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Abstract 

Recent advances have provided evidence for the involvement of neutrophils in both innate 

and adaptive immunity, robustly challenging the old dogma that neutrophils are short-lived 

prototypical innate immune cells solely involved in acute responses to microbes and exerting 

collateral tissue damage. There is now ample evidence showing that neutrophils can migrate 

into different compartments of the lymphoid system where they contribute to the orchestration 

of the activation and/or suppression of lymphocyte effector functions in homeostasis and 

during chronic inflammation, such as autoimmune disorders and cancer. In support of this 

notion, neutrophils can generate a wide range of cytokines and other mediators capable of 

regulating the survival, proliferation and functions of both T and B cells. In addition, neutrophils 

can directly engage with lymphocytes and promote antigen presentation. Furthermore, there 

is emerging evidence of the existence of distinct and diverse neutrophil phenotypes with 

immunomodulatory functions that characterise different pathological conditions, including 

chronic and autoimmune inflammatory conditions. The aim of this review is to discuss the 

mechanisms implicated in neutrophil trafficking into the lymphoid system and to provide an 

overview of the immuno-regulatory functions of neutrophils in health and disease in the context 

of adaptive immunity.    
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Introduction 

Neutrophils are short-lived immune cells that are commonly accepted as being the first 

leukocyte sub-type to be recruited in large numbers from the blood circulation into inflamed 

tissues. Their migration through the cellular and matrix components of blood vessel walls is a 

tightly regulated process involving intricate cellular and molecular interactions, as summarised 

in recent articles [1-6]. This phenomenon is fundamental for an effective innate immune 

response against infections or acute injury, providing a host defence mechanism that clears 

tissues of invading pathogens, dead cells and potentially harmful debris. Neutrophil diapedesis 

also plays an important role in regulating the phenotype and activation state of emigrated 

neutrophils at sites of inflammation [7]. Key effector functions of neutrophils include 

phagocytosis and killing of intracellular or extracellular pathogens, tissue remodelling and 

secretion of chemotactic and immunomodulatory molecules that can further regulate the 

recruitment and activation of other pro-inflammatory leukocytes [8-11]. To facilitate these 

functions, activated neutrophils can also release a wide range of granular proteases and 

cytotoxic factors, as well as generate a host of reactive oxygen species. Whilst such 

capabilities are essential armoury for destroying microorganisms, they can also cause 

collateral damage to host tissues, rendering clearance of apoptotic neutrophils an essential 

component of resolving an inflammatory response [12,13]. Another form of cell death program 

for neutrophils is via NETosis, a dynamic process associated with the generation of neutrophil 

extracellular traps (NETs) [14-16]. NETs are generated through the release of decondensed 

chromatin and granular enzymes into the extracellular space surrounding leukocytes as 

means of controlling the dissemination of infectious microorganisms [14,17,18]. Whilst the role 

of NETs in the direct killing of pathogens remains contentious [14,19,20], there is strong 

evidence to indicate that the formation of NETs in vivo can be detrimental to the host. 

Pathological induction of NETs, such as that induced under conditions of sterile injury (e.g. 

ischemia-reperfusion injury) can also cause tissue damage and indeed NETosis has been 

implicated to the pathogenesis of a wide range of non-infectious inflammatory disorders [21-
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24]. Collectively, excessive recruitment, activation and/or inefficient clearance of infiltrated 

neutrophils is now categorically associated with the development of numerous acute 

pathological conditions such as myocardial infarction, stroke and tissue damage caused by 

ischemic insults [22,25,26] and there is now a growing interest in the pathogenic potential of 

neutrophils in chronic conditions such as cancer [27-29].  Furthermore, the association of 

neutrophils with multiple autoimmune disorders (e.g. rheumatoid arthritis, lupus, multiple 

sclerosis, Crohn’s disease and vasculitis) [21,30-34] has invigorated the interest in neutrophils 

as potential players in regulation of adaptive immunity.   

