we 

have reported using dense poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) 

brush coated silica nanoparticles prepared via ‘grafting from’ method for the 

encapsulation and delivery of siRNA.17 SiO2-PDMAEMA showed excellent siRNA uptake 

and transfection in a short period of time (24 h after transfection) and reached 
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comparable levels as Lipofectamine 2000. However, longer-term transfections are 

required, although the mechanisms enabling such longer-term delivery are not clear. 

To achieve more sustained RNA delivery, we proposed to alter the chemistry of polymer 

brushes and therefore their binding affinity to oligonucleotides. Three different types of 

polymer brushes, differing by the chemistry of their side-chains were investigated: 

polymer brush (PDMAEMA) coated silica nanoparticles SiO2-PDMAEMA, SiO2-PDMAI 

(PDMAEMA quaternised with methyl iodide) and SiO2-PDMABr (quaternised with 1-

acetoxyethyl-2-bromoacetate (acetal bromide)) were prepared in this work. As a tertiary 

amine methacrylate, SiO2-PDMAEMA has attracted much attention due to its pH-

responsive characteristics18. After quaternisation with methyl iodide, SiO2-PDMAI 

becomes permanently charged, regardless of pH (strong polyelectrolyte). This strong 

polyelectrolyte PDMAI brush was expected to provide more stable siRNA encapsulation, 

which should affect the long-term release of siRNA and resulting transfection efficiency. 

On the other hand, changes in pH in different cellular compartments, such as lysosomes 

(pH 4.5–5), endosomes (pH 5.5–6), and the cytosol (pH 7.4), can be exploited to speed 

up the release of oligonucleotides.19-22 Indeed, acid-sensitive acetal functions makes 

then optimal agents for the targeting of endosomes/lysosomes as site of pH-induced 

cleavage. PDMABr brush will be cleaved under acidic environment (e.g. in the 

endosome/lysosome) and become zwitterionic, which would be expected to promote 

the release of siRNA molecules.  

Hence, the development of the proposed three vectors, with different chemistry and pH 

responsiveness, will help understand the kinetics of RNA dissociation and the 

mechanism via which cationic polymer brush coated particles promote effective siRNA 
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molecule delivery. We observed a strong siRNA binding on PDMAEMA and PDMAI 

brushes that wasn’t affected by changes in pH, whilst siRNA molecules bound slightly 

less with PDMABr and displayed a strong pH-induced release. SiRNA silencing kinetics of 

the three delivery vectors in HaCaT-GFP cells were evaluated over different transfection 

periods. Finally, fluorescent labelled vectors and siRNA were used to track the cellular 

uptake and release of siRNA in vitro. 

 

4.2   Preparation of methyl iodide and acetal functionalised 

PDMAEMA on silicon substrates. 

Acetals and ketals have attracted significant attention as pH responsive materials since a 

few decades ago, because they yield charge-neutral and potentially non-toxic by products 

upon cleavage.23 They have been widely used as building blocks for polymers24, 25, 

nanoparticles26, and antibody-drug conjugates27, as well as in protein purification28 and 

solid phase synthesis29. More recently, they have been pursued in a variety of areas 

including controlled release applications and nucleic acid delivery.30  

 

 

Figure 4.1. Synthesis route of 1-acetoxyethyl-2-bromoacetate (acetal bromide). 

 

In this project, to prepare acid-cleavable brush coated silica particles, acetal bromide 

was synthesised via the reaction route described in Figure 4.1. After reaction, the 
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product was purified through a chromatography and characterised by H1-NMR, with 

identified peaks shown in Figure 4.2.  

 

 

Figure 4.2. H1-NMR spectrum of acetal bromide in CDCl3. 

 

To determine the successful reaction of acetal bromide with PDMAEMA, free PDMAEMA 

polymer was firstly synthesised and then reacted with acetal bromide.  acetal bromide 

functionalised PDMAEMA was then characterised with H1-NMR.  

 

 

Figure 4.3. H1-NMR spectrum of acetal bromide functionalised free PDMAEMA (PDMABr) 

in D2O. 
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The characteristic peaks of 1, 2, 3 and 4 from acetal bromide shown in the spectrum in 

Figure 4.3 suggested the successful functionalisation. 77 % of tertiary amine on 

PDMAEMA were functionalised with acetal bromide, calculated from the integration 

ratio of peak 2 and 5 in Figure 4.3. 

 

Figure 4.4. Synthesis route and chemical structure of methyl iodide functionalised 

PDMAEMA (PDMAI) and acetal bromide functionalised (PDMABr). 

 

Methyl iodide and the obtained acetal bromide were then used to quaternise tertiary 

amine of PDMAEMA brush coated silicon wafers, as illustrated in Figure 4.4. 30 nm 

PDMAEMA brush coated silicon substrates were prepared according to previous report. 

After quaternisation, 12 nm and 10 nm dry thickness increase were detected from 

methyl iodide and acetal bromide functionalised PDMAEMA brush respectively via 

ellipsometry, indicating the successful quaternisation.  
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4.3   Characterisation of methyl iodide and acetal functionalised 

PDMAEMA on silicon substrates. 

The chemical composition of PDMAEMA, PDMAI and PDMABr brushes coated silicon 

substrates was further characterised by X-ray photoelectron spectroscopy (XPS, see 

Figure 4.5). 

 

 

Figure 4.5. XPS wide scan spectrum (A) and high-resolution spectrum (B and C) for 

composite measurement of silicon-PDMAEMA, Silicon-PDMAI and Silicon-PDMABr. 

