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23 Abstract

24 1. The changes to physical and chemical ecosystem characteristics as a response to 

25 pervasive and intensifying land use have the potential to alter the consumer-resource 

26 interactions and to rewire the flow of energy through entire food webs. 

27 2. We investigated these structural and functional properties of food webs in stream 

28 ecosystems distributed across woodland, agricultural and urban areas in the Zagreb region of 

29 Croatia. We compared resource availability and consumer diet composition using stable 

30 isotope mixing models and tested how the isotopic variance of basal resources, primary 

31 consumers, macroinvertebrate predators, and other food-web characteristics change with 

32 different land use types.

33 3. Combination of increased loading and altered composition of nutrients, lower water 

34 discharge and higher light availability at urban sites likely promoted the contribution of 

35 aquatic macrophytes to diets of primary consumers. Macroinvertebrate predators shifted their 

36 diet, relying more on active filterers at urban sites relative to woodland and agricultural sites. 

37 Urban food webs also had lower trophic redundancy (i.e. fewer species at each trophic level) 

38 and a more homogenised energy flow from lower to higher trophic levels. There was no 

39 effect of land use on isotopic variation of basal resources, primary consumers or 

40 macroinvertebrate predators, but all these trophic groups at urban and agricultural sites were 

41 15N-enriched relative to their counterparts in woodland stream food webs.

42 4. The physical and chemical ecosystem characteristics associated with intensive land 

43 use altered the resource availability, trophic redundancy and the flow of energy to other 

44 trophic levels, with potentially negative consequences for community dynamics and 

45 ecosystem functioning. These empirical findings indicate that reducing nutrient pollution, 
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46 agricultural runoffs and maintaining riparian vegetation can mitigate the impacts of land use 

47 on structure and function of stream ecosystems.
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48 Introduction

49 Intensive land use represents the leading threat to Earth’s ecosystems and biodiversity (Sala 

50 et al., 2000; Vitousek, Mooney, Lubchenco, & Melillo, 1997). In particular, urbanization is 

51 profoundly altering abiotic and biotic ecosystem characteristics and it has become a leading 

52 cause of population extirpation across a wide range of species (Clergeau, Croci, Jokimäki, 

53 Kaisanlahti-Jokimäki, & Dinetti, 2006; McKinney, 2006). Similarly, industrial-scale 

54 agriculture and associated changes to nutrient cycling increase rates of species extinctions 

55 through dominance of few superior competitors that often reduce species richness and 

56 biodiversity (Carpenter, Cole, Kitchell, & Pace, 1998; Chapin et al., 2000; Guignard et al., 

57 2017). However, the processes that underpin the structure and function of ecological 

58 communities may differ substantially among ecosystems influenced by different land use. 

59 Although the impacts of severe degradation, reduction and loss of habitats caused by 

60 intensive land use activities are widespread among taxonomic groups and ecosystem types, 

61 these impacts are particularly pervasive in freshwater ecosystems (Ormerod, Dobson, 

62 Hildrew, & Townsend, 2010; Strayer & Dudgeon, 2010).

63 The initial responses to land use changes may occur at a level of trophic interactions, 

64 resource use, and feeding behaviour of primary and secondary consumers (Alley, 1982; 

65 Beaugrand, Mackas, & Goberville, 2013). Consumers can buffer changes in the resources 

66 availability via feeding plasticity (Friberg & Jacobsen, 1994; Zah, Burgherr & Bernasconi 

67 2001), shifting their feeding preferences to new resources in response to habitat disturbance 

68 (Zah, Burgherr & Bernasconi 2001). High functional redundancy (i.e. large proportion of 

69 species with similar trophic ecologies) allows an ecosystem to maintain its function despite 

70 some taxa going locally extinct. Conversely, low functional redundancy usually weakens 

71 ecosystem resilience to stressors such as climate and land use changes (Cardinale, Palmer & 

72 Collins 2002). In aquatic systems, the ecosystem resilience to environmental change can also 
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73 be indicated by the relative contribution of allochthonous to autochthonous resources to food 

74 webs (Recalde, Postali, & Romero 2016). For instance, a stream food web with a high 

75 dependence on allochthonous material may undergo a disruptive shift in nutrient budgets if 

76 the surrounding land became urbanized and the vegetation in the catchment is reduced 

77 (Finlay, Khandwala, & Power 2002). On the other hand, autochthonous primary producers 

78 can provide a better nutritional resource than terrestrial litter (Brett, Kainz, Taipale, & 

79 Seshan, 2009; Junker & Cross, 2014; Thorp & Delong, 2002), leading to higher biomass 

80 production of top consumers (Karlsson et al., 2015). Such shifts toward resources with high 

81 nutritional quality in streams with open canopy, in combination with higher transfer 

82 efficiency of these resources to primary consumers, can elongate food chains in comparison 

83 to woodland streams with closed canopy cover (Lau, Leung, & Dudgeon, 2009). 

84 Consequently, the impact of different land use on the taxonomic and nutritional composition 

85 of basal resources can cascade to higher trophic levels, altering the structure and flow of 

86 energy through the entire food web (De Castro et al., 2016; Kratina & Winder, 2015; 

87 Layman, John, Peyer, & Allgeier, 2007).

88 Recent advances in stable isotope analyses allow us to estimate community-wide 

89 characteristics such as variety of resources, trophic diversity, trophic redundancy and other 

90 metrics closely related to resource use, diet specialization and degree of omnivory (Layman, 

91 Arrington, Montaña, & Post, 2007; Nielsen, Clare, Hayden, Brett, & Kratina, 2018). These 

92 analyses often rely on quantifying existing differences in the nitrogen and carbon stable 

93 isotope composition of food resources  (Newsome, Rio, Bearhop, & Phillips, 2007; Rader et 

94 al., 2017). Stable isotope analyses can determine the maximum trophic position through 

95 comparing nitrogen stable isotope ratios of all food web components and disentangle the 

96 pathways of energy flow from primary producers through to primary consumers and 

97 predators through a comparison of carbon stable isotope ratios. However, the application of 
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98 isotopic metrics to understand how ecological communities respond to different types of land 

99 use are scarce and the impacts of human activities in urban zones are rarely compared to the 

100 impacts in agricultural and woodland areas.