Nearly 50 years ago, whilst studying the trafficking of immune cells in sheep, Smith and 

colleagues discovered that the neutrophil “endgame” was not limited to apoptosis within 

inflamed tissues but that these cells could be detected in the peripheral lymph of the animals 

[35]. The authors speculated that this response provided a means for neutrophils to recirculate 

back into the blood, as opposed to contributing to adaptive immune responses taking place in 

the draining lymph nodes (LNs). This hypothesis was upheld for a long time due to the difficulty 

in culturing neutrophils for prolonged periods in vitro and the general and well-accepted 

assumption that the neutrophil life expectancy in the blood circulation did not exceed one day. 

However, advancements in techniques for tracking neutrophils in vivo, and the overall better 

understanding of neutrophil biology, have unequivocally demonstrated that neutrophils can 

exhibit prolonged survival both in vitro and in vivo [36]. For example, whilst human neutrophils 

are reported to exhibit a blood circulation period of up to 5 days [37], cytokines such as GM-

CSF [38,39], bacteria-derived products [40], hypoxic conditions [41] and diapedesis through 

blood endothelium [42,43] can protect neutrophils from rapid cell death. Such findings have 

led to greater acceptance of neutrophils as regulators of the adaptive immunity as supported 

by a large body of evidence demonstrating that neutrophils can migrate into secondary 

lymphoid organs such as lymph nodes (LNs) during bacterial and parasitic infections as well 

as during vaccination challenge protocols [44-47]. These works also reported on the ability of 

neutrophils to secrete numerous immunomodulatory molecules affecting lymphocytes [48-50] 
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as well as to directly interact with lymphocytes acting as antigen presenting cells (APCs) [51-

56]. Collectively there is now a renewed interest in models related to neutrophil trafficking into 

the lymphoid system and the pathophysiological consequences of this response, concepts 

that are reviewed below.  

 

Neutrophil trafficking to lymphoid tissues 

Neutrophil migration to lymphoid organs was first demonstrated in animal models through 

localising neutrophils within the draining LNs of tissues infected with microorganisms or 

following vaccine challenge [44-47,57]. The development and use of advanced imaging tools, 

such as intravital confocal microscopy, in conjunction with genetically modified animals 

exhibiting fluorescently-tagged neutrophils (e.g. LysM-GFP-ki mice), enabled detailed analysis 

of the dynamics of neutrophil-lymphatic vessel interactions as well as the role of specific 

molecular cues involved in this process (Table 1). These studies provided direct evidence for 

neutrophils migrating to LNs via afferent lymphatics present in inflamed tissues. Interestingly, 

this trafficking response was rapid (within 6-12hrs post insult) and transient as very few 

neutrophils could be detected in the LNs past 48hrs [46,57]. The first molecular pathway linked 

with this response involved CCR7 and its cognate ligands CCL21 and CCL19 [45]. Importantly, 

the work of Beauvillain and colleagues demonstrated the presence of intracellular stores 

(possibly secretory vesicles) of CCR7 in both human and murine neutrophils isolated from the 

blood and bone marrow, respectively. Interestingly, whilst CCR7 was almost un-detectable on 

the cell surface of neutrophils, the introduction of a purification step to enrich the neutrophil 

population in vitro enabled the detection of the molecule on the membrane. These findings 

suggested that priming of leukocytes was essential for the trafficking of CCR7 from 

intracellular stores to the cell membrane. Indeed, stimulation of human neutrophils with the 

cytokine GM-CSF could promote their migration towards a CCL21/CCL19 chemotactic 

gradient in vitro, a response that was potentiated by LPS or IL17. In vivo, we and others have 

demonstrated that upon immunisation with complete Freund’s adjuvant (CFA), CCR7 deficient 
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mice have reduced numbers of neutrophils migrating into tissue-associated lymphatic 

capillaries and into draining LNs, as compared to wild-type control littermates [45,57]. Our 

study also provided evidence that immunisation of the animals with CFA induced the local 

release of endogenous TNF, a response essential for the control of neutrophil entry into 

lymphatic capillaries in a CCR7-dependent manner. Furthermore, the trafficking of CCR7-

deficient neutrophils through afferent lymphatic vessels was completely suppressed in TNF-

induced inflammation [57]. Interestingly, significant CCR7 expression was detected on the cell 

surface of tissue-infiltrated neutrophils but not on cells from the blood circulation, or on tissue-

infiltrated neutrophils deficient in TNF receptors (both TNFRI and TNFRII). Collectively, these 

findings provide compelling evidence to indicate the necessity of priming for neutrophil 

migration into the lymphoid system and identify tissue-derived TNF as a key modulator of in 

vivo expression and function of CCR7 on neutrophils. Other studies have suggested that the 

CXCR4/CXCL12 axis is critical for neutrophil entry into the lymphatic system [53,58]. CXCR4 

is a chemokine receptor expressed at low levels on the surface of mature healthy neutrophils; 

but this molecule is upregulated on the membrane of aged neutrophils, a response associated 

with the egress of senescent neutrophils from the circulation [59-61]. In a study using a murine 

model of S. aureus infection, a specific inhibitor of CXCR4, AMD3100, was shown to 

significantly reduce the migration of neutrophils into afferent lymphatic vessels and draining 

LNs, whilst CCR7-deficient neutrophils exhibited normal trafficking to the lymphatic system 

[53]. Similar results were obtained in a mouse model of immunisation associated with pre-

activation of neutrophils with immune complexes [58]. Differential involvement of distinct 

chemokine axes in regulating neutrophil entry into the lymphatics might depend on the 

inflammatory models used, the degree of activation of neutrophils or the potential existence of 

yet not described tissue-specific mechanisms. Another chemokine implicated in human 

neutrophil migration into the lymphatic system is the prototypical neutrophil chemoattractant 

CXCL8. A study by Rigby and colleagues recently demonstrated that human dermal lymphatic 

endothelial cells (LECs) can secrete this chemokine and promote the migration of human 

neutrophils through LEC monolayers in vitro [62]. Similarly, isolated LECs from murine skin 
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exhibited enhanced gene expression of CXCL1 (a homologue of human CXCL8) upon 

stimulation [63]. However, blockade of CXCL1 protein, or its receptor CXCR2, had no effect 

on murine neutrophil recruitment to lymphatic vessels in vivo [53,57], highlighting potential 

discrepancies between putative in vivo and in vitro – and species - scenarios. In addition to 

chemokines, adhesion molecules such as ICAM-1 and VCAM-1 have been reported to be 

expressed by stimulated LECs and to support human and mouse neutrophil-lymphatic vessel 

interactions via binding to leukocyte β2 integrins (e.g. Mac-1) both in vitro and in vivo 

[53,57,62]. For instance, Mac-1/ICAM-1 interaction is critical for the attachment and crawling 

of murine neutrophils along the luminal aspect of lymphatic endothelium in vivo [57]. Similarly, 

Mac-1 blockade inhibited the entry of neutrophils into lymphatics of mouse skin that had been 

locally injected with bacteria [53] whilst another neutrophil-expressed integrin, LFA-1, is 

apparently dispensable for neutrophil intravasation into lymphatic vessels [58].  

Several studies have also demonstrated the capacity of blood circulating neutrophils to enter 

lymph nodes via high endothelial venules (HEVs) during infection, post immune complex 

activation and antigen sensitisation [53,58,64]. To date the only chemotactic axis described to 

be important for the migration of neutrophils through HEVs is CXCR4/CXCL12 axis, whilst a 

role for CCR7 and its cognate ligands CCL21/CCL19 have been completely ruled out [53,58]. 

Other molecules associated with neutrophil-HEV interactions are P- & L-selectins and their 

cognate ligand PSGL-1 as well as endothelial cell ICAM-1 and leukocyte integrins Mac-1 and 

LFA-1 [53,58].  

Collectively, there is now ample evidence to demonstrate the capacity of neutrophils to migrate 

during inflammation into LNs via two distinct routes, though the molecular pathways of such 

events require further exploration. Nevertheless, the fact that LN neutrophils can originate 

from either the blood circulation or inflamed tissues suggests potential differential modes of 

neutrophil-mediated regulation of the adaptive immunity. The following section discusses the 

immuno-modulatory functions of neutrophils in the context of lymphocyte activation. 
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Neutrophil regulation of lymphocyte functions 

Recent advances in neutrophil biology, including studies detailed in the previous section, have 

acknowledged these cells as key players at the interface of innate and adaptive immunity in 

both physiological homeostasis and pathological inflammation. The rapid and transient nature 

of their trafficking to LNs, with a dwelling time in these organs not exceeding 2-7 days following 

an initial inflammatory insult [53,64], has led to the hypothesis that neutrophils can facilitate 

the transport of pathogens and antigens into LNs. It is considered that the latter are 

subsequently transferred to resident DCs and macrophages already present in secondary 

lymphoid organs through engulfment of neutrophil-derived vesicles (e.g. apobodies, 

exosomes or micro-vesicles). Furthermore, it is envisaged that through this cascade of events 

macrophages and conventional APCs such as DCs, can process and present exogenous 

antigens to lymphocytes [46,47]. This concept is supported by the detection of apoptotic 

neutrophils within LNs of S.aureus infected animals [53]. In addition to this notion, it is now 

clear that activated neutrophils can secrete numerous immune modulatory molecules that can 

directly stimulate the recruitment, activation and functions of lymphocytes [48-50]. More 

importantly, neutrophils can impact the regulatory functions of lymphocytes via direct 

neutrophil-lymphocyte interactions and antigen presentation [65]. For example, several 

studies have demonstrated the existence of the so-called neutrophil-DC hybrids, an activated 

neutrophil sub-type that exhibit characteristics of DCs (e.g. expressing MHC-II CD80 & CD86) 

and capable of presenting exogenous antigen to both CD4+ and CD8+ T lymphocytes in vivo 

and in vitro [51,66-68]. This phenomenon was confirmed by confocal imaging that showed the 

dynamics of cell contacts between neutrophils and lymphocytes in mouse models of infection 

and immunisation [46]. In humans, neutrophils can also stimulate the antigen-specific 

proliferation of both naïve and memory T cells through MHC-II expression [69]. Furthermore, 

neutrophils can positively and directly modulate B cell activation, survival and differentiation 

by mean of secretion of cytokines such as B-cell-Activating Factor of the tumor necrosis factor 

Family (BAFF) [70] and A Proliferation-Inducing Ligand (APRIL) [71]. Whilst neutrophils are 



4000 words max 9 

not usually seen in the germinal centres of LNs, a subpopulation has been found in the peri-

follicular areas and marginal zone of the spleen in both humans and mice [72,73]. These cells, 

termed B-helper neutrophils, have been reported to induce T-cell independent production of 

IgG and IgA (following immunoglobulin class switching) via the production of large amount of 

BAFF, APRIL, CD40L and interleukin-21. B helper neutrophils may therefore represent a 

central mechanism for enhancing antibody production and effective humoral responses in a 

T-cell independent manner [74-77]. Direct Interactions between neutrophils and B cells have 

also been observed in real time in lymph nodes of S.aureus infected animals [64].  

In recent years, the homogeneity of neutrophil population has become increasingly 

questionable, with detection of neutrophils exhibiting distinct functions and profiles leading to 

the concept of different subsets [78-81]. Several studies have indeed demonstrated that 

alternatively activated and/or HEV-recruited neutrophils can regulate the adaptive immune 

response by inhibiting B and T lymphocyte responses, in particular in the context of antibody 

production during vaccination challenge and infections [46,53,64,82,83]. Whilst the 

mechanisms associated with such functions are not fully understood, neutrophil suppressive 

properties on T lymphocyte activities involve the release of reactive oxygen species, nitric 

oxide or Arginase 1 in close vicinity of targeted lymphocytes [84,85]. Neutrophils can also 

directly inhibit T cell functions through cell-cell interactions in a Mac-1 or PD-L1 dependent 

manner during HIV infections, systemic endotoxemia and cancer [86-89]. Furthermore, whilst 

neutrophil depletion can increase the production of antigen-specific IgG and IgM, during 

S.aureus infection, B-helper neutrophils were shown to limit the production of IgM through 

release of TGF-β1 [64]. Finally, recent studies have also investigated the role of specific 

subtypes of neutrophils in the context of regulatory T cell (Treg) expansion and recruitment. 

For instance, an elegant study by Nadkarni and colleagues has demonstrated that neutrophils 

sensitised to pregnancy hormones promote the differentiation of a unique population of 

FOXP3+ CD4+ Tregs with a specific secretory phenotype (release of IL-10, VEGF and IL-17) 
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via the transfer of neutrophil-derived proteins such as forkhead box protein-1 to naive T cells 

[90].  

Taken together, there is now unquestionable evidence supporting neutrophil trafficking into 

the lymphatic system and the ability of these cells to regulate lymphocyte functions. These 

works have promoted more interest into the potential role of neutrophils in chronic disorders, 

including autoimmune diseases, as discussed below.  

 

Diversity of neutrophil phenotype and pathogenic potential in chronic and autoimmune 

diseases  

The notable and now widely accepted diversity of neutrophil functions has placed a spotlight 

on the potential existence of distinct neutrophil-subsets and their association with a broad 

range of pathologies (see examples in Figure 1). This includes subtypes of neutrophils that 

can exert stimulatory and suppressive effects on lymphocyte functions and the potential 

association of these cells to chronic disorders such as cancer, and autoimmune diseases, 

such as systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) [80,91,92]. One 

example relates to granulocytic myeloid-derived suppressor cells (PMN-MDSCs), detected in 

cancer patients, considered by some researchers as a subset of neutrophils [80,85,93,94]. 

This section reviews recent findings associated with neutrophil trafficking to lymphoid tissues 

in cancer and chronic inflammatory and autoimmune pathologies.    

 

The duality of neutrophil functions in cancer 

In human cancer, tumour-associated neutrophils have been classified as having anti-tumour 

(N1) and pro-tumour (N2) properties [91,95]. There is also a body of evidence supporting the 

presence of increased numbers of PMN-MDSCs in blood, within the tumour microenvironment 

and peripheral lymphoid organs (tumour-draining LNs and spleen) in this pathology in humans 
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and mice [96]. The dominant view is that neutrophils and PMN-MDSCs are important 

contributors to tumour progression through their ability to promote angiogenesis, proliferation 

and metastasis of cancer cells [93,94,97], as supported by experimental murine models of 

cancer [98]. Furthermore, N2 neutrophils and PMN-MDSCs have been shown to exhibit 

immunosuppressive properties via PD-L1-dependent immunosuppression of Th1 cell 

proliferation [88] and to promote the expansion and recruitment of regulatory T lymphocytes 

via the secretion of CCL17 [99-101]. Of note, a distinct sub-population of human neutrophils 

(exhibiting neutrophil-DC hybrid characteristics) has been discovered within the tumour-

microenvironment and draining LNs during the early stage of lung cancer [102,103]. These 

tumour-associated neutrophils were reported to induce efficient anti-tumour responses from 

memory CD8+ and CD4+ T cells in vitro and expressed CCR7 at their surface [104]. In support 

of these findings, a recent study has described the presence of CXCR2+ neutrophils exhibiting 

IL-6 secretory pro-inflammatory phenotype in the draining LN of gastric tumours [105]. At 

present, the literature lacks further detailed information regarding the route, mechanisms of 

migration and activity of such distinct populations of neutrophils during the development of the 

pathology in vivo. Yet, in the context of anti-tumour therapy, using a mouse model of colon 

carcinoma, Brackett and colleagues demonstrated that photodynamic therapy (PDT) was also 

associated with the rapid recruitment of neutrophils (i.e. within 4hrs post PDT) into tumour-

draining LNs through HEVs in an IL-17 and CXCR2/CXCL2 (but not CXCL1)-dependent 

manner [106,107].The authors also showed the importance of L-selectin and peripheral node 

addressin (PNAd) in neutrophil entry through HEVs in this model. Functionally, PDT has been 

associated with the development of neutrophil-dependent and tumour-specific primary and 

memory CD8(+) T cell responses through the direct induction of T lymphocyte proliferation 

and/or survival [108]. 

 

Neutrophils in chronic inflammatory and auto-immune disorders 
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Neutrophils with immuno-modulatory activities have also been detected in ageing, now 

regarded by some researchers as a low grade chronic inflammatory state (i.e. inflammageing). 

Accordingly, in aged mice neutrophils have been detected in high numbers in both T-cell and 

B-cell areas of the secondary lymphoid organs (i.e. LNs and spleen) [109]. The increased 

neutrophil trafficking to lymphoid organs was associated with enhanced life-span of the 

infiltrated neutrophils and their altered phenotype. Specifically, in healthy aged mice, lymphoid 

tissue neutrophils expressed an activated phenotype characterised by high levels of Mac-1 

and ICAM-1 and the concomitant synthesis of both pro-inflammatory and anti-inflammatory 

cytokines TNF and TGFβ, respectively. At present it is unclear what the role of these 

neutrophils is, but it is speculated that the atypical phenotype of lymphoid organ neutrophils 

could contribute to ageing-associated dysregulation of normal adaptive immune responses, 

e.g. in infections [109]. 

In autoimmune pathologies such as rheumatoid arthritis (RA), human synovial neutrophils 

express transcripts and proteins of MHC-II and co-stimulatory molecules CD80 and CD86 

during the early phase of the disease [110,111]. In vitro, freshly isolated synovial neutrophils 

are capable of stimulating a proliferative response in T-helper cells [111]. Whilst rather 

intriguing, such seminal studies did not demonstrate where (e.g. tissue localization) and when 

(e.g. phase of the disorder) during RA such neutrophil responses were functionally relevant to 

disease progression. Indeed, it would be important to elucidate if neutrophils can regulate T 

cell functions in RA in vivo within the secondary lymphoid organs. Related to this caveat, using 

a murine model of lupus, Bird and colleagues demonstrated that neutrophils can preferentially 

form close interactions with T cells in the early phase of the disease, whilst in the advanced 

stage, they mainly accumulate in B cell areas of the spleen, reminiscent of a B-helper 

phenotype [112]. Furthermore, transcriptome analysis demonstrated that neutrophils exhibited 

high expression of PD-L1, TGFβ and IL-1RA during the early disease phase. The 

immunosuppressive activity of neutrophils during this period was confirmed by the negative 

effect of neutrophil depletion on disease progression, germinal centre formation and 
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production of anti-double strand DNA antibodies. Conversely, during the late phase, 

neutrophils enriched in splenic B-cell regions increased their expression of TNF and BAFF, 

indicating that they may contribute to the expansion of auto-reactive B lymphocytes during 

disease progression [112]. Interestingly, B-helper neutrophils have been shown to be more 

susceptible to NETosis [73] and hence it has been suggested that, due to their localization 

and specific phenotypic characteristics, these cells may promote the expansion and survival 

of auto-reactive B cells. A role for B-helper neutrophils in supporting adaptive autoimmune 

responses has indeed been reported in many autoimmune disorders, including, RA, SLE and 

in anti-neutrophil cytoplasmic antibody-associated  (ANCA) vasculitis [72]. The mechanism of 

action of these neutrophils is not completely understood but their enhanced capacity to 

generate NETs was suggested to provide an abundant source of auto-antigens characteristic 

of these pathologies [17,113-115]. Supporting this concept, a recent study by Gestermann 

and colleagues demonstrated that NET components could directly activate memory B cells 

through TLR9 stimulation, leading to the production of pathogenic autoantibodies in a T cell-

independent manner [116]. Moreover, NETs can also stimulate plasmacytoid dendritic cells to 

secrete interferon-α which in turn, promotes NETosis of neutrophils. This cascade perpetuates 

a vicious cycle that can be observed in pathologies such as vasculitis, SLE, psoriasis, and 

type-1 diabetes [117-120]. 

The number of PMN-MDSCs have also been reported to increase in RA and SLE patients 

[121-123] as well as in several experimental animal models of lupus [124], collagen-induced 

arthritis [125], experimental autoimmune encephalomyelitis (EAE) [126], type-1 diabetes and 

inflammatory bowel disease [127,128]. Whilst many studies have correlated MDSCs with 

disease severity, their role in regulating lymphocyte responses remains controversial [129]. 

Indeed, whilst in RA, SLE and EAE, PMN-MDSCs have been shown to inhibit both proliferation 

of T helper-cells and their production of cytokines (e.g. interferon- and IL-2) in an arginase-

1-dependent manner, these cells also produce pro-inflammatory cytokines (e.g. IL-1 and 

TNF). The latter can promote the differentiation of naïve T lymphocytes into Th17 cells, 
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suggesting that in the disease inflammatory context, PMN-MDSCs can exhibit a pathogenic 

phenotype [122,130,131].  

Overall, whilst the current literature supports the concept of neutrophils orchestrating a 

pathogenic response during autoimmune and chronic inflammatory disorders, further 

investigations are required to determine if and how neutrophil trafficking into lymphoid organs 

might be contributing to the pathoetiology of these diseases.  

 

 Conclusion and perspectives 

In addition to their essential role in protecting the host against acute harmful insults, recent 

studies have identified a broader role for neutrophils in both physiological and pathological 

immunity, and hence the development of numerous chronic and autoimmune inflammatory 

disorders. Specifically, it is now clear that, despite being short-lived as compared to other 

immune cells, neutrophils can traffic into lymphoid tissues and contribute to shaping key 

adaptive immune responses. As such, current evidence supports the notion that in addition to 

dendritic cells and macrophages, neutrophils can act as a cellular bridge between innate and 

adaptive immunity in both health and disease. Whilst our understanding of the mechanisms of 

neutrophil trafficking and functions into lymphoid tissues are yet to be fully investigated, it is 

now accepted that depending on the nature, duration or the site of the insult, neutrophils can 

enter the lymphatic system by using both afferent lymphatic vessels as well as venular portals 

within LNs. Once in secondary lymphoid organs, neutrophils can act as immune-modulatory 

cells through cytokine production and via direct cell-cell interaction with other immune cells. 

Accordingly, neutrophils can orchestrate elaborate cellular and humoral responses as well as 

exert regulatory effects on lymphocyte functions. The development of new technologies 

applied to investigate the dynamics of neutrophil behaviour, phenotype and trafficking in both 

patient samples ex vivo and in animal models of inflammation in vivo has led to the 

identification of different subtypes of neutrophils with distinct regulatory functions in health and 
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disease. It is still debated if neutrophil subsets might represent an acquired phenotype, and/or 

level of activation through environmental molecular cues, or are in fact ontogenically separate 

cell populations. Irrespective of this, renewed interest in this phenotypic diversity and 

associated varied effector functions, in conjunction with better understanding of the 

spatiotemporal localisation of neutrophils is opening challenging research opportunities. In 

particular such works could pave the way towards addressing outstanding questions regarding 

the diverse functions of neutrophils during the development of autoimmune pathologies. Most 

importantly, association of different neutrophil subtypes with the pathogenesis of defined 

disorders has the potential for stratifying patients in terms of disease severity as well as identify 

new therapeutic targets in chronic and autoimmune conditions and cancer. 
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Figure 1: Neutrophils and the regulation of the adaptive immune response in diseases 

Neutrophils have been implicated in the regulation of T and B cell activities in many 

pathological scenarios including inflammageing, cancer, and autoimmune disorders such as 

rheumatoid arthritis and systemic lupus erythematosus. Neutrophils can both stimulate and 

immunosuppress lymphocyte functions through various mechanisms due to the plasticity of 

their phenotype, localisation and environmental priming. For instance they can secrete 

activating cytokines or act as antigen presenting cells to stimulate lymphocyte proliferation 

and auto-antibody production (e.g. via NETosis). In contrast, other subtypes of neutrophils 

have been shown to directly inhibit T cell activation through the release of TGFβ, nitric oxide 

(NO), arginase-1 (Arg-1) as well as through the expression and direct engagement of PD-L1 

with T cells.  



Table 1: Molecules implicated to neutrophil migration into the lymphoid system. 
 

 

 

a shown in humans 
b shown in mouse models 

Molecule Surface expression 
Role in entry via 
lymphatic 
capillaries 

Role in entry via 
high endothelial 
venules 

Inflammatory model (when relevant) References 

CCR7 

 Low neutrophil surface expression necessitating 
priming: 

 in vitro  (GM-CSF/IL-17/LPS a or TNF b) 
 in vivo (post-extravasation, TNF-dependent b) 

 Expressed on tumour-associated neutrophil N1 type a 

Yes but depends 
on the nature of 
the reaction 

No 

 In vitro stimulation a 

 Immunisation (CFA) b 

 TNF-induced inflammation b 

 Early lung tumour a 

[45], [53], 
[57], [107] 

CXCR4 
 Low surface level on mature neutrophils 

 High surface level on aged neutrophils 

Yes, 
(but depends on 
the nature of the 
reaction 

Yes 

 S.aureus infection b 

 Immunisation with immuno-complex activation b 

 Immunisation (CFA) b 

[53], [57], 
[58] 

CXCR2 High levels on mature naïve neutrophils 
Yes, in vitro  
No, in vivo 

in vivo during PDT 

 In vitro stimulation of dermal LECs a 

 S.aureus infection b 

 Immunisation (CFA) b 

 Photodynamic Therapy in cancer (PDT) b 

[53], [57], 
[62], [107] 

CD54 
(ICAM-1) 

Up-regulation on LVs and LECs upon inflammation (TNF 
dependent) 

Yes, 
(promote adhesion 
and luminal 
crawling) 

Yes 

 S.aureus infection b 

 Immunisation, TNF-induced inflammation b 

 Immunisation with immuno-complex activation b 

 In vitro stimulation of dermal LECs a 

[53], [57], 
[58], [62] 

CD11b 
(Mac-1) 

High expression on all neutrophils 

Yes,  
(promote adhesion 
and luminal 
crawling) 

Yes 

 S.aureus infection b 

 Immunisation, TNF-induced inflammation b 

 Immunisation with immuno-complex activation b 

 In vitro stimulation of dermal LECs a 

[53], [57], 
[58], [62] 

CD11a 
(LFA1) 

Expressed on all neutrophils Rarely Yes 
 S.aureus infection b 

 Immunisation with immuno-complex activation b 
[53], [58] 

CD62L 
(L-selectin) 

Expressed on neutrophils, shed upon 
stimulation/extravasation 

No Yes 
 S.aureus infection b 

 Immunisation with immuno-complex activation b 

 Photodynamic Therapy in cancer b 

[53], [58], 
[107] 

CD62P 
(P-selectin) 

Endothelial selectin, upregulated upon stimulation of ECs Not Tested Yes  Immunisation with immuno-complex activation b [58] 

CD62E 
(E-selectin) 

Endothelial selectin, upregulated upon stimulation of ECs in vitro only Yes  In vitro stimulation of dermal LECs a [58] 

CD168 
(PSGL-1) 

Selectin ligand expressed by both LECs and neutrophils No Yes 
 S.aureus infection b 

 Immunisation with immuno-complex activation b 
[53], [58] 

PNAd 
(Peripheral Node 
Addressin) 

Expressed on HEVs No Yes 
 S.aureus infection b 

 Immunisation with immuno-complex activation b 
[53], [58] 
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