 

 The brush thicknesses used (above 30 nm) are greater than the sampling depth of XPS, 

which is typically up to ∼10 nm for Al Kα radiation, depending upon the specific core 

level photoelectrons.31 Thus the majority of detected photoelectrons are originated 

from the brush layer rather than the initiator layer. The appearance of N 1s, C 1s and O 

1s signals in the wide scan spectrum (Figure 4.5A) was attributable to atoms in 
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PDMAEMA brushes. The iodide/bromide peaks in the survey spectra were associated 

with the counterions of quaternary ammonium salts generated after quaternisation.  

High-resolution XPS of the C 1s photoemission envelope for PDMAEMA brush shown in 

Figure 4.5B were fit to the three unique carbon moieties of PDMAEMA: C-C (284.5 eV), 

C-N (285.9 eV) and O-C=O (288.5 eV). After quaternisation, the percentage of C-N was 

increased. The most notable changes in the XPS results were observed in the high 

resolution N 1s spectra in Figure 4.5C. Around 10 % of the N 1s peak corresponded to C-

N+ on the unquaternised surfaces, likely due to some degree of amine protonation, this 

increased to around 90% following quaternisation with methyl iodide/acetal bromide. 

Unquaternised nitrogen was observed for both PDMAI and PDMABr brush indicated that 

the reaction did not reach 100% completion. This can likely be attributed to the reduced 

accessibility of some amines within the brush and is in agreement with the H1-NMR 

results obtained on free PDMAEMA polymers (see Figure 4.3). 

 

 

Figure 4.6. PH responsiveness: dry thickness changes of PDMABr brush on silicon wafer 

at pH 5 and 7.4 PBS after 4 h incubation. 
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Addition of acidic aqueous solutions to acetals will transform them back into ketones (or 

aldehydes). Hence, the dry brush thickness of PDMABr before and after hydrolysis in pH 

5 PBS was measured. PDMABr brush incubated in neutral pH was used as control. A 

decrease of brush thickness around 12 nm back to unfunctionalised PDMAEMA brush 

(30 nm) was detected after hydrolysis in acidic solutions (Figure 4.6), which suggested 

the full cleavage of acetal on PDMABr brush after 4 h incubation. While, the thickness 

of PDMABr brush incubated in pH 7.4 PBS remains unchanged. 

The behaviour of polyelectrolyte brushes is governed by several factors, including 

excluded volume, electrostatic interactions (mainly repulsion between charged 

monomer units) and osmotic pressure imparted by the absorption of solvent and 

counterions.32-36 For weak polybases, such as PDMAEMA brush, at pH values below pKa, 

PDMAEMA brushes become charged due to protonation of tertiary amine.37 The 

charging process causes the brush to swell due to the increase coulombic repulsion 

between chains and the associated osmotic pressure rise that occurs as a result of 

ingress of solvent and counterions into the brush. Whilst at high pH, above the repeat 

unit pKa, the brush is deprotonated and becomes neutral.37 The reverse neutralisation 

of the charged groups causes the brush to collapse as expulsion of both the water and 

counterions from inter- and intra-chains.35  

To characterise the brush responsiveness under different salt and pH conditions, in situ 

ellipsometry was used. All brushes were equilibrated in solution to allow the polymer 

brush chains to fully disentangle. In this study, the brushes were exposed to DI water, 

150 Mm NaCl, pH 7.4 PBS, pH 5 PBS and pH 9 PBS until an equilibrium brush thickness 
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was observed. In DI water, PDMAEMA brushes were partially protonated and undergo 

a slight swelling with a ratio of 1.5, as shown in Figure 4.7. 

 

 

Figure 4.7. Wet ellipsometry measurements of PDMAI and PDMABr brushes in different 

buffers and at different pH. 

 

The brushes incubated in 150 mM NaCl and pH 7.4 PBS presented a higher degree of 

swelling than in DI water. At low ionic strength, the brush behaves more like an “osmotic 

brush” due to the weak dissociation of the charged group on PDMAEMA brush. Here 

hydroxide ions are associated with the brush to preserve electroneutrality and increase 

the pH of the environment within the brush, resulting in the low level of charge of the 

brush. When increasing the ionic strength, the tertiary amine moieties on the 

PDMAEMA brush becomes more protonated and the electrostatic repulsion between 

the brush chains increases.  

At pH 5, well below the pKa of the free polymer, the brush chains are highly protonated 

and undergo significant swelling with a ratio near 3. In contrast, when the pH was 



134 

 

adjusted above the pKa, the brush became hydrophobic, with decreased brush swelling, 

though still observed to display a degree of water association within the structure. After 

quaternisation, PDMAI and PDMABr become permanently charged, regardless of the pH 

and ionic strength. No significant thickness change was observed with PDMAI brush 

when incubated in different salt solutions and at different pH, which indicated that most 

of the tertiary amine of PDMAEMA brush were quaternised by methyl iodide. Moreover, 

the permanent charge groups can increase the brush chain repulsion to help the swelling 

of PDMAI brush. For PDMABr brushes, a slight increase of swelling and collapse 

observed in pH 5 and 9, which could result from unfunctionalised tertiary amine groups, 

implying incomplete quaternisation with acetal bromide.  

