
FINITE NONCOMMUTATIVE GEOMETRIES RELATED TO Fp[x]

M.E. BASSETT & S. MAJID

Abstract. It is known that irreducible noncommutative differential struc-

tures over Fp[x] are classified by irreducible monics m. We show that the coho-

mologyH0
dR(Fp[x];m) = Fp[gd] if and only if Trace(m) 6= 0, where gd = xp

d−x
and d is the degree of m. This implies that there are p−1

pd

∑
k|d,p-k µM (k)p

d
k

such noncommutative differential structures (µM the Möbius function). Mo-
tivated by killing this zero’th cohomology, we consider the directed system of

finite-dimensional Hopf algebras Ad = Fp[x]/(gd) as well as their inherited

bicovariant differential calculi Ω(Ad;m). We show that Ad = Cd ⊗χ A1 a

cocycle extension where Cd = Aψd is the subalgebra of elements fixed under

ψ(x) = x + 1. We also have a Frobenius-fixed subalgebra Bd of dimension
1
d

∑
k|d φ(k)p

d
k (φ the Euler totient function), generalising Boolean algebras

when p = 2. As special cases, A1
∼= Fp(Z/pZ), the algebra of functions on

the finite group Z/pZ, and we show dually that FpZ/pZ ∼= Fp[L]/(Lp) for

a ‘Lie algebra’ generator L with eL group-like, using a truncated exponen-

tial. By contrast, A2 over F2 is a cocycle modification of F2((Z/2Z)2) and

is a 1-dimensional extension of the Boolean algebra on 3 elements. In both
cases we compute the Fourier theory, the invariant metrics and the Levi-Civita

connections within bimodule noncommutative geometry.

1. Introduction

This article is motivated by a fundamental issue in characteristic p > 0 geometry
visible even for polynomials Fp[x] in one variable over the finite field of order p,
namely the failure of differential calculus to provide an effective tool. Specifically,
on any connected manifold the only functions killed by the exterior derivative are
the constant functions, i.e. the zeroth de Rham cohomology H0

dR is spanned by
1. By contrast, the classical differential calculus on Fp[x] has a large kernel for d,
namely all polynomials in xp. One approach is to quoient out this kernel to give
the Hopf algebra Fp[x]/(xp) and one will then have that the inherited calculus on
this is now connected. On the other hand, this Hopf algebra is rather too small
to serve as an approximation of Fp[x]. We ask if we we can do rather better by
looking not at the usual differential calculus but a noncommutative one.

We first recall the usual Kähler differential for commutative algebras A. This
consists of a left module Ω1 and a map d universal with the derivation property
d(ab) = a.db + b.da for all a, b ∈ A, and can be built explicitly on J /J 2 where
J = ker(· : A ⊗ A → A) and da = 1 ⊗ a − a ⊗ 1, see for example [9]. For
A = k[x], this recovers is usual differential calculus. These ideas adapt to the
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case of noncommutative A, the key being to replace Ω1 by a bimodule and the
derivation rule by d(ab) = a.db + (da).b. In this case J itself with the same d as
before provides the universal calculus and now makes sense for noncommutative A.
If A happens to be commutative then the universal calculus is now much bigger than
before and generally has many interesting quotients beyond the Kähler one. These
will typically have differentials noncommuting with elements of A even though A
itself may be commutative. We will also need higher differential forms Ω forming
a graded algebra with d extended by a similarly two-sided (now graded) Leibniz
rule and obeying d2 = 0, i.e. a differential graded algebra (or DGA). Such a notion
features in most approaches to noncommutative geometry, including [5] (athough
there not as a starting point). We refer to the cohomology of the complex (Ω,d)
as the ‘noncommutative de Rham cohomology’ HdR(A).

In this paper we will be interested in the case where A is a Hopf algebra, which we
think of as if functions on a group (though it does not have to be, even when A is
commutative). Then ‘group translation’ is expressed by the Hopf algebra coproduct
∆ viewed as a coaction from the left or the right. A differential calculus is covariant
if one or both of these coactions extend to Ω1. This situation has been extensively
studied starting with [27] and it is known that Ω1 in the left-covariant case is free as
a left A-module, having a form isomorphic to A⊗Λ1 where Λ1 is the space of left-
invariant differential forms. In the bicovariant case, there is a canonical extension
of Λ1 to a ‘braided exterior algebra’ Λ and hence of Ω1 to a DGA Ω constructed as
a Radford biproduct or ‘cobosonisation’ A n Λ. Hence we need only focus on the
choice of Ω1. We refer to [15, 21, 20] for more details and an introduction to what
is now a large literature.

In particular, we can consider k[x] as a Hopf algebra with x ‘primitive’ in the sense
∆x = x⊗1+1⊗x (i.e. the additive group structure of the affine line). Then [18, 15]
irreducible bicovariant calculi on k[x] (in the sense of having no proper quotients)
correspond to monic irreducible m ∈ k[x] and take the following form. First, define
the associated field extension K = k[µ]/(m(µ)) and set Ω1(k[x];m) = K[x] as a
left k[x]-module in the obvious way. The right module structure and differential
are then

v · f(x) = f(x+ µ)v, df = (f(x+ µ)− f(x))µ−1, ∀f ∈ k[x], v ∈ K

where expressions on the right are written in terms of the algebra K[x] and µ ∈ K.
If m has degree 1 then K can be identified with k and the relation just sets µ to be
an element of k, including the case m = x or µ = 0 as the classical commutatative
calculus (the formula for the differential still makes sense in spite of appearances).
Here K as a vector space over k is the space of left-invariant 1-forms and the
canonical Ω(k[x];m) is a free module over its usual exterior algebra.