101 To understand the community-level impacts of different types of land use, we 

102 compared the resource availability and composition, variance in isotopic composition of 

103 macroinvertebrate consumers and the resilience-related food-web properties in urban, 

104 agricultural and woodland stream habitats. We hypothesised that stream sites with stronger 

105 urban and agricultural influences show: (i) shifts in basal resource availability, characterized 

106 by δ13C values that change minimally with trophic transfer, but can vary substantially across 

107 different resource types (McCutchan Jr, Lewis Jr, Kendall, & McGrath, 2003; Newsome, Rio, 

108 Bearhop, & Phillips, 2007); (ii) an increased contribution of aquatic (autochthonous) 

109 resources relative to terrestrial (allochthonous) resources, which is reflected in the stable 

110 isotope values of primary consumers; (iii) higher δ15N values of macroinvertebrate consumers 

111 (as a consequence of greater in-stream additions of urban wastes that usually increase basal 

112 resource-stable isotope values), or a longer food chain revealed by predators with high δ15N 

113 values relative to basal resources; and (iv) fewer basal resources being exploited and lower 

114 functional (i.e. trophic) redundancy of macroinvertebrate assemblages shown through fewer 

115 species occupying a similar position in isotopic-niche space. Such empirical evidence could 

116 improve our understanding of the land use effects on the flow of energy through food webs 

117 and provide deeper mechanistic insights into the functioning of ecosystems in human-

118 modified landscapes. 

119
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120 Materials and methods

121 Study sites

122 We collected samples of macroinvertebrates and their potential food resources from five 

123 streams in the region of Zagreb, Croatia (Fig. 1): Vrapčak (V), Kustošak (K), Veliki potok 

124 (VP), Bliznec (B) and Trnava (T). Zagreb is the largest city of Croatia with a population of 

125 approximately 800,000, representing the Croatian centre of economic and municipal 

126 activities. The stream network of Zagreb consists of 31 low-order streams flowing from the 

127 less human-impacted regions concentrated at the north of the city, through both agricultural 

128 and urban downstream areas where they are increasingly affected by anthropogenic (i.e. 

129 residential, municipal, industrial, agricultural) activities and physical modifications. Whereas 

130 agricultural land use prevails in the eastern part of the region, a high-density residential, 

131 municipal and industrial land use dominates the central and western part of the Zagreb area 

132 (Fig. 1). The streams flow into the River Sava, a tributary to the second largest river in 

133 Europe, the Danube River. The upper reaches of the five focal streams are situated within the 

134 forested area of Medvednica Nature Park to the north/northwest of Zagreb. The sampling 

135 sites were classified as woodland (n = 5), agricultural (n = 4) or urban (n = 6) based on the 

136 surrounding land use and proximity to the city centre. The woodland sites were characterised 

137 by a dense canopy cover, low light availability and sparse in-stream vegetation. However, 

138 there were dense stands of in-stream vegetation in the open canopy at urban and agricultural 

139 sites characterized by scarce riparian vegetation (mostly C4-grasses). The elevation of 

140 woodland sites ranged from 206-395 m a.s.l., agricultural sites from 132-217 m a.s.l., and 

141 urban sites from 155-161 m a.s.l. (Fig. 1). The physical, chemical and biological 

142 characteristics were measured at each location between late April and early May 2017. 

143
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144 Physical and chemical parameters

145 Physical and chemical stream parameters were measured to identify environmental 

146 characteristics that have the potential to alter macroinvertebrate diets, isotopic composition, 

147 and food web structure across the study sites (Table S1). The average stream width, depth 

148 and flow velocity (flow velocity meter P600, Dostman electronic GmbH) at the three cross-

149 sectional stream areas were measured, to give an estimate of the stream discharge. We also 

150 measured in situ water temperature (°C), dissolved oxygen concentration (mg L-1) and 

151 saturation (%) using oximeter OXI 96 (WTW, Germany), conductivity (μS cm-1) using 

152 conductivity meter Hach Sension 5 (Hach Company, USA), and pH using pH-meter 330i 

153 (WTW, Germany). At each site, an additional 1-L water sample was taken for laboratory 

154 analysis of the chemical parameters that could not be measured in situ. Alkalinity and total 

155 water hardness (TWH) were measured to describe the amount of calcium or magnesium 

156 carbonate dissolved in water. Alkalinity measures the amount of negative carbonate (CO3
2-) 

157 and bicarbonate (HCO3
-) ions, while water hardness describes the amount of positive calcium 

158 (Ca2+) and magnesium (Mg2+) ions. Alkalinity, total water hardness, and concentrations of 

159 nitrite, nitrate and orthophosphates were determined using the respective standardized 

160 methods described by APHA (1985). Total chemical oxygen demand (COD), used to assess 

161 the content of dissolved organic matter in water, was determined following the procedure in 

162 Deutsches Institut für Normung (1986).

163

164 Consumer and resource sampling and processing

165 We collected macroinvertebrates using a kick and sweep sampling method by disturbing the 

166 stream bed with a kicking action and using a benthic hand net (250-μm mesh size), ensuring 

167 that individuals from all microhabitats were represented in each sample. From the samples 

168 collected at each site, we immediately separated predatory species (to prevent predation) and 
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169 all individuals were manually placed in containers filled with clean stream water and 

170 refrigerated at 4°C for 24 hours in order to empty their guts. We identified all 

171 macroinvertebrate individuals to the lowest possible taxonomic resolution, mainly genus 

172 (Table S2). We have sampled 2-20 individuals from each of the dominant taxa (depending on 

173 body size) and there were 9.4 ± 1.03 dominant taxa (mean ± SE) per site (Table S1). A total 

174 of 28 macroinvertebrate taxa from the 15 study sites were classified as non-predatory primary 

175 consumers, and 19 taxa were classified as predators. Based on their dietary preferences and 

176 following Moog (2002), we further classified the non-predatory primary consumers into five 

177 functional feedings groups. These functional feedings groups (FFGs) included detritivores, 

178 shredders, grazers, passive filterers, and active filterers. Because this method characterises 

179 each FFG as proportional contributions to a macroinvertebrate feeding function, each taxon 

180 was assigned to the FFG with the greatest contribution to its diet. For the subsequent 

181 analyses, we estimated dietary contributions of each predatory taxa at each site to yield 

182 multiple estimates at each site. The same method was applied to individual functional groups 

183 in the primary consumer diet estimates.

184 Potential dietary items from both allochthonous and autochthonous resources, i.e. 

185 periphyton separated from associated filamentous algae; particulate organic matter including 

186 leaf litter and other coarse particulate organic matter (CPOM – particles > 1 mm in diameter), 

187 as well as fine particulate organic matter (FPOM – particles 0.45 μm – 1 mm in diameter), 

188 moss, aquatic and terrestrial macrophytes were collected at each site and stored in separate 

189 falcon tubes or polythene plastic bags. Terrestrial vegetation was sampled within a two-metre 

190 riparian zone from the stream edge. The finest organic matter fraction (FPOM) was collected 

191 directly into the falcon tube from slow-flowing areas at the edge of each stream and 

192 concentrated by repetitive sieving (250-μm mesh size). In the laboratory, we manually 

193 removed animals and coarse minerals from the FPOM samples, to avoid the potential 
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194 interference among stable isotope ratio values. Periphyton was brushed off randomly selected 

195 rocks (with at least 50% coverage of biofilm) and subjected to manual exclusion of small 

196 invertebrates and detritus that might contaminate the samples and affect the δ15N and δ13C 

197 values of the biofilm. Two replicates of periphyton were processed for the respective content 

198 of chlorophyll-a (Chl a, μg cm-2) following the ethanol extraction procedure of Nusch (1980). 

199 All collected resource and macroinvertebrate samples were stored at - 80°C and then dried at 

200 60°C until processed for isotope analysis.

201

202 Stable isotope analysis

203 For the isotope analysis of the larger predatory taxa (e.g., Heteroptera, Odonata, Plecoptera), 

204 2-5 individuals were used, whereas for the analysis of the smaller taxa (e.g., Chironomidae, 

205 Simuliidae, Baetidae), at least ten individuals were pooled. In total, we analysed 359 

206 invertebrate samples for carbon (δ13C) and nitrogen (δ15N) stable isotope ratios.

207 Dried samples were grounded to a fine powder and stored in plastic tubes. Aliquots of 

208 0.8 ± 0.05 mg (for invertebrates) and 2.5 ± 0.05 mg (for resources) were placed in 8 x 5 mm 

209 tin capsules and analyzed by CF-IRMS (Sercon Integra 2 Stable Isotope Analyser, Crewe, 

210 UK). Carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were calculated as 

211 [(Rsample/Rstandard) -1] x 1000‰, where R is the ratio of heavy to light isotope, Rsample is from 

212 the sample, and Rstandard is the international standard value. The isotopic standards were 

213 atmospheric air for nitrogen and PeeDee belemnite for carbon. Sercon software automatically 

214 corrected the delta values for the effects of drift between reference material combustions. 

215 Because lipids are depleted in 13C, they can bias the δ13C values of a bulk sample relative to 

216 the variation in lipid content between organisms (Perkins et al., 2013; Post et al., 2007). To 

217 account for variable lipid contents in animal and plant tissues, we measured the total C and N 
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218 content of each sample using CF-IRMS, and then applied lipid-correction models to stable 

219 isotope data as described in McConnaughey & McRoy (1979).

220

221 Statistical analyses

222 In order to estimate the effect of land use on the resource flow through the stream food web, 

223 we employed a SI (stable isotope) mixing model in the R package MixSIAR (Stock & 

224 Semmens, 2013) and estimated the proportional contribution of different food sources to the 

225 diets of macroinvertebrate consumers. For each site, separate SI mixing models were used to 

226 estimate dietary contributions of basal resources to primary consumers, and of prey to 

227 predators. These estimates were derived from contrasts in stable isotope values between 

228 dietary resources, and the consequent fractionation of the heavier isotope upon consumption 

229 (Jackson, Inger & Parnell 2011; Parnell et al., 2013). Because the trophic enrichment factors 

230 (TEF) vary across a range of environmental characteristics (McCutchan Jr, Lewis Jr & 

231 Kendall 2003; Vanderklift & Ponsard, 2003), we calculated our own FFG-specific TEF 

232 values based on our data as described in Caut et al., (2009). These were 0.98 ± 0.29‰ (for 

233 13C) and 1.82 ± 1.27‰ (for 15N) for the predator SI mixing models, and we averaged the 

234 calculated TEF values of individual primary consumer FFGs to yield a single value of 0.94 ± 

235 0.33‰ (13C) and 1.95 ± 1.27‰ (15N) for the primary consumer SI mixing models. 

236 To increase the SI mixing model’s performance, we pooled the basal resources for the 

237 primary consumer SI mixing models into three ecologically similar groups: LAR - lower 

238 aquatic resources (periphyton, FPOM, filamentous algae), HAR - higher aquatic resources 

239 (aquatic moss, submerged and emergent aquatic macrophytes) and terrestrial resources 

240 (CPOM including leaf litter, terrestrial macrophytes) (Brett, 2014; Nielsen et al., 2018; 

241 Phillips et al., 2014). Submerged aquatic macrophytes live entirely beneath the water surface, 
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242 whereas emergent plants are rooted in the stream bottom, but have parts projecting above the 

243 water surface. The potential prey taxa for the predator SI mixing model were classified into 

244 five functional feeding groups as shredders, grazers, detritivores, passive filterers and active 

245 filterers. Prior to the analysis, we used MANOVA to show that the individual prey groups 

246 (Wilks’ lambda = 0.391, P < 0.001) and resource groups (Wilks’ lambda = 0.808, P < 0.001) 

247 differ in their nitrogen (δ15N) and carbon (δ13C) stable isotope ratios. The results of the SI 

248 mixing models were used to compare the contribution of each resource to its consumers 

249 across the three land use types by carrying out a MANOVA and then employing one-way 

250 bootstrapped analyses of variance (ANOVAs), with 1000 iterations. The significance was 

251 conservatively assessed with Bonferroni adjustments of alpha values. For this analysis, we 

252 used the functions boot and ran.gen from the boot package in R. 

253 We used the R package SIBER to estimate an isotopic variance of predators, their 

254 potential prey (primary consumers), basal resources and two functional feeding groups 

255 (detritivores and grazers) that were common at the majority of sites (Table S3). We estimated 

256 isotopic variance based on multivariate, ellipse-based metric (SEAc, ‰2), which is robust to 

257 small and unequal sample sizes (Jackson, Inger & Parnell 2011). Moreover, we calculated the 

258 mean nitrogen (δ15N) and carbon (δ13C) stable isotope ratios for each of these groups. All 

259 these metrics were calculated at the site level, to yield single site-based estimates. We also 

260 calculated four community-wide characteristics using the carbon and nitrogen stable isotope 

261 ratios for all macroinvertebrate taxa present at individual sites (Table S4): (i) mean nearest 

262 neighbour distance in isotopic niche space (MNND), indicating the resilience of the food web 

263 to environmental change through trophic redundancy (i.e. several functional groups at each 

264 trophic level); (ii) standard deviation of the nearest neighbour distance in the isotopic niche 

265 space (SDNND), indicating the uniformity of isotopic signature within groups, providing a 

266 further estimate of food web stability; (iii) δ15N and (iv) δ13C ranges, reflecting the variety of 
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267 trophic levels and basal resources that are exploited as a food source by the macroinvertebrate 

268 assemblages (Jackson, Inger & Parnell 2011; Layman, Arrington & Montaña 2007; Parnell et 

269 al., 2013). Finally, we estimated the length of the food chain as a difference in nitrogen stable 

270 isotope ratios between a consumer with the highest δ15N signature and a basal resource with 

271 the lowest δ15N signature. We then applied the linear mixed effects model (LME) to test 

272 whether these characteristics differ among the three land use types. We treated individual site 

273 as a random factor to account for non-measured (random) variation among the sites (Pinheiro 

274 & Bates, 2000). 

275 Finally, we analysed the impact of key physico-chemical characteristics (Fig. S1a and 

276 b) associated with the different land use types on the isotopic food-web metrics. To reduce 

277 the potential for multicollinearity among the physico-chemical characteristics, we applied a 

278 Principal Component Analysis (PCA). The axis that explained the most variation in the data 

279 (PC1; Table S5) was used as a predictor of the food-web metrics using the linear mixed 

280 effects model (LMEs); PC1 was a fixed factor and the individual site was a random factor. 

281 All statistical analyses were performed using the language environment R version 3.2.2 (R 

282 Development Core Team, 2015).

283

284 Results 

285 Resource flow through food webs

286 We surveyed 47 macroinvertebrate taxa (Table S2). Woodland sites were dominated by 

287 Ephemeroptera (37% of the taxa), agricultural sites were dominated by the family 

288 Chironomidae (40% taxa), whereas urban sites were dominated by family Simuliidae (40% 

289 taxa). 
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290 The contributions of basal resources to the diets of primary consumers, inferred from 

291 the SI mixing model, were influenced by the surrounding land use (MANOVA; Wilks’ 

292 lambda = 0.52, P < 0.001, Fig. 2a). Submerged and emergent aquatic macrophytes (HAR) 

293 contributed more to the diets of primary consumers at urban areas than to the diet of primary 

294 consumers at either agricultural or woodland sites (bootstrapped ANOVA, t = 20.7, P = 0.03, 

295 Fig. 2a). In contrast, terrestrial resources and lower LARs did not differ in their relative 

296 contributions to the diets of primary consumer among the three land use types (terrestrial: t = 

297 3.06, P = 0.192; LARs: t = 2.62, P = 0.245; Fig. 2a). 

298 Catchment land use modified the contribution of the different prey functional groups 

299 to the diets of macroinvertebrate predators (MANOVA; Wilks’ lambda = 0.38, P = 0.009, 

300 Fig. 2b). This effect was mostly driven by active filterers that were not found at either 

301 agricultural or woodland sites and therefore contributed less to predator diets at those sites 

302 (bootstrapped ANOVA, t = 3.5, P = 0.02, Fig. 2b).

303

304 Isotopic variance and food-web metrics

305 The land use type had no effect on the isotopic variation (SEAc) of basal resources (LME, F2, 

306 12 = 2.80, P = 0.100; Fig. 3a), potential prey (LME, F2, 12 = 0.53, P = 0.601; Fig. 3b), or 

307 macroinvertebrate predators (LME, F2, 9 = 0.05, P = 0.948; Fig. 3c). However, there was a 

308 strong effect of land use on the mean δ15N of basal resources (LME, F2, 12 = 6.83, P = 0.011; 

309 Fig. 4a), potential prey (LME, F2, 12 = 10.46, P = 0.002; Fig. 4b), and macroinvertebrate 

310 predators (LME, F2, 9 = 21.64, P < 0.001; Fig. 4c). All trophic groups at agricultural and urban 

311 sites were enriched in δ15N relative to those at woodland sites (Fig. 4). There was no effect of 

312 land use on the mean δ13C of resources, potential prey or predators (Table S6). The effect of 

313 land use type on the isotopic variation (Fig. S2), δ15N, and δ13C of detritivores and grazers 
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314 closely matched the effects found for predators and prey, except for grazers being more 

315 enriched in δ13C at agricultural and urban sites (Table S6).

316 The mean neighbour distance in isotopic space (MNND) was higher (indicating 

317 lower resilience) at urban sites than at agricultural and woodland sites (LME; F2, 12 = 4.51, P 

318 = 0.035). The standard deviation of nearest neighbour distance (SDNND) was marginally 

319 more uniform at urban sites compared to agricultural and woodland sites (LME; F2, 12 = 3.73, 

320 P = 0.055). However, there was no effect of land use on the δ15N range (LME; F2, 12 = 2.35, P 

321 = 0.137) and δ13C range (LME; F2, 12 = 0.59, P = 0.570) of macroinvertebrates or on the 

322 length of the food chain (LME; F2, 12 = 1.22, P = 0.330).

323 The PC1 axis explained 51.1% of the variation in the data of the physico-chemical 

324 characteristics (Table S5). Water conductivity, total water hardness, nitrite, nitrate and 

325 orthophosphate were all positively correlated with the PC1 axis, whereas discharge was 

326 negatively correlated with PC1 (Fig. S1a, Table S5). Temperature, pH, and chlorophyll-a and 

327 O2 concentrations were positively correlated with the PC2 axis (explaining 15.5% of the 

328 variation; Fig. S1a; Table S5). PCA illustrated the environmental differences among sites 

329 according to the water physico-chemical characteristics (Fig. S1a and b). PCA aligned most 

330 woodland and agricultural sites along a gradient of increasing discharge. Urban sites were 

331 mostly aligned along gradients of increasing conductivity, total water hardness, nutrient, 

332 chlorophyll-a, oxygen concentrations, pH and water temperature (Fig. S1a).

333 The suite of physico-chemical site characteristics was related to the food-web metrics. 

334 There was a significant positive relationship between PC1 and the measure of trophic 

335 redundancy (MNND) (LME; F1,13 = 16.10, P = 0.002, Fig. 5a), PC1 and the standard 

336 deviation of niche measures (SDNND) (LME; F1,13 = 8.95, P = 0.010, Fig 5b), and between 

337 PC1 and the mean δ15N (LME; F1,13 = 9.30, P = 0.009, Fig. 5c). However, there was no 
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338 relationship between PC1 and the δ15N range (LME; F1,13 = 2.58, P = 0.132, Fig 5d) or 

339 between PC2 and any of the food-web metrics (Table S7).