 

4.4   SiRNA binding on quaternised PDMAEMA brushes  

Previously, we have reported the effect of the PDMAEMA brush density on the binding 

and infiltration of oligonucleotides, and observed highly stable siRNA binding on dense 

PDMAEMA brushes, compared to sparse brushes.17 Herein, the binding and release of 

siRNA by dense PDMAEMA (30 nm), PDMAI and PDMABr brushes was investigated and 

monitored via surface plasmon resonance (SPR). Fast adsorption of siRNA was observed 

on all brushes as shown in Figure 4.8, though 1/3 reduced adsorption of siRNA was 

achieved on PDMABr brushes compared to PDMAEMA and PDMAI brushes (which 

reached similar levels of adsorption). This could be due to the increased steric hindrance 

between polymer chains associated wtih PDMABr after quaternisation, resulting in the 

reduced infiltration of oligonucleotides. After injection, all surfaces were equilibrated in 

PBS for 300 s and the absorption of siRNA was measured. Subsequently, an acidic 
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solution of pH 5 PBS was introduced to monitor the siRNA release on different pH 

responsive brushes. Upon continuous washing with pH 5 PBS, stable retention was 

observed on PDMAEMA and PDMAI brushes with negligible loss of siRNA. An expected 

siRNA release and binding fluctuation correlated with the cleavage of acetal on PDMABr 

brushes. The siRNA binding level dropped to less than half compared with initial binding 

levels. Consequently, high binding and stable retention of siRNA may be beneficial for 

long-term siRNA delivery, whilst the unique properties of PDMABr brushes could 

promote siRNA release through hydrolytic cleavage. 

 

 

Figure 4.8. SiRNA binding on PDMAEMA, PDMAI and PDMABr brushes and 

responsiveness to acidic environment (pH 5 PBS was applied after finishing siRNA 

injection and equilibration showing dash lines in the figure). 
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4.5   Preparation and characterisation quaternised PDMAEMA 

brush on silica nanoparticles  

The synthesis of PDMAEMA brush-coated 300 nm silica nanoparticles and the control of 

the brush growth at targeted thicknesses were reported previously.18 Subsequently, 

SiO2-PDMAEMA particles were quaternised with methyl iodide and acetal bromide for 

preparing SiO2-PDMAI and SiO2-PDMABr. The size distribution of these brush coated 

particles was characterised in pH 7.4 PBS with dynamic light scattering (DLS). The 

obtained SiO2-PDMAEMA particles were well-dispersed in PBS with a size of 460  11 

nm (Figure 4.9) and zeta potential of 14.2  3.1 mV. After quaternisation, the steric 

hindrance between polymer chains was enhanced due to the increased molecular 

weight and this effect was more pronounced with SiO2-PDMABr, possibly due to the 

increased size of the acetal groups. The size increase of SiO2-PDMAI (530  23 nm) and 

SiO2-PDMABr (651  17 nm) are reported in Figure 4.9.  

 

Figure 4.9. DLS measurement of SiO2-PDMAEMA, SiO2-PDMAI and SiO2- PDMABr in PBS 

at 0.1 mg/mL, 25 °C, measurements were carried out in triplicate.  
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The associated changes in surface chemistry were confirmed by fourier transform 

infrared spectroscopy (FTIR, Figure 4.10), with the appearance of a band at 1730 cm-1, 

characteristic of C=O vibrations in all spectrum. Extra peaks of SiO2-PDMAI and SiO2-

PDMABr (at about 1650 cm-1) were attributed to –N+(CH3)3 groups, which provides some 

evidence of the quaternisation reaction.  

 

 

Figure 4.10. FTIR characterisation of SiO2-PDMAEMA, SiO2-PDMAI and SiO2- PDMABr.  

 

The amount of polymer brush on the surface of SiO2 was determined by 

thermogravimetric analysis (TGA) in Figure 4.11, with 38 %, 48 % and 57 % weight loss 

associated with the polymer coating for SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr.  
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Figure 4.11. TGA characterisation of SiO2-PDMAEMA, SiO2-PDMAI and SiO2- PDMABr at 

a heating degree of 10 °C/min from room temperature to 1000 °C, weight loss was 

determined at 900 °C. 

According to our previous results17, the weight loss from bare silica particles and initiator 

layer  on silica particles was around 10 %, hence the weight loss specifically attributed 

to PDMAEMA brushes can be calculated (28 %), which equal to 33 nm PDMAEMA brush 

according to Equation 2.3 in chapter 2. The increased weight loss of SiO2-PDMAI and 

SiO2-PDMABr was due to the quaternisation reaction.  

To demonstrate the lability of acetal groups of SiO2-PDMABr in acidic conditions, particle 

sizes and zeta potentials were measured after incubation in PBS solutions with pH 5 and 

7.4 at different time points (see Figure 4.12). No significant size and zeta potential 

change was observed for particles incubated in pH 7.4 PBS. Whilst for those in pH 5 PBS, 

the zeta potential decreased for longer incubation and reversed to slightly negative after 

6 h, which indicated the cleavage of acetal groups on SiO2-PDMABr. In addition, the 

increase in the size of particles was attributed to the formation of aggregates, as 

electrostatic repulsion between particles was reduced after acetal cleavage. 
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Figure 4.12. Size and zeta potential change of SiO2-PDMABr incubated in pH 5 and pH 

7.4 PBS for different time points. 

4.6   Transfection kinetics study 

A keratinocytes cell line expressing actin-GFP was selected for the simple quantification 

of siRNA efficiency17, using GFP siRNA (allowing simultaneous imaging of endogenous 

and GFP-tagged actin after phalloidin staining for quantification) as described in our 

previous report17. Knock down levels of SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr 

complexes were determined for different N/P ratios (10 and 20) and compared with the 

commercialized transfection agent lipofectamine 2000. The fluorescence intensity ratio 

of GFP (green)/ phalloidin (red) was measured and compared with the ratio of non-

transfected cells to determine the knock down efficiency.  

 



140 

 

 

Figure 4.13. HaCaT-GFP cell transfection efficiency kinetics study with SiO2-PDMAEMA, 

SiO2-PDMAI and SiO2-PDMABr compared with lipofectamine 2000 (Lipo) at NP ratio of 

10 and 20, following by transfection from one day to four days; Data analysis was based 

on three independent experiments, knock down efficiency was determined by the 

decreased ratio of green to red fluorescence intensity compared with blank cell group. 

