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Abstract

Researchers have examined crowd behaviour in the past by employing a variety of methods
including ethnographic studies, computer vision techniques and manual annotation-based
data analysis. However, because of the resources to collect, process and analyse data, it
remains difficult to obtain large data sets for study. Mobile phones offer easier means for
data collection that is easy to analyse and can preserve the user’s privacy. The aim of this
thesis is to identify and model different qualities of social interactions inside crowds using
mobile sensing technology. This Ph.D. research makes three main contributions centred
around the mobile sensing and crowd sensing area.

Firstly, an open-source licensed mobile sensing framework is developed, named Sens-
ingKit, that is capable of collecting mobile sensor data from iOS and Android devices,
supporting most sensors available in modern smartphones. The framework has been eval-
uated in a case study that investigates the pedestrian gait synchronisation phenomenon.

Secondly, a novel algorithm based on graph theory is proposed capable of detecting
stationary social interactions within crowds. It uses sensor data available in a modern
smartphone device, such as the Bluetooth Smart (BLE) sensor, as an indication of user
proximity, and accelerometer sensor, as an indication of each user’s motion state.

Finally, a machine learning model is introduced that uses multi-modal mobile sensor
data extracted from Bluetooth Smart, accelerometer and gyroscope sensors. The vali-
dation was performed using a relatively large dataset with 24 participants, where they
were asked to socialise with each other for 45 minutes. By using supervised machine
learning based on gradient-boosted trees, a performance increase of 26.7% was achieved
over a proximity-based approach. Such model can be beneficial to the design and imple-
mentation of in-the-wild crowd behavioural analysis, design of influence strategies, and
algorithms for crowd reconfiguration.



Declaration

I, Kleomenis Katevas, confirm that the research included within this thesis is my own
work or that where it has been carried out in collaboration with, or supported by others,
that this is duly acknowledged below and my contribution indicated. I attest that I have
exercised reasonable care to ensure that the work is original, and does not to the best of
my knowledge break any UK law, infringe any third party’s copyright or other Intellectual
Property Right, or contain any confidential material. I accept that the College has the
right to use plagiarism detection software to check the electronic version of the thesis. I
confirm that this thesis has not been previously submitted for the award of a degree by
this or any other university.

The copyright of this thesis rests with the author; no quotation from it or information
derived from it may be published without the prior written consent of the author.

Kleomenis Katevas
November 20, 2018



Dedicated to Evi,
for her love and continuous support

throughout this journey.



Acknowledgements

First and foremost, I would like to thank my two supervisors for their valuable guidance
and support through all these years. I thank Laurissa Tokarchuk for her phenomenal
support, wise guidance, for helping me grow in the scientific community and for always
encouraging me to try something new and different. I thank Hamed Haddadi for his pas-
sion and excitement, insightful feedback, and for giving me the opportunity to collaborate
with some of the top people in the field.

I am grateful to Martin Pielot, for being a mentor and friend to me during my two
summer internships at Telefónica Research in Barcelona. Special thanks to my good
friends and collaborators there, Ioannis Arapakis, Ilias Leontiadis and Joan Serrà, for
teaching me so much about research.

I also thank the members of the Cognitive Science research group. Pat Healey for intro-
ducing me to the world of research. Katrin Hänsel, Daniel Gabana Arellano, Alessio Xom-
pero, Mohammad Malekzadeh, Antonella Mazzoni, Lida Theodorou and Jeni Maleshkova,
for being the best Ph.D. officemates and collaborators. Richard Clegg from the Networks
research group for his ideas and insightful feedback and Akram Alomainy from Antennas
& Electromagnetics research group for his inspiring discussions.

I sincerely thank my examiners, Mirco Musolesi and Ioannis Patras, for their construc-
tive and insightful comments on my thesis during my viva.

Last, and most importantly, to my family and friends for their love and support all
these years.

This work was supported by funding from the UK Defence Science & Technology
Laboratory (DSTL).



Contents

1 Introduction 11
1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Objectives and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Novelty and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background and Related Work 19
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Mobile Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Available Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Available Virtual Sensors . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Motion Co-Processors . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 Sensing in the Background . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.6 Continuous Sensing Platforms . . . . . . . . . . . . . . . . . . . . . 26

2.3 Crowd Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Detecting Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Detecting Walking Social Interactions . . . . . . . . . . . . . . . . 28
2.3.3 Detecting Stationary Social Interactions . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 SensingKit – A Multi-Platform Mobile Sensing Framework 34
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 SensingKit Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 CrowdSense App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Evaluation of Battery Consumption . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Pilot Study: Analysing Pedestrian Behaviour . . . . . . . . . . . . . . . . 41

3.5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 44



3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Towards Detecting Social Interactions 50
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Preliminary Study in Detecting F-formations . . . . . . . . . . . . . . . . . 55

4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Sensor Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.5 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.6 The DetecTN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Detecting Social Interactions 65
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Evaluating the Effect of Proximity in the RSSI . . . . . . . . . . . 67
5.2.2 Evaluating the Effect of Body Orientation in the RSSI . . . . . . . 68

5.3 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Sensor Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Target Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.4 Normalised Inverted Proximity . . . . . . . . . . . . . . . . . . . . 77
5.4.5 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.7 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.3 Normalise Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.4 Performance Per Participant . . . . . . . . . . . . . . . . . . . . . . 85
5.5.5 Sensor Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



5.5.6 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.7 Probabilistic Threshold Choice . . . . . . . . . . . . . . . . . . . . 87

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6.1 Battery Consumption Implications . . . . . . . . . . . . . . . . . . 89
5.6.2 Privacy Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion and Future Work 91
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 94

A QMUL Ethics Committee Approval 105

B Featured Work 109
B.1 SensingKit framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 Walking in Sync work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.3 Group Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Proximity Evaluation Plots 111

D Model Tuning Performance 113

E SensingKit Developer Instructions 115
E.1 SensingKit for Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
E.2 SensingKit for iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

F Source Code 120



List of Figures

2.1 Illustration of a Sensor Fusion technique . . . . . . . . . . . . . . . . . . . 25
2.2 Example of F-formations in real-world . . . . . . . . . . . . . . . . . . . . 30

3.1 SensingKit System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 CrowdSense App for iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Battery consumption of SensingKit in iOS . . . . . . . . . . . . . . . . . . 39
3.4 Acceleration magnitude and autocorrelation . . . . . . . . . . . . . . . . . 45
3.5 Pearson correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Cross-correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Pearson-correlation applied to windows of 1 sec . . . . . . . . . . . . . . . 47

4.1 Bluetooth Smart RSSI box plot . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Evaluation of distance estimation models . . . . . . . . . . . . . . . . . . . 55
4.3 Floor plan of the Performance Lab at QMUL . . . . . . . . . . . . . . . . 57
4.4 ELAN manual annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Overview of the DetecTN algorithm . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Heat map reporting the performance of the DetecTN algorithm . . . . . . 62

5.1 Measuring the effect of proximity on iBeacon™ signal. . . . . . . . . . . 68
5.2 Measuring the effect of body orientation on iBeacon™ signal . . . . . . . 69
5.3 Heat map visualisation of the effect of body orientation in iBeacon™ signal. 70
5.4 Examples of different body orientations . . . . . . . . . . . . . . . . . . . . 71
5.5 Floor plan of the Performance Lab at QMUL . . . . . . . . . . . . . . . . 73
5.6 Performance of NPC and NIP baselines . . . . . . . . . . . . . . . . . . . . 83
5.7 General performance of XGBoost classifier . . . . . . . . . . . . . . . . . . 84
5.8 Performance of XGBoost classifier using normalisation . . . . . . . . . . . 84
5.9 Performance of XGBoost classifier per participant . . . . . . . . . . . . . . 85
5.10 Sensor importance of XGBoost classifier . . . . . . . . . . . . . . . . . . . 86

B.1 System Design of the demo presented in ACM MobiSys 2017. . . . . . . . 110

C.1 Measuring the effect of proximity on iBeacon™ signal. . . . . . . . . . . 112

9



List of Tables

2.1 Continuous Sensing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 SensingKit Supported Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 SensingKit evaluation: Device Specification . . . . . . . . . . . . . . . . . 39
3.3 Battery consumption of SensingKit in iOS . . . . . . . . . . . . . . . . . . 40
3.4 Device Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Demographic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Groups Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Participant demographic information. . . . . . . . . . . . . . . . . . . . . . 56
4.2 Scenes with group formations tested during the experiment. . . . . . . . . 58
4.3 Confusion matrix reporting the performance of the DetecTN algorithm . . 62

5.1 List of the features used in the data analysis. . . . . . . . . . . . . . . . . 78
5.2 Feature importance of XGBoost classifier . . . . . . . . . . . . . . . . . . . 87
5.3 Confusion matrix reporting the performance of the XGBoost classifier . . . 88
5.4 Confusion matrix reporting the performance of NIP . . . . . . . . . . . . . 88

D.1 Parameter Tuning for Logistic Regression model . . . . . . . . . . . . . . . 113
D.2 Parameter Tuning for Random Forest model . . . . . . . . . . . . . . . . . 113
D.3 Parameter Tuning for XGBoost model . . . . . . . . . . . . . . . . . . . . 113
D.4 Detailed Parameter Tuning for XGBoost model . . . . . . . . . . . . . . . 114

10



Chapter 1

Introduction

1.1 Motivation and Scope
It is well known that crowds share common behavioural patterns. For example, pedes-
trian flocks inside a crowd tend to move together as a unit; group members walk at the
same speed, follow the same goals and when they become separated, they tend to reform
their group [64]. Similar social interactions exist on stationary groups with two or more
participants, known as F-formations. These groups orient their bodies is such ways that
they have equal and direct access with each other [38].

Researchers have examined crowd behaviour in the past by employing a variety of
methods including ethnographic studies [79, 19, 90], computer vision techniques [54, 87, 6]
and manual annotation-based data analysis [26, 15]. Despite the evidential validity of the
results, the scale and the sample were limited due to the resources required to compile,
process and analyse the data. More precisely, the use of video cameras as a medium for
data collection constitutes a major constraint. Camera surveillance infrastructure can be
expensive and is not available everywhere, especially when the requirement is to monitor
a spontaneous event such as a riot. Monitoring the video feed manually requires huge
amount of man power and can be prone to human errors. Moreover, the use of computer
vision systems can be computationally expensive as lots of processing power per video
feed is required.

The emergence of mobile sensing technology provides a unique set of capabilities to
overcome those limitations. While the first mobiles were primarily used as communication
devices, modern smartphones are a ubiquitous part of people’s lives and offer the ability to
non-intrusively capture high quality sensor data such as the motion, orientation or location
of the individual. In addition, modern smartphones come equipped with fast processing
power, large memory and highly available wireless connectivity. With the existence of
application distribution channels such as the Apple App Store and the Google Play Store,
researchers can distribute applications and collect large-scale data in ways that previously
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were not possible. This includes information about an individual, a group of people or
entire communities such as crowds [43].

In the last few years there have been several attempts to examine human crowd be-
haviour automatically using mobile sensing technology. Wirz et al. [96] proposed an
on-line method for detecting pedestrian flocks using GPS traces. Roggen et al. [82] devel-
oped a framework that only uses one on-body accelerometer sensor installed on each user’s
hip as a simulation of a phone placed in the user’s trouser pocket. Kjærgaard et al. used
a combination of various mobile sensors (i.e. accelerometer, compass and WiFi) in order
to detect pedestrian flocks from crowds with an accuracy of up to 87%. All previously
mentioned works only focus on detecting the social interactions of walking pedestrians,
excluding stationary interactions (i.e. standing interactions between two or more par-
ticipants) that are more likely to happen in planned events such as social gatherings or
networking events.

Matic et al. [51] presented a solution for detecting stationary interactions using the
smartphone’s WiFi and magnetometer sensors, together with an external accelerometer
sensor installed on each user’s chest as an indication of the user’s speech status. Mon-
tanari et al. [57] created a wearable device that uses near-infrared light to measure the
user proximity and relative orientation for measuring interaction proxemics. Both works
depend on external hardware, making the distribution of such technology difficult to be
used in larger social gatherings.

Palaghias et al. [65] presented a system for identifying social interactions in real-world
scenarios using sensors available in the user’s smartphone (i.e. Bluetooth, accelerometer
and magnetometer). In contrast to all previously mentioned works, this approach only
uses the user’s smartphone as a data source, with no other external hardware or cloud-
based infrastructure required to be present. One of the main limitations of this work is that
it has only been evaluated in an artificial environmental setting with eight participants
performing one-to-one interactions, using human observations as ground truth. Moreover,
the trained model would only work with users having the specific device model used in
the study (HTC One S). Currently there is no research the author is aware of that uses a
sensor based automated method to identify dynamic groups (i.e. social groups that their
size changes over time) of variety of sizes that is not device dependent.

Considering the limitation of the presented related work, the motivation of this re-
search is expressed by the following research questions:

1. How can we detect stationary social interactions happening in planned events using
mobile sensing technology?

2. Which sensors are the most appropriate for answering Research Question 1?

Answering the research questions stated above will allow us to understand specific
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characteristics and behaviours from groups within crowds in a fully automated way. Fur-
thermore, it can enable the identification of socially influential individuals. This can be
very useful in cases of emergency as pedestrians can receive personalised information of
how to evacuate a building in the most efficient way.

1.2 Objectives and Challenges
The aim of this research is to identify and model different qualities of social interactions
of groups inside crowds. This will be achieved by exploring different types of mobile
sensors such as accelerometer, gyroscope, and Bluetooth. It is important to mention that
this research will only focus on individuals aged from 18 to 60 and will exclude children
and older people as the dynamics of such crowds can be significantly different. Moreover,
it will focus on individuals living in Northern Europe (London, UK) as interpersonal
distance, body orientation and touching behaviour can differ based on cultural background
differences [80]. Finally, it will only focus on planned events such as exhibitions and
conferences and will not explore unplanned events like riots or protests. The reason
behind this decision is that it is unrealistic to organise an experiment that takes place in
unplanned events because of its spontaneous nature. It is expected that people will be less
likely to install an application that collects sensor data from their personal device while
being on a riot or protest. It is however expected that this work will have implication to
any group socially engaged in unplanned events as some of the crowd characteristics are
similar.

To achieve the aim of this research, the following objectives have been defined:

1. Design and implement a mobile application that will allow the automated collection
of mobile sensor data from crowds.

2. Conduct an initial experiment in order to understand the pedestrian behaviour and
walking patterns while existing in a group.

3. Explore the sensors that are appropriate for detecting stationary social interactions
through a controlled case study.

4. Conduct a larger study in a natural environment in order to identify ways of de-
tecting stationary social interactions.

In order to achieve the objectives presented above, the following challenges need to be
addressed:

1. One main challenge of this research is accessing the participants in an organised
case study. Requesting access to people’s mobile phone can be hard as it highly
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depends on the people willingness to share their data. Concerns about the privacy
of the data collection, or the battery life of their devices might discourage people
from participating on this experiment. However according to Wirz et al. [95], people
are open to share their data as long as they receive some benefits from it or if they
realise that sharing such information is for their own good and safety. Thus, the
benefits of such research need to be clearly communicated with the participants.
Moreover, data collection should be anonymised before publishing the dataset for
protecting the user’s privacy.

2. Another important challenge in real-world experiments is establishing an accurate
ground truth. Researchers have been using various methods to solve this, such as
using annotations from human observers or post analysis of audio/video recordings.
These methods can be time consuming, prone to human error and are hard to
scale in larger environments. Other solutions are the use of experience sampling
questionnaires, a method that is easier to scale in larger studies but is subjective to
each user’s responses.

3. The battery consumption of the mobile application during the sensor data collection
is a factor that highly affects the success of this research. According to Lane et
al. [43], “Mobile phones cannot be overloaded with continuous sensing commitments
that undermine the performance of the phone”. Since some of the sensors such as
the GPS or the gyroscope require a lot of processing power, the battery life of the
smartphones will be limited. Thus, the impact on the battery life of each sensor
as well as the optimal choice for achieving the objectives of this thesis should be
investigated.

1.3 Novelty and Contribution
According to the objectives presented in Section 1.2, the main contributions of this re-
search are the following:

1. SensingKit, an open-source licensed mobile sensing framework suitable for capturing
sensor data from smartphone devices. Unlike other existing platforms, explained in
more details in Section 2.2.6, this framework is cross-platform and covers the major-
ity of today’s mobile operating systems (i.e. Apple’s iOS and Google’s Android). It
uses the same Application Programming Interface (API) for both versions, making
it easy for researchers to build cross-platform apps to support their studies. It also
includes device proximity capabilities using features of the Bluetooth Low Energy
(BLE) standard. Finally, all data timestamps are based on the device’s CPU time
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base register rather than the system’s clock to avoid timing issues when the clock
changes.

2. The DetecTN algorithm, a novel algorithm based on graph theory that is capable of
detecting stationary social interactions within crowds. It uses sensor data available
in a modern smartphone device, such as the Bluetooth Smart (BLE) sensor, as
an indication of user proximity, and accelerometer sensor, as an indication of each
user’s motion state.

3. A probabilistic machine learning model that uses multi-modal mobile sensor data
extracted from Bluetooth Smart, accelerometer and gyroscope sensors for detecting
stationary interactions inside crowds. The validation was performed using a rela-
tively large dataset with 24 participants socially interacting in a natural setting for
45 minutes. This rich data set will also be made available after the submission of
this thesis.

1.4 List of Publications
During the course of this Ph.D. research, the following papers were published (in reverse-
chronological order).

Publications related to this dissertation:

• Finding Dory in the Crowd: Detecting Social Interactions using Multi-Modal Mobile
Sensing.
Kleomenis Katevas, Katrin Hänzel, Richard Clegg, Ilias Leontiadis, Hamed Had-
dadi, Laurissa Tokarchuk.
Work is under review.

• Demo: Detecting Group Formations using iBeacon Technology [36].
Kleomenis Katevas, Laurissa Tokarchuk, Hamed Haddadi, Richard G. Clegg, Muham-
mad Irfan.
ACM MobiSys 2017, Niagara Falls, NY, USA, June 2017.

• Detecting Group Formations using iBeacon Technology [33].
Kleomenis Katevas, Hamed Haddadi, Laurissa Tokarchuk, Richard G. Clegg.
4th International Workshop on Human Activity Sensing Corpus and Application
(HASCA 2016) in conjunction with ACM UbiComp 2016, Heidelberg, Germany,
September 2016.

• SensingKit: Evaluating the Sensor Power Consumption in iOS Devices [32].
Kleomenis Katevas, Hamed Haddadi, Laurissa Tokarchuk.
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12th International Conference on Intelligent Environments (IE’16), London, UK,
September 2016.

• Walking in Sync: Two is Company, Three’s a Crowd [30].
Kleomenis Katevas, Hamed Haddadi, Laurissa Tokarchuk, Richard G. Clegg.
2nd Workshop on Physical Analytics (WPA) in conjunction with ACM MobiSys
2015, Florence, Italy, May 2015.
Brendan Murphy prize for presenting this work at the 2015 Next Generation Net-
working, Multi-Service Networks workshop, in July 2015.

• Poster: SensingKit – A Multi-Platform Mobile Sensing Framework for Large-Scale
Experiments [28].
Kleomenis Katevas, Hamed Haddadi, Laurissa Tokarchuk.
Extended abstract, ACM MobiCom 2014, Maui, Hawaii, September 2014.
Best poster award for presenting this work at the 2015 Marconi Society Symposium
– “The Future Infrastructure of the Internet of Things”, Paul Baran Young Scholars
Poster Session, in October 2015.

Other publications published during the course of this research but are not part of the
thesis:

• Typical Phone Use Habits: Intense Use Does Not Predict Negative Well-Being [37].
Kleomenis Katevas, Ioannis Arapakis, Martin Pielot
ACM MobileHCI ’18, Barcelona, Spain, September 2018.

• Continual Prediction of Notification Attendance: Classical Versus Deep Network
Approaches [34].
Kleomenis Katevas, Ilias Leontiadis, Martin Pielot, Joan Serrà.
arXiv preprint arXiv:1712.07120. 2017 Dec 19.

• Beyond Interruptibility: Predicting Opportune Moments to Engage Mobile Phone
Users [68].
Martin Pielot, Bruno Cardoso, Kleomenis Katevas, Joan Serrà, Aleksandar Matic,
Nuria Oliver.
ACM UbiComp 2017 (IMWUT), Maui, Hawaii, September 2017.