340

341 Discussion

342 Whereas previous work has focused on the effect of morphological habitat features on the 

343 functioning of urban streams (Walsh et al., 2005), we demonstrate that changes to the 

344 physical and chemical characteristics in urban and agricultural zones shift the composition 

345 and availability of resources for aquatic consumers, and alter the flow of energy through the 

346 entire stream food web. The changes in physical, chemical and biological characteristics 

347 associated with intensive land use resulted in higher δ15N values of stream communities, 

348 reduced trophic redundancy (MNND), and increased omnivorous feeding (as suggested by 

349 similar δ15N values between macroinvertebrate predators and primary consumers) and niche 

350 uniformity (SDNND). These findings improve the mechanistic understanding of community 

351 structure and function under the influence of intensive land use.

352 The changes in diets of primary consumers and predators in response to composition of 

353 resources across different land use indicate strong bottom-up control of macroinvertebrate 

354 communities. Such bottom-up control has been reported in various freshwater (Kiffney, 

355 Buhle, Naman, Pess, & Klett, 2014; Shurin, Clasen, Greig, Kratina, & Thompson, 2012), 

356 marine (Capuzzo et al., 2017) and terrestrial (Halvorson, Fuller, Entrekin, Scott, & Evans-

357 White, 2018; Lister & Garcia, 2018) ecosystems. Our results show that the bottom-up effects 

358 of land use may extend beyond individual consumer-resource interactions, and cascade to the 

359 structure of the entire food web. The positive relationship between the standard deviation of 

360 niche measures and the PC1 axis characterised by nutrient inputs suggests that there are less 

361 diverse dietary resources available to consumers, and more homogeneous pathways of energy 
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362 flow to the upper trophic positions at the sites with high nutrient load and lower discharge. 

363 Trophic redundancy among all macroinvertebrate taxa was highest, suggesting more complex 

364 food webs (Cucherousset & Villéger, 2015), at woodland and agricultural sites with low 

365 levels of nutrients and high discharge. In contrast, the urban sites with high nutrient loading 

366 and lower discharges were characterised by having lower trophic redundancy and a more 

367 homogenised energy flow as indicated by higher MNND and SDNND values, respectively. 

368 Local extinctions in ecosystems with low trophic redundancy can lead to a collapse of a 

369 functional group (Mason, Mouillot & Graham 2013) and negatively affect the functioning of 

370 the entire ecosystem (Heilpern, Weeks, & Naeem, 2018; Vinebrooke et al., 2004; Wallace & 

371 Webster, 1996).

372 The nitrogen stable isotope ratios were strongly influenced by catchment land use. In 

373 particular, all trophic groups had higher δ15N values along an increased urban and agricultural 

374 influence, in agreement with other studies (Baumgartner & Robinson, 2017; Pastor et al., 

375 2014). Similar δ15N enrichment of macroinvertebrate consumers can indicate longer food 

376 chains in habitats with higher influence of autochthonous resources of higher nutritional 

377 quality (Lau et al., 2009; Junker & Cross, 2014). However, there was no support for longer 

378 food chains at urban or agricultural sites, potentially due to the weaker influence of 

379 productivity in smaller ecosystems (Ward & Mccann, 2017). Enrichment of basal resources 

380 (Chen, Mcgowan, Zeng, Xu, & Yang, 2017; Cole et al., 2004) and stream organisms 

381 (Harrington, Kennedy, Chamberlain, Blum, & Folt, 1998) in 15N has been also linked to 

382 higher nitrate input (Bergfur, Johnson, Sandin, & Goedkoop, 2009) and can be caused by 

383 sewage-sourced nitrogen pollution and greater inputs of polycyclic aromatic hydrocarbons 

384 (Saito et al., 2008). Whereas the natural and fertilizer sources of nitrogen are generally 

385 depleted in 15N (Risk, Lapointe, Sherwood, & Bedford, 2009), the sewage derived nitrogen 

386 inputs are generally enriched in 15N because of the preferential use of the lighter isotope by 
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387 bacteria during denitrification (Heaton, 1986). The sewage pollution in combination with low 

388 water discharge might have also contributed to the lower trophic redundancy of 

389 macroinvertebrates in some urban sites (Coors & De Meester, 2008; Vinebrooke et al., 2004).

390 The similar δ15N values between macroinvertebrate predators and primary consumers 

391 may be driven by predators feeding predominantly on prey with lower δ15N signature. Some 

392 predators and primary consumers can be omnivorous, which may increase δ15N for primary 

393 consumers or reduce δ15N for predators. Moreover, the basal resources at our sites are 

394 composed of diverse groups that widely vary in δ15N.Furthermore, the urban and agricultural 

395 sites have rapidly changing environmental conditions and rapid shifts in the composition of 

396 basal resources over time (E. L. Price and M. Sertić Perić, personal observation, February 

397 2016 – May 2017). Consequently, the lower δ15N in predators may reflect the discrepancy 

398 between the isotope composition of the rapidly changing resources and the primary and 

399 secondary consumers, especially at these urban and agricultural sites. Commonly assumed 

400 constant trophic enrichment factor between predators and their potential prey is not always 

401 found under the changing field conditions (Post, 2002; Vanderklift & Ponsard, 2003).

402 The changes in land use can alter the composition and availability of dietary resources 

403 for consumers, since higher nutrient loads facilitate the growth of a different community 

404 assemblage (Allan, 2004; Dülger, Heidbüchel, Schumann, Mettler-Altmann, & Hussner, 

405 2017). Whereas high nutrient concentrations likely contributed to the increased population 

406 densities of passive filterers and reduced densities of shredders at our urban sites, large 

407 predaceous Plecoptera (that are sensitive to nutrient pollution) were found at our woodland 

408 sites only (Table S2). Closed canopy cover in woodland sites also led to a reduction in 

409 periphyton primary production and a scarcity of in-stream higher aquatic resources. The 

410 greater contribution of macrophytes to the diets of primary consumers at urban sites reflected 

411 their prevalence at those sites relative to agricultural and woodland sites. Macrophytes can 
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412 reduce the water flow velocity and the total discharge, which agrees with the negative 

413 relationship between discharge and nutrient levels found in our study and elsewhere (Baldy, 

414 Trémolières, Andrieu, & Belliard, 2007; Dodds & Biggs, 2002; Fig. S1a and b). Subsequent 

415 decomposition of macrophytes and their ability to trap fine particles and aquatic organisms 

416 within their roots and stems (Jones, Collins, Naden, & Sear, 2012; Sertić Perić, Miliša, 

417 Kepčija, Primc-Habdija, & Habdija, 2011) further enhances their contribution to the diet of 

418 macroinvertebrates. By removing the epiphytic cover from macrophytes, macroinvertebrate 

419 grazers might further promote their growth (Bronmark, 1985; Sand-Jensen & Borum, 1984). 