Our main result (Theorem 3.4) is that for a calculus on Fp[x] defined by monic
irreducible m(x) of degree d ≥ 1, the zeroth cohomology H0

dR(Fp[x];m) with respect

to the calculus defined by m consists precisely of polynomials in gd = xp
d − x if

and only if the number-theoretic ‘trace’ of m is nonzero. We say that such m
are ‘regular’ and the result implies that the cohomology is independent of m in
this case. We also have a conjecture for the cohomology in the non-regular case
which our current methods do not prove but which we also believe to be true
(Conjecture 3.6). The higher Hi

dR(Fp[x];m) for i > 0 and the canonical Ω(k[x];m)
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remain mysterious even to the point of a conjecture, but are known to be nontrivial
in degree 1 provided m 6= x, and are expected on general grounds to have Poincaré
duality.

Next, following the philosophy of the first paragraph, we are now led in Section 4
to introduce and study the finite-dimensional quotient Hopf algebras

Ad := Fp[x]/(gd), d ≥ 1

which for regular m of degree d now inherit a connected calculus with H0
dR(Ad;m) =

Fp1. These algebras are much bigger than Fp[x]/(xp) and moreover they fit into a
directed system of Hopf algebras

{Aj � Ai | i divides j}
ordered by divisibility. Here the polynomial gd is known from Artin-Schreier theory
[10, Ch. VI/Thm 6.4] to be the product of all monic irreducibles of degree dividing
d, so that gi divides gj whenever i divides j, leading to the map stated. The

inverse limit F̂p[x] := lim←Ad projects on to every Ad and comes with a map

Fp[x] → F̂p[x] through which the quotienting maps Fp[x] � Ad necessarily factor.
Since each monic irreducible gives a field extension, it is also clear that

Ad ∼=
∏
k|d

FNk

pk
, F̂p[x] =

∏
m

Fp[x]

(m)
∼=
∏
k

FNk

pk

as rings, where Nk is the number of monic irreducibles of degree k. The coproducts

imply that F̂p[x] has some form of limiting Hopf algebra structure, but not with
respect to the algebraic tensor product. This limit and its geometry are beyond
our scope at present, where we focus on the structure and geometry of the Ad in-
dividually while thinking of them only loosely as increasingly good approximations
of Fp[x]. Here one of the maps in the directed system is Ad � A1 for all d and
our main result (Theorem 4.6) is a structure theorem that Ad = Cd ⊗χ A1 as a
Hopf algebra cocycle extension, where Cd is a sub-Hopf algebra generated by g1

with a single relation related to the trace map. This also implies that the Ad are
(cleft) Hopf-Galois extensions or (trivial) quantum principal bundles in the sense
explained in [21, 15].

The paper concludes in Section 5 with a more detailed study of A1 for general p and
A2 for p = 2. The geometric picture here is as the algebra of functions on Z/pZ
in the first case and a cocycle extension of the algebra of functions on (Z/2Z)2

in the second. We focus on two important aspects; one is to compute the Hopf
algebra Fourier transform and the other is to compute the moduli of translation-
invariant ‘quantum metrics’ and their associated quantum Levi-Civita connections.
The latter turn out all to be flat, which is consistent with the geometric picture but
does take some proof in the case of A2. Our results in this section are limited, but
they suggest that Ad in general could be an interesting class of finite-dimensional
noncommutative geometries for further study.

2. Preliminaries

We will need the notion of a Hopf algebra (A,∆, ε, S) over a field k, where A is a
unital algebra and ∆a = a(1)⊗a(2) in a compact ‘Sweedler notation’ (a sum of such
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terms understood) is an algebra homomorphism which, together with the counit
character ε : A→ k, forms a coalgebra (or A∗ into an unital algebra). In addition,
we require an antipode S : A → A obeying (Sa(1))a(2) = 1ε(a) = a(1)Sa(2) for all
a ∈ A. More details can be found in many texts, including [16]. We now give some
preliminaries on noncommutative or ‘quantum’ differentials central to the paper.

2.1. Noncommutative differentials. By definition, a first order differential cal-
culus on a unital algebra A is a pair (Ω1,d) where Ω1 is an A−A-bimodule and d
obeys the Leibniz rule. We also require that A ⊗ A → Ω1 given by sending a ⊗ b
to adb is surjective (otherwise one has a ‘generalised differential structure’[22]).
The calculus is connected if kerd = k.1 and inner if there exists θ ∈ Ω1 such that
[θ, a] = da for all a ∈ A. As mentioned in the introduction, there is a universal first
order differential calculus built on ker(·) ⊂ A ⊗ A with da = 1 ⊗ a − a ⊗ 1 which
when A is commutative quotients down to the Kähler differential. For higher forms
we use the notion of a DGA over A meaning a graded algebra Ω(A) = ