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Abstract  
Left ventricular (LV) mass and volume are important indicators of clinical and pre-

clinical disease processes. However, much of the shape information present in modern 

imaging examinations is currently ignored. Morphometric atlases enable precise 

quantification of shape and function, but there has been no objective comparison of 

different atlases in the same cohort. We compared two independent LV atlases using 

MRI scans of 4547 UK Biobank participants: i) a volume atlas derived by automatic 

non-rigid registration of image volumes to a common template, and ii) a surface atlas 

derived from manually drawn epicardial and endocardial surface contours. The 

strength of associations between atlas principal components and cardiovascular risk 

factors (smoking, diabetes, high blood pressure, high cholesterol and angina) were 

quantified with logistic regression models and five-fold cross validation, using area 

under the ROC curve (AUC) and Akaike Information Criterion (AIC) metrics. Both 

atlases exhibited similar principal components, showed similar relationships with risk 

factors, and had stronger associations (higher AUC and lower AIC) than a reference 

model based on LV mass and volume, for all risk factors (DeLong p<0.05). 

Morphometric variations associated with each risk factor could be quantified and 

visualized and were similar between atlases. UK Biobank LV shape atlases are robust 

to construction method and show stronger relationships with cardiovascular risk factors 

than mass and volume.  
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Introduction 

Left ventricular (LV) morphology and function is important for the evaluation of 

cardiovascular disease. Changes in shape, known as remodeling, can manifest as 

changes in LV mass, volume, sphericity, wall thickness, and other shape indices, due 

to clinical and pre-clinical disease processes. Previous studies have shown the 

importance of remodeling in the evaluation of 10-year survival rates after a myocardial 

infarction 1-3. Pre-clinical remodeling also occurs in asymptomatic individuals prior to 

the establishment of clinical disease, in response to exposure to risk factors and 

genetic interactions 4. However, current shape measures of LV mass and volume 

ignore most of the shape information available in modern medical imaging 

examinations. The UK Biobank employed cardiac magnetic resonance (CMR) imaging 

to examine the pre-clinical determinants of cardiac disease 5,6. This large-scale cohort 

study has enabled investigation of reference characteristics in healthy participants 7, 

and mechanistic relationships with cardiovascular risk factors 8. 

Atlases of the LV have recently been employed to produce statistical shape models, 

giving highly detailed morphometric information in a standardized coordinate space, 

suitable for large cohort studies 9-11. Compared with the American Heart Association 

17-myocardial segment model 12, atlas-based analyses represent morphology at high 

spatial resolution, enabling quantification of multidimensional statistical information at 

each point in the atlas 13. Changes in LV morphometry have been demonstrated in 

healthy adults who were born prematurely 14, volunteers with titin-truncating variants 

15, genetic mutations affecting LV mass 16, higher fat mass 17, higher blood pressure 

13, and smoking and other risk factors in the Multi-Ethnic Study of Atherosclerosis 

(MESA) 9. Atlas based methods have also been used to quantify remodeling patterns 

in patients with myocardial infarction 18, shape features associated with response after 



                  

cardiac resynchronization therapy 19, and impairment of function in congenital heart 

disease 20. 

However, atlas-based shape measures may be influenced by the methods used in their 

construction, and this may affect the resulting shape analyses. Two different types of 

atlas have been derived to date, using either volume image registration 10,13,15-17 or 

surface registration 9,14,18-20 methods. The key difference between these approaches is 

in the non-rigid registration techniques used to map the anatomy of each patient’s heart 

into a common coordinate system. Volumetric image registration methods utilize image 

intensity features to compute the mapping of each case onto the common space. 

Conversely, surface registration methods use knowledge of the boundaries of the heart 

in the registration process. Each type of atlas may therefore result in different LV shape 

characteristics. To date, there has been no objective comparison of different types of 

atlas in the same cohort.  

Here, we describe the construction of two types of atlas, derived using volume and 

surface registration methods respectively, from 4,547 participants of the CMR 

extension to UK Biobank. By comparing morphometric indices between atlases, we 

investigated the extent to which results were dependent on the method used to 

construct the atlas. We also examined whether the shape atlases provided stronger 

relationships with known cardiovascular risk factors, in comparison with the standard 

indices of LV mass and volume. We also compared morphometric risk factor scores 

and morphometric shape variations from both atlases to characterize the associations 

between LV shape and cardiovascular risk factors. 



                  

 

Results 

Of the first 5,065 CMR UK Biobank imaging extension participants, 4,547 common 

cases could be used to construct volume and surface atlases. The remaining 518 

cases had missing information required for one or other of the atlases (either missing 

images or contours). Table 1 shows the participant characteristics. The surface atlas 

construction process is shown in Figure 1, and the volume atlas construction process 

is shown in Figure 2. Of the 4,547 cases in both atlases, 751 were identified in the 

reference healthy cohort with no risk factors 7. 

Figure 3 shows the first three principal component shape modes describing the most 

variation in the cohort, for the surface atlas at both end-diastole (ED) and end-systole 

(ES). The graphs show the cumulative amount of variance explained by each principal 

component mode for the first 20 modes in each atlas. In the surface atlas, the first 

principal component (explaining over 40% of the total variance) was associated with 

LV size for both ED and ES. The second principal component was associated with LV 

height to width ratio, or sphericity. The third principal component was associated with 

the mitral valve plane orientation.  

Figure 4 shows the first three principal component shape modes of the volume atlas, 

together with graphs of cumulative percentage variance explained for the first 20 

modes. Similar to the surface atlas, the first principal component was associated with 

LV size, the second with sphericity and the third with mitral valve plane orientation. 

Each mode explained a similar proportion of the total variance as the corresponding 

surface atlas mode.  



                  

Table 2 shows the strength of relationships between the risk factors and shape, using 

logistic regression analysis with five-fold cross validation. Each risk factor was treated 

as the dependent variable in the logistic regression analysis, with 1 for participants 

positive for the risk factor and 0 for the participants in the reference healthy cohort with 

no risk factors 7. For each analysis, the first 20 scores from the ED principal component 

analysis and the first 20 scores from the ES principal component analysis were used 

as independent variables. For comparison, a similar logistic regression cross-validation 

analysis was also performed using the traditional measures of LV mass, ED and ES 

volume as the independent variables (termed “MassVol” in Table 2). Both volume and 

surface atlases gave stronger associations, i.e. larger AUC and lower AIC, between 

LV shape and all risk factors, compared to the MassVol model. Similar AUC (DeLong 

p=NS) and AIC values were found between the surface and volume atlases. Figure 5 

shows the AUC for each risk factor as the number of principal component modes was 

increased from 1 to 50. Approximately three ED and ES modes were needed for the 

atlases to achieve comparable performance to the MassVol model. Performance was 

stable after about 7 modes.  

Morphometric risk factor scores were calculated over the whole cohort using the 

logistic regression coefficients to combine component scores into a single z-score for 

each risk factor. Similar score distributions were found for the volume and surface 

atlases. Figure 5 shows density plots for the morphometric risk factor score associated 

with the risk factors. In each plot two patient groups are shown with the reference 

cohort (blue) and the risk factor positive cohort (orange). Both atlases had higher 

separation of scores between groups than those derived from the MassVol model for 

all risk factors.  Figure 6 shows the 5th and 95th percentiles of the morphometric shape 

variation associated with each factor. The figure shows the variation in shape, as 



                  

weighted by the model regression coefficients. Angina was associated with an overall 

outward displacement at ED. Diabetes was associated with a bulging at the apex. High 

blood pressure, high cholesterol, and smoking were associated with a septal outward 

displacement toward the apex but inward near the base. 

 

Discussion 

The results of this study indicate that LV shape atlases show consistent relationships 

with cardiovascular risk factors, irrespective of the methodology used to derive the 

atlas. Two types of atlas were constructed from the same cohort of CMR examinations, 

performed as part of the UK Biobank imaging extension. The two atlases used different 

methods to calculate shape characteristics, the volume atlas being based on intensity 

differences in the MRI cine images, and the surface atlas being based on manual 

contours drawn on the epicardial and endocardial surfaces. However, both had similar 

principal component shape modes, similar principal components, and similar 

associations with cardiovascular risk factors. These associations were stronger than 

those with standard measures of LV mass and volume, in both atlases. These results 

suggest that shape features derived from these atlases are not severely impacted by 

methodology, but express real anatomical characteristics related to cardiovascular risk 

factors. 

In a previous LV surface atlas study from other asymptomatic cohort (the Multi-Study 

of Atherosclerosis or MESA)9, we found similar shape modes. The shape mode 

explaining the most variation (first principal shape mode) was associated with LV size 

in both volume and surface atlases, as well as in the MESA atlas. The second principal 



                  

shape mode, orthogonal to the first, describes LV sphericity in both UK Biobank 

atlases, and also in the MESA atlas 9. Both LV size and sphericity are known to be 

associated with adverse events in patients with clinical disease and in largely healthy 

populations 1-4.  

Both atlases had stronger associations with risk factors than traditional measures of 

LV morphometry (mass and volumes).  Similar associations were found between 

shape and risk factors regardless of atlas construction. In addition to providing 

information on the morphological changes associated with risk factors, these atlases 

can also be used to evaluate individual patients during longitudinal follow-up. For 

example, z-scores could be calculated for each visit, indicating where the patient ranks 

in relation to the UK Biobank population. A change in z-score towards the positive end 

would indicate a deterioration in LV shape over time.  Morphometric risk factor scores 

can then be included in future studies of outcomes over time, for example in Cox 

models along with sex, body mass index and age, in comparison to the risk factors 

themselves. 

Limitations of this study include the cross-sectional nature of the UK Biobank; however, 

as events are recorded into the future, it may be possible to determine the extent to 

which LV shape features can add to prediction of future events. Also, neither 

cholesterol nor glucose blood test data was available at the time of writing. Risk factors 

were self-reported and may suffer from subjective bias. Since the intention of the 

current study was to compare shape atlases, we did not correct shape scores for sex, 

age, body mass index, etc. In the future, these atlases could be used in conjunction 

with other factors in multivariate models to better understand shape changes in more 

targeted groups, such as those with different environmental or haemodynamic factors. 

Finally, the surface approach requires initial segmentation of the LV contours and 



                  

landmarks; however, machine learning methods show promise to automatically 

provide these data 21.   

Conclusions  

Both volume and surface cardiac atlases show similar morphometric characteristics, 

suggesting that shape scores derived from LV atlases are robust and quantify real 

anatomical relationships with cardiovascular risk factors. Morphometric scores are 

more sensitive to detect differences in LV shape associated with cardiovascular risk 

factors than traditional measures of mass and volume.  

Methods 

Study Population 

The UK Biobank has collected questionnaire data, physical measurements and 

biological samples from 500,000 individuals in the UK 22. The imaging extension aims 

to obtain brain, heart, whole body composition, carotid artery, bone and joint imaging 

in 100,000 participants by 2022. Here, we assessed CMR examinations from the first 

5,065 UK Biobank imaging extension participants. All participants gave written 

informed consent and the appropriate institutional review boards approved the study 

protocol (National Research Ethics Service North West 11/NW/0382). All research was 

performed in accordance with the relevant guidelines and regulations.  

Similar to a recent analysis of relationships between cardiovascular risk factors and LV 

mass and volume in the same cohort 8, we investigated the associations between 

multidimensional LV shape derived from the atlases, and each of the following risk 

factors: high blood pressure, smoking, diabetes, high cholesterol, and angina. High 

blood pressure, diabetes, high cholesterol and angina were taken from self-reported 



                  

vascular/heart or non-cancer conditions or problems diagnosed by physician. Smoking 

was taken as current tobacco smokers. Participants positive for each risk factor were 

compared with a reference healthy cohort defined according to the criteria described 

in 7. The reference cohort excluded all participants with known cardiovascular disease, 

hypertension, respiratory disease, diabetes, hyperlipidaemia, haematological disease, 

renal disease, rheumatological disease, malignancy, symptoms of chest pain or 

dyspnoea, age over 74 years old, current- or ex-tobacco smokers, those taking 

medication for diabetes, hyperlipidaemia or hypertension and those with BMI ≥30 

kg/m2.  

Imaging Protocol 

The CMR protocol has been described in detail previously 23. Briefly, all imaging was 

performed on a wide bore 1.5T scanner (MAGNETOM Aera, syngo MR D13A, 

Siemens Healthineers, Erlangen, Germany) using a phased-array cardiac coil. 

Retrospectively gated cine balanced steady-state free precession breath-hold 

acquisitions were performed in horizontal long axis, vertical long axis, left ventricular 

outflow tract orientations, and a short axis stack covering the left and right ventricles. 

Typical parameters were: TR/TE=2.6/1.1ms, flip angle 80°, GRAPPA factor 2, voxel 

size 1.8 x 1.8 x 8 mm³ (6 mm for long axis). The actual temporal resolution of 32 ms 

was interpolated to 50 phases per cardiac cycle (~20 ms). No signal or image filtering 

was applied besides distortion correction. 

Manual Analysis 

The manual contouring process was performed in accordance with the Society of 

Cardiovascular Magnetic Resonance recommendations, as described in detail 

previously 7. Briefly, short axis images were contoured at end-diastole (ED) and end-



                  

systole (ES) using cvi42 post-processing software (Version 5.1.1, Circle Cardiovascular 

Imaging Inc., Calgary, Canada), by eight readers in two core laboratories. The ED 

frame was selected as the first frame after detection of the R wave, and the ES frame 

was selected as the smallest LV blood pool area in the mid-ventricular slice. At both 

ED and ES, the most basal slice included had at least 50% of the LV blood pool 

surrounded by myocardium. Papillary muscles were included in the blood pool. Left 

atrial contours delineated on the two chamber and four chamber long axis slices, and 

right ventricular contours on the short axis slices, were also used in this study to 

delineate the extent of the LV and the location of the interventricular septum. 

Interobserver agreement in mass and volume estimates was excellent, with intra-class 

correlation coefficients of 0.88 and above 7. 

Surface Atlas 

The surface atlas was constructed using the method described by Medrano-Gracia et 

al. 9. Briefly, a finite element shape model was fitted to the manual contours by least 

squares optimization. The extent of the LV was defined from landmarks on mitral valve 

(derived from the extent of the left atrium contour) and a LV apex point obtained from 

the cvi42 contour files. The septum was located using the insertions of the RV contour 

with the LV contour (calculated from the RV endocardial contour). After orienting the 

model according to the landmarks, the endocardial and epicardial surfaces were fitted 

to the landmarks and short axis contours by minimizing the distance between the 

surfaces and the contour points. Mis-registrations of the contours due to differences in 

the breath-hold position from slice to slice were automatically corrected by shifting the 

contours in-plane to match an initial stiff model fit 9. Figure 1 illustrates the formation 

of the resulting atlas.  



                  

Volume Atlas 

The volume atlas was constructed using the method described by Bai et al. 10. Briefly, 

a common template image space and myocardial mesh were used, which were 

previously derived from high-resolution 3D MR images [8]. Each short axis image stack 

was first corrected for breath-hold mis-registration using the same method as for the 

surface atlas construction. Each corrected image volume was then registered to the 

template space 10 using non-rigid B-spline image registration 24. For each case, the 

displacement field was stored to give a mapping from subject space to template space 

at each voxel. The template mesh was propagated to each subject using the inverse 

displacement map. Each subject mesh then had the same number of vertices as the 

template mesh. Figure 2 shows the construction of the resulting atlas.  

Statistics 

For each atlas, two statistical shape models were generated, one at ED and the other 

at ES, using principal component analysis. This procedure calculated the principal 

modes of shape variation across the cohort, ordered by amount of variance explained 

11. Firstly, point clouds were generated on the epicardial and endocardial surfaces of 

the finite element model, or from the volume atlas myocardial mesh. Within each 

statistical shape model, the point clouds were aligned using the Procrustes method 25, 

without scale correction (i.e. translation and rotation alignment only). Principal 

component shape modes were then calculated at ED and ES as described previously 

9,10. Each case could then be represented by a set of principal component scores, 

which represent the amount of each mode present in that case.  

Associations between LV shape and risk factors were examined using logistic 

regression linear models. For each risk factor, a separate linear model was generated 



                  

using that factor as a binary univariate dependent variable, and the principal 

component scores as the independent variables. The strength of the association 

between shape and risk factor was quantified using two metrics: i) the area under the 

curve of the receiver operating characteristic (AUC) and ii) the Akaike information 

criterion (AIC). The AUC is a measure of the overall performance of the logistic 

regression model and reflects the probability of correctly ranking any pair of 

positive/negative cases 26. A value closer to 1.0 is indicative of a better model. The AIC 

is a measure of relative quality of the model, with lower values indicating better 

goodness of fit corrected for the independent variables 27. To prevent overfitting, a five-

fold cross validation scheme was employed in which the dataset was randomly divided 

into five groups, and the model trained on 4/5 and tested on the remaining 1/5 for each 

of the five groups. For comparison, logistic regression cross-validation models were 

also formed using ED volume, ES volume and LV mass as the independent variables, 

and the strengths of association compared with the shape atlases. Significant 

improvements in AUC were tested using DeLong’s test 28.  

Morphometric risk factor scores were derived from the logistic regression coefficients 

obtained for each risk factor, as follows. The logistic regression coefficients represent 

a linear combination of principal shape modes which best describe differences 

between the reference cohort and the risk factor positive participants. Therefore, a 

combined score was calculated by multiplying each principal component score by its 

corresponding logistic regression weight and summing over components. These 

scores were calculated for all participants and normalized into z-scores. These scores 

provide a simple way of quantifying shape characteristics for each case in relation to 

the population. Similarly, a morphometric risk factor shape variation could be 

calculated to visualize the shape change associated with the morphometric score. 



                  

Statistical analysis was performed using R (version 3.3.0) Statistical Software 29 and 

the caret package 30.  
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Figure 1. Surface atlas construction. Left to right: Images to average shape model. 

 

 

Figure 2 Volume atlas construction. Left to right: Images to shape model. 
 



                  

 
 
Figure 3 Principal component analysis results for the surface atlas. a) ED first three 

principal components; b) ES first three principal components; c) ED % variance 

explained for the first 20 modes; d) ES % variance explained for the first 20 modes. 

The viewpoint is from the septum with the inferior wall on the left.  



                  

 

Figure 4. Principal component analysis results for the volume atlas. a) ED first three 

principal components; b) ES first three principal components; c) ED % variance 

explained for the first 20 modes; d) ES % variance explained for the first 20 modes. 

The viewpoint is from the septum with the inferior wall on the left. 

 

 



                  

 

Figure 5. Cumulative area under the curve with increasing numbers of modes 
included and density of morphometric risk factor scores. Scores for the reference 
(healthy) cohort are shown in blue  and those for risk factor positive cases are shown 
in orange.  
 

  



                  

 
Figure 6. Morphometric risk factor shapes. The 9th and 95th percentile of the logistic 
regression models rendered at ED and ES. The average shapes were drawn with 
differences shown in the color scale yellow (outward surface movement) to blue 
(inward surface movement). View point is from the anterior, with septum on the left. 
Displacements are in mm 
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Table 1. Participant characteristics for those cases in both atlases (n=4547). Values 
are given as mean ± standard deviation for continuous variables, and count (%) for 
categorical variables.  
 
  
Age (years) 62 ± 8 
Sex (male) 2153 (47%) 
Height (cm) 170 ± 9 
Weight (kg) 76 ± 15 
Body surface area (m2) 1.85 ± 0.21 
Systolic blood pressure (mmHg) 139 ± 19 
Diastolic blood pressure (mmHg) 79 ± 11 
Heart Rate (bpm) 68 ± 11 
High blood pressure 1183 (26%) 
Smoking (never) 2688 (59%) 
Smoking (previous) 1552 (34%) 
Smoking (current) 296 (7%) 
Diabetes 235 (5%) 
Angina 104 (2%) 
Asthma 493 (11%) 
High Cholesterol 1183 (26%) 

 
 
 
  



                  

Table 2 Five-fold cross-validated logistic regression analysis results for binomial 
categorical factors and LV shape (first 20 principal component modes from ED and 
ES). MassVol model includes LV mass, EDV and ESV as independent variables. 
Each cell has AUC (AIC). *P<0.05, **P<0.01, ***P<0.001, DeLong’s test for 
differences in AUC from MassVol AUC.   
 
 Volume Atlas Surface Atlas MassVol 
High blood pressure  0.77*** (2157) 0.76*** (2143) 0.68 (2382) 
Smoking  0.68* (1174) 0.68* (1156) 0.62 (1213) 
Diabetes 0.80*** (857) 0.79*** (869) 0.70 (1001) 
High cholesterol 0.73** (1124) 0.73** (1126) 0.65 (1224) 
Angina  0.77* (551) 0.76* (528) 0.67 (607) 

 
 
 