Cells were further cultured for one, two, three and four days to determine the 

transfection kinetics. After culturing cells for one day, highest knock down efficiencies 

(above 60 %) were measured with SiO2-PDMAEMA vectors, comparable with those 

measured with lipofectamine (Figure 4.13), whilst there was no significant difference in 

transfection levels at different N/P. This result is in good agreement with our previous 

report17.  

 

Table 4.1. Significant difference analysis for transfection kinetics with SiO2-PDMAEMA, 

SiO2-PDMAI and SiO2-PDMABr compared with lipofectamine, highlighted values 

represents where there’s a significant difference (p<0.5). 
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Quaternised vectors were shown a relatively low transfection levels (below 50 %) at 

both N/P after 1 day of incubation. It is possibly due to the low siRNA encapsulation 

ability of SiO2-PDMABr presented according to SPR result and the slower release of 

siRNA from SiO2-PDMAI vector as its permanent charge allows to further condense and 

stabilise siRNA. However, a significant increase of transfection level occurred with SiO2-

PDMAI vector for the following days, in particular at day 2, 78 % knock down efficiency 

was achieved with SiO2-PDMAI at N/P=20. Conversely, no significant changes in knock 

down were observed with SiO2-PDMABr for the remaining of the experiment, except for 

a slightly increase for those at N/P=20 although the overall efficiency was still below 

50 %. Interestingly, in the case of SiO2-PDMAI, higher N/P resulted in higher transfection 

levels whilst the situation conversed for SiO2-PDMAEMA. The possible cytotoxicity of 

SiO2-PDMAEMA at high N/P (will be discussed later) may explain the lower transfection 

level achieved. Furthermore, for lipofectamine, similar and comparable knock down 

level was observed for the first three days, however, at day 4, the transfection efficiency 

reduced significantly lower (around 52 %) than SiO2-PDMAEMA and SiO2-PDMAI, 

although it is still higher than SiO2-PDMABr.  
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Figure 4.14. Representative images for HaCaT-GFP cell transfection kinetics study with 

SiO2-PDMAI and SiO2-PDMABr compared with lipofectamine and SiO2-PDMAEMA at NP 

ratio of 10 and 20 stated at the end of the vector name for different transfection days 

from one day to four days; Red: phalloidin staining of cytoskeleton, green: GFP-tagged 

actin. 

 

It implies the polylipid based siRNA delivery materials may not be suitable for its long-

term and sustainable transfection, while SiO2-PDMAEMA and SiO2-PDMAI can efficiently 

condense, encapsulation and release siRNA in a continuous manner and are ideal for the 

sustained delivery of siRNA molecules. Representative images for each condition and 

detailed significance comparison and representative images are shown in Figure 4.14 

and Table 5.1 respectively. 
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4.6   Cell viability test 

The inherent toxicity of non-viral cationic vectors remains an important issue to address 

in the field of gene delivery. In our previous report17, a block copolymer brush consisting 

of an out block of POEGMA brush was introduced to reduce the binding of serum and 

increase cell viability. Herein, HaCaT cell viability was tested by incubation the cells with 

SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr siRNA complex for N/P ratio 10, 20 and 

time points (from 1 day to 4 days) compared with lipofectamine. Live/dead assay was 

used to quantify the percentage of live cells (shown in green) out of total cells. High cell 

toxicity was observed with Lipofectamine on day 1 that almost 40 % cells died, however, 

the cell viability increased to above 80 % for the following days as shown in Figure 4.15. 

It could imply that cell membrane damage occurred on the first day when most of the 

Lipo/siRNA complexes interact and were internalised within the cells, and that cells 

subsequently recovered and proliferated at later time points. 
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Figure 4.15. HaCaT cell viability test via live/dead assay with SiO2-PDMAEMA, SiO2-

PDMAI and SiO2-PDMABr siRNA complexes compared with lipofectamine/siRNA at NP 

ratio of 10 and 20 for different transfection days from one day to four days; Data analysis 

was based on three independent experiments, all cell viabilities were compared with 

the blank cell group that used in the experiments; Cell viability was determined by 

calculating the live cells out of total cell number. 

 

For SiO2-PDMAEMA/siRNA complex, most of cell viability during four days culturing was 

below 80 % except for SiO2-PDMAEMA on day 4 at N/P=10 and higher cytotoxicity was 

observed at N/P=20 compared with N/P=10. Surprisingly, quaternised particle/siRNA 

complex displayed no obvious cytotoxicity for both N/P ratio and for all days after 

transfection. Representative images were shown in Figure 4.16. Thus, we propose that 

the high positive charge alone is not responsible for cell toxicity in this case. Even though 

a few reports38, 39 gave evidence that introducing quaternary ammonium groups could 

increase cytotoxicity, our results are in agreement with other reports40, 41 that indicated 

increased cell viability upon quaternisation. For liposome-based systems, a positive 
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correlation of transfection efficicencies and the degree of toxicity in glioma cell lines was 

observed by Bell et al42. leading to the proposal that some degree of cell membrane 

damage is required for optimal transfection, bearing a fine margin between optimised 

transfection and cytotoxicity.43 

 

 

Figure 4.16. Representative images for HaCaT cell viability test via live/dead assay with 

SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr siRNA complexes compared with 

lipofectamine/siRNA at NP ratio of 10 and 20 stated at the end of the vector name for 

different days from one day to four days; Red: dead cells, green: live cells. 

 

However, SiO2-PDMAI complexes successfully transfected cells to a higher degree 

without causing obvious cell toxicity. It might be due to a different biophysical 

mechanism regarding the entry of the complexes into the cytosol, or the higher 
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hydrophobicity associated with unquaternised SiO2-PDMA vectors in physiological 

environments that will cause much stronger cell membrane disruption compared with 

quaternised vectors. 

 

4.7   Cellular uptake and tracking of RNA release with labelled 

particles and siRNA molecules 

To understand and visualise particle cellular uptake and siRNA retention and release 

process in vitro, labelled vectors (with fluorescent conjugated polymers, as described in 

chapter 3) and siRNA were used.  

 

 

Figure 4.16. SiRNA and particle uptake (average area)/cell analysed with image J for 

labelled particles and siRNA (A); SiRNA release (free siRNA in cytoplasm) and retention 

(siRNA still within particles) efficiency analysis for three vectors based on calculation in 

table 4.2. 
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Firstly, stable blue fluorescent particles were prepared according to previous reports 

shown in chapter 4, in which macroinitiators and fluorescent polyelectrolytes were 

coated with silica nanoparticle via a layer-by-layer approach before polymerisation via 

ATRP. The obtained SiO2-PDMAEMA particles were then quaternised to afford the 

corresponding SiO2-PDMAI and SiO2-PDMABr particles. Vector/siRNA complexes were 

formed as before, according to the protocol used in transfection studies. These 

complexes were then incubated on HaCaT cells with serum free medium for 4 h and 

followed by a further culturing of 48 h. Cells were subsequently fixed and stained with 

lysotracker Deep Red dye. Images were analysed and quantified with image J. As shown 

in Figure 4.16A (detailed calculation on representative examples were shown in Table 

4.2), siRNA and particle uptake was determined by measuring the related fluorescent 

area per cell, both quaternised particles shows a slightly increase of uptake compared 

with SiO2-PDMAEMA, which could probably due to the permanent positive charge on 

quaternised particles that facilitates particle cellular internalisation. In terms of siRNA 

uptake, similar levels was observed with SiO2-PDMAEM and SiO2-PDMAI, whereas the 

uptake level drops about 30 % on SiO2-PDMABr, which correlates with SPR and 

transfection data, although not as pronounced. The ability encapsulation and retention 

of siRNA allows to release siRNA to cytoplasm in a sustained manner, and establish a 

long-term transfection effect. Endosomal escape is a major barrier for efficient siRNA 

delivery via non-viral delivery systems as endosomal/lysosomal content are acidified (pH 

~5) and contain various nucleases that promote the degradation of the siRNA. Thus, the 

siRNA release and retention efficiencies were quantified (detailed calculation on 

representative examples were shown in Table 4.2).  
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Table 4.2 Calculation of particle/siRNA uptake and siRNA retention/release efficiency 

(where shows *) based on representative examples; a to g was the measured area with 

image J co-localisation protocol, i to o was calculated based on values of a to g, detailed 

calculation was illustrated in the first column. 

 

 

As shown in Figure 4.16 B, more than 70 % siRNA was still within SiO2-PDMAEMA and 

SiO2-PDMAI, whilst less than 40 % of siRNA was in SiO2-PDMABr, which was reflected on 

the hand by the siRNA release efficiencies that faster release was observed on SiO2-

PDMABr due to its acidic cleavable property within endosome/lysosome to promote the 

disassociation of siRNA from polymer brushes. However, the less siRNA retention and 

faster release could also bring issues in siRNA transfection that the released siRNA may 

not be efficiently used and will undergo degradation over time. In contrast, the better 

retention ability and gradual release of siRNA work synergistically to provide SiO2-

PDMAI with a prolonged siRNA knock down ability, which was particularly favoured in 

clinical trials and biological research where long-term and efficient siRNA delivery is 
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required. Representative images of labelled particle, siRNA and lysosome/endosome co-

localisation was shown in Figure 4.17. 

 

 

Figure 4.17. Representative images of labelled particle, siRNA and lysosome/endosome 

co-localisation HaCaT cells; Blue (third column): fluorescent labelled SiO2-

PDMAEMA/SiO2-PDMAI/SiO2-PDMABr via LBL of macroinitator and fluorescent 

conjugated polyelectrolytes to generate polymer brush via ATRP, green (fourth column): 

labelled non-targeting siRNA, red (second column): lysosome and endosome stained 

with lysotracker, merged images were shown in the first column. 

 

Conclusion 

Herein, we have reported three different polymer brushes coated silica nanoparticles 

(SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr) synthesised via ATRP as siRNA delivery 

vectors. The latter two were derived from SiO2-PDMAEMA by quaternisation tertiary 
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amine of methyl iodide and acetal bromide respectively. We studied the preparation 

and characterisation of these particles with different coating chemistries, confirmed 

their chemical composition, pH responsiveness and charge shifting ability via different 

techniques. PDMAEMA and PDMAI brushes showed higher siRNA encapsulation and 

stabilisation ability than PDMABr brush, in which overall siRNA binding is decreased and 

that is displaying extensive siRNA release upon cleavage of acetal groups in acidic 

solutions. Additionally, in cell transfection kinetics studies, SiO2-PDMAI exhibited a long-

term and efficient siRNA delivery compared to SiO2-PDMBr. We hypothesise that this is 

due to the more hindered structure of PDMABr brush after quaternisation with 

relatively larger side chains that reduce its ability to stabilise oligonucleotides, compared 

to permanently charged SiO2-PDMAI vectors.  Furthermore, SiO2-PDMAI and SiO2-

PDMABr displayed improved cell viability than unquaternised SiO2-PDMAEMA, although 

the mechanism behind this effect remains unclear. Finally, fluorescently labelled vectors 

and siRNA were used to visualise siRNA complex uptake and siRNA release in HaCaT cells. 

Co-localisation study reveals that SiO2-PDMAI exhibited the best siRNA retention ability 

and the lowest siRNA release efficiency compared with the rest two vectors which 

facilitates the long-term and efficient siRNA delivery. Therefore, the novel cationic 

polymer brush coated nano-vectors could be a useful platform to develop new 

generations of siRNA delivery agent for sustained RNA delivery. 
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Experimental section 

Mateirals: 

2-(Dimethylamino)ethyl methacrylate (DMA, Mn = 157.21), copper chloride (Cu(I)Cl), 

copper bromide (Cu(II)Br2), 2,2’-bipyridyl (bipy), anhydrous toluene, triethylamine 

(Et3N), methyl iodide, Ethyl α-bromoisobutyrate initiator, bromoacetic acid and vinyl 

acetate were purchased from Sigma-Aldrich and used as received. All chemicals and 

solvents were analytical grades unless otherwise stated. Cu(I)Cl was kept under vacuum 

until used. Silicon wafers (100 mm diameter, <100> orientation, polished on one 

side/reverse etched) were purchased from Compart Technology Ltd and cleaned in a 

Plasma System Zepto from Diener Electronic, for 10 min in air. Silica particles 

(unfunctionalised) were purchased from Bangs Laboratories (supplied as powder, mean 

diameters of 300 nm). The silane initiator, (3-trimethoxysilyl)propyl 2-bromo-2-

methylpropionate was purchased from Gelest. Surface plasmon resonance (SPR) chips 

(10 x 12 x 0.3 mm) were purchased from Ssens. Triton X-100, gelatin, phallodin–

tetramethylrhodamine B isothiocyanate, PFA (paraformaldehyde), DAPI (4,6-diamidino-

2-phenylindole), phosphate buffered saline (PBS, 150 mM) and 6-FAM fluorescent 

labelled siRNA (MISSION® siRNA Fluorescent Universal Negative Control, 6-FAM) were 

purchased from Sigma Aldrich. Dulbecco's Modified Eagle Medium (DMEM) medium, 

OPTI-MEM™ medium, Fetal Bovine Serum (FBS), trypsin, versene, penicillin-

streptomycin, L-glutamine, hoechst 33342, live/dead assay kit and LysoTracker® Red 

DND-99 were from Thermo-Fisher. Collagen type I was from BD Bio-science. GFP siRNA 

(target sequence CGG CAA GCT GAC CCT GAA GTT CAT) was purchased from Qiagen®.  
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Synthesis of 1-acetoxyethyl-2-bromoacetate (acetal bromide) 

1-acetoxyethyl-2-bromoacetate (Mw: 224) was synthesised by an addition reaction 

according to previous report. Briefly, 4.168 g (30 mmol, 1.5 eq) bromoacetic acid was 

mixed with 1.721 g (20 mmol, 1 eq) vinyl acetate in a 100 mL round-bottomed flask. The 

reaction was heated to 95 °C and left for 19 h until all vinyl acetate was consumed. After 

19 h, the mixture was allowed to cool down and purified with column chromatography 

(petroleum ether/ethyl acetate=6). The desired product was yield at 40% as a yellowish 

liquid. 

 

Synthesis of free PDMAEMA polymer 

Free PDMAEMA polymer was synthesis by ATRP controlled radical polymerisation 

according to previous report. Briefly, in a 100mL round bottom flask, the monomer (15 

g DMAEMA, 95.5 mmol, 500 eq), the Ethyl α-bromoisobutyrate initiator (EBiB, 0.073 g, 

0.374 mmol, 2 eq) and 2,2′-bipyridyl ligand (bipy, 0.0297 g, 0.190 mmol, 1.01 eq) were 

mixed in ethanol and water mixture (10 mL, v:v=1:4). Nitrogen gas was bubbled through 

the mixture at room temperature for 30 min to remove oxygen, then copper(I) chloride 

(0.0186 g, 0.188 mmol, 1 eq) was added to the mixture. The reaction was heated to 50 °C. 

A small flow of nitrogen gas was maintained during the polymerisation. After 5 h the 

polymerisation was cooled and exposed to the atmosphere. The solution was dialyzed 

against water (2L) using a Spectra/Por regenerated cellulose membrane with a 

molecular weight cut off of 1000 Da . The resulting aqueous solution was then 

lyophilised to yield the final polymer as off white solid. 
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Quaternisation of free PDMAEMA with acetal bromide 

A mixture of PDMAEMA polymer (500 g, 3.2 mmol, 1 eq) and 1-acetoxyethyl-2-

bromoacetate (1.075 g, 4.8 mmol, 1.5 eq) was dissolved in 5 mL DMF and added to 25 

mL round bottom flask. The reaction heated to 70 °C and left stirring at room 

temperature overnight. Subsequently, the polymer was purified by precipitating in 

precooled ethanol twice and the obtained powder under vacuum. 

 

Quaternisation of PDMAEMA brush with acetal bromide and methyl 

iodide 

30 nm PDMAEMA brushes on silicon wafer was preparation according to previous report. 

Subsequently, the wafers coated with PDMAEMA brushes were immersed in 100 mM 

ABr or methyl iodide DMF solution for 12 h. The quaternised PDMAEMA brushes, 

namely PDMAI for methyl iodide quaternisation, PDMABr for acetal bromide one were 

washed with copious of ethanol and dried with nitrogen stream before ellipsometry 

characterisation. 

 

Characterisation of quaternised PDMAEMA brush 

PH responsiveness of PDMABr. PDMABr brush coated silicon wafers were incubated in 

PBS buffers with pH 7.4 and pH 5 respectively for 4 h at room temperature. Dry brush 

thickness was measured with ellipsometry before and after incubation with buffers. 
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Wet ellipsometry measurement for brush swelling in different pH. Silicon wafers with 

silane initiators were cut into 1 cm x 3 cm before polymerisation. 3 pieces of PDMAEMA 

brushes were prepared with close brush thickness, of which one was quaternised with 

acetal bromide (PDMABr) and one with methyl iodide (PDMAI). All brushes coated 

silicon wafers were assembled with liquid chamber before characterisation. Continues 

argon flow was applied to dry the brushes through the chamber for 10 mins and dry 

brush thicknesses in the chamber were measured right after drying. Then, 4 mL 

deionised water was injected in the chamber and equilibrate for 5 mins before 

measuring brush swelling thickness. Similarly, brush swelling thickness was measured in 

150 Mm NaCl, pH 7.4 PBS, pH 5 150 Mm NaCl and pH 9 150 Mm NaCl subsequently. 

 

SiRNA binding on quaternised PDMAEMA brush 

PDMAEMA brush coated SPR chips were prepared according to previous report. PDMAI 

and PDMABr coated SPR chips were prepared with same method describe above. 

Surface plasmon resonance (SPR) was used to evaluate the interaction between siRNA 

(22 bp) and polymer brushes with a Biacore 3000. SPR chips were coated with polymer 

brushes prior to mounting on a substrate holder. Mounted chips were docked, primed 

with PBS and equilibrated with PBS at 10 μL/min flow rate until a stable baseline was 

obtained. 50 μL siRNA solutions were injected at 10 μg/mL. Once the injection was 

finished, washing with PBS was continued at 10 μL/min flow rate. The adsorption level 

was measured after stabilised. All measurements were carried out in triplicates (three 

separate chips freshly prepared). 
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Preparation of quaternised PDMAEMA coated silica nanoparticles 

PDMAEMA brush coated silica nanoparticles (SiO2-PDMAEMA) were prepared according 

to previous report. Then, PDMAEMA brush was quaternised by incubating SiO2-PDMA 

(200 mg) in 10 mL DMF with 100 mM acetal bromide and methyl iodide. The obtained 

particles were named as SiO2-PDMAI and SiO2-PDMABr. 

 

Characterisation of quaternised PDMAEMA coated silica nanoparticles 

DLS, FTIR and TGA were applied to characterise the size, chemical structure and polymer 

brush composite. Detailed methods were reported previously. 

PH responsiveness of SiO2-PDMABr. SiO2-PDMABr was incubated in PBS buffers with 

pH 7.4 and pH 5 respectively for 30, 60, 120 and 240 min at room temperature. Then 

particles were washed, redispersed again in pH 7.4 PBS and characterised with DLS for 

size and zeta potential. 

 

Transfection kinetics study 

HaCaT-GFP cells were seeded at different densities (25 k/well, 12.5 k/well, 6.25 k/well 

and 3.125 k/well) on glass cover slips pre-treated with collagen in 24-well plates, 24 h 

prior to the transfection assay. A final siRNA concentration of 50 nM/well was used. 100 

µL SiO2-PDMAEMA/GFP siRNA, SiO2-PDMAI/GFP siRNA and SiO2-PDMABr/GFP siRNA 

were prepared at N/P=10 and 20, in serum free OPTI-MEM medium. After removing the 

DMEM medium, cells were washed twice with pre-warmed serum free OPTI-MEM 
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medium and another 400 µL was added. 100 µL siRNA complex was then added 

dropwise to each well and mixed by shaking gently. Cells were incubated with siRNA 

complexes for 4 h in the incubator and the medium was then replaced by 500 µL full 

culture DMEM medium for a further culturing of 1 day (25 k), 2 days (12.5 k), 3 days 

(6.25 k) and 4 days (3.125 k). Lipofectamine® 2000 complexed with GFP siRNA/negative 

control (NC) siRNA (protocol according to the manufacturer's instruction with a final 

siRNA concentration of 50 nM/well) was used as a positive/negative control. The 

transfected cells were washed with PBS three times, fixed in paraformaldehyde (PFA, 

4 %, 10 min) and permeabilised with Triton X-100 (0.2 %, 5 min). Cells were then stained 

with TRITC-phalloidin (1:1000) and DAPI (4,6-diamidino-2-phenylindole, 1:1000) in 

blocking buffer (10% FBS and 0.25% gelatin from cold water fish skin, Sigma-Aldrich) and 

kept at room temperature for 1 h. Cover slips with fixed cells were mounted on glass 

slides before imaging with a Leica DMI4000 fluorescence microscope. Transfection 

efficiency was quantified by Image J. 

 

Cell viability study 

HaCaT cells were seeded at different densities (25 k/well, 12.5 k/well, 6.25 k/well and 

3.125 k/well) (in 500 µL of DMEA medium) in 24-well plates 24 h prior. A final siRNA 

concentration of 50 nM/well was used. 100 µL SiO2-PDMAEMA/GFP siRNA, SiO2-

PDMAI/GFP siRNA and SiO2-PDMABr/GFP siRNA were prepared at N/P=10 and 20 were 

added into each well for 4 h in 0.5 mL serum free OPTI-MEM medium and then the 

medium was replaced by full culture DMEM medium for further culturing of 1 day (25 

k), 2 days (12.5 k), 3 days (6.25 k) and 4 days (3.125 k). Cell viability was carried out by 
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live/dead assay in which, cells were incubated in 500 µL DMEM medium of 4 mM calcein 

AM, 2 mM ethidium homodimer and hoechst 33342 (for staining cell nucleus) for 30 min 

at 37 °C prior to imaging. Fluorescence imaging was used to capture the live-dead cells 

and these were counted via ImageJ to obtain the percentage of live cells of total number 

of cells.  

 

Labelled particle and siRNA co-localisation study in HaCaT cells 

HaCaT cells were seeded at a density of 12.5 k/well on glass cover slips pre-treated with 

collagen in 24-well plates, 24 h prior. SiO2-PDMAEMA generated from macroinitiator 

and with fluorescent labelling was prepared according to previous report. SiO2-

PDMAEMA was then quaternised with the same protocol described. 6-FAM fluorescent 

labelled siRNA (sigma Aldrich, MISSION® siRNA Fluorescent Universal Negative Control, 

6-FAM) was used to track siRNA binding and release mechanism. Briefly, a final siRNA 

concentration of 50 nM/well was used. 100 µL SiO2-PDMAEMA/6-FAM siRNA, SiO2-

PDMAI/6-FAM siRNA and SiO2-PDMABr/6-FAM siRNA was prepared at N/P=20, in serum 

free OPTI-MEM medium. After removing the DMEM medium, cells were washed twice 

with pre-warmed serum free OPTI-MEM medium and another 400 µL was added. 100 

µL siRNA complex was then added dropwise to each well and mixed by shaking gently. 

Cells were incubated with siRNA complexes for 4 h in the incubator and the medium was 

then replaced by 500 µL full culture DMEM medium for a further culturing of 2 days. 

Subsequently, cells were stained with LysoTracker® Red DND-99 at 50 nM for 1 h at 37 °C 

and fixed in paraformaldehyde (PFA, 4 %, 10 min) before imaging with a Zeiss LSM710 
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Confocal and Elyra PS.1 Superresolution microscope. Images were analysed and 

quantified with Image J. 
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5.1   Conclusions 

In this thesis, we focus on the design and preparation of PDMAEMA polymer brush 

coated silica nanoparticles for the delivery of siRNA. The idea was inspired from the 

interactions of nucleic acid with PDMAEMA brush, in which the binding of nucleic acid 

molecules to PDMAEMA brushes depends both on brush density and size of the nucleic 

acid sequence. The designed PDMAEMA brush coated silica nanoparticles siRNA delivery 

vectors displayed high knock down efficiency. The introducing of a protein resistant 

brush layer POEGMA to the vector improved protein resistance and solution stability as 

well as cell viability. Such block copolymer brush siRNA delivery vectors are attractive 

candidates for the design of a new generation of therapeutic platforms. 

Besides using mono-initiator to generate polymer brush, we also demonstrated that 

using LBL of MI and FCP can offer a greater flexibility in the growth and design of polymer 

brushes and their labelling from templates with a wide range of shapes, sizes and 

chemistries without additional chemical modification. Polymer brush growth kinetics 

was systematically investigated and optimised by coating different layers of MI and 

conducting polymerisation in solvents of different polarity. Detailed characterisation 

techniques were applied during the LBL process and after polymerisation to ensure the 

successful preparation of PDMAEMA or POEGMA coated templates. Selected candidates 

were used to study the particle-cell interactions and deliver siRNA to HaCaT-GFP cells. 

We believe this novel methodology will provide a simple way of fabricating labelled 

nanomaterials with controlled polymer brush shells for biomedical applications. 

In addition, we have reported three different polymer brushes coated silica 

nanoparticles (SiO2-PDMAEMA, SiO2-PDMAI and SiO2-PDMABr) with different pH 
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responsiveness as siRNA delivery vectors. We studied the preparation and 

characterisation of these particles with different coating chemistries, confirmed their 

chemical composition, pH responsiveness and charge shifting ability via different 

techniques. In cell transfection kinetics studies, SiO2-PDMAI exhibited a long-term and 

efficient siRNA delivery compared to SiO2-PDMBr. Furthermore, SiO2-PDMAI and SiO2-

PDMABr displayed improved cell viability than unquaternised SiO2-PDMAEMA, although 

the mechanism behind this effect remains unclear. Finally, fluorescently labelled vectors 

and siRNA were used to visualise siRNA complex uptake and siRNA release in HaCaT cells. 

Therefore, the novel cationic polymer brush coated nano-vectors could be a useful 

platform to develop new generations of siRNA delivery agent for long-term and efficient 

RNA delivery. 

Briefly, this thesis contributes to existing knowledge of polymer brush-based siRNA 

delivery systems by providing the findings: 

1. Dense cationic polymer (PDMAEMA) brush allows stable and efficient encapsulation 

of siRNA. 

2. Dense PDMAEMA brush coated silica nanoparticles are able to efficiently deliver GFP 

siRNA to human epidermal cells. 

3. Introducing a protein resistant POEGMA brush layer can improve vector serum 

stability and cell viability. 

4. Using LBL technique to coat MI and FCP offers a greater flexibility to grow polymer 

brushes and label with fluorescence from templates with a wide range of shapes, 

sizes and chemistries without additional chemical modification. 
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5. Quanternisation PDMAEMA brush with methyl iodide provides the vectors with 

long-term and efficient siRNA delivery ability. 

 

5.2 Future work 

This thesis has initiated cationic polymer brush coated systems for siRNA delivery. 

However, there are still some challenges left to be overcome for improvement of these 

systems.  

1. The interaction of nucleic acids interaction with cationic polymer brush will be 

investigated systematically by using different base paired DNA and RNA molecules 

to interact with cationic polymer brushes with different thickness and density to 

better understand the process and mechanism. 

2. Nanomaterials with different core or shape may include to study their impact on 

siRNA delivery efficiency. 

3. Other types of nucleic acids such as microRNA can also be applied in this system for 

particular biomedical applications. 

4. The interaction of different chemistry coated particle on cell morphology and 

internalisation may be further characterised by other techniques such as cryo-SEM 

and scanning ion-conductance microscopy (SICM). 

5. The mechanism of siRNA uptake and release needs further investigation by carefully 

design the experiment and analysis tool. 

 