• Practical Processing of Mobile Sensor Data for Continual Deep Learning Predic-
tions [35].
Kleomenis Katevas, Ilias Leontiadis, Martin Pielot, Joan Serrà.
1st International Workshop on Embedded and Mobile Deep Learning in conjunction
with ACM MobiSys 2017, Niagara Falls, NY, USA, June 2017.
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• Robot Comedy Lab: Experimenting with the Social Dynamics of Live Performance [31].
Kleomenis Katevas, Patrick G.T. Healey, Matthew Tobias Harris.
Frontiers in Psychology 6, 2015.

• Robot Stand-up: Engineering a Comic Performance [29].
Kleomenis Katevas, Patrick G.T. Healey, Matthew Tobias Harris.
Proceedings of the 2014 Workshop on Humanoid Robots and Creativity at the
2014 IEEE-RAS International Conference on Humanoid Robots (Humanoids 2014),
Madrid, Spain, November 2014.

1.5 Report Structure
The rest of this report is organized as follows:

Chapter 2, Background and Related Work, presents a review of the literature of this re-
search. It describes previous researches that have been carried out in the mobile sensing
area as well as the difficulties faced when using mobile phones for sensor data gather-
ing. Finally, it presents an overview of crowd sensing techniques and the related works
that have been conducted in the research area of detecting walking and stationary social
interactions.

Chapter 3, SensingKit – A Multi-Platform Mobile Sensing Framework, outlines the
implementation and design details of SensingKit, an open-source framework for iOS and
Android environments that is capable of accessing sensor data from mobile devices. It
continuous with an evaluation of the power consumption of the framework while collecting
data from various sensors, including motion, orientation, and location sensors. It also
presents CrowdSense App, a cross-platform mobile sensing app that is capable of capturing
all sensor data supported by SensingKit and save it into the device’s memory in Comma-
Separated Values (CSV) format. Finally, it concludes with a pilot study that investigates
the phenomenon of gait synchronisation that is happening when groups of people walk
together.

Chapter 4, Towards Detecting Social Interactions, presents the experimental design
of a preliminary study that analysis stationary social interactions. It begins with an
evaluation of three models for estimating the proximity between smartphone devices with
the use of Bluetooth Smart sensor. It continues with the presentation of DetecTN, an
algorithm for detecting stationary social interactions using Bluetooth and accelerometer
sensor data. It concludes with an evaluation of the algorithm and presentation of the
results and implications of this approach.

Chapter 5, Detecting Social Interactions, proposes a supervised machine learning
model for detecting stationary interactions by analysing information extracted from mul-
tiple mobile sensors. It is an enhanced version of the DetecTN algorithm presented in
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Chapter 4, evaluated in a relatively large dataset with 24 participants interacting for a
total duration of 45 minutes.

Chapter 6, Conclusion and Future Work, presents a summary of all findings reported
in the previous chapters and suggests the direction for future research.
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Chapter 2

Background and Related Work

2.1 Overview
This chapter surveys the literature that is relevant to this Ph.D. research. It begins with
a review of mobile sensing technology that focuses on motion, orientation, location and
proximity sensing techniques. In addition, it outlines the difficulties and limitations of the
described sensors. Finally, it discusses relevant research that has been conducted in the
Crowd Sensing area, including the social engagement in moving or stationary crowds.

2.2 Mobile Sensing
Mobile sensing is the research area that uses mobile sensors collectively from an indi-
vidual or across multiple scales to obtain information about the human characteristics
and behaviour [43]. During the last few years, the research area of mobile sensing be-
came more and more popular. The main reason behind this is that smartphones are now
equipped with advanced mobile sensors that can measure our motion, location, orienta-
tion, or even external environmental properties such us the temperature or the humidity
of the environment. The mobile platforms provide Application Programming Interfaces
(APIs) to the developers, allowing access to most of these sensors. Another reason is that
the devices now have advanced computational and storage capabilities, allowing us to
do data processing (e.g. activity recognition, language processing) inside the smartphone,
something that was not possible in the past years. Finally, using the application delivery
channels such as the Apple App Store or the Google Play Sore, researchers can distribute
applications to a large number of users and conduct studies in a much larger scale.

Lane et al. [43], in their thorough survey paper described different sensing scales that
are possible through mobile sensing, named Personal Sensing, Group Sensing and Com-
munity Sensing. The Personal Sensing category represents the application that focuses
on the individual, like activity recognition, exercise tracking or healthcare applications.
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In Group Sensing we categorise applications that focus on groups of people with common
interests (e.g. small communities). Finally, in Community Sensing we find applications
that measure an entire community like a city (urban-scale sensing).

Knowing when to start the data collection from mobile sensors is also a tricky task
in mobile sensing area. The most straight forward way of starting the data collection is
when the user decides to enable the sensing application, a method called Participatory
Sensing [88]. The advantage of using this method is that the user has the knowledge of
when the sensing process began or ended and has the option of sharing the data or not [44].
In Opportunistic Sensing [10], the smartphone starts the sensing procedure automatically,
based on triggers set by the developer. For instance, the device might use the ambient
light sensor to identify when the user uses the smartphone in an outdoor environment,
and only then start collecting GPS localisation data. The obvious benefit of using this
method is improved battery efficiency, but less control in sharing the data.

2.2.1 Available Sensors

In this section, an overview is given of the most popular sensors in smartphones, its
sensing capabilities as well as some of its current use in the research context. This section
also provides information about the accessibility of these sensors in Android and iOS, two
of the most popular mobile operating systems today.

Camera

Most mobile devices have at least one camera that is capable of recording images in real-
time. It is mainly used for capturing video or photographs. In addition, researchers often
use this sensor to provide Augmented Reality capabilities in mobile applications. Both
Android and iOS provide extensive access to the cameras.

Microphone

Microphone is the sensor that collects audio from the environment by converting the
sound into electrical signal. Some modern smartphones have a second microphone that is
used to perform noise cancellation in noisy environments. Both Android and iOS provide
access to the microphone.

Accelerometer

Accelerometer is a sensor that is widely used in the smartphone industry. It measures the
force of acceleration caused either by the gravity or by the device’s movement in three-axis
(Surge, Heave and Sway). Since an accelerometer measures the total acceleration caused
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both by the gravity and device’s movement combined, a device at rest will show a force
of approximately 1g upwards. In contrast, a device at free-fall will show a force of 0g.

The limitation of an accelerometer sensor is that it is noisy due to its dependency to
the force of the gravity. Adding a low-pass filter to remove the noise greatly improves its
performance but makes it less responsive due to the additional delay that is added.

Smartphones extensively use this sensor to calculate the gravity direction, find the
device orientation and rotate the screen from portrait to landscape mode when needed.

Both Android and iOS platforms provide access to the accelerometer sensor. In iOS,
developers can choose the preferred sampling rate from a range of 1 to 100Hz. However,
Android platform only supports four sampling profiles:

• SENSOR_DELAY_FASTEST: Maximum sampling rate allowed on the device.

• SENSOR_DELAY_GAME: Sampling rate suitable for games.

• SENSOR_DELAY_UI: Sampling rate suitable for user-interface related tasks.

• SENSOR_DELAY_NORMAL: Default sampling rate suitable for screen orientation changes.

The sampling rate of each of these profiles varies from device to device. Furthermore,
since a mobile device is not a real-time system, the configured rate is just a suggestion
to the mobile device, with the actual sampling rate being unstable in both Android and
iOS.

Gyroscope

A gyroscope is a sensor that is used to measure the device’s rotation rate in three-axis
(Pitch, Roll and Yaw). Even though the Pitch and Roll (but not the Yaw) of the device
can be calculated with just an accelerometer sensor, it is very computational expensive
as it requires trigonometric calculations. The gyroscope provides all three measurements
in a less expensive and more accurate way.

Even though a gyroscope is not a noisy sensor as it doesn’t depend on the gravity
force, it suffers from a drift problem (also known as gyro bias drift) [83]. Every time a
rotation is performed, there is a small error in the measurements that varies from sensor
to sensor.

Both Android and iOS platforms provide access to the gyroscope sensor. In Android,
the sampling rate can be set using the same sensor profiles described in Section 2.2.1

It is also worth mentioning that by combining the gyroscope with an accelerometer
sensor, we can highly improve their accuracy and usability, a technique called Sensor
Fusion that is discussed in Section 2.2.3.
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Magnetometer

Magnetometer (also known as compass or magnetic field sensor) is the sensor that mea-
sures the strength of the magnetic field surrounding the device. It is usually a three-axis
sensor in order to work on all possible device orientations. This sensor is also used in
order to compute the actual orientation of the device relatively to the Magnetic North. A
3-axis accelerometer sensor is used to detect the device orientation related to the ground
and compute the 2D orientation from the 3-axis of the magnetometer.

The main limitation of this sensor is that it requires a calibration before each usage.
In addition, it is very sensitive to metal objects and magnetic fields. Compared to the
gyroscope, it is not sensitive to the drift problem as it relies on the magnetic north for its
measurements [83].

Both Android and iOS platforms provide access to the magnetometer sensor. In
Android, the sampling rate can be set using the same sensor profiles described in Sec-
tion 2.2.1. Magnetometer also benefits from the Sensor Fusion technique, later discussed
in Section 2.2.3.

Location

A location sensor is available in most modern smartphones. Depending on the config-
uration of the sensor, it uses different sources to estimate the location coordinates of
the device around the earth’s surface, such as the WiFi or Cellular sensor reporting a
low accuracy of up to 100 meters, or the Global Positioning System (GPS) reporting an
increased accuracy of approximately 3 meters.

The limitation of these localisation sensors is that they only work in outdoor envi-
ronments as the sensor needs a direct view with at least three satellites to estimate the
location. These sensors are also well known for their power inefficiency, as later presented
in Section 3.4.

Both Android and iOS provide access to this sensor.

Bluetooth

Bluetooth is a wireless technology standard that is used for short distance communication
between devices. This sensor can also be used to find the proximity between devices,
by measuring the Received Signal Strength Indicator (RSSI) of every Bluetooth sensor
available in range. Depending on the device type and the version of Bluetooth, this range
can be from 10 to 400 meters [7].

Since Bluetooth Core Specifications v4.0 it provides a Low Energy (BLE) feature,
branded as Bluetooth Smart, that is low cost for consumers and power efficient, allowing
a stand-alone device to last longer. Apple developed its own implementation of Bluetooth
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Smart, branded as iBeacon™ and presented with iOS 7 in June 2013. Google presented
a similar protocol titled Eddystone™ that is open-source and supported in both iOS and
Android platforms.

Both iOS and Android provide complete access to the Bluetooth Classic sensor. While
the improved Bluetooth Smart version is already available in most iOS devices today,
Android only added full support on that sensor with the release of Android Lollipop
(v5.0) in September 2014. Apple on the other side, while supporting Bluetooth Smart
since iOS 6, they restrict broadcasting custom BLE packets by only supporting their own
iBeacon™ protocol. Finally, iOS only allows devices to broadcast as an iBeacon™ while
the app is running in the foreground but not in the background.

Ambient Light, Temperature, Humidity and Barometer

These environmental sensors can be used to monitor various environmental properties.
Most smartphones include an Ambient Light Sensor, as it is used by the mobile op-

erating systems to adjust the brightness levels of the screen automatically. Even though
Android provides an API for accessing this sensor, iOS doesn’t. Only Android provides
an API to access the temperature, humidity and barometer sensors when available on a
device. Since iOS 8, there is an API to access the barometer Sensor on supported devices.

Proximity

Most smartphones operating with a touch screen use a proximity sensor that detects the
presence of nearby objects. It is used by the mobile platform to deactivate the touch
screen while the user holds the device next to his/her ear during a phone call. In that
way, it avoids accidentally touches to the screen.

Android platform provides full access to this sensor, allowing the developers to know
when an object is close to the device, as well as the proximity of the object in cm. In iOS
the access is limited, as a developer can only ask the system to auto-deactivate the screen
when an object is nearby.

2.2.2 Available Virtual Sensors

These sensors are not actual hardware sensors but can provide useful information to the
researchers such as social activity or battery consumption of the device.

Call and Message logs

Even though call and message logs is not an actual mobile sensor, researchers have used
these logs to measure the total communication of mobile users, as well as to measure the
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communication taking place at specific hours of the day (e.g. late in the evening or early
in the morning) [48, 37].

Only Android platform provides access to Call and Message logs.

Battery Status

Researchers often evaluate the battery status in order to measure the power consumption
of a device while running an application or custom process.

Both iOS and Android platforms provide information about the battery level with 1%
resolution. Additionally, Android provides information about the battery temperature in
°C as well as the voltage in millivolts (mV).

2.2.3 Sensor Fusion

Sensor fusion is a method that analyses arrays of different sensors in order to produce
information that is new or has improved accuracy.

A simple example of a sensor fusion technique applied in smartphones is the combina-
tion of the GPS sensor with the magnetometer. As shown before, the magnetometer can
show the orientation of the device relatively to the Magnetic North. However, since the
True North depends on the location of the device, by combining the location retrieved
from the GPS sensor, the direction of the True North can be computed.

Both Android and iOS platforms perform sensor fusion internally, mainly for improving
the sensor accuracy. Thus, not only they provide the raw data from the sensors, but also
the calibrated data that have been processed with techniques similar to the one presented
in Figure 2.1, a sensor fusion technique used by Android platform, as presented by David
Sachs in the Google Tech Talk “Sensor Fusion on Android Devices: A Revolution in
Motion Processing” [83].

By combining the data of an accelerometer, a gyroscope and a magnetometer, we can
minimise the limitations of each sensor. Thus, the gyroscope will not have the well-known
drift problem as it will use the accelerometer to fix its measurements. An accelerometer
will have much more stable data, using the gyroscope as a filter. The magnetometer can
know the vertical orientation of the sensor using the accelerometer and use the appropri-
ate axis to calculate the direction. Finally, a separation of the Gravity and the Linear
Acceleration is also possible, with both iOS and Android platforms providing these mea-
surements separately, named User Acceleration and Gravity.

A common drawback of these sensor fusion techniques is that they require continu-
ous sensor processing, having an impact on the device’s battery. Moreover, the double
integration that is required for separating gravity from accelerometer is a computational
process that highly depends on accurate timing. These limitations overcome with the use
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Figure 2.1: Illustration of a Sensor Fusion technique [83].

of motion co-processors.

2.2.4 Motion Co-Processors

Initially launched by Apple in the iOS ecosystem with the release of iPhone 5S, they are
separate hardware processors that continuously analyse sensor data from accelerometer,
gyroscope, magnetometer and barometer. Since the data process is happening entirely
on hardware, it is more accurate and less power consuming. This module also performs
motion activity recognition that constantly tracks the user’s activity classified as station-
ary, walking, running, driving and cycling. Moreover, it tracks the steps taken as well
as its pace and cadence. More importantly, an app doesn’t need to be active in order
to collect these data as all data collection and analysis is happening in the processor’s
internal memory. Developers can query the analysed data, either on demand (e.g. when
the user opens the application) or sporadically (e.g. daily).

2.2.5 Sensing in the Background

Sensing while the device is not actively used (i.e. device is locked, or the data collection
app is in the background) is an important requirement for collecting mobile sensor data
in research studies as many works explore the daily phone use patterns of groups of
people [37, 34, 68].

Past versions of Android mobile system (i.e. prior to Android Oreo) did not restrict a
process running in the background for any task, as long as it did not overuse the resources
of the device. Since Android Oreo (v8.0), Google included some Background Execution
Limits1 adding restrictions in the processes running in the background. More specifically,

1https://developer.android.com/about/versions/oreo/background
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a window of some minutes (approximately 10) exist from the moment the app moves into
the background in which it is allowed to execute background tasks. Similar restrictions
were added to the apps querying the user’s current location, limiting it to a few times per
hour.

Apple iOS systems include similar restrictions, with processes only allowed to run in
the background for up to 10 minutes until they are killed by the system. Some exceptions
to these restrictions exist for specific services, including the Location updates service that
allows you to access the device’s location or proximity with nearby iBeacon™ sensors
(i.e. a version of Bluetooth Smart suitable for location tracking). Other services are the
Audio and AirPlay that allows you to access the microphone sensor in the background,
or the Picture in Picture that allows you to play a video in a window mode while the
user uses other apps. Note that while a background service is running, it is possible to
perform additional operations, including sensor data collecting from additional sensors.

2.2.6 Continuous Sensing Platforms

Due to the research opportunities presented with the ubiquity of the smartphones, re-
searchers developed continuous sensing platforms that automate the sensor data collec-
tion. Continuous sensing in the context of mobile systems is a technique that a process
(usually in the form of a mobile application) automatically collects sensor data in the
background, using the device’s sensing capabilities. This data can be collected from
actual hardware sensors (e.g. accelerometer, GPS, microphone, etc.), or virtual sensors
(e.g. call and messaging logs, battery status, etc.). Researchers have been using these
sensors to infer information about the user’s location (e.g. indoor localisation using Blue-
tooth or WiFi [3]), motion activity (accelerometer and gyroscope sensor [91]) or context
(e.g. indoors vs. outdoors using several sensors including light, microphone, proximity
and cellular [77]). Continuous sensing platforms can collect data from multiple sensors,
save it to the device’s memory and transmit it to a remote repository for future anal-
ysis. Examples of such frameworks are MobiSens [98], EmotionSense [75], Funf [1] and
AIRS [93].

MobiSens [98] is a complete sensor data collection system that consists of a mobile
framework, capable of accessing mobile sensor data, and a server back-end responsible for
data collection and pre-processing. This work is not available in open-source.

EmotionSense [75] is an open-source project from University of Cambridge that is
focused on inferring the user’s emotion state. It can be configured to recognise specific
activities using a low sampling rate and only when the activity is recognised (e.g. when
the user is walking), activate the desired sensors for data capturing in higher sampling
rate. This is an application of opportunistic sensing [44], discussed in Section 2.2 that
results in an improved power efficiency of the system.
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Table 2.1: Continuous Sensing Platforms

Sensor AIRS EmotionSense Funf MobiSens SensingKit
Accelerometer No Yes Yes Yes Yes
Battery Status Yes Yes Yes Yes Yes
Bluetooth Yes Yes Yes Yes Yes
Bluetooth Smart No No No No Yes
Call / Message Logs Yes Yes Yes No No
Camera No Yes No No No
Gyroscope No Yes Yes Yes Yes
Location Yes Yes Yes Yes Yes
Magnetometer Yes No Yes Yes Yes
Microphone Yes Yes No Yes Yes
Proximity Yes Yes Yes No Yes
Sensor Fusion No Yes No No Yes
WiFi Yes Yes Yes Yes No
Open Source LGPL 2.0 ISC LGPL 3.0 No LGPL 3.0
Supported Platforms Android Android Android Android Android & iOS
Local Storage Yes Yes Yes Yes Yes
Remote Storage Yes Yes Yes Yes No

MIT Media Lab also presented their own continuous sensing platform called Funf [1].
It can capture sensor data either locally to the device’s memory, remotely to a server or
save them to a remote Dropbox account. It is worth mentioning that this library is not
supported any more.

Android Remote Sensing (AIRS) [93] is one of the most complete sensing systems
in terms of sensor support, with a wide range of internal mobile sensors being available
such as microphone, magnetometer, GPS, WiFi, Bluetooth, battery status, call log and
proximity. In addition, it supports external sensors connected to the device (e.g. heart
rate monitors).

Last but not least, our new continuous sensing library titled SensingKit [28] supports
both Android and iOS platforms and is available at https://www.sensingkit.org. It is
discussed in Chapter 3.

Table 2.1 illustrates a comparison of the continuous sensing platforms described above.

2.3 Crowd Sensing
This section presents previous works that use mobile sensing technology to measure the
dynamics of the crowd. More specifically, it presents some example works that detect the
user mobility and continues with more related to this work research areas that focus on
detecting the social interactions of moving and stationary groups.
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2.3.1 Detecting Mobility

Calabrese et al. [9] investigated the crowd mobility using one-million anonymous cell-
phone traces from an area of 15 × 15 km within Boston. The aim was to understand
the relationship between events (i.e. event type) and origins of people (i.e. distance from
home). Such approaches that investigate the crowd mobility with call-logs have the dis-
advantage of low accuracy when estimating the user location. Moreover, data are only ac-
cessible through mobile providers, requiring an active connection from the user (i.e. make
a call, receive an SMS, maintain a data connection etc.).

Wirz et al. [94] used GPS location traces to measure the crowd dynamics and visualise
them in real time through a web-interface. They measured the crowd density, velocity,
turbulence and pressure in order to raise an alert when critical situations exist in crowded
areas. The novelty of this research is that it does not require access to CCTVs and
expensive vision analysis techniques. However, it depends on the availability of a GPS
sensor on each pedestrian’s smartphone.

Another work that uses GPS location and Bluetooth scan traces was conducted in
Roskilde Festival in Denmark [89]. They captured spatio-temporal data from 155 partic-
ipants, by distributing a participatory sensing mobile application that enables Bluetooth
scanning in each device. Larsen et al. [45] conducted a similar study in the same festival.
Instead of distributing an application, they installed 33 Bluetooth Scanners in strategic
locations. They captured spatio-temporal traces from 5,127 people during the eight-day
festival. Finally, they applied community detection algorithms to identify groups of people
and their musical preferences. While these works are capable of detecting communities,
the use of Bluetooth sensing alone as a mean of mobility is not capable of detecting the
social interactions of each community in high granularity.

Virtual Compass from Banerjee et al. [4] is a peer-based relative positioning sys-
tem capable of accurately detecting user mobility from mobile devices. It uses multiple
radios (i.e. WiFi and Bluetooth Classic) to detect nearby devices and place then into
2-dimensional space. To reduce the error produced from the RSSI-based proximity esti-
mation, it uses measurements from multiple devices simultaneously and applies an itera-
tive algorithm that refines the estimated coordinates until the algorithm converges. They
evaluated the system with 10 devices (including smartphones and laptops) that used WiFi
and Bluetooth interfaces. Results reported an average error of 3.4 meters when using the
Bluetooth sensor, 3.91 when using the WiFi sensor, and 1.41 when using both sensors.

2.3.2 Detecting Walking Social Interactions

Grouping people into clusters with the use of accelerometer data and gait analysis has
recently been of interest due to availability of high-frequency 3-axis accelerometers in
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smartphones and wearables. Roggen et al. [82] suggested a framework that uses an on-
body accelerometer sensor installed on each user’s hip as a simulation of a phone placed
in the user’s trouser pocket. By analysing the time-series accelerometer data, they were
able to identify pedestrian flocks of up to three members.

Garcia-Ceja et al. [20] have used low-frequency accelerometer (5Hz) and WiFi data to
detect when two individuals are walking together. They analysed the WiFi RSSI signal
from the in-range access point as an indication of co-location, and the accelerometer signal
as an indication of similarity in movement. In a case study with seven participants for
seven working days, they reported a 77.2% precision and 90.2% recall performance.

Kjærgaard et al. [40] presented a work for identifying pedestrian flocks using smart-
phones equipped with accelerometer, WiFi and magnetometer sensors. Using sensor-
fusion techniques, they developed a method that extracts specific features from sensor
data such as variance, turn, indoor location etc., and then applied classification on every
extracted feature. Even though they reported a high accuracy of 87%, the evaluation
depended on pre-scripted scenarios of 16 participants. Furthermore, the use of the WiFi
sensor makes this method only applicable in controlled environments with installed WiFi
hotspots.

Wirz et al. [96] proposed an on-line method for detecting pedestrian flocks using GPS
traces. Even though the results were very promising with an accuracy of 91%, the method
only works on outdoor environments. Moreover, the GPS is considered one of the most
power expensive sensors in mobile systems [32], having a noticeable impact on the device’s
battery life.

Computer vision has also been applied into the area of modelling the pedestrian be-
haviour. One example is the Social Force Model (SFM) that was initially proposed by
Helbing and Molnar [23] as a method for simulating pedestrian behaviour. It is a mathe-
matical model that describes the dynamics of an individual based on social forces produced
by other people or obstacles around the space. Based on the theory of this model, each
person is driven by several attractive and repulsive social forces that affects his/her tra-
jectory in the space. A force can be attractive, towards another individual if these are
within a group that know each-other, or repulsive, if they are strangers.

Even though the SFM was originally intent and is widely used in crowd simulations,
Sochman and Hogg [87] presented an original work that used an inverted version of the
SFM to detect walking social interactions. This work uses the pedestrian’s coordinates
as an input in order to calculate the trajectories of each individual. By applying an
iterative algorithm based on the principle of the SFM, they tested its performance in real-
world scenarios and outperformed other related works in the computer vision area. The
disadvantage of this method is that it requires the absolute coordinates of each participant
to be known, and thus, it is mostly applicable in automated computer vision techniques.
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Figure 2.2: Example of F-formations in real-world. (Kendon, 1990)

More recently, Mazzon et al. [53] presented an enhanced version of this algorithm that uses
a buffered graph-based tracker that improves the accuracy up to 13% in group detection.

All previously mentioned works only focus on the social interactions of walking pedes-
trians, excluding stationary interactions that are more likely to happen in planned events
such as social gatherings or networking events.

2.3.3 Detecting Stationary Social Interactions

Kendon [38] was the first that introduced the idea of an F-formation to categorise the
casual face-to-face conversations. He defined an F-formation as “two or more people
cooperate together to maintain a space between them to which they all have direct and
exclusive access” [38]. Each individual has a ‘transactional segment’ that others respect.
The overlapping segment from two or more people is called ‘O-space’ and is the common
space that people share during the conversation. Surrounding the O-space, the ‘P-space’
exists which is the area that the participants are location. Finally, the ‘R-space’ is the area
that doesn’t belong to the F-formation. Figure 2.2 shows an example of an F-formations
in real-world [38].

An F-formation has some specific characteristics that make it a very interesting cate-
gorisation of social interactions:
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• A distance always exists between participants.

• People normally respect the ‘transactional segment’ of each-other.

• Every time a new person joins the formation, everybody re-adjusts their position
so that they all have direct access with each-other.

• People rarely cross the ‘O-space’ when leaving an F-formation.

Hung & Krose’s [26] work used the term of F-formation to characterise a face-to-face
interaction. In their study they used information about the proximity between people, as
well as the body orientation to identify interactions with an accuracy of 92%. In a similar
research, Cristani et al. [15] suggested a system that also detects F-formations using infor-
mation about people’s position and head orientation. They reported comparable results
of 89% accuracy. Both works assume that the information of related proximity between
participants or absolute position in the space, as well as the body or head orientation is
known, either using manual annotations or computer vision techniques.

One of the first attempts to identify stationary, face-to-face interactions in an auto-
mated way is the Sociometer by Choudhury and Pentland [14], a wearable device that can
be placed on each person’s shoulder and identify other people wearing the same device
using Infrared (IR) sensors. In addition, it is equipped with an accelerometer sensor to
capture motion as well as a microphone to capture speech information. During the system
evaluation, Sociometer was able to identify social interaction with an accuracy of 63.5%
overall and 87.5% for conversations lasted for more than one minute.

Matic et al. [52] presented a solution based on the RSSI of the WiFi sensor as a way
of estimating the proximity between people, and the embedded magnetometer to extract
the standard deviation of the relative body orientation, as an indication of the position
stability between participants. Finally, by placing an external accelerometer device into
each user’s chest they analysed the vibrations produced by the user’s vocal chords and
detected speech activity. They evaluated their approach in an office located study with 4
participants for 7 working days, achieving an performance of 89% true positives and 11%
false negatives in detecting existing social interactions.

Montanari et al. [57] created a wearable device named Protractor that uses near-
infrared light to monitor the user proximity with a mean error of 2.3 - 4.9 cm, and
relative body-orientation with a 6° error 95% of the time. The device was evaluated in
a group-collaborative task where 64 participants split into groups of four were asked to
collaborate with each-other to build a construction made of spaghetti and plastic tape.
Using a supervised machine learning approach based on Random Forest, they achieved
an 84.9% accuracy when detecting the individual’s task role (i.e. the verbal role of each
participant) and 93.2% accuracy when identifying the task timeline (i.e. the building
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phases of the collaborative task). Note that even though the evaluation of this work
is focused on the social behaviour of an existing group that is interacting, Protractor
could also be used to detect stationary interactions within crowds by using the estimated
proximity and relative orientation between participants.

Palaghias et al. [65] presented a real-time system for recognizing social interactions in
real-world scenarios. Using the RSSI of Bluetooth Classic radios and a 2-layer machine
learning model, they classified the proximity between two devices into three interaction
zones, based on the theory of Proxemics [22]: public, social and personal. In addition,
they used an improved version of uDirect research [24] that utilises a combination of ac-
celerometer and magnetometer sensors to estimate the user’s facing direction with respect
to the earth’s coordinates. This work reported results of 81.40% accuracy for detecting
social interactions, with no previous knowledge of the device’s orientation inside the user’s
pocket. However, this work has been evaluated in a limited dataset with eight participants
while an observer was keeping notes that were later used as ground truth. Moreover, it
is only able to detect one-to-one social interactions using a specific device model (HTC
One S) and has not been evaluated in scenarios of interactions with dynamic sizes.

2.4 Summary
Smartphones and their wide range of embedded sensors inspired a wealth of research
opportunities. Researchers have developed continuous sensing platforms that automate
the sensor data collection. However, these frameworks are currently limited to work on
Android platform, limiting the sampling space of users participating in different studies.
Moreover, they are not up-to-date with current sensing technologies such as the use of
Bluetooth Smart (BLE) for proximity estimation or indoor localisation.

The availability of mobile sensing technology in modern smartphone devices enabled
researchers to explore crowds in an automated way, without the need for additional wear-
able equipment or computer vision systems. Mobile sensing-based solutions are also easier
and more cost efficient to deploy in unknown or new spaces as they only rely on the users’
own hardware. Early systems that use mobile sensing report reasonable results, but pri-
marily focus on detecting one-to-one social interactions. Furthermore, their evaluation
was conducted in controlled only environments, a situation that only covers a subset of
the formations that occur in a natural setting. Finally, they rely on pre-trained models
that only work with specific devices.

The work presented in the following chapters will address the aforementioned gaps of
the literature review: Firstly, SensingKit continuous sensing framework is presented in
Chapter 3, an open-source framework for iOS and Android environments that is capable
of accessing sensor data from modern mobile devices. Moreover, a method for detecting
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stationary social interactions within crowds is presented in Chapters 4 and 5. This method
is capable of detecting interactions in dynamic groups of variety of sizes and is not device
dependent. In contrast to other related works, it has been evaluated in a natural, non-
artificial social setting.
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Chapter 3

SensingKit – A Multi-Platform
Mobile Sensing Framework

3.1 Overview
The ubiquity of smartphones as well as the variety of their on-board sensors have enabled
the automated acquisition of large-scale data, inspiring a wealth of research opportunities.
Mobile operating systems such as Android and iOS provide application programming
interfaces (APIs) to access these sensors. However, developing software that collect sensor
data for each mobile sensor is a time-consuming task that involves multiple steps such
as initialising the sensor, requesting a permission from the operating system to access it,
configure its sampling rate, as well as implement a data collection solution that works as
a background process even when the user does not actively use the device.

As previously discussed in Section 2.2, various mobile sensing frameworks have been
designed that provide continuous sensing, like MobiSens [98], EmotionSense [75], Funf [1]
and AIRS [93]. However, these platforms are currently limited to work on Android, or
the currently discontinued Nokia Maemo platform, limiting the sampling space of users
participating in different studies. Since Android and iOS are the two main players in
the mobile ecosystem, there is a clear need for supporting continuous sensing in these
two mobile environments. A new framework that has a shared API, identical to iOS and
Android versions, could benefit the research community by allowing easy development
and distribution of mobile apps for collecting and analysing mobile sensor data.

In 2014, an early prototype of SensingKit framework was released as part of this Ph.D.
research [28]. SensingKit is a continuous sensing framework that, in contrast to other
existing frameworks, it is compatible with both iOS and Android platforms. It supports
most sensors available in a modern smartphone device, being capable of capturing motion,
orientation, location, proximity between devices as well as environmental sensor data. It
includes a shared, almost identical for iOS and Android platforms API, for accessing the
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sensors of the device. Since the two operating systems are equipped with sensor fusion
techniques, both raw measurements and fused data like Linear Acceleration and Gravity
are supported. Furthermore, SensingKit can also be configured to capture user’s natively-
labelled activity in supported devices, classified as Stationary, Walking, Running, Driving
and Cycling.

Beside the multi-platform characteristic, SensingKit has some unique features that
are not available in other sensing libraries. It fully supports the Bluetooth Low Energy
(BLE) specification, branded as Bluetooth Smart (v4.0), for capturing the proximity be-
tween devices or other Bluetooth Smart enabled beacons. This has significantly reduced
power consumption and a higher sampling rate compared to the classic Bluetooth. At
this moment, it supports Apple’s iBeacons™, as well as the Google Eddystone™ beacons.
These are protocols developed by Apple and Google respectively, that allow a device to
broadcast its presence to nearby devices. The receiver can estimate the proximity of the
beacon based on the Received Signal Strength Indicator (RSSI) combined with the broad-
cast Measured Power level, the beacon’s signal strength measured in 1-meter distance.
That feature makes beacon technology extremely useful for indoor localisation systems, al-
lowing smartphones to estimate their approximate location in indoor environments where
GPS signal is not available.

In order to avoid timing issues when the user, or even when the device itself changes
the system time, the timing in the sensor measurements depends on the device’s CPU time
base register rather than the system’s clock. The library also makes use of the devices
motion co-processor for its motion activity recognition sensor, having only a minimum
effect on the device’s battery life. Finally, it utilises all sensor fusion technologies that are
available into the two operating systems, providing calibrated and accurate sensor data.

This chapter presents the latest version of SensingKit framework (v0.5) for both iOS
and Android platforms. The objective in this work is to provide an easy-to-use sensing
framework that developers and researchers can use to provide continuous sensing in iOS
and Android applications. Section 3.2 presents the System Architecture and technical
details of the framework. Section 3.3 presents CrowdSense, a cross-platform mobile app
designed for research experiments that utilises SensingKit and is capable of collecting
sensor data into the device’s memory. The battery consumption of SensingKit was eval-
uated, as reported in Section 3.4, by using CrowdSense installed on an iPhone 5S mobile
phone. Further evaluation was conducted in a pilot study that investigates the subcon-
scious phenomenon of gait synchronisation between individuals, reported in Section 3.5.
A summary of this chapter is presented in Section 3.6.
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Figure 3.1: SensingKit System Architecture. Accelerometer sensor was used as an example
for Sensor, SensorData and SensorConfiguration classes.

3.2 SensingKit Platform
SensingKit is a modular mobile framework developed in the native programming language
of each platform (Java for the Android and Objective-C for the iOS version). It supports
mobile devices running iOS 9 and Android Jelly Bean (v4.1) and above. At this moment,
that corresponds to over 95% of all iOS and over 99% of all Android devices available
today1.

Figure 3.1 gives an overview of the system architecture in a Unified Modelling Lan-
guage (UML) class diagram. For every sensing category, a sensing module (e.g. SKAc-
celerometer) exists in SensingKit, as well as a corresponded configuration (e.g. SKAc-
celerometerConfiguration) and a data object (e.g. SKAccelerometerData). Each sensor
module provides access to the corresponding sensor inside the device whereas a configu-
ration object initialises the sensor with custom configuration (e.g. custom sample rate or
accuracy). When new sensor data is available, a data object is generated that represents
the sensor data in CSV or JSON format. SensingKitLib is the interface that developers
need to use in order to check for sensor availability inside the device, initialise and con-
figure a sensor, provide the block function that will be called each time new sensor data
is available, and finally start or stop continuous sensing operations. SKSensorManager is
the module that implements SensingKitLib interface and performs all required operations
to the sensor modules such as memory allocation and deallocation, sensor configuration
etc. Due to the modular design of this library, it is easy to develop a new module and
extend its sensing capabilities. Table 3.1 presents the available sensing modules of the

1As reported by Apple App Store and Google Play Store on April 22, 2018.
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Table 3.1: SensingKit Supported Sensors

Sensor Apple iOS Google Android
Accelerometer Yes Yes
Altimeter Yes Yes
Ambient Temperature -** Yes
Battery Status Yes Yes
Bluetooth® Classic - Scanning only
Eddystone™ Proximity Scanning only*** Yes
Gravity Yes* Yes
Gyroscope Yes Yes
Heading Yes No
Humidity -** Yes
iBeacon™ Proximity Yes Yes
Light -** Yes
Linear Acceleration Yes* Yes
Location Yes Yes
Magnetometer Yes Yes
Microphone Yes Yes
Motion Activity Yes Yes
Pedometer Yes Yes
Rotation Yes* Yes
Screen Status No Yes
*In SensingKit-iOS, these sensors are part of the Device Motion
sensor.
**These sensors are either not available or access is not allowed
on iOS due to Apple’s restrictions.
***Broadcasting an Eddystone™ beacon signal is not allowed on
iOS due to Apple’s restrictions.

framework.
For proximity sensing, SensingKit uses Bluetooth Smart (4.0) proximity profile that

allows to broadcast a device’s presence, scan for other devices and most important, es-
timate the distance between them using the Received Signal Strength Indicator (RSSI).
Bluetooth Smart is only fully supported in Android Lollipop (v5.0) mobile operating sys-
tem. Android Jelly Bean (v4.3) devices are only limited to scan and connect to other
devices (Observer and Central mode) and not to advertise its presence to the nearby de-
vices (Peripheral mode). Due to Apple restrictions applied to the iOS operating system,
it is not possible to broadcast a Bluetooth Smart signal with custom service data blocks,
making it impossible to broadcast an Eddystone™ signal from an iOS device.
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Figure 3.2: CrowdSense App for iOS

3.3 CrowdSense App
CrowdSense is a cross-platform mobile app for iOS and Android applications based on
SensingKit. It was built with the aim to support the experiments of this Ph.D. research. It
supports all sensors available in SensingKit library, when these are available and supported
by the device. It can be run in all iOS smartphones with version iOS 9 or greater, and
all Android smartphones with version Jelly Bean (v4.1) or greater. The application runs
as a background service, collects the sensor data and save them into the device’s memory
in CSV format.

Since iOS is quite restrictive when running an app in the background, CrowdSense
App for iOS will only collect data in the background if specific sensors that allow this
behaviour are enabled. These sensors are the location and the microphone sensors, with
the appropriate requested permissions accepted by the user. When at least one of those
sensors is collecting data, the app will continue collecting data from any other enabled
sensor.

Since Android Oreo (v8.0), Google added similar restrictions on what apps can do
while running in the background, only allowing a process to run for a few minutes before
the system kills it automatically. Since this research is more focused on the iOS platform
as a tool for experimentation and data collection, the Android version of this app is
not as advanced as the iOS, lacking support for several sensors and features. Moreover,
the restriction of data collection while the app is in the background has not been fully
addressed for devices with Android Oreo or greater. A new release of CrowdSense App
for Android is under development and planned to be released in the close future.
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Figure 3.3: Battery consumption of SensingKit running on an iPhone 5S.

Table 3.2: Device Specification

Model iPhone 5S
Storage 32 GB
Operating System iOS 9.0.2
Processor 1.3 Ghz Dual-core
Memory 1GB LPDDR3
Battery 1560 mAh
Bluetooth 4.0
Purchased September 2013

The complete source-code of the two apps is available in the SensingKit GitHub repos-
itory at https://github.com/SensingKit. Both iOS and Android versions of this app are
available for free in the Apple App Store and Google Play Store.

3.4 Evaluation of Battery Consumption
The battery life performance was measured while using SensingKit in an iPhone 5S device
running iOS 9.0.2 (Table 3.2). The device was fully erased and restored into the man-
ufacturer’s default settings. No other third-party applications were installed or running
in the background. The device was set to “Flight Mode”, having WiFi, Bluetooth and
Cellular connectivity disabled. Finally, the Background App Refresh setting was set to
“Off” and the Low Power Mode to “On”, in an attempt to minimise the impact that the
operating system has on the device’s battery life.

Figure 3.3 and Table 3.3 show the energy consumption of SensingKit running on the
mobile device described above. More specifically, they present the consumption of the
library while using the accelerometer, gyroscope, magnetometer, device motion (fused
motion and orientation data), location (GPS), iBeacon™ and microphone sensors. In the
case of iBeacon™ sensor, the two modes (i.e. Broadcasting and Scanning) are evaluated

39



Table 3.3: Battery consumption of SensingKit in iOS

Sensor Sample Rate Hours Lasted
Idle - 51.27
Accelerometer 100 Hz 31.51
Gyroscope 100 Hz 28.15
Magnetometer 100 Hz 34.45
Device Motion 100 Hz 21.07
Location Best Accuracy 17.42
iBeacon Broadcast 1 Hz 46.43
iBeacon Scan 1 Hz 25.21
iBeacon Scan & Broadcast 1 Hz 25.26
Microphone 44100.0 Hz 35.41

separately, as well as a combination of both of them together. In addition, the “idle”
mode of the library is visualised that represents the power consumption of the library
while only senses the battery status.

Figure 3.3 shows that all measurements follow a similar pattern in regard to the battery
level drop. More specifically, all sensors had a slower drop between levels 100% and 98%,
a faster battery drop between 98% and 90% and a more linear pattern between 90% to
0%. Two bumps in the measurement curves can also be observed at the levels of 56%
and 28%. Since these effects are present in all sensor measurements at the same battery
levels, they can be explained as small battery defects due to the daily phone use.

The location (GPS) sensor in “Best Accuracy” mode is the most power expensive
sensor of all, as the device only lasted for 17.42 hours compared to the “idle” mode that
lasted for 51.27 hours. GPS sensor is well known for its extensive power consumption,
not only because it receives signal from multiple satellites simultaneously in order to
estimate the devices distance from them, but also because of the expensive trigonometric
operations (trilateration) that is performing in order to estimate the device’s position on
the surface of the earth.

From all motion and orientation sensors, magnetometer is the one that performed
best, with the device lasting for 34.45 hours in 100 Hz sampling rate. Even though
newer iPhone models combine accelerometer and gyroscope on the same unit (e.g. Bosch
Sensortech BMI160 for iPhone X) and could result in similar battery performance between
the two sensors, iPhone 5S include a separate unit for accelerometer (Bosch Sensortech
BMA220) and gyroscope (STMicroelectronics). Thus, accelerometer sensor configured
at 100 Hz sampling rate lasted for 31.51 hours, whereas gyroscope, known as a relative
expensive sensor, lasted for 28.15 hours, using the same sampling rate. Device motion
sensor was the most expensive of all motion sensors, lasting for 21.07 hours. The reason
is that this sensor is using a combination of accelerometer, gyroscope and magnetometer
in order to provide calibrated and more accurate data using sensor fusion techniques
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performed entirely on hardware.
Recording audio using the microphone sensor lasted for 35.41 hours, despite its high

sampling rate of 44100.0 Hz.
Evaluating the iBeacon™ sensor in the three different modes explained above showed

interesting results. While the sensor was set in the “broadcast” mode, the device lasted
46.43 hours, highly comparable to the “idle” mode (51 hours). More interestingly, there
were only 5 minutes difference between the “scan” and “scan and broadcast” modes, as
the devices lasted 25.21 and 25.26 hours respectively. That proves that broadcasting an
iBeacon™ signal has almost no effect on the device’s battery, while scanning for other
iBeacon™ devices is quite expensive. The reason is that iOS not only scans for the
presence of other devices but is also “ranging” in 1 Hz sampling rate in order to estimate
the other beacon’s proximity based on the RSSI explained above.

Note that Figure 3.3 only represents the battery consumption on the specific mobile
device listed in Table 3.2 and should only be viewed as a comparison between the available
sensors rather than an indicator of each sensor’s power consumption.

3.5 Pilot Study: Analysing Pedestrian Behaviour
It is well known that crowds have several common behavioural patterns. For example,
pedestrians inside a crowd tend to move together as a unit; with group members walking
at the same speed, following the same trajectories and quickly reform after they become
separated [64]. An interesting phenomenon in small groups is the synchronization of step-
ping that often occurs in people walking side by side. This mutual engagement can either
occur intentionally (e.g. a public procession that occurs by imitation) or unintentionally
when that happens subconsciously, a behaviour known in psychology as “mirroring” [11].
Previous studies suggest that the reason behind an unintentional sync in walking is that
they share a common feeling of unity and close relationship [42].

In most cases, a group walk also includes engagement with a conversation. People tend
to look at each other while walking, interact with gestures and at the same time have
a turn-taking conversation. According to Moussaid et al. [59], group members usually
have a V-shaped walking formation that facilitates social interactions between members.
According to Battersby et al. [5], gaze and head orientation becomes problematic in
conversations between more than two participants. The reason is that the gaze can only
focus on a single person at a time, especially when the participants are walking side by
side. These non-verbal social signals were expected to influence the walking patterns and
synchronization of these walking groups.

Modern technology such as mobile sensing can be used to explore these kinds of group
behaviours. Accelerometer sensors such as the ones embedded in modern smartphones
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can be used to analyse the walking patterns of people engaged in a conversation.
Due to importance of movement coordination in interpersonal communication, there

have been a vast number of studies in this space by different methods such as observational
studies or use of video-based gait analysis. Analysis of walk synchronization has been
of interest in psychology [81, 11] and robotics [56], as well as for behavioural analysis of
individuals [60]. In the latter study, paired individuals were observed to have synchronous
walking rhythm and gait while having a phone conversation.

The work presented in this section not only focuses on the physical act of walking,
but on specific gait analysis and walk synchronization. High-quality 3-axis accelerometer
data was used at a minimum sampling rate of 90Hz in order to accurately capture the gait
synchronization between two individuals, in addition to studying the effect of the third
person on the synchronization. Understanding the phenomenon of gait synchronization
between pedestrians that belong to the same group is relevant to the aim of this thesis
as it can be used as a predictor in systems aiming to detect pedestrian flocks using
mobile sensor data. Moreover, it is important for crowd-sensing and potentially security
applications in scenarios which could be explored in the continuation of this work.

The findings also empirically support those of Richardson et al. [81] and Shockley et
al. [86], who have used posture sway to understand the interpersonal coordination in
the context of a cooperative verbal task, showing that conversation is responsible for such
coordination. The way in which a conversation potentially causes locomotion coordination
amongst two individuals remains debated amongst scholars.

3.5.1 Experiment

This study analyses the walking behaviour of pedestrians existing in a group of two or
three people. It focuses on the synchronization behaviour that occurs when a group of
people is engaged in their walking activity.

This section starts with a detailed description of the experiment including the materials
used, the participants, the experimental design and the procedure followed.

Materials

CrowdSense App for Android was installed in three Samsung Galaxy S2 Android smart-
phones. All devices were updated to the latest Android version officially supported by the
manufacturer (Jelly Bean v4.1.2). CrowdSense was configured to only record accelerome-
ter sensor data at the fastest sampling rate possible. A short audio sample of 10 seconds
was also recorded and used to synchronize the sensor data between the three devices. Ta-
ble 3.4 shows the three smartphones used in this experiment, with the average sampling
rate for capturing accelerometer data.
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Table 3.4: Device Specification

Participant Type Op. System Sampling Mean (SD)
P1 Samsung Galaxy S2 Jelly Bean 4.1.2 91.93Hz (2.15)
P2 Samsung Galaxy S2 Jelly Bean 4.1.2 90.90Hz (2.37)
P3 Samsung Galaxy S2 Jelly Bean 4.1.2 91.64Hz (2.23)

Table 3.5: Demographic Information

Participant Gender Height Weight
P1 Male 1.80m 75kg
P2 Male 1.72m 76kg
P3 Male 1.86m 89kg

Participants

The experiment involved the recruitment of three participants (P1, P2 and P3). The
participants were students from Queen Mary University of London and had no previous
knowledge of the current study. Table 3.5 shows the demographic information of the
recruited participants.

Experimental Design

As stated above, this experiment focused on the syncing behaviour of people walking in
groups of two (Scenario 1) and three people (Scenario 2). For that reason, the participants
were assigned to the groups listed in Table 3.6. The idea behind this separation is that in
Scenario 2, Scenario 1 should be repeated with another participant (P3) injected between
the participants of the initial group.

Procedure

The experiment took place in the Mile End Park, an open and usually not crowded
park in East London. All three participants were informed that this experiment will
aim to understand the walking behaviour of people and received a short demonstration
of CrowdSense application. Finally, each participant did a short walk, with the mobile
device placed on the left pocket.

In order to facilitate their conversation during the walk, each group was asked to decide
on a preferred conversational topic, chosen from a list of 25 subjects. This also helped

Table 3.6: Groups Configuration

Scenario Group Participants
S1 G1 P1, P2
S2 G2 P1, P3, P2
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the group to concentrate on the conversation and not on their walking activity. The two
groups walked for 12 minutes in the park. The group was observed from a distance of
approximately five meters while notes were kept using a voice recorder.

All data collection and analysis was made with informed consent and approved by the
Queen Mary University of London research ethics committee (Appendix A).

3.5.2 Results and Discussion

Before starting the data analysis, all data were synchronized using the audio sample
described in 3.5.1. Using this technique, an accuracy of ±50ms was achieved. Table 3.4
shows the mean and standard deviation (SD) of the sampling rate of the three devices
when using the accelerometer sensor. Since a smartphone is not a real-time system, the
requested sampling rate (fastest in our case) is only a suggestion to the system, with
the actual rate being rather unstable. Thus, data was interpolated to 100Hz using a
linear interpolation method. Finally, the magnitude (resultant acceleration) of the 3-axis
accelerometer sensor was computed using the formula

√
x2 + y2 + z2.

Figure 3.4a shows a five second period of walking activity, performed by P1. In this
periodic signal, the high peaks represent the acceleration produced by the left leg while
doing one step (x = 16, 137, 255 and 372) whereas the lower acceleration peaks are from
the stride while the other leg is doing another step. The duration of every step (produced
by the same foot) can be calculated from the distance between two high-peaks (1.21 sec).
This repeated pattern is also visible in the autocorrelation analysis of the complete walk,
as shown in Figure 3.4b. The figure indicates that the walking rhythm is a periodic
pattern with features that reflect on the walking activity of the individual.

The higher correlation between two participants implies that their steps are also syn-
chronized. Bivariate correlations of the acceleration signals between the participants in
Scenario 1 show a positive correlation (Pearson Correlation = 0.23, p < 0.01). Similar
but smaller correlations exist when comparing the signals of Group B: 0.02 (p < 0.01) for
P1 and P2, 0.11 (p < 0.01) for P1 and P3, and 0.03 (p < 0.01) for M2 and M3. The p
values in this context represents the probability that this result would exist if the corre-
lation coefficient was in fact zero (null hypothesis). The effect can be visually identified
in the following heat map plot (Figure 3.5) that presents the combinations of all bivariate
correlations between the recorded data. In the same plot, it is obvious that data from two
different walks (e.g. P1 of Scenario 1 with P1 of Scenario 2) report very low correlations.

Similar correlation values can be identified in Figure 3.6, where a cross-correlation was
performed with a maximum lag of 1 second. The maximum correlation between P1 and
P2 in Scenario 1 (Figure 3.6a) is 0.24 at lag = 0.01s, higher than all correlations between
participants in Scenario 2 (Figure 3.6b, c and d). Smaller positive correlations appear in
Scenario 2, with 0.05 at lag = -0.6s (P1 and P2), 0.08 at lag = -0.14s (P2 and P3), and
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Figure 3.4: Acceleration Magnitude of 5 sec (a) and Autocorrelation (b) of Participant 1
in Scenario 1. The dotted blue lines are a 95% confidence interval, indicating that if the
assumption that a correlation at this lag exists holds, 95% of the time the correlation will
lie within this interval.

0.13 at lag = -0.03 (P1 and P3). This indicates that the two participants in Scenario 1
have the highest correlation and with the minimum lag in their stepping (lag = 0.01s).
Since both analyses P1 × P2 and P2 × P3 show much smaller correlation and high lag
in the sync, it can be assumed that P2 is the least synchronized person of the group.

The same synchronization was observed visually by the researcher in Group A during
the experiment, but only in cases were two of the people were discussing together while
the other was not paying attention to the conversation. A likely explanation of this cor-
relation is the engagement of the conversation that affects the participants to synchronize
their steps unconsciously. According to Lakens and Stel “The tendency to synchronize
movement rhythms has been theorized to play an important role in the formation of a
social unit” [42]. When three people are walking together, the conversation is taking
place in turns between two people, changing their gaze so that each person looks at each
other. This influences their walking, making their steps to correlate again in each turn
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Figure 3.5: Pearson Correlation matrix of all 5 datasets, visualized as a heat map plot.
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(c) Scenario 2 (P2 and P3)
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Figure 3.6: Cross-correlation analysis of Scenario 1 (a) - 2 people walking, and Scenario
2 (b, c, d) - 3 people walking in a park for 12 minutes. The dotted blue lines are a 95%
confidence interval, indicating that if the assumption that the pair is in sync holds, 95%
of the time the correlation will lie within this interval.
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Figure 3.7: Pearson Correlation applied to windows of 1 sec (with 50% overlap) for
Scenario 1 (a) and Scenario 2 (b).

and break the synchronization between the participants of the past turn.
This effect is also clear in Figure 3.7, where the correlation for every second is plotted

for both Scenario 1 and Scenario 2. In Figure 3.7a, the two people are not synchronized
at windows 1 to 27, but become in sync after window 28. In Figure 3.7b it is obvious that
there is a weaker synchronization between the people in the group. There are moments
that P1 and P2 are in sync (window 12 - 19) and only a few moments that all three people
look synchronized.

3.5.3 Conclusion

Interpersonal communication through voice, gestures, and gait is an essential part of the
human evolution. Through analyses of subconscious actions such as gait synchroniza-
tion and gestures, it is possible to infer rich information about individuals’ relationships.
Availability of highly sensitive smartphones enables us to capture these interactions with
high accuracy.

In this work the accelerometer data from individuals walking in different formations
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was analysed, while having conversations in groups of two or three. High frequency
data from the gait motions were processed and cross-correlated. The results empirically
confirm previously published observatory studies: the non-verbal social signals such as the
gaze, head orientation and gestures between individuals play a significant factor in gait
synchronization between two individuals walking together. A third person being involved
in this formation can distort the synchronization, unless they are not actively engaged in
the conversation between a pair.

One of the limitations of this study is the restricted number of participants. Even
though the walks that the participants made per scenario was relative long (approximately
12 minutes), repetition of this study with more participants is suggested in a continuation
of this work. In addition, more fine-grained evaluation with video recordings is required
to understand why and how the participants are synchronising with each-other.

These results and methodology can have a number of benefits for different disciplines.
They can be beneficial for scientists studying human interaction, or for organizations
interested in crowd sensing, or inferring individuals’ relationships. For example, this can
be a useful predictor in systems aiming to detect pedestrian flocks using mobile sensor
data.

3.6 Summary
In this chapter, a continuous sensing system was presented. A first prototype of this
system was presented in ACM MobiCom’14 Poster Session and is available in open-source
under the GNU Lesser General Public License v3.0. Compared to other mobile sensing
frameworks, SensingKit works in both iOS and Android platforms using the same API. It
supports modern mobile sensing technologies such as the use of Bluetooth Smart (BLE)
for proximity estimation and indoor localisation, or the use of motion co-processors for
sensing motion, orientation or motion activity. Moreover, it uses the device’s CPU time
base register rather than the system’s clock as a sensor data timestamp to avoid timing
issues when the system clock changes unintentionally. Finally, it utilises all sensor fusion
technologies that are available into the two operating systems, providing calibrated and
accurate sensor data.

The performance of each sensor in regard to its battery consumption was evaluated for
some of the most commonly used sensors in research studies. That includes the evaluation
of accelerometer, gyroscope, magnetometer, device motion, location, iBeacon (BLE) and
microphone sensors using SensingKit-iOS version running on an iPhone 5S device.

For the purpose of this research, a mobile application that utilises SensingKit frame-
work was designed, titled CrowdSense. The application is capable of capturing data from
all sensors supported by SensingKit and save them into the device’s memory in Comma-
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Separated-Values (CSV) format. It is available for free in Apple App Store and Google
Play Store since August 2015. More information about SensingKit as well as the complete
source-code is available at https://www.sensingkit.org.

A pilot study was conducted that evaluates SensingKit framework as a tool capable
of conducted research studies. More specifically, the study investigated the subconscious
phenomenon of gait synchronisation between individuals while they walk in a natural
environment in groups of two and three. This work is a first step towards detecting
whether two individuals belong in the same walking group, also known as pedestrian
flock. This can be particular useful in detecting relationships between individuals or
detecting the group formation and numbers for crowd-sensing applications.

The next chapter will present a study that focuses on detecting stationary interactions.
More specifically, it will evaluate current mobile sensors available in smartphones for
estimating proximity between mobile devices. This will lead into the development of the
DetecTN algorithm, an approach for detecting stationary interactions happening in social
events.
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Chapter 4

Towards Detecting Social
Interactions

4.1 Overview
Over the years, there have been many attempts for detecting social interactions automat-
ically, primarily from video. Most of the initial works are either based on manual anno-
tated videos [26, 15] or use computationally expensive computer vision techniques [87, 6]
that rely on external CCTV camera surveillance. Other approaches include custom made
wearable hardware [14, 57] that include advanced sensors (i.e. infrared light) and report
increased accuracy, but at the same time can be expensive and not easy to scale in larger
environments. With the rapid rise in the variety of available smartphones and their wide
range of embedded sensors, researchers have the opportunity to explore social interactions
in an automated way that depends entirely on the use of mobile sensing technology [52, 65],
without the need of additional wearable equipment or computer vision systems that can
also have implications with the user’s privacy. Moreover, it is easier and cost efficient to
deploy in unknown or new spaces as it relies on people’s own hardware.

While most early systems that use mobile sensing report reasonable results, they
have only been focused on and evaluated in detecting one-to-one social interactions, a
situation that only covers a subset of the formations that occur in natural environments.
Furthermore, they rely on pre-trained models that only work with specific mobile devices.
This chapter presents an initial study aiming to detect stationary social interactions of
various sizes using mobile sensing technology.

The first experiments evaluate whether a system that automatically detects stationary
interactions of various sizes could be feasible with current technology that is available in
a modern smartphone. More specifically, an evaluation of the Bluetooth Smart (BLE)
sensor is presented in Section 4.2, as a way of estimating the proximity between two people.
Three methods are evaluated, all based on the Received Signal Strength Indicator (RSSI)
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of the Bluetooth Smart sensor and how the signal propagates through the environment;
the Path Loss Model (PLM) [51], a pre-trained model from Radius Networks [76], and
finally what Apple reports as proximity in their implementation of Bluetooth Smart known
as iBeacon™ [2].

Resulting from the findings of this experiment, Section 4.3 proposes an initial group
interaction study that evaluates a novel algorithm, named DetecTN, for detecting station-
ary interactions inside crowds. It uses information extracted from the Bluetooth Smart
sensor, as an indication of the user proximity, as well as the device’s accelerometer sensor,
as an indication of the user’s motion activity (i.e. Stationary vs. Moving). Unlike previ-
ous work in mobile crowd sensing, the DetecTN algorithm is capable of detecting dynamic
groups of variety of sizes and is not device dependent. The findings report a performance
of 80.9% precision and 92.4% recall while detecting interactions second-by-second.

Finally, the implications of this preliminary work are discussed in Section 4.4, alongside
the reasoning behind the development of a successor algorithm presented in Chapter 5.

4.2 Validation Experiments
One of the most important predictors when detecting social interactions is obviously
the proximity between people. There have been several ways of estimating the distance
between devices using wireless sensors such as Time of Arrival, Time Difference of Arrival,
Angle of Arrival and using the Received Signal Strength Indicator (RSSI). At this moment,
the only method that is available in today’s smartphones is using the RSSI of either the
Bluetooth or the WiFi sensor.

In the past, researchers have used the RSSI of Bluetooth [46, 25, 65], WiFi [51] or even
a combination of them [3] by measuring the RSSI of every wireless sensor available in range
and comparing it with a Measured Power constant that indicates the signal strength (in
dBm) at a known distance (usually 1m). In 2010, the Bluetooth Special Interest Group
released Bluetooth v4.0 with a Low Energy feature (BLE) that was branded as Bluetooth
Smart [2]. Bluetooth Smart is low cost for consumers, has low latency in communications
(6 ms) and is power efficient. Moreover, it supports a low energy advertising mode where
the device periodically broadcasts specially formatted advertising packets to all devices
in range with a customizable sample rate of approximately 3Hz. This packet includes
31 bytes of information that developers can use to advertise, for example, a unique ID
for each user, but also the measured power constant that was mentioned above. The
advantage of using this technology for proximity estimation is that each manufacturer
can configure the device to use its own pre-calibrated measured power constant, making
the proximity estimation more accurate. In addition, devices do not need to maintain a
connection with each-other in order to measure the RSSI, having a minimum impact on the
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device’s battery life. In its latest version, marketed as Bluetooth 5 [7], the sensor provides
additional benefits including longer range (x4) and longer capacity in the advertising
packet (x8).

Apple developed a closed-source protocol based on Bluetooth Smart, branded as iBea-
con™ and supported it as of iOS 7 in June 2013 in all mobile devices with Bluetooth 4.0 or
greater (iPhone 4 or newer) [2]. The specification of iBeacon’s advertising packet includes:
a 16 byte Universally Unique Identifier (UUID) used to separate beacon applications, two
2-byte unsigned integer identifiers named Major, that separates beacon groups (e.g. lo-
cated on the same venue or floor), and Minor, that separates individual beacons within the
group, and a 1 byte Measured Power value used as an RSSI reference at 1-meter distance.
The remaining 9 available bytes are used as a static prefix and cannot be customised by
the developer. An iOS application can register to monitor for beacons of specific UUIDs
and estimate its proximity whenever a beacon exists within range. The app can also
advertise iBeacon™ packets, however, only while the device is unlocked (i.e. in-use while
the screen is on) and the app remains in the foreground. Furthermore, it is not possible
to customize the Broadcasting Power of the Bluetooth sensor, using the maximum power
by default. Note that even though iBeacon™ is an Apple product for iOS devices, it is
possible to scan or broadcast as an iBeacon™ from Android platform using third-party
libraries such as the Android Beacon Library from Radius Networks1.

In this section, iBeacon™ protocol is evaluated as a way of proximity estimation be-
tween smartphone devices. An experiment was conducted using two iPhone devices. By
using SensingKit iBeacon™ Proximity sensor in Scan & Broadcast configuration, proxim-
ity data was collected (RSSI and Accuracy2) for five minutes in 12 distances from 0.00m
to 3.00m, every 0.25m. It is important to mention that each device was both broadcasting
and receiving an iBeacon™ signal, resulting into a total of 300 measurements for each
device per distance. The experiment took place in the Performance Lab of Queen Mary
University of London, an empty room 10.6 × 8.16 meters long that is mainly used for a
variety of performance research and recording applications. Figure 4.1 shows the RSSI
patterns over distance, as measured by the two iPhone devices.

The figure demonstrates that the pattern of the RSSI signal is device hardware de-
pendent (iPhone 5S vs. iPhone 6S) and proves the requirement of a measured power
constant as a reference point for a pre-known distance as explained above. It also shows
the instability and fluctuation of the RSSI signal, mainly because of environmental fac-
tors (e.g. reflections, obstacles, background noise) as reported by other similar works
[51, 46]. The same experiment was repeated at the Mobile Antenna EMC Screened Ane-
choic Chamber of Queen Mary University of London, a 6×5×3 meters chamber designed

1https://github.com/AltBeacon/android-beacon-library
2Apple’s proximity estimation.
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Figure 4.1: Box plot of Bluetooth Smart RSSI versus distance using two iPhone devices.

to completely absorb reflections of electromagnetic waves. Two metallic tripods were used
to hold the two devices. Because of their reflecting material they both contributed to the
multi-path components. Although the pattern of the received RSSI in both environments
is similar, the actual captured value in the chamber is lower by approximately 5-7 dBm
which highlights the reduction in reflections and multi-path components. In addition, the
similarity in the patterns could be attributed to the receiver’s own automatic gain control.

Different methods have been evaluated for estimating distance using the Bluetooth
Smart RSSI and the Measured Power constant (-57 for iPhone 5S and -56 for iPhone 6S)
as recorded by the iBeacon™ Proximity sensor. The Path Loss Model (PLM) [51] was
tested, based on the theory of signal loss as it propagates through space:

P (d) = P (d0)− 10× n× log10(d)−X, (4.1)

where P (d0) is the measured power (in dBm) at 1-meter distance, n the path loss
exponent, d the distance in which the the RSSI is estimated and X a component that
describes the path loss by possible obstacles between the transmitter and the receiver.
The values n = 1.5 and X = 1 were chosen as the environment was indoors and no
obstacles between the two devices were expected when a group of people is interacting
with each-other. The same model can easily be transformed in order to estimate the
distance (d) from the RSSI (P (d)), as shown in the following formula:

d = 10
P (d0)−P (d)−X

10×n (4.2)
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A second model was tested, provided by Radius Networks [76], a company that pro-
duces beacon technology solutions compatible with both iBeacon™ and Eddystone™:

r =
P (d)

P (d0)
(4.3)

d =

r10, if r < 1.0

0.89976× r7.7095 + 0.111, otherwise
(4.4)

According to Radius Networks, “The three constants in the formula (0.89976, 7.7095
and 0.111) are a best fit curve based on a number of measured signal strengths at various
known distances from a Nexus 4” [76].

Finally, the two methods have been compared with iBeacon’s distance estimation
(reported as Accuracy by Apple). As iBeacon™ technology is closed-source, the details of
this method are unknown. One of the limitations when using Apple’s estimation is that
a delay of 20 seconds is observed every time the distance changes, indicating that Apple’s
method normalises the RSSI signal through a rolling mean function before estimating the
distance. Even though that reports a more stable measurement, it is less responsive and
not suitable for this work that aims to evaluate the interactions in windows shorter than
20 seconds.

Figure 4.2 shows the accuracy of the distance estimated with the three methods de-
scribed above. Since two RSSI measurements exist (from Phone A to Phone B and from
Phone B to Phone A), the model was applied twice and the average of the two distances
was used. The results indicate a low accuracy in all three models, especially at the dis-
tance greater than 1.25 meters. Apple and PLM models reported similar results, with an
average estimated error of 0.65 (SD = 0.44) and 0.64 (SD = 0.48) meters accordingly.
Radius model showed slightly better results with an average error of 0.53 (SD = 0.45)
meters overall. Interestingly, the estimated proximity at 2.25m is the most accurate of
all measured proximities, achieving a low error of approximately 0.1 meters for PLM, 0.2
meters for Apple’s and 0.4 for Radius’s model. It would have been expected that this
accuracy should exist at 1 meter, the distance that was used as a reference in the Mea-
sured Power constant. These outliers can be attributed to the reflections and multi-path
components of the environment, as mentioned earlier in this section.

Results from this experiment suggest that all three approaches on proximity estimation
report similar accuracy. It is hard to estimate proximity with good accuracy, especially
with distances above 1 meter. In the next section, proximity based on Radius model will
be evaluated as a predictor for social interactions.
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Figure 4.2: Evaluation of Apple’s iBeacon™, PLM and Radius distance estimation mod-
els.

4.3 Preliminary Study in Detecting F-formations
This study aims to automatically detect social interactions taking place in social events,
depending entirely in sensors available in a modern smartphone. The definition of a social
interaction that is used throughout this section is inspired from the theory of conversation
clusters or Kendon’s F-formations [38]:

An F-formation system arises when two or more people cooperate together to
maintain a space between them to which they all have direct and exclusive
access.

In contrast to previous related works, this approach has been evaluated in scenarios
where interactions of more than two people are being involved. This section starts with a
detailed description of the experiment, including the participants (4.3.1), the sensor data
collection (4.3.2) and a description of the procedure that was followed (4.3.3). It continues
with an explanation of the ground truth used in this study (4.3.4), the data pre-processing
procedure that was followed (4.3.5), and a description of the DetecTN algorithm (4.3.6).
The section concludes by presenting the results of this study (4.3.7).

4.3.1 Participants

The experiment involved the recruitment of six participants, all research students from
Queen Mary University of London that had no previous experience with the current study.
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Table 4.1: Participant demographic information.

Gender Height Weight Device iOS
P1 Male 1.80m 74kg iPhone 6S 9.1
P2 Male 1.88m 63kg iPhone 6 8.3
P3 Male 1.85m 72kg iPhone 6 9.1
P4 Female 1.72m 97kg iPhone 6 9.1
P5 Female 1.64m 59kg iPhone 5S 9.1
P6 Male 1.90m 95kg iPhone 5S 9.0.2

Table 4.1 shows the demographic information of the recruited participants as well as the
iPhone device and iOS version they used in the experiment.

4.3.2 Sensor Data Collection

As a sensor data collection tool, the open-source CrowdSense App for iOS v1.2.2 was used,
presented in Section 3.3. CrowdSense is an iOS application based on SensingKit [28]
framework. It provides access to all sensors supported by SensingKit, when these are
available in the device. The application collects sensor data and saves them into the
device’s memory in CSV format. It can be run in all iOS devices with iOS 8 or greater
and is available for free in Apple’s App Store.

As shown in Table 4.1, the experiment used one iPhone 6S, three iPhone 6 and two
iPhone 5S devices, installed with CrowdSense and configured to collect Motion Activity,
Device Motion (that includes Linear Acceleration) in the maximum sampling rate of 100Hz
and iBeacon™ Proximity data in Scan & Broadcast mode. In order to make sure that
this experiment can easily be replicated in large scale with unknown devices, the default
Measured Power value of iBeacon™ Broadcast was used, as defined by the manufacturer,
avoiding a manual re-calibration. A unique ID per device was set into the Minor identifier
of the sensor, in order to uniquely identify each participant. A short audio sample of 10
seconds was also recorded and used to synchronize the sensor data between the six devices.

To overcome the restriction of Bluetooth Smart sensor not broadcasting a beacon
signal while the device is locked, participants had to place the device in their pockets
while the screen is on. By using the device’s proximity sensor, the app was automatically
switching the screen off and avoid the battery consumption produced by the screen.

4.3.3 Procedure

The experiment took place at the Performance Lab of Queen Mary University of London.
The Performance Lab is a large space (10.6× 8.16) suitable for live performance experi-
ments (Figure 4.3). A DMX lighting rig is also installed in the ceiling of the space, useful
for installing Lights, Cameras or other related equipment. Two full-HD video cameras
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Figure 4.3: Floor plan of the Performance Lab. The area that the study took place is
highlighted in grey. The two cameras (Ci) are highlighted in blue. The area that the
study took place is highlighted in grey.

were installed in the lighting rig, used to record the experiment from two different angles.
This video recording was used as ground truth for evaluating the accuracy of the detection
of the interactions happening inside the room.

All six participants were informed that the experiment explores the ways people inter-
act in social events and received a short demonstration of CrowdSense application. They
signed the required consent forms and completed a short questionnaire with demographic
questions (i.e. gender, weight, height, iPhone model and iOS version). During the experi-
ment, one of the researchers gave instructions based on a predefined script about the social
groups that they should create (e.g. “P1 should now leave group A and join group B.”). In
order to facilitate their social interaction and make it as real as possible, participants were
asked to introduce themselves and briefly describe their research area to each other. In
total, they interacted for approximately 5 minutes and formed nine group combinations.
Table 4.2 shows a description of the tested scenarios and different group combinations
that they formed during the experiment. These orchestrated scenarios were chosen in
order to simulate stationary interactions that are happening during social events. More
specifically, the following four events were tested:
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Table 4.2: Scenes with group formations tested during the experiment.

Name Groups Description
S01 3 A group of three people walk and form a stationary F-

formation.
S02 3, 3 Another group of three people walk and form another

stationary F-formation.
S03 2, 4 One participant leaves group A and joins group B.
S04 3, 3 Another participant leaves group B and joins group A.
S05 5, 1 Two participants leave group A and joins group B. The

remaining person walks on the opposite direction.
S06 6 All participants join group B.
S07 2, 4 Two people from group B leave and form a separate

formation (group A).
S08 4, 1, 1 Group A is now split and one of the participants walks

close to group B twice, but do not join their formation.
S09 5, 1 The same participant now joins group B.
S10 Group splits and participants leave the room.

• A group of people is forming an interactive group (F-formation).

• One or more participants leave the group.

• One of more participants join another group.

• A group of people is dissolving an interactive group.

All data collection and analysis was made with informed consent and approved by the
Queen Mary University of London research ethics committee (Appendix A).

4.3.4 Ground Truth

The performance of the algorithm was evaluated by using the video recording as ground
truth. An external researcher was asked to annotate the social interactions using ELAN
multimedia annotator software [97] as shown in Figure 4.4. The exact instructions, based
on Kendon’s F-formation [38] explained before, were:

An interaction begins at the moment two or more people are stationary and
cooperate together to maintain a space between them to which they all have
direct and exclusive access.

All annotations were extracted from ELAN into a CSV file that includes the partici-
pant’s ID, a unique ID per group formation, as well as the exact begin and end time that
the participant was part of this group.
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Figure 4.4: Manual annotations using ELAN multimedia annotator software.

4.3.5 Data Pre-Processing

Before starting the data analysis, all data was synchronized using the audio sample de-
scribed previously, achieving an accuracy of ±50ms. All iBeacon™ Proximity data was
filtered by removing values reported as Unknown with −1 as RSSI. This usually occurs
at the beginning of the beacon ranging process due to insufficient measurements to de-
termine the state of the other device [2] or for a few seconds after the device gets out of
the beacon’s broadcasting range. Based on the results of the previous experiment, Ra-
dius proximity model was applied in all RSSI measurements for estimating the proximity
between devices.

Even though data from Motion Activity sensor report the user activity, classified as
Stationary, Walking, Running, Driving and Cycling, there is a delay of 3-5 seconds before
reporting the activity. For the purpose of this work, a responsive motion activity recogni-
tion is a key requirement when identifying stationary interactions. Thus, the use of Linear
Acceleration data was chosen as a way to classify the user’s activity between Stationary
and In-Motion. This sensor only includes the acceleration of the device, excluding the
gravity from the raw accelerometer data. The magnitude of the 3-axis sensor was calcu-
lated using the formula

√
x2 + y2 + z2 in order to compute the total acceleration in one

vector. This process was required since each user had the device in a different physical
alignment and individual axis reading would not have provided useful information. Data
was also averaged per 1 second windows and the threshold of 0.15g was empirically chosen
to classify a participant between Stationary and In-Motion.
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Figure 4.5: Overview of the DetecTN algorithm used for social interaction detection.

4.3.6 The DetecTN Algorithm

Inspired from the work of [26], the concept of this approach for detecting Social Inter-
actions is based on the Graph Theory. Each moment (in seconds) is represented as an
undirected weighed graph G = (V,E,w), with a set of vertices V and weighed edges
E(w). Each vertex corresponds to a participant, and each weighted edge correspond to
the distance as estimated by the iBeacon™ Proximity sensors.

An array of weighed adjacency matrices was used to represent the estimated distance of
each participant for each second (Figure 4.5a). Since this work only focuses on stationary
interactions, when a participant is classified as stationary, he/she is equally classified as
non-interacting. The weighed adjacency matrices are converted into binary adjacency
matrices (Figure 4.5b) using Algorithm 1. The algorithm is based on three variables: A
range (from – to) of estimated distance that two participants should have, and x that
represents the time (in seconds) that this distance should be maintained. When these
conditions are met, an edge between the two nodes is created and represented by 1 in the
matrix. An interaction is identified when a connected component exists in the graph, as
shown in Figure 4.5c (Participants 3, 4, 5 and 6).

Algorithm 1: Vertice creation of binary adjacency matrix
if activity is not stationary then

w ← 0
else

if from ≤ distance ≤ to and time ≥ x then
w ← 1

else
w ← 0

end if
end if
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4.3.7 Results

To report the performance of a classification model, a confusion matrix is very frequently
used, that is a table that reports the:

• True Positives (TP): Interactions that the algorithm correctly identified as interac-
tions.

• False Positives (FP): Non-interaction that the algorithm incorrectly identified as
interactions.

• True Negatives (TN): Non-interactions that the algorithm correctly identified as
non-interactions.

• False Negatives (FN): Interactions that the algorithm incorrectly identified as non-
interactions.

To report the performance of this algorithm, Precision and Recall were used, two
measurements that are heavily used in binary classification problems. In the context of
this work:

• Precision (also called positive predictive value) is: from all detected interactions,
how many of them did this algorithm detect correctly?
Precision = TP/(TP + FP )

• Recall (also called sensitivity) is: from all interactions taking place, how many of
them did the model detect?
Recall = TP/(TP + FN)

Note that it is trivial to achieve a 100% recall, just by always making a positive pre-
diction (i.e. interacting). Thus, a performance measure that represents both the precision
and recall was required. The F1 score was chosen as it is a harmonic balance between
precision and recall into one measure:

F1 = 2× precision ∗ recall
precision+ recall

(4.5)

Other similar measurements could be used if needed. For example, F2 score could be
used that weights recall higher than precision, in case it is required to have a model that
classifies an interaction easier (i.e. probability is relatively low) but ending up reporting
more false positives. An alternative is F0.5 which puts more emphasis on precision rather
than recall.

The DetecTN algorithm was tested with different values. More specifically, variable
to was manipulated in the range between 2 and 10 meters, and variable x in the range
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Figure 4.6: Performance of the social interaction detection algorithm at 63 different
spatial-temporal scales. Warmer colours in the plot represent higher F1 score perfor-
mance.

Table 4.3: Confusion matrix reporting the performance of the DetecTN algorithm with
parameters: from = 0, to = 5 and x = 3.

Predicted Class
Positive Negative Total

Actual Positive 1052 (TP) 87 (FN) 1139
Actual Negative 248 (FP) 1598 (TN) 1846

Total 1300 1685 2985

between 2 to 60 seconds. Increasing variable from from 0 meters always resulted in
a negative effect in the performance of the algorithm, thus was always set to 0. The
aim of performing a parameter manipulation was to discover the best configuration that
maximises the performance of the algorithm (i.e. maximise F1 score).

Results from the parameter manipulation reported that the algorithm performs best
with an estimated distance between 0 and 5 meters for more than 3 seconds (Figure 4.6).
The maximum performance that was achieved is 80.9% precision and 92.4% recall. Ta-
ble 4.3 summarizes the results of this experiment using confusion matrices.
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4.4 Summary
In this chapter, a system was introduced that automatically detects social interactions
inside crowds depending entirely on the embedded sensors of smartphone devices. This
work is capable of detecting not only one-to-one, but also interactions of variety of group
sizes. By utilizing the Bluetooth Smart and motion sensors of each device, it is able to
estimate the distance between people as well as to classify the user’s activity between
stationary and in-motion. In addition, by using a novel algorithm it is able to predict
interactions inside a small group of people, reaching a performance of 80.9% precision and
92.4% recall.

As mentioned earlier, the aim of the work in this section was to evaluate whether a
system that automatically detects stationary interactions of various sizes could be feasible
with current technology available in a modern smartphone. Even though the results
reported a high accuracy in terms of precision and recall when detecting the interactions,
these need to be further evaluated in a realistic environment that social interactions
take place naturally. In contrast, the collected dataset was small (3:18 minutes long)
and included only a few artificially created interactions that the researcher orchestrated.
It is expected that in a real environment where interactions can take place in shorter
distances (i.e. people standing very close to each-other due to limited space), the current
approach will report increased false positives (FP), resulting into a decreased precision.
This assumption was verified in a live demonstration of the algorithm at ACM MobiSys
2017 (Appendix B), with interactive groups being very close in distance (less than one
meter) and in orientations that allowed direct contact between the two devices, identified
as interacting together.

One of the main reasons behind this outcome is the inaccuracy of the proximity es-
timation. As mentioned in Section 4.2, the only option available in today’s smartphone
devices for detecting proximity is the use of RSSI signal from a wireless sensor (i.e. Blue-
tooth or WiFi). If other technologies ever become available, the accuracy of this method
will greatly benefit. One solution that could be worth evaluating is the manipulation
of the signal strength of the Bluetooth Smart sensor, known as Broadcast Power. By
choosing a lower value in this parameter, the sensor would only be capable of detecting
interactions in shorter distances. Unfortunately, currently the iOS platform does not
allow the manipulation of such parameter.

One limitation of the evaluation approach is that the reported performance (based
on the parameter tuning reported in Figure 4.6) is only valid to the specific environment
with the current participants. Due to the limited duration of the experiment, it has not
been tested in an unseen evaluation set, resulting into a parameter overfitting. A proper
evaluation with an unseen (i.e. never trained with) dataset should be included in future
evaluation of such system.
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Another important restriction of this approach comes from the iOS system that does
not allow the device to broadcast as an iBeacon™ in the background. It was possible to
overcome this limitation by asking the participants to place the phone while the screen
is on. This can be feasible in small experiments by instructing the people to do so, but
it is not possible in larger scale events. Similar limitations exist in the Android OS as
previously mentioned in Section 2.2.5.

In the next chapter, a successor of this work will be presented that overcomes these
limitations by using an external beacon hardware that people can place in their pockets.
This device can broadcast a beacon signal, simulating a device beacon broadcasting, while
each participant’s smartphone can be used as a beacon scanner. In addition, it will allow
the manipulation of the Broadcast Power parameter, reducing the broadcasting range
in shorter distances. Finally, a supervised machine learning approach will be evaluated
that uses features extracted from a wider range of mobile sensors, aiming to achieve
good accuracy in a more realistic social event where participants interact physically with
each-other.
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Chapter 5

Detecting Social Interactions

5.1 Overview
Chapter 4 presented the DetecTN algorithm, an approach for detecting stationary in-
teractions using mobile sensing. More specifically, it used the Bluetooth Smart sensor
to estimate the proximity between devices, and the accelerometer sensor to detect the
motion state of each user. By fusing the data from the two sensors, it was capable of
detecting interactions with a performance of 80.9% precision and 92.4% recall on a small
dataset with six participants. This approach has some limitations which are summarized
below:

• Proximity estimation based on the Bluetooth Smart RSSI of mobile devices is noisy,
making it hard to differentiate between specific proximities. For example, measuring
the RSSI in 0.75m and 1.75m distances reported very similar signal patterns, making
it hard to cluster between zones that a social interaction could be feasible, and
consequently, making hard for DetecTN to detect social interactions accurately.
One solution that was suggested in Chapter 4 is the manipulation of the sensor’s
Broadcast Power configuration. This could reduce the sensor’s broadcasting range
and allow more fine-grained classification of distances. However, the iOS platform
does not allow configuration of this setting, restricting it by default to the maximum
power.

• iOS platform does not allow the device to be used as a beacon broadcaster (i.e. broad-
cast an iBeacon™ signal) while the screen of the device is off. This limitation makes
this approach problematic for collecting data as people naturally keep their device
locked while interacting. This behaviour was also observed in the preliminary study
(Section 4).

Beside the technical limitations, this preliminary study was short (5 minutes long) and
all interactions that took place were artificially made based on the researcher’s guidance
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during the experiment. Moreover, the complete dataset was used as both a training and
an evaluation set, resulting into parameter overfitting. Thus, this may not reflect the true
nature of social interactions.

The aim of the work presented in this chapter is to develop and evaluate an enhanced
version of the DetecTN algorithm presented in Chapter 4, that is based on supervised ma-
chine learning. In contrast to other related works [52, 65], the evaluation of such approach
uses a dataset that took place in a natural, non-artificial social setting. To overcome the
limitations mentioned earlier, wearable beacons were used in order to broadcast a beacon
signal while CrowdSense App was running as a background process in each user’s smart-
phone. This also allowed to customise the broadcasting power of each beacon, achieving
better accuracy in estimating the social space of each participant. Moreover, additional
mobile sensors were used (i.e. accelerometer and gyroscope) in order to capture previously
unexplored social signals that can possible contribute into the social interaction detec-
tion. Finally, the use of modern BLE sensor is used to estimate the proximity between
participants that provides higher sampling rate (1 Hz) and improved performance that is
also device independent.

The rest of this chapter has the following structure: Firstly, two validation experi-
ments are conducted (Section 5.2) that evaluate the wearable beacons as a way to estimate
whether two participants are close enough for a social interaction to be feasible. The aim
is to investigate if the beacon’s RSSI on a custom Broadcasting Power configuration can
be a good predictor for a supervised machine learning classifier. Following the validation
experiments, a case study is presented in Section 5.3 with 24 participants interacting
in a social event for 45 minutes, while collecting a rich data set of mobile sensor data.
Section 5.4 presents all steps that were followed to analyse the collected data and build
a binary machine learning classifier. The results from the evaluation of the case study,
presented in Section 5.5, report a performance increase of 26.7% over a proximity based
simplistic approach. Section 5.6 presents a discussion of the results as well as the impli-
cations of the study.

5.2 Validation Experiments
To overcome the limitations summarised in Section 5.1, external coin-shaped beacons were
used (RadBeacon Dot from Radius Networks1), referred to as coin beacons in the rest
of this thesis and used to simulate a smartphone’s iBeacon™ broadcasting functionality.
These beacons are low cost (starting from $10 each), small sized (35mm×35mm×15mm)
and can be easily placed in each participant’s pocket. Furthermore, the broadcasting
power can be configured into various settings (i.e. -18, -15, -12, -9, -6, -3, 0 and +3 dBm),

1https://www.radiusnetworks.com
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allowing to fine-tune the broadcasting range of each device.
Beacon manufacturers generally configure the broadcasting setting into the highest

possible when distributing indoor localisation solutions in order to achieve increased range,
but also better accuracy in proximity estimation. However, for the purpose of this work,
the requirement is to set the beacons in such a manner as to achieve the highest possible
accuracy in the binary detection of a pair of participants within the zone that a social in-
teraction is feasible. Therefore, different broadcasting power values were tested, explained
in detail in the rest of this section.

All data collection and analysis was made with informed consent and approved by the
Queen Mary University of London research ethics committee (Appendix A).

5.2.1 Evaluating the Effect of Proximity in the RSSI

In order to evaluate what is the most optimal broadcasting power setting for detecting if a
pair is within a social enabled zone, a short experiment was conducted. Two participants
were recruited: P1, male with height 1.79m and weight 73kg, and P2, male with height
1.83m and weight 87kg. P1 had the role of the broadcaster and was equipped with eight
coin-shaped beacons of the same type, each configured in one of the available broadcasting
power setting mentioned earlier. P2 had the role of the receiver and had an iPhone SE
device placed in one of his pockets. CrowdSense App was used once again to collect
iBeacon™ Proximity data from all eight beacons, for 30 seconds in 15 distances from 0.25
to 4.00m, every 0.25m.

Previous similar evaluations either used tripods [33] to install the required equipment
(i.e. the beacons and the phone), or water bottles [65] simulating the body’s water effecting
the beacon’s RSSI. However, these works did not capture the effect of human posture or
blockage by body parts. Moreover, the signal is not only affected by the body’s water,
but also from the electric properties of human tissues (muscle, fat and skin) [78]. In this
experiment, actual participants were used as a more realistic environmental setting.

Figure 5.1 indicates how the RSSI from each beacon changes while the distance in-
creases. Only two plots are presented in this section (i.e. with broadcasting power +3
and -18 dBm), with the remaining six being available in Appendix C. It is clear from the
figure that each beacon, due to its configuration, has a different RSSI range and a unique
pattern. For example, in the case of the beacon configured in the highest +3 dBm power,
it is hard to differentiate between distances 0.75 and 1.25, or 1.00 and 1.50. Moreover,
most of the signals highly fluctuate, especially in relative long distances (greater than
1.75m). It was decided to choose the minimum Broadcast Power possible (i.e. -18 dBm)
as it is easy to separate the RSSI of less than, and greater than 1m distance. Moreover,
the signal looks relative smooth compared to the others, possibly resulting into a less
classification error within the zone of consideration. This decision was also suggested
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Figure 5.1: Measuring the effect of proximity on iBeacon™ signal. Each distance (x axis)
was maintained for 30 seconds while P1 (broadcaster) had eight coin-shaped beacons
attached to the front of his body. P2 (receiver) was collecting the beacon’s RSSI signal
using an iPhone SE device placed on his left pocket.

in [52] where they used the device’s WiFi sensor in lowest power for the same purpose of
detecting social interactions.

5.2.2 Evaluating the Effect of Body Orientation in the RSSI

As mentioned before, BLE uses the relatively low 2.4 GHz radio frequencies, resulting into
RSSI measurements that are highly affected by the human body. Thus, it is obvious that
the relative body orientation between two people will also affect the signal significantly.
This can be seen as a desirable effect as a machine learning classifier could possibly
memorise the different patterns caused by the orientation difference and only report a
positive prediction (i.e. an interaction is happening) when the orientation and distance
between people is optimal.

A second short experiment was conducted to report how the RSSI is affected from
the relative body orientation and whether there are distinctive patterns that a machine
learning classifier could benefit from. The same two participants were used (P1 and
P2), and asked to stand facing each-other in 1m distance and engage into a conversation
(Figure 5.2). P1 was the broadcaster having a coin beacon that was configured to -18
measured power placed in each of his pockets. P2 was the receiver having one iPhone SE
phones in each of his pockets. CrowdSense iOS app was collecting data for 30 second on
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Figure 5.2: Configuration while measuring the effect of body orientation on iBeacon™
signal. P1 (left) is the broadcaster, with one beacon (AltBeacon Dot) placed in each of
his two pockets. P2 (right) is the receiver, with one smartphone (iPhone SE) placed in
each of his two pockets.

all 64 combinations of different orientations, with a resolution of 45°. For each 30 second
window, data was collected for the following four cases:

(a) P1: beacon on the left pocket / P2: phone on the left pocket.

(b) P1: beacon on the left pocket / P2: phone on the right pocket.

(c) P1: beacon on the right pocket / P2: phone on the left pocket.

(d) P1: beacon on the right pocket / P2: phone on the right pocket.

Figure 5.3 visualises the mean of the RSSI for 20 seconds (excluding the first and last
5 seconds required for the orientation change) in a form of four heat-maps (one for each
of the four cases mentioned earlier). As expected, the RSSI varies based on the relative
orientation of the two participants. Interestingly, there are orientations that the device
could not receive any signal from the beacon due to the low broadcasting power setting
that was used, as the body was hiding the signal from the broadcaster. These cases,
highlighted as blanks in the four figures, are desirable in our case as it is hard to maintain
a social interaction in such orientations.

Figure 5.4 shows five examples of different orientations with P1 being the broadcaster,
with one coin beacon placed in his left pocket and P2 being the receiver, with the smart-
phone device placed in his left pocket. Using the heat-map from Figure 5.3a as a reference,
it is obvious that the orientations shown in the first three examples (a, b and c) report
an RSSI of −85.6, −84.3 and −77.8 respectively. Note that in these three orientations,
a social interaction is feasible due to small relative angle the two participants have. In
contrast, in the last two examples (d and e), the RSSI is unknown due to the participant’s
body hiding the signal.
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(a) P1: left pocket / P2: left pocket
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(b) P1: left pocket / P2: right pocket
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(c) P1: right pocket / P2: left pocket
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(d) P1: right pocket / P2: right pocket

Figure 5.3: Measuring the effect of body orientation in iBeacon™ signal. Heat map
visualisation of the mean RSSI of 20 second window over different relative orientations of
the two participants. Blank entries indicates no data due to the low Broadcasting Power
configuration used.
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Figure 5.4: Examples of different body orientations with P1 (up) being the broadcaster
and P2 (down) being the receiver.

One important observation is that the results are not symmetric. For instance, some-
one would expect that in a scenario where P1 is 90° and P2 135°, the measured RSSI
would be similar to the symmetric scenario where P1 is 135° and P2 90° (Figure 5.3a).
The asymmetry in the results can be attributed to the biometric differences (e.g. weight
and height) between the two participants, as well as to the configuration, using P1 as the
beacon broadcaster and P2 as the beacon receiver.

Another important discovery is that the RSSI is very different based on the configura-
tion of in which pocket each device was placed (left or right). This suggests that knowing
this configuration (i.e. in which pocket the user placed his/her phone) would result in
better accuracy. Note that in Figure 5.3, only the mean RSSI is visualised. Since the
signal also fluctuates (similar to Figure 5.2), a feature representing the standard deviation
(SD) could also be a useful predictor.

5.3 Data Set
In order to identify and evaluate the sensors needed for detecting stationary interactions
in a natural setting, data was collected from participants during a social networking
event. This section includes a description of the recruited participants (Section 5.3.1),
the procedure that was followed while conducting the case study (Section 5.3.2), as well
as the sensor data that was collected (Section 5.3.3).

5.3.1 Participants

37 potential participants were recruited via email and flyers; 24 of those took part in the
actual study of which 9 were male and 15 females, with average weight 63.75kg (±18.02),
and average height 167.21cm (±9.11). Participants were selected based on their mobile
phone model (iPhone 4 or higher) and the version of their operating system (iOS 7 or
higher), based on the availability of the iBeacon™ sensor. Two devices experienced errors
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during the study (i.e. Bluetooth Smart sensor reported an internal error and did not collect
data) and were excluded from the data analysis, resulting into 22 valid participants.

5.3.2 Procedure

Several days before the study, participants were instructed to install CrowdSense App,
based on SensingKit for iOS v0.5 [32], presented in Chapter 3. The difference between
this version and the one available in the App Store is that it automated the sensor test,
selection and configuration process, allowing the participants to easily register their details
through an electronic form, and finally submit the data into a cloud-based server.

On the day of the study, participants were invited to the Performance Lab of Queen
Mary University of London, a floor plan of which is shown at Figure 5.5. The Performance
lab is 10.60× 8.16 meters, with 3.90 meters height; it is suitable for such type of experi-
ments not only due to its isolation from outside noise and environmental factors, but also
due to it being a natural space often used for social events and performances. It provides
a DMX lighting rig installed in 3.27 meters height which was used to fix two HD cameras
(Ci) recording video (but not audio) in 25fps, covering an area of 6.57 × 5.36 meters
(highlighted in grey in Figure 5.5). These videos were annotated to provide the ground
truth for social interactions (see Section 5.4.3). This area was restricted using plastic
dividers of 1.94 meters height to make sure that all interactions would be recorded by
the cameras. Additionally, five Estimote Location Beacons2 (Bi) were installed into the
lighting rig, configured into the device default 300ms Advertising Interval and −12dBm

Broadcasting Power.
Before the study began, participants were asked to read the information sheet and

sign the required consent form. Participants were equipped with a Radius Networks
RadBeacon Dot3 each (coin shaped Bluetooth 4 based low energy beacons), to place
in one of their pockets. All coin beacons have been pre-configured to 10ms advertising
interval (highest) and −18dBm broadcasting power (lowest), based on the results reported
in Section 5.2. Half of the participants were hereby instructed to place the beacons in
the left pocket and the other half in the right pocket, in a counterbalanced manner to
account for random factors when people place their phone in their pocket. The phone
was always placed in the pocket of the other side to avoid signal interference between the
two devices.

During the setup process of the study, participants were guided through CrowdSense
App configuration. This process included a facial photograph used to enable the later
ground truth video annotations and completion of the demographic collection form for
the gender, weight and height of the participant. As a last setup step, participants were

2https://estimote.com
3https://radiusnetworks.com
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Figure 5.5: Floor plan of the Performance Lab. The two cameras (Ci) are highlighted in
blue, while the five beacons (Bi) are highlighted in red and installed in a lighting rig, in
3.27m height. The area that the study took place is highlighted in grey.

asked to synchronously perform a wave-movement in front of the cameras. The recorded
sensor data of each participant was later synced with the 25fps video feed, achieving a
sync accuracy of ±40ms.

Participants were then instructed to socially network for a total of 45 minutes. Snacks
and beverages were served before and after the end of the experiment. The discussion
topic was intentionally left open, trying to simulate a realistic networking scenario with
minimum influences from our side. After the networking session, participants returned
the beacons, submitted the collected data to our cloud-based server and were reimbursed
with £20 for their time.

In total, 99 one-to-one interactions were observed with a mean duration of 252.7s

(±164s) and 25 group interactions (i.e. interactions that include more than two partici-
pants) with a mean duration of 110s (±135s).

All data collection and analysis was made with informed consent and approved by the
Queen Mary University of London research ethics committee (Appendix A).
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5.3.3 Sensor Data Set

The dataset that was collected during the case study includes for each participant, the
following sensor data:

• iBeacon™ Proximity: This sensor provides the RSSI from the mobile device
with all beacons available in range. That includes all 24 coin beacons that the
participants carried in their pocket but also the high performance beacons installed
in the ceiling of the room.

• Linear Acceleration: It measures the device acceleration changes in three-dimensional
space. This sensor excludes the 1g acceleration produced by the gravity.

• Gravity: It represents the orientation of the device relative to the ground, by
measuring the 1g acceleration produced by the gravity.

• Rotation Rate: It measures the device’s rate of rotation around each of the three
spatial axes.

The sampling rate was set to the maximum supported (100Hz) for all motion and
orientation sensors. iBeacon™ Proximity sensor has a fixed (non-customizable) sample
rate of 1Hz.

The dataset of this study will be available in CrawdDad repository4 after the comple-
tion of this thesis.

5.4 Data Analysis
This section includes the details of the data analysis procedure that was followed in
order to develop the supervised machine learning model. It starts with a presentation of
the data pre-processing procedure that was followed (Section 5.4.1), a description of the
Target Variable (Section 5.4.2) as well as the Ground Truth that was used (Section 5.4.3).
The section continues with a presentation of a simple probabilistic approach for detecting
interactions, named Normalised Inverted Proximity (Section 5.4.4). It continues with
a detailed presentation of the selected features (Section 5.4.5) and concludes with the
evaluation procedure that was followed (Section 5.4.6) as well as an explanation of the
model choice and model tuning process (Section 5.4.7).

4https://crawdad.org
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5.4.1 Data Pre-processing

During the pre-processing process, the data and video feed were synchronised based on
the distinguished movement the participants performed (i.e. synchronously perform a
wave-movement in front of the cameras) as mentioned in Section 5.3.2.

For all iBeacon™ Proximity data, all data reporting Unknown values (where RSSI is
−1) were excluded. This usually occurs at the beginning of iBeacon™ ranging process
due to insufficient measurements to determine the state of the other device [2], or for a few
seconds after the device gets out of the beacon’s broadcasting range. All measurements
from each user’s beacon (i.e. from his phone to his owed beacon) were also excluded. The
Path Loss Model (PLM) was also applied in order to estimate the proximity (d) between
each device and all beacons in range using the RSSI (P (d)), as shown in the following
formula:

d = 10
P (d0)−P (d)−X

10×n , (5.1)

where P (d0) is the Measured Power (in dBm) at 1-meter distance, n the path loss
exponent, d the distance in which the the RSSI is estimated and X a component that
describes the path loss by possible obstacles between the transmitter and the receiver.
The value n = 1.5 was set as a default constant for indoor environments [52]. The value
X = 0 was also chosen as it was required to measure a direct contact where no obstacles
(e.g. other participants) between the two devices exist. In the situation that another
participant exists in between, PLM would report a longer distance due to the decreased
RSSI, and consequently, the accuracy of the distance estimation will decrease. This is
a desired effect as, in the case of the coin beacons, it is only wanted to cluster whether
the two users are within a range that a social interaction can be achieved. According to
Hall [22], personal social interactions are achievable between 0.5 and 1.5 meters distance.
Moreover, since all five long range beacons were installed in the ceiling of the room, there
was expected a clear path between the phone and most of the ceiling beacons.

Since the mobile devices are not real-time systems, setting a sample rate is only a
suggestion to the operating system and actual rate will vary second to second. Thus, the
signal for the Device Motion sensor was resampled and interpolated to 100Hz. Finally, the
magnitude was computed from the three axes of all motion data (i.e. User Acceleration,
Gravity and Rotation Rate) available in the dataset, a process required since each user
had their device in a different physical alignment and individual axis reading would not
have provided useful information.

The iBeacon™ sensor was the only sensor that reported missing values. Since most
machine learning algorithms (e.g. Logistic Regression, Random Forest) do not accept fea-
tures with unknown values, a data imputation process was required. Thus, missing values
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for external beacon data were imputed using linear interpolation [55] on the estimated
distance from the device to the ceiling beacons. Since users are changing their state less
frequent, it should be possible to estimate any possible missing value reliably using this
approach. For the interpersonal distances inferred from the coin beacon, missing values
were replaced with the maximum available distance, since in these cases, due to the low
Broadcast Power that was used, the reason for missing data was that the device was out
of range from the broadcaster.

5.4.2 Target Variable

The dataset has a total of 645,895 labels for each combination of the 22 valid participants
interacting for a total of 45 minutes in the case study. The target variable is binary, with
the following two classes: 1 when a pair of participants is interacting, and 0 when it is
not. That resulted into 38,332 labels in class 1 (6.31%), and 607,563 labels in class 0
(93.69%).

The dataset is naturally imbalanced since it includes one label for all combinations
of the participants interacting with each-other per second. The level of this imbalance
obviously depends on the number of people interacting, but also on the type of interaction
(e.g. one-to-one, groups of three etc.). For instance, a small event of 6 people will include
C(6, 2) = 15 pairs, and thus 15 labels per second. If only three participants (A, B and
C) interact together in a group of three, the dataset will include three labels of 1, one for
each combination of them (AB, AC and BC), while the remaining 12 will belong to the
class 0.

5.4.3 Ground Truth

The case study, recorded from two different angles for convenience, was annotated by two
independent annotators using ELAN multimedia annotator software [97]. The annotations
were cross-validated afterwards and finally verified by a third person. The instructions
that the annotators followed were based on Kendon’s F-formation system [38]:

An interaction begins at the moment two or more stationary people cooperate
together to maintain a space between them to which they all have direct and
exclusive access.

The aim of the study was to detect stationary interaction only. Therefore, the an-
notators logged the begin and end of each stationary interaction for each participant
separately, using a unique ID per interaction.
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5.4.4 Normalised Inverted Proximity

The Normalized Inverted Proximity (NIP) is suggested by this work as a simplistic ap-
proach for detecting social interactions using proximity-based information. More specif-
ically, the distance of two participants is used (computed using the Path Loss Model
discussed in Section 5.4.1) with all unknown values (i.e. when the pair is out of beacon
range) being replaced with the max of all distance estimations. The data are then nor-
malized to the range of 0 and 1 and the outcome is inverted. This baseline was chosen
as a simplistic approach when using proximity-based sensors, and can be computed using
the formula below:

ŷ = 1− x− xmin

xmax − xmin

, (5.2)

where ŷ is an estimate as to whether the pair is interacting, x is the estimated proximity
between the pairs, xmin and xmax are the minimum and maximum estimated proximity
between all pairs in the dataset. Because ŷ is in the range [0, 1] it can be compared to
probability estimates.

The reason that the DetecTN algorithm is not used in this case is that it directly pro-
duces binary predictions and not probabilities. Thus, it would not be possible to compare
the two approaches using the probabilistic based plots used in the rest of this chapter
(i.e. Precision-Recall (PR) and Receiver Operating Characteristic (ROC) plot). Proba-
bilistic predictions have the advantage that the designer can choose a cut-off threshold
that maximises precision or recall, depending on the use case. For example, it might be
desired to choose a high precision over recall so that the model only makes a positive
prediction when the probability of an interaction is very high, resulting in an accurate
result with the disadvantage of losing some interactions that took place. The Normalised
Inverted Proximity is also based on the estimated proximity between two people and is
expected to report similar results.

5.4.5 Feature Selection

A series of common features were computed for all C(22, 2) = 231 combinations of the
participant pairs. Features reflecting the current moment were initially computed, in a
static window of 1 second, following with features reflecting past information. A set of
features that are commonly included in mobile sensing problems were used, such as fea-
tures extracted from motion and orientation sensors. The intuition behind the inclusion of
those features is to capture the social signals that exist in conversations such as mirroring,
when a person is subconsciously imitating the gestures or movements of another [12].

Based on the results from the validation experiments reported in Section 5.2, additional
features were explored that provide more precise information for detecting the social
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Table 5.1: List of the features used in the data analysis.

Table of Features

Interpersonal Space Features fprox_rssi_mean

fprox_rssi_diff

Device Position Features

fdevice_position_LL

fdevice_position_LR

fdevice_position_RL

fdevice_position_RR

Indoor Positioning Features

fexternal_beacon_1_diff

fexternal_beacon_2_diff

fexternal_beacon_3_diff

fexternal_beacon_4_diff

fexternal_beacon_5_diff

Motion and Orientation Features

ftime_since_moving_diff

fdevice_linear_acc_ccf_lag

fdevice_linear_acc_ccf_max

fdevice_gravity_ccf_lag

fdevice_gravity_ccf_max

fdevice_rotation_rate_ccf_lag

fdevice_rotation_rate_ccf_max

Example of Past Information Features

fexternal_beacon_1_diff_past_min

fexternal_beacon_1_diff_past_max

fexternal_beacon_1_diff_past_mean

fexternal_beacon_1_diff_past_std

ftime_since_moving_diff_past_min

ftime_since_moving_diff_past_max

ftime_since_moving_diff_past_mean

ftime_since_moving_diff_past_std

interactions based on the participant’s position (i.e. interpersonal space, device position
and indoor positioning features). Table 5.1 lists the extracted features used in the data
analysis of this work. The rest of this section reports on all 74 produced features and the
selection strategy that was followed.

Interpersonal Space Features

iBeacon™ Proximity sensor data of a pair includes two measurements: Let rssiij be the
RSSI between the two participants as measured from the device of user i and rssiji be
the RSSI from the same distance as measured from the device of user j. The mean of the
two measurement was computed as an indication of how close the two participants are in
space:

fprox_rssi_mean = (rssiij + rssiji)/2 (5.3)
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In addition, a feature that represents the absolute difference between the two mea-
surements was computed:

fprox_rssi_diff = |rssiij − rssiji| (5.4)

It is expected that people closer together would be more likely to also engage in an
interaction. Note that in this case, the raw RSSI was used as the same hardware was
used for broadcasting a beacon signal across all participants, and thus, a Measured Power
constant is not required. In the case of multiple devices being used, then a feature that
estimates the interpersonal distance based on a calibrated Measured Power constant would
be required, using the PLM equation mentioned in Section 4.2.

Device Position Features

As mentioned in Section 5.2, information about the device position is important as it
highly influences the RSSI signal between the two devices. For that reason, four features
have been developed that include the information of the device position (left vs. right per
participant) using one-hot encoding:

• fdevice_position_LL: Both P1 and P2 placed the device on the left pocket.

• fdevice_position_LR: P1 placed the device on the left pocket, P2 on the right.

• fdevice_position_RL: P1 placed the device on the right pocket, P2 on the left.

• fdevice_position_RR: Both P1 and P2 placed the device on the right pocket.

Indoor Positioning Features

The absolute difference of each participant from the five ceiling beacons was computed
using the following formula:

fexternal_beacon_k_diff = |Dik −Djk|, (5.5)

where Dik is the distance reported from user i’s, and Djk is the distance reported from
user j’s mobile device to the fixed installation k. It is expected that users close together
would result in similar distances from the ceiling beacons and the feature will be close to
zero. Note that estimated distance using PLM was used in this case instead of the raw
RSSI as the high-performance beacons installed in the room ceiling were used.

Motion and Orientation Features

By using the measurements of the linear acceleration sensor, a feature that indicates the
time since the participant has moved (in seconds) was added. A threshold of 0.15g was

79



empirically chosen, indicating whether a user is moving or not, and computed the absolute
difference between the pair. It is expected that if two users are moving, they will stop at
the same moment and engage into a conversation, and thus, the value of that feature will
be close to zero. When both users had the status ‘in motion’, the feature was set to NaN
(Unknown).

For all motion sensor data (i.e. Linear Acceleration, Gravity, Rotation Rate), a cross
correlation function was applied on an overlapping window of 10 seconds and extracted the
maximum correlation, as well as the distance (in seconds) from the max correlation, as an
indication of how similar a pair is behaving on those windows. The 10 seconds constant
was chosen as indicated by [52], but further investigation in the range of 2 to 60 also
verified it as the most optimal constant. An alternative to the cross correlation function
was also tested based on the Dynamic Time Warping (DTW) [85] method. However, due
to its high computational complexity as well as its low predictive power in this context,
it was excluded from the final feature list.

Past Information Features

In order to take advantage of past information available in the data set, the min, max,
mean and std was computed on all time-series features (i.e. excluding the one-hot encoded
device positioning features), in an overlapping window of 10 seconds. Note that due to
the length of those features, only some representative examples are listed in Table 5.1.

5.4.6 Evaluation Procedure

For evaluating the performance of the model, a standard 10-fold cross-validation schema
was used. The dataset was initially split over time, however, due to the time-series nature
of our study, a significant overfitting was reported. More particularly, since participants
were changing their interactive state at any given moment, the model was memorizing the
features per split and inferring them back with very high performance, due to information
leakage. Thus, it has been decided to split the data per participant combination (i.e. 23
samples out of 231, due to the 10-fold schema) rather than over time.

In the context of this work, Precision is: from the detected interactions, how many of
them did the model detect correctly, whereas Recall is: from all interactions taking place,
how many of them did the model detect. Depending on the use case, applications can
emphasize on one of these measures over the other. If it is more important not miss a
detected interaction, an emphasis can be given on recall. If it is more important to avoid
bothering users with false detections, an emphasis can be given on precision.

The evaluation metrics that will be used in the rest of this report is Precision-Recall
(PR) curve and Receiver Operating Characteristic (ROC) curve. Even though ROC curves
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are heavily used when reporting performance in classification problems, due to the nature
of our dataset being unbalanced, PR plots are also included as suggested by [84] and [17]
for imbalanced datasets. In the rest of this section, both curves will be reported, together
with the Average Precision (AP) for the PR curve and the Area Under Curve (AUC) for
the ROC curve to represent the performance numerically.

5.4.7 Model Choice

Three different machine learning models were evaluated that represent different classes
of Machine Learning: Logistic Regression [63], Random Forest [8] and XGBoost [13]. A
further evaluation of Support Vector Machines (SVM) [18] was also explored, however due
to its scaling limitation as well as its complexity when making probabilistic predictions it
has been excluded from the analysis. All three models were used as part of the Python
library scikit-learn [66] v0.19. In the case of XGBoost model, its scikit-learn python
wrapper was used for XGBoost v0.7.2.

An initial parameter tuning was performed on a 20% subset of the dataset (i.e. 46
samples out of 231) using all three models. This subset was only used for the model
tuning task and was never used in the training/validation procedure. The aim was to
discover the model with the configuration that maximises the Average Precision (AP)
performance. More specifically, a grid search algorithm over all possible combinations of
the most influential parameters was followed, based on the following strategy:

• For Logistic Regression and Random Forest, the class_weight parameter was set to
balanced. For the XGBoost, the equivalent parameter scale_pos_weight was set to
sum(negative_cases)/sum(positive_cases), as suggested by XGBoost documen-
tation5. This was required due to the imbalanced nature of the dataset.

• For the Logistic Regression model, the inverse of regularization strength (i.e. C
parameter), was manipulated with the values [1, 10, 100, 1000].

• For the decision trees -based models (i.e. Random Forest and XGBoost), the to-
tal number of trees (i.e. n_estimators parameter) was set to 50. Moreover, the
maximum depth of the tree (i.e. max_depth) was tested with values [4, 6, 8, 10].

• For the Random Forest model, the number of features to consider when looking for
the best split (i.e. max_features parameter) was tested with values [‘sqrt’, ‘log2’,
‘None’]. The value ‘None’ includes all features from the data set. For the XGBoost
model, the equivalent parameter (i.e. colsample_bytree) was tested with values [0.2,
0.4, 0.6, 0.8, 1].

5https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
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For the rest available parameters, the library default values were used.
Tables D.1, D.2 and D.3 listed in Appendix D, report the results of all parameter ma-

nipulation of the three machine learning classification algorithms. XGBoost reported the
best performance in the 20% subset with an AP 83.0% and ROC AUC 95.2%. The model
was configured with n_estimators=100, max_depth=10 and colsample_bytree=0.2.

A final and more extended model tuning was conducted to the model with the best per-
formance (i.e. XGBoost), exploring two additional parameters including the n_estimators
and max_depth mentioned above:

• The sub-sample ratio of the training instance (i.e. subsample parameter) was tested
with values [0.5, 0.75, 1].

• The model’s learning rate (i.e. learning_rate parameter) was tested with values
[0.01, 0.05, 0.1].

This resulted into a total of 180 configuration, with results shown in Table D.4. The
configuration with the best performance of AP 83.8% and ROC AUC 95.2% had the
parameters n_estimators=100, max_depth=4, colsample_bytree=0.2, subsample=0.5
and learning_rate=0.05. This configuration is used in the rest of this section for training
and validation the model with the remaining 80% of the data set.

5.5 Results
This section presents the results from the analysis that was reported in Section 5.4. It
starts with a report of the two baselines that were used (Section 5.5.1), and continues with
the report of the general performance of the model (Section 5.5.2). It continues with an
improvement of the predictive performance using a normalisation approach (Section 5.5.3)
and reports the results for every participant separately (Section 5.5.4). In addition, it
presents an analysis of the most predictive sensors (Section 5.5.5), the most predictive
features (Section 5.5.6), and reports the most optimal cut-off threshold using a subset of
the dataset as ground truth (Section 5.5.7).

5.5.1 Baseline

For comparing the performance of the model, two different baselines were chosen: (1)
a Naïve Probabilistic Classifier (NPC) that uses the training set distribution of the two
classes as a weight when making a prediction, and the Normalised Inverted Proximity
(NIP) that was reported in Section 5.4.4.

Figure 5.6 reports the results of the two baselines. The probabilistic classifier reported
an AP of 15.6% and ROC AUC of 49.7%. In contrast, NIP performed very well, reporting
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Figure 5.6: Performance of the two baselines: a Naïve Probabilistic Classifier (Baseline)
and the Normalized Inverted Proximity (NIP).

an AP of 68.2% and a ROC AUC of 90.0%. For the rest of this section, the two baselines
will always be reported for easy comparison with the model’s performance.

5.5.2 General Performance

Figure 5.7 shows the performance of the XGBoost classifier using a standard 10-fold
validation on the remaining 80% samples of the dataset (i.e. excluding the 46 samples used
for the model tuning). Results report a performance of 86.4% AP (i.e. a 26.7% increase
from NIP and 453.8% increase from NPC baseline), and a similar 95.5% ROC AUC (i.e. a
6.1% increase from NIP and 92.2% increase from NPC baseline).

5.5.3 Normalise Predictions

The approach of this work is based on real-time binary predictions of the status of each
pair (not interacting vs. interacting). However, in reality interactions do not change in
such high frequency. Statistics of the dataset support this claim, with interactions lasting
for an average of 4.2 minutes. Thus, it is expected that by applying a normalisation on
the model’s prediction it would result into more realistic and stable predictions.

A rolling mean function was applied to smooth the prediction of the model. By ex-
perimenting with a variety of different rolling mean constants (i.e. range between 2 and
60), in the dataset used for model tuning, the constant of 11 seconds reported the best
performance. Figure 5.8 reports the results when using the normalisation approach. Re-
sults were very similar to the ones produced directly from the XGBoost model, achieving
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Figure 5.7: General performance of XGBoost classifier using a Precision-Recall (PR)
Curve (left) and Receiver Operating Characteristic (ROC) Curve (right). The two fig-
ures also include the performance of the Naïve Probabilistic Classifier (NPC) and the
Normalized Inverted Proximity (NIP) for easy comparison.
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Figure 5.8: Performance of XGBoost classifier when the prediction probability is nor-
malised using a 11 seconds of rolling mean window.

a total of 86.3% AP and 95.9% ROC AUC. However, due to the normalisation procedure,
the results are expected to be more stable (i.e. less variations over time) and therefore,
normalised results will be reported in the rest of this report.
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Figure 5.9: Performance of XGBoost classifier per participant. The coloured lines corre-
spond to the performance of each participant, and the thick blue line corresponds to the
overall average across all participants.

5.5.4 Performance Per Participant

Figure 5.9 provides a more fine-grained analysis of the results. It depicts the user-averaged
PR and ROC curves for every participant, as well as the overall performance across all
participants. It is clear that the model performance varies per participant, with some of
them reporting almost perfect scores, while in some others perform lower than average
(blue thick line).

5.5.5 Sensor Importance

As discussed in Section 3.4, accessing mobile sensor data has a significant effect on the
battery life of the device, with some sensors such as the Device Motion being one of
the most power expensive sensor of all others. This section provides a more fine-grained
analysis of the results. It explores the sensor contribution of this approach, aiming to
understand which sensors produce the features that are the worst predictors and how the
model’s performance will be affected when they are excluded.

For measuring the sensor contribution, a leave-one-sensor-out technique was used.
The model was tuned (using the same approach discussed in Section 5.4.7 for XGBoost
model only) and then validated with all features except the ones produced by the excluded
sensor. The following sensors (or external information in the case of device position) were
manipulated:

• Interpersonal Space Features (i.e. features related to the coin beacons).
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Figure 5.10: Sensor importance using leave-one-out as reported by the XGBoost classifier.
The variability in the boxes corresponds to the considered participants.

• Device Position Features (i.e. the one-hot encoded information of the smartphone
position).

• Indoor Positioning Features (i.e. features related to the external beacons).

• Motion and Orientation Features (i.e. features related to the Device Motion sensor).

In the case of Motion and Orientation Features, the three sensor-fused data (i.e. Lin-
ear Acceleration, Gravity and Rotation Rate) are explored together, but separately as
well. Figure 5.10 shows the results from this analysis. It is obvious that by excluding the
interpersonal space related features, the model reports random performance, similar to
the NPC classifier (i.e. AP 18.3% and ROC AUC 55.2%). The remaining sensors have
a less significant effect to the model performance, with the removal of Device Position
Features reporting AP 86.0% and ROC AUC 95.9%, Indoor Positioning Features report-
ing AP 88.9% and ROC AUC 96.7%, and Motion and Orientation Features reporting
AP 85.3% and ROC AUC 95.9%.

It is worth mentioning the slight improvement (approximately 3%) of the performance
when the Indoor Positioning Features are excluded. These results suggest that due to the
low accuracy of the proximity estimation between the device and the ceiling beacons, the
use of those features can confuse the classifier.

5.5.6 Feature Importance

Table 5.2 reports the feature importance of the model. More specifically, it reports the top
15 features, together with their F score as reported by the XGBoost classifier. It is clear
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Table 5.2: Feature importance as reported by the XGBoost classifier.

Feature F Score
fprox_rssi_mean_past_mean 85
fprox_rssi_mean_past_max 63
fexternal_beacon_3_diff 52
fdevice_gravity_ccf_max_past_mean 51
fexternal_beacon_5_diff 42
fexternal_beacon_2_diff_past_min 40
fexternal_beacon_2_diff 38
fdevice_gravity_ccf_max_past_max 38
fexternal_beacon_4_diff_past_max 38
fprox_rssi_mean 37
fdevice_rotation_rate_ccf_max_past_max 37
ftime_since_moving_diff_past_mean 36
fdevice_gravity_ccf_max 35
fexternal_beacon_4_diff_past_min 35
ftime_since_moving_diff_past_mean 34

that the best predictors are the features extracted from the iBeacon™ sensor (Interper-
sonal Space Features), supporting the results from the previous section that a model that
does not make use of that sensor will have a noticeable impact on the performance. Six
features that belong to the Indoor Positioning category (use of external beacon infrastruc-
ture) are also reported as good predictors in this list. However, as discussed earlier, these
features slightly confuse the classifier reporting a reduced performance in the validation
set.

5.5.7 Probabilistic Threshold Choice

Until now, reporting the performance of the model was made through metrics or plots
that depend on probabilities (i.e. Precision-Recall and ROC plots as well as numerical
representations of these plots such as AP and ROC AUC). In a real-world implementation
of this model, a binary prediction will be required instead of a probability. The designer of
such system can choose a threshold (also called probability cut-off) of which probabilities
greater or equal to this threshold would be classified as 1, and 0 in all other cases. Choosing
such threshold would lead into reporting the performance of the model in terms of precision
and recall as explained in Section 5.4.6. Depending on the use case, applications can
emphasize on one of these measures over the other. For example, in a use case of a mobile
app that users install in order to log their interactions at a social event, the designer could
emphasise on recall if the requirement is not to lose people they’ve interacted with, even
if that results into increased false positives.