420 In agreement with recent findings (Rovira, Alcaraz, & Trobajo, 2016), our work suggests that 

421 intensive land use may increase the role of macrophytes in stream food webs. 

422 The grouping of dietary items, into the higher and lower aquatic resources and 

423 terrestrial resources, can be applied to examine larger-scale ecological patterns in resource 

424 use (Neres-Lima et al., 2017; Phillips, Newsome, & Gregg 2005). We expected terrestrial 

425 resources to be more important at woodland sites as leaf litter dominates the nutrient input of 

426 many forested streams, and the canopy reduces light availability for growth of autochthonous 

427 primary producers (Neres-Lima et al., 2017; Rounick, Winterbourn, & Lyon 1982). However, 

428 besides leaf litter, the terrestrial resources also included terrestrial plants (mainly grasses and 

429 riparian herbaceous plants), which largely contributed to the consumers’ diet at urban and 

430 agricultural sites. The lack of leaf litter and the dominance of riparian grass (i.e. C4 plants) at 

431 the urban sites was further reflected in the absence of macroinvertebrate shredders, which 

432 mainly rely on processing the leaf litter-CPOM (Moog, 2002). Furthermore, considering their 

433 range in δ13C values (-39.4 to -11.4 ‰), primary consumers can switch their diet from 

434 riparian vegetation sources (ranging from -27 ‰ to -13 ‰ within the terrestrial C3 and C4 

435 plants, respectively) to aquatic macrophytes (δ13C range: -27 ‰ to -20 ‰) and periphyton 

436 (δ13C range: -35 ‰ to -18 ‰) (Finlay & Kendall, 2007). This suggests that the herbivorous 
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437 and omnivorous macroinvertebrates can select autochthonous resources, even when terrestrial 

438 food resources are common, which agrees with invertebrate feeding patterns in Danish forest 

439 streams (Friberg & Jacobsen, 1994). 

440 Despite the difference in the dietary sources, macroinvertebrate consumers had similar 

441 overall isotopic variance across the three land use categories. This may indicate that a similar 

442 range of habitats is being exploited by consumers (Rader et al., 2017). However, the measure 

443 of isotopic variance may include some individuals that may have obtained their isotopic 

444 signature from a region with a contrasting land use to the sites where they were sampled. We 

445 must also consider that isotopic estimates of diet contributions can be influenced by non-

446 trophic determinants (Gorokhova, 2017), that dietary estimation can lack reliability when 

447 applied to complex diet mixtures (Nielsen et al., 2018) and is highly sensitive to missing 

448 resources (Phillips et al., 2014). Still, the isotope approach offers a robust space- and time- 

449 integrated overview of diet composition, which gives an insight beyond the limitations of 

450 morphological and molecular faecal and gut analyses. 

451 We provide evidence for the strong influence of land use on δ15N enrichment of 

452 predators, primary consumers and basal resources. Functional and isotopic composition of 

453 basal resources and prey across land use types were reflected at the level of primary 

454 consumers and predators, respectively. This indicates a bottom-up control of food webs 

455 surrounded by intensive agriculture and urban development. More fragile food webs 

456 evidenced by low trophic redundancy in urban zones with high nutrient loads may be less 

457 resistant to ongoing and accelerating global and local environmental change. These findings 

458 demonstrate how alterations to land use reshuffle the flow of biomass and energy through 

459 ecosystems. Human population growth and increasing impacts of urbanization and 

460 agricultural land use across all trophic levels need to be considered in our efforts to 

461 understand, conserve and restore the human-modified ecosystems.
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740 Figure Legends

741 Figure 1. Locations of the fifteen study sites (red crosses) across the region of Zagreb, 

742 Croatia. The dark grey lines indicate the stream network in Zagreb, flowing from the northern 

743 area of Medvednica Nature Park through the human-modified areas and into the River Sava 

744 (thick black line). Text boxes linked to the sites contain information on the land-use category 

745 (W – woodland, A – agricultural, U – urban), altitude (m a.s.l.) and the mean δ15N values of 

746 macroinvertebrates at each site. The coloration of each box corresponds to its mean δ15N 

747 value as indicated by the colour-key.

748

749 Figure 2. (a) Proportional contributions (mean ± SE) of lower aquatic resources (LAR), 

750 higher aquatic resources (HAR) and terrestrial resources to the diets of primary consumers at 

751 urban, woodland and agricultural sites, as calculated by the SI mixing model. (b) Proportional 

752 contributions (mean ± SE) of the detritivores, grazers, shredders, passive filterers, and active 

753 filterers to the diets of macroinvertebrate predators in urban, woodland and agricultural sites. 

754

755 Figure 3. The isotopic variance illustrated as a size of ellipses (SEAc, ‰2) for (a) basal 

756 resources, (b) potential prey, and (c) predators at each site. Red ellipses and symbols 

757 represent urban sites, black ellipses and symbols represent agricultural sites, and green 

758 ellipses represent woodland sites. The ellipses were calculated only for the sites that included 

759 at least five samples from the focal trophic group. Each data point represents one individual 

760 or an accumulation of individuals in one sample where a single specimen did not contain 

761 enough dry weight.

762
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763 Figure 4. Nitrogen stable isotope ratios (δ15N, ‰) of (a) basal resources, (b) potential prey 

764 (primary consumers), and (c) predators across the three land use categories. The box plots 

765 illustrate the median (inner line), the interquartile range of the data (box), and the tails of the 

766 distribution (bars = 1.5 x interquartile range). Capital letters above the box plots denote 

767 treatments (land use categories) not significantly different from each other.

768

769 Figure 5. Relationship between the physico-chemical characteristics, represented by the 

770 Principal Component 1 axis (PC1; Fig. S1a & b) and (a) trophic redundancy (MNND), (b) 

771 standard deviation of niche measures (SDNND), (c) mean δ15N, (d) δ15N range at each site. 

772 The black circles show food-web metrics calculated at each site, the blue line represents a 

773 significant fit of the linear mixed effects model to the data, and the shaded area is the 95% 

774 confidence interval. There was no significant relationship between the PC1 and the δ15N 

775 range (see Results). PC1 explained 51.1% of the variation in the physico-chemical 

776 characteristics at each site, and the concentrations of nitrites, nitrates, orthophosphates, 

777 conductivity and total water hardness were the strongest positive contributors to the PC1 axis.
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SUPPLEMENTARY FIGURES
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Figure S1. (a) The relationship between explanatory variables and the PC1 and PC2 axis for 
physico-chemical parameters. Explained variation (%) refers to how much of the total 
variation in physico-chemical characteristics can be described by each axis. The greater the 
length of the arrow, the greater the contribution of that variable to PC1 and PC2. Coloured 
points represent the relationship of each site with PC1 and PC2. O2 – oxygen concentration 
(mg L-1); temp – water temperature (°C); chlorophyll - chlorophyll-a (Chl a, μg cm-2) 
concentration in periphyton samples. (b) Correlations matrix among explanatory variables 
and the PC1 and PC2 axis for physico-chemical parameters with circle size and colour 
intensity indicating the strength of the correlations.
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Figure S2. The isotopic variance illustrated as a size of ellipses (SEAc, ‰2) for (a) 
detritivores and (b) grazers at each site. Red ellipses and symbols represent urban sites, black 
ellipses and symbols represent agricultural sites, and green ellipses represent woodland sites. 
The ellipses were calculated only for the sites that included at least five samples from the 
focal feeding group.
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SUPPLEMENTARY TABLES

Table S1. Physical and chemical characterization of the sampling sites under the three different land uses; Woodland (W), Agricultural (A) and 
Urban (U). 

Stream Site
Land
use 

Temperature O2 pH COD TWH Nitrite Nitrate Orthophosphate Conductivity  Chlorophyll a Discharge

(° C) (mg L-1) (mg O2 L-1) (mg CaCO3 L-1) (mg L-1)  (mg L-1)  (mg L-1) (µS cm-1)  (µg cm-2) (m3 s-1) 

Vrapčak V1 W 11.7 10.2 7.21 4.64 215.4 0.107 2.629 0.057 365 0.929 3.1 

V2 U 20.8 10.6 7.43 4.01 225.2 0.114 3.611 0.064 331 0.499 3.0 

V3 U 22.9 13.6 8.32 4.52 235.9 0.121 4.070 0.082 287 1.026 1.7 

Kustošak K1 W 12.9 9.7 7.31 2.00 283.9 0.249 5.305 0.169 674 0.000 0.5 

K2 U 24.6 8.2 8.05 6.99 298.2 0.458 6.629 0.267 660 3.167 0.6 

K3 U 26.1 15.9 8.35 5.42 287.5 0.392 6.152 0.229 636 4.114 0.8 

Veliki potok VP1 W 12.6 9.5 8.68 2.79 188.7 0.141 3.552 0.038 409 0.453 1.3 

VP2 U 16.7 9.7 8.85 3.85 197.6 0.147 4.394 0.192 476 1.391 2.4 

VP3 U 19.0 13.3 8.84 3.22 215.4 0.154 2.917 0.030 507 1.098 0.7 

Bliznec B1 W 10.4 10.2 8.51 7.23 211.8 0.097 1.820 0.050 367 1.010 2.0 

B2 A 12.2 10.7 8.45 3.65 222.5 0.130 5.405 0.102 445 3.897 4.2 

B3 A 13.4 10.3 8.33 4.32 233.2 0.143 4.941 0.060 476 1.267 4.8 

Trnava T1 W 14.1 9.7 8.10 2.04 145.1 0.102 2.082 0.112 261 1.281 3.1 

T2 A 16.3 9.7 7.87 1.93 147.7 0.093 1.776 0.108 332 0.000 5.0 

T3 A 18.9 10.6 8.17 2.12 151.3 0.105 2.023 0.097 278 1.184 8.7 
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Table S2. Taxonomic information and functional feeding groups (FFG) of stream 
macroinvertebrates found at each site and the respective land use.  SHR – shredders, GRA – 
grazers, DET – detritivores, AFIL – active filterers, PFIL – passive filterers, PRE – predators. 
Land use: W – woodland, A – agricultural, U – urban. For the site codes and locations refer 
to Fig. 1 and Materials and Methods. 

CLASS/ORDER/Family Subfamily/Genus/Species FFG Site Land use
PLATYHELMINTHES

Tricladida Polycelis felina PRE B2, T3, V1, VP1 W, A

GASTROPODA
   Lymnaeidae Pseudosuccinea columella GRA B3, T2 A

Stagnicola sp. GRA VP3, K3, V2 U
   Physidae Physa sp. GRA K2 U

BIVALVIA
   Sphaeriidae Pisidium sp. AFIL K2 U

OLIGOCHAETA
   Lumbricidae Eiseniella tetraedra DET B2, K2, T2, VP2 A, U

HIRUDINOMORPHA Hirudinomorpha gen. sp. PRE B2 A

AMPHIPODA
   Gammaridae Gammarus fossarum SHR B1, B2, K1, T1, T2, T3, V1, VP1 W, A

ISOPODA
Asellidae Asellus aquaticus DET B3, K3, V2, V3 A, U

COLEOPTERA
   Elmidae Elmidae gen. sp. GRA T1 W

DIPTERA
Athericidae Atherix sp. PRE T1 W

Ibisia marginata PRE T1, VP1 W
   Ceratopogonidae Ceratopogonidae gen. sp. PRE B3 A
   Chironomidae Chironomini gen. sp. DET K3, V3 U

Chironomus sp. DET B2, B3, V3, VP2, VP3, K2, T2, T3, V2 A, U
Orthocladiinae gen. sp. GRA/DET B2, B3, K3, V3 A, U
Tanypodinae gen. sp. PRE K2, T2, T3, V2, VP2 A, U
Tanytarsni gen. sp. DET VP3 U

   Limoniidae Limoniidae gen. sp. PRE K1, K2 W, U
Limnophila sp. PRE B1 W

   Pediciidae Dicranota sp. PRE T1 W
   Simuliidae Prosimulium sp. PFIL T2, T3 A

Simulium sp. PFIL B2, B3, K2, T1, T2, V1, V2 W, A, U
Tipulidae Tipulidae gen. sp. SHR T2, T3, VP3 A, U

EPHEMEROPTERA
   Baetidae Baetis sp. GRA/DET B1, B3, VP1, VP2, T1, V1 W, A, U

Centroptilum luteolum GRA/DET K1, T3 W, A
Procloeon sp. DET B2, VP1 W, A

   Caenidae Caenis sp. DET B3, T2, V3 A
   Ephemerellidae Ephemerella sp. GRA/DET B1 W
   Ephemeridae Ephemera sp. AFIL VP2 U
   Heptageniidae Ecdyonurus sp. GRA/DET B1, K1, T1, VP1 W

Heptagenia sp. GRA/DET VP1 W
Rhitrogena sp. GRA T3, VP1 W, A

HETEROPTERA
   Nepidae Ranatra sp. PRE V2 U

ODONATA
Aeshnidae Aeshnidae gen. sp. PRE V2 U

   Calopterygidae Calopteryx sp. PRE V3 U
   Coenagrionidae Coenagrion sp. PRE V2, V3 U
   Cordulegastridae Cordulegastridae gen. sp. PRE T1, T3 W, A
   Gomphidae Onychogomphus forcipatus PRE B1, T3, V3, VP2, VP3 W, A, U
   Platycnemididae Platycnemis pennipes PRE V3 U

PLECOPTERA
   Chloroperlidae Chloroperla sp. PRE VP1 W
   Perlidae Perla sp. PRE B1, VP1, T1 W

TRICHOPTERA
   Hydropsychidae Hydropsyche sp. PFIL B2, B3, T1, T2, T3, VP3, K1 W, A, U
   Limnephilidae Drusus sp. GRA T1 W

Limnephilidae gen. sp. SHR VP1 W
   Rhyacophilidae Rhyacophila sp. PRE V1, B2, T2 W, A
   Sericostomatidae Sericostoma sp. SHR B2 A

Presence
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Table S3. The isotopic variance illustrated as a size of ellipses (SEAc, ‰2) for all potential prey (primary consumers), predators, basal 
resources, detritivores and grazers per each site. We only calculated the ellipses for trophic and feeding groups that included at least five 
samples from the same site.

SEAc 
PREY

SEAc
PREDATORS

SEAc 
RESOURCES

SEAc 
DETRITIVORES

SEAc 
GRAZERSSite

Land Use (‰2) (‰2) (‰2) (‰2) (‰2)
B1 Woodland 5.57 1.25 9.02 1.70 1.94
B2 Agricultural 8.52 2.77 22.45 1.74 7.46
B3 Agricultural 7.00 1.46 45.14 7.46 2.42

VP1 Woodland 9.27 0.23 25.29 0.98 1.54
VP2 Urban 5.18 1.62 66.30 6.29 NA
VP3 Urban 3.50 NA 27.19 0.39 1.66
T1 Woodland 5.69 8.61 30.43 NA 2.09
T2 Agricultural 9.73 0.88 17.05 4.10 NA
T3 Agricultural 3.52 2.63 46.85 0.18 0.61
K1 Woodland 11.22 NA 57.40 12.80 NA
K2 Urban 108.21 0.61 60.63 38.91 NA
K3 Urban 5.14 NA 39.09 3.25 NA
V1 Woodland 5.19 0.14 42.22 NA 0.39
V2 Urban 7.45 5.32 74.31 9.77 NA
V3 Urban 3.40 1.26 59.43 3.30 NA
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Table S4. Trophic metrics of each food web at all 15 sites at the three land use types in the surrounding catchments. The metrics for each 
network are δ15N range (NR), δ13C range (CR), total convex hull area (TA), mean distance to centroid (CD), mean distance to nearest 
neighbour (NND) and standard deviation of nearest neighbour distance (SDNND).

Site Land Use NR CR NND SDNND
B1 Woodland 3.07 6.76 0.3895269 0.2644774
B2 Agricultural 8.84 6.53 0.3976789 0.4733168
B3 Agricultural 5.2 8.26 0.4580102 0.3451934

VP1 Woodland 4.62 9.6 0.2549206 0.2205836
VP2 Urban 5.23 4.05 0.3807053 0.2737085
VP3 Urban 4.81 2.28 0.453063 0.537001
T1 Woodland 4.52 12.44 0.4078513 0.3500275
T2 Agricultural 9.56 5.27 0.3908846 0.2643519
T3 Agricultural 3.76 4.51 0.3160091 0.2800542
K1 Woodland 2.67 16.62 0.4575171 0.3869496
K2 Urban 15.08 23.28 0.7743367 0.9074948
K3 Urban 4.49 3.1 0.6205092 0.4354267
V1 Woodland 1.93 5.83 0.4245844 0.2662198
V2 Urban 6.92 8.75 0.6296454 0.6474061
V3 Urban 5.71 4.24 0.4890857 0.4229855
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Table S5. Results of Principal Component Analysis showing how much of the total variation can be explained by each PC axis (1-6), and the 
loadings of each physico-chemical parameter within each PC. Positive values and their corresponding parameters are inversely related to 
those with negative values. 

PC1
(51.1 %)

PC2
(15.5 %)

PC3
(10.6 %)

PC4
(9.5 %)

PC5
(5.8 %)

PC6
(2.8 %)

Temperature (° C) 0.27 0.35 -0.29 -0.46 0.43 -0.22
O2 (mg L-1) 0.14 0.59 0.25 -0.45 -0.28 0.02
pH 0.02 0.55 0.27 0.63 0.33 -0.26
Total water hardness (mg CaCO3 L-1) 0.39 -0.17 0.22 -0.16 -0.29 -0.17
Nitrite (mg L-1) 0.42 -0.08 -0.13 0.00 0.18 0.04
Nitrate (mg L-1) 0.40 -0.07 -0.02 0.15 -0.28 -0.33
Orthophosphate (mg L-1) 0.35 -0.11 -0.43 0.10 0.35 0.22
Conductivity (μS cm-1) 0.38 -0.22 0.18 0.17 -0.04 -0.35
Chlorophyll a (μg cm-2) 0.30 0.33 -0.26 0.32 -0.44 0.54
Discharge (m3s-1) -0.26 0.13 -0.66 0.08 -0.35 -0.53
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Table S6. Linear mixed effects model summary statistics for the effect of land use type on the mean carbon (δ13C) and nitrogen (δ15N) stable 
isotope ratios for individual trophic groups. Individual sites were treated as a random effect.

Treatment Statistics P-value
Resources δ13C F2, 12 = 3.01 0.090
Prey δ13C F2, 12 = 3.56 0.061
Predators δ13C F2, 9 = 1.89 0.207
Detritivores δ13C F2, 10 = 0.44 0.657
Grazers δ13C F2, 12 = 5.04 0.026
Detritivores δ15N F2, 10 = 6.08 0.019
Grazers δ15N F2, 12 = 9.71 0.003
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Table S7. Linear mixed effects model summary statistics for the effect of physico-chemical site characteristics, represented by the PC2, on 
the low level of trophic redundancy indicated by high MNND, the uniformity of niche measures SDNND, the mean δ15N and the δ15N range. 
Individual sites were treated as a random effect.

Treatment Statistics P-value
MNND F1, 13 = 0.12 0.734
SDNND F1, 13 = 0.08 0.778
mean δ15N F1, 13 = 2.31 0.152
δ15N range F1, 13 = 0.04 0.837
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