For computing the most optimal threshold, the F1 score was used as a harmonic mean
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Table 5.3: Confusion matrix reporting the performance of the XGBoost classifier with
cut-off p = 0.67

Predicted Class
Positive Negative Total

Actual Positive 123918 (TP) 5784 (FN) 129702
Actual Negative 3969 (FP) 20170 (TN) 24139

Total 127887 25954 153841

Table 5.4: Confusion matrix reporting the performance of the Normalised Inverted Pre-
cision (NIP) with cut-off p = 0.48.

Predicted Class
Positive Negative Total

Actual Positive 118589 (TP) 11113 (FN) 129702
Actual Negative 6052 (FP) 18087 (TN) 24139

Total 124641 29200 153841

between precision and recall. Other similar measurements could be used if needed. For
example, F2 score could be used that weights recall higher than precision, or F0.5 which
puts more emphasis on precision rather than recall. F1 was maximised in the same set
used for model tuning, following a similar approach to the one presented in Section 4.3.7.
The value p = 0.67 for the XGBoost model and p = 0.48 for the NIP was found to be the
most optimal that maximises the F1 score.

Figure 5.3 shows the confusion matrix of the XGBoost classifier using a cut-off p =

0.67. It reports a precision of 77.7% and recall of 83.6%. Figure 5.4 shows the confusion
matrix of NIP using a cut-off p = 0.48. It reports a lower precision of 61.9% and lower
recall of 74.9%.

5.6 Summary
The results of this work provide evidence that it is possible to detect interactive groups of
various sizes relying in data collected from mobile devices, with a reasonable performance
of 77.7% precision 83.9% recall. That means that 77.7% of the participants that the
model discovered as interacting were correctly detected, and 83.9% of all interactions
that actually took place during the event were detected by the model.

The dataset that have been analysed, even though extended compared to other similar
studies [65, 52, 33], it only represents a subset of what is expected in similar social gather-
ings, such as conferences or other networking events. One technical challenge that arises
is whether a real-time system that would continuously receive data from larger number
of participants would be possible. Such system could be implemented as a cloud-based
solution that either relies on a reliable internet connection or save the data temporarily

88



into the device and only submit when the event is completed. At this moment, such im-
plementation is only possible using external wearable beacons that simulate the beacon
broadcasting of each device, due to the restrictions of current mobile operating systems
mentioned earlier.

One important question that arises is whether a system without a fixed infrastruc-
ture (i.e. that makes use of the fixed ceiling beacons) would be required for detecting
the interactions within the crowd. Surprisingly, the indoor positioning features, not only
did not improve the performance, but also had a negative impact of approximately 3%.
The use of features that only depend on the interpersonal proximity or the motion and
orientation sensors of each participants is an indication that it could work in new environ-
ments without requiring an additional model training. Note however that to analyse the
data, features from all combinations of participants need to be extracted. This is possible
with a reasonable number of participants but does not scale to larger crowds. The use of
external beacons installed in the room, even though did not improve the performance of
the final model, could be a possible solution to this limitation. This can be achieved by
using the proximity of each external beacon as a pre-filter, cluster the crowd into smaller
groups and only apply the model on each cluster. Such implementation could also benefit
from parallel processing, assigning clusters to analyse each region in parallel.

Another challenge in the real-world application of the model is user adaptation. Re-
questing access to people’s mobile phone can be hard as it highly depends on the people
willingness to share their data. Concerns about the privacy of the data collection, or
the battery life of their devices might discourage people from participating. However,
according to Wirz et al. [95], people are open to share their data as long as they receive
some benefits from it or if they realise that sharing such information is for their own good
and safety. In the rest of this section, the battery consumption, privacy implications and
limitations of this study are discussed separately.

5.6.1 Battery Consumption Implications

As presented in Chapter 3, collecting sensor data from mobile devices can have a noticeable
impact on the device’s battery. Some sensors, such as the device motion and iBeacon
Proximity are consuming lots of processing power. Moreover, using the internet connection
to periodically submit data packets to the cloud service would have an additional impact,
something that is not considered in this section.

In the current study, the battery consumption of each device was also collected through
the Battery Status sensor support of SensingKit framework [28]. For the total duration of
the study, the battery drop was 0.08% per hour (SD: 0.06). That included a sensor data
collection from eight sensors (i.e. accelerometer, gyroscope, magnetometer, device motion,
heading, iBeacon™ proximity and battery status) stored into the device’s memory in CSV
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format. Note that in the current analysis, only features from the device motion sensor
was used from the motion and orientation sensors, sampled in the highest sampling rate
of 100Hz. According to the results reported in Section 5.5.5, equivalent results can be
achieved by only using the iBeacon™ Proximity sensor.

5.6.2 Privacy Implications

Even though the method depends on using anonymous IDs when broadcasting iBeacon™
data and no other personal information is broadcast, there is always the danger that this
anonymity can be compromised by tracking the openly available ID of a user. This is the
reason that, according to Apple, an iOS device is only allowed to broadcast as an iBea-
con™ while the device is unlocked and the app is actively running in the foreground [2].

A possible solution for protecting the user’s privacy could be the use of encryption on
the advertising packet, so that only authorized people or applications can make use of it.
Google provides an official support of encryption in the latest Eddystone-EID frame type6,
released in April 2016. Even though not officially supported in iBeacon™ specification,
third-party companies provide alternative solutions by rotating the beacon’s attributes
(i.e. Major and Minor) so that the broadcaster’s ID is unpredictable7.

5.6.3 Limitations

As mentioned earlier, an obvious limitation of the current method comes from the design
of the iOS operating system, not allowing the phone to broadcast as a beacon while the
device is locked. Although these limitations are software restrictions from the mobile
operating systems and can change in future updates of the systems, it makes the use
of an external wearable hardware essential for discovering the proximity between users,
increasing the cost in a real-world implementation and application of such system.

Another limitation comes from the way that the system has been evaluated. As
mentioned earlier, all important predictors do not depend on external infrastructure and
the system should generalise into new environments. However, a proper evaluation with
new data collected in an unknown environment is required in order to investigate this
claim.

6https://developers.google.com/beacons/eddystone-eid
7https://developer.estimote.com/ibeacon/secure-uuid/
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
Motivated by the lack of a modern, multi-platform continuous sensing framework, Sens-
ingKit was developed, a mobile framework that captures mobile sensor data from iOS and
Android devices. SensingKit has been extensively used in all experiments of this research.
Moreover, it has been used in projects from research institutes around the world, including
mobile data privacy works [58, 50, 49], Quantified-Self [21], ResearchStack1 from Cornell
Tech’s Small Data Lab, and Databox2 project. Finally, it has been featured in other works
in the mobile sensing research area, including [99, 16, 67, 27, 47, 39, 72, 71, 92, 69, 73, 70,
74, 41]. Compared to the existing mobile sensing frameworks that are limited to Android
platform, this framework uses an almost identical API for accessing mobile sensor data
from both iOS and Android environments. Moreover, it uses the latest technologies from
the mobile operating systems such as sensor fusion techniques and modern sensors such
as the BLE.

The framework was evaluated through an initial controlled experiment for understand-
ing the characteristics of pedestrians that walk together in groups of two and three. More
specifically, it investigated the pedestrian gait synchronisation phenomenon where the
results showed that the presence of a third person highly effects their step synchroni-
sation. This work has been featured in The Royal Institution Christmas Lectures 2017
“The Language of Life”3. The lecture, as presented by Prof. Sophie Scott and assisted by
the writer of this thesis, showed how two children unconsciously synchronised their steps
while walking. For more information about the study and its media coverage, please read
the blog post at https://minoskt.github.io/blog/walking_in_sync.

A novel algorithm was developed for detecting stationary social interactions within
1http://researchstack.org
2http://databoxproject.uk
3http://www.rigb.org/christmas-lectures/watch/2017/the-language-of-life
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crowds, named DetecTN. The DetecTN algorithm was presented as a first attempt for
analysing mobile sensor data collected from a smartphone device with the aim to detect
the social interactions that take place in a controlled environment. The algorithm was
evaluated in a small case study and demonstrated in ACM MobiSys 2017 Demo session.
Until now, it has been featured by two works in the area of children social behaviour
analysis [61, 62]. Compared to other related works, this algorithm is capable of detecting
dynamic groups of variety of sizes and is not device dependent.

A simplistic approach for making probabilistic predictions of stationary social inter-
actions is also suggested in this thesis, named Normalised Inverted Proximity (NIP). In
contrast to the DetecTN algorithm, it makes probabilistic predictions using the estimated
proximity between two people and can be directly compared with other probabilistic so-
lutions. NIP is suggested as a baseline in the current, but also in similar future works.

Finally, a supervised machine learning approach based on gradient-boosted trees was
introduced as an extension to the DetecTN algorithm. The model uses information ex-
tracted from several mobile sensors such as Bluetooth Smart (BLE), accelerometer and
gyroscope sensors. The validation was performed using a relatively large compared to
other related works dataset, where 24 participants were asked to socialise with each other
for 45 minutes in a natural environmental setting. By using a supervised machine learning
method based on gradient-boosted trees, a performance increase of 26.7% was achieved
over the NIP baseline. This work is the first to evaluate a social interaction detection
method in a natural social event. Moreover, it uses some unique features from motion
and orientation sensors capable of capturing the social signals that exist in conversations
such as mirroring, when a person is subconsciously imitating the gestures or movements
of another [12].

The research presented in this thesis has shown the potential of using mobile sensing
techniques for measuring crowd dynamics in planned events. The implications of this
research can be dedicated insights that could be monetised by event organisers willing
to understand the social impact of their events, targeted advertisements with special
offers targeted at groups of people (i.e. buy two and get one free promotions) or crowd
management and crowd reconfiguration cases that are essential in critical situations such
as in cases of emergency or evacuation management.

6.2 Future Work
This section provides some insight of the future work required to monitor and report
events in a real-time manner.

One contribution of this work is the evaluation of the interaction detection approach
in a realistic environment where different types of group configurations were naturally
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created. Results from Chapter 5 reported a relative high performance in detecting the
interactive state between two individuals, using the Bluetooth sensor’s RSSI as a proxy
for the interpersonal proximity. The use of additional sensors, such as accelerometer and
gyroscope, only reported a minor performance increase. One of the main limitations of this
approach is that it does not make use of features related to the relative orientation between
users. The lack of such information can lead into increased false positive predictions when
two non-interactive people are close in distance. In a future extension of this work, the
use of magnetometer sensor will be explored as a way to measure the relative orientation
between users. This extension can raise several technical challenges as detecting the user
orientation from the phone requires that the device’s orientation related to the user’s gaze
is also known.

The DetecTN algorithm presented in Chapter 4 suggested an approach for detecting
the group formations inside a crowd. Inspired by the graph theory, the algorithm defines a
group formation as the connected component within a graph. The main limitation of such
approach is that it is not ideal for dense spaces, as any possible false positive prediction
would result into larger connected components in the graph, and consequently, incorrectly
identifying larger interactive groups. The use of community detection algorithms will be
explored in the future as a way to cluster smaller groups inside the network. This can
lead into detecting the group formations with better accuracy, improving the insight
information that could be extracted from events.

Finally, a longer-term vision of this research would be a more robust group detection
system that fuses mobile sensing and computer vision for analysing the behaviour of the
crowd. Such system would make use of SensingKit framework embedded within already
existing event apps, in order to collect in-the-wild mobile sensor data. Computer vision
could be used to impute missing data sources (i.e. people that do not have the event app
installed). A real-time version of the machine learning approach presented in Chapter 5
could be used, together with the future extensions mentioned above, in order to analyse
both stationary and moving interactions and investigate how the crowd behaves in such
events (e.g. how groups are formed or who are the main influencers in such groups).
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Appendix B

Featured Work

This appendix lists the research projects, articles and conferences that parts of this Ph.D.
research has been featured in.

B.1 SensingKit framework
SensingKit framework, reported in Chapter 3, has been used in various research projects,
including a Quantified Self application [21], as well as other M.Sc. and Ph.D. works at
Queen Mary University of London. ResearchStack1, a Software-Development-Kit (SDK)
and User-Experience (UX) framework for Android-based research study apps, listed Sens-
ingKit as the official supported framework for accessing mobile sensor data. Databox
project [58], a privacy-aware infrastructure for managing personal data natively support
SensingKit through their SensingKit Driver2. Finally, SensingKit was recently featured
in a new Wikipedia article titled “Mobile Phone Based Sensing Software”3.

B.2 Walking in Sync work
The work presented in Section 3.5 has been featured in The Royal Institution Christmas
Lectures 2017 – The Language of Life4, in Part 2: Silent Messages. The lecture was
presented by Prof. Sophie Scott at BBC Four on 27th December 2017.

1http://researchstack.org
2https://github.com/me-box/driver-sensingkit
3https://en.wikipedia.org/wiki/Mobile_phone_based_sensing_software
4http://www.rigb.org/christmas-lectures/watch/2017/the-language-of-life
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CrowdSense

a. Example of a social event b. CrowdSense App c. Back-end
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Figure B.1: System Design of the demo presented in ACM MobiSys 2017.

B.3 Group Detection Algorithm
A real-time implementation of the group detection algorithm presented in Chapter 4 was
demonstrated in ACM MobiSys 2017 that took place at the Niagara Falls, New York in
June 2017 [36] (Figure B.1). The purpose of this demo was to present a technology that is
capable of providing in-depth analytics about how the crowd behaves during social events.

Participants interested in this demo installed CrowdSense App for iOS into their
iPhones, provided their name when requested by the app and started socialising with
each-other. A back-end system analysed the streamed data using the same algorithm
that was explained earlier in this section, detected the users’ social interactions in real-
time and visualised them on a screen as a graph through a web-interface.

Beside the real-time graph visualisation of the interactions, the web-interface provided
the following analytics:

• A time-series figure that shows the number of social interactions taking place over
time.

• A frequency diagram that shows the type of interactions (one-to-on, groups of three,
four etc.) from the beginning of the social event.

Since the purpose of this demonstration was to present a real-time implementation of
this system in a social event, no data collection was conducted, and thus, it is not possible
to provide the analytics of this specific event.
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Appendix C

Proximity Evaluation Plots

This appendix completes the results from the proximity evaluation of iBeacon™ signal,
presented in Section 5.2.1. Each distance (x axis) was maintained for 30 seconds while
P1 (broadcaster) had eight coin-shaped beacons attached to the front of his body. P2
(receiver) was collecting the beacon’s RSSI signal using an iPhone SE device placed on
his left pocket.
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Figure C.1: Measuring the effect of proximity on iBeacon™ signal.
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Appendix D

Model Tuning Performance

This appendix lists the results from the parameter tuning procedure required for choosing
the most optimal model for the binary classification problem presented in Chapter 5.

Table D.1: Parameter Tuning for Logistic Regression model, using the Average Precision
(AP) as a performance metric.

C
1 10 100 1000

0.559 0.551 0.542 0.566

Table D.2: Parameter Tuning for Random Forest model, using the Average Precision (AP)
as a performance metric.

max_depth
4 6 8 10

max_features
‘sqrt’ 0.792 0.761 0.763 0.748
‘log2’ 0.826 0.787 0.762 0.744

‘None’ 0.628 0.612 0.613 0.602

Table D.3: Parameter Tuning for XGBoost model, using the Average Precision (AP) as
a performance metric.

max_depth
4 6 8 10

colsample_bytree

0.2 0.816 0.821 0.823 0.830
0.4 0.810 0.782 0.802 0.803
0.6 0.801 0.775 0.781 0.769
0.8 0.817 0.767 0.773 0.771
1 0.814 0.735 0.767 0.759
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Appendix E

SensingKit Developer Instructions

As described in Chapter 3, SensingKit library can be embedded in any iOS or Android ap-
plication. This Appendix provides information on how to build and import the library to
a mobile application. Furthermore, it includes basic information of how to use the library.
A detailed description of the Application Programming Interface (API) of SensingKit is
available at https://www.sensingkit.org.

E.1 SensingKit for Android

Building and Configuring the Library

Build the library using the command:

./gradlew build

Create an app/libs directory inside your project and copy the generated SensingK-
itLib/build/outputs/aar/SensingKitLib.aar file there. Edit your app/build.gradle file and
add a flatDir entry as shown below:

repositories {
mavenCentral()
flatDir {

dirs 'libs'
}

}

In the same app/build.gradle file, add SensingKitLib as a dependency as shown below:

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
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implementation 'org.sensingkit:SensingKitLib -release@aar'
implementation 'com.google.android.gms:play-services -location:16.0.0'

}

Using the Library

The following code listing shows how you can import and initialise SensingKit into your
class.

import org.sensingkit.sensingkitlib.*;
import org.sensingkit.sensingkitlib.data.*;

public class MainActivity extends AppCompatActivity {

SensingKitLibInterface mSensingKitLib;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

try {
// Init SensingKit.
// 'this' keyword refers to the Application Context.
mSensingKitLib = SensingKitLib.sharedSensingKitLib(this);

}
catch (SKException ex) {

// Handle Exception
}

}
}

The steps that you need to follow for sensing data using SensingKit are: Check for
sensor availability, register the sensor, subscribe a sensor data listener and start sensing.
The following code listing describes that process, using the Battery Status sensor as an
example:

if (mSensingKitLib.isSensorAvailable(SKSensorType.BATTERY_STATUS)) {

// Register sensor
mSensingKitLib.registerSensor(SKSensorType.BATTERY_STATUS);

// Subscribe a sensor data listener
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mSensingKitLib.subscribeSensorDataHandler(SKSensorType.BATTERY_STATUS ,
new SKSensorDataHandler() {

@Override
public void onDataReceived(final SKSensorType moduleType ,

final SKSensorData sensorData) {

// Cast sensor data as SKBatteryStatusData
SKBatteryStatusData batteryStatusData =

(SKBatteryStatusData)sensorData;

// Print the battery level
System.out.println("Battery Level: " +

batteryStatusData.getLevel());
}

});

// Start sensing with Battery Status sensor
mSensingKitLib.startContinuousSensingWithSensor(

SKSensorType.BATTERY_STATUS);
}

E.2 SensingKit for iOS

Installing the Library

You can easily install SensingKit using CocoaPods, a popular dependency manager for
Cocoa projects. For installing CocoaPods, use the following command:

$ gem install cocoapods

To integrate SensingKit into your Xcode project, specify it in your Podfile:

target <MyApp> do
use_frameworks!

pod 'SensingKit'
# For the latest development version, please use:
# pod 'SensingKit ', :git =>

'https://github.com/SensingKit/SensingKit -iOS.git', :branch => 'next'

end

Then, run the following command:
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$ pod install

For more information about CocoaPods, visit https://cocoapods.org.

Using the Library

The following code listing shows how you can import and initialise SensingKit into an
iOS app:

#import <SensingKit/SensingKit.h>

@property (nonatomic , strong) SensingKitLib *sensingKit;

- (void)viewDidLoad {
[super viewDidLoad];

// Get a singleton instance of SensingKit framework
self.sensingKit = [SensingKitLib sharedSensingKitLib];

}

The steps that you need to follow for sensing data using SensingKit are: Check for
sensor availability, register the sensor, subscribe a sensor data handler and start sensing.
The following code listing describes that process, using the Battery Status sensor as an
example:

if ([self.sensingKit isSensorAvailable:BatteryStatus]) {

// Register sensor
[self.sensingKit registerSensor:BatteryStatus];

// Subscribe a sensor data handler
[self.sensingKit subscribeToSensor:BatteryStatus

withHandler:^(SKSensorType sensorType ,
SKSensorData *sensorData ,
NSError *error) {

if (!error) {
// Cast sensor data as SKBatteryData
SKBatteryData *batteryData = (SKBatteryData *)sensorData;

// Print the battery level
NSLog(@"Battery Level: %f", batteryData.level);

}
} error:NULL];
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// Start sensing with Battery Status sensor
[self.sensingKit startContinuousSensingWithSensor:BatteryStatus

error:NULL];
}

119



Appendix F

Source Code

The complete source-code of SensingKit framework and CrowdSense App for iOS and
Android platforms is available under the GNU Lesser General Public License v3.0 at
https://github.com/SensingKit. A detailed description of its application programming
interface (API) can be found at https://www.sensingkit.org.
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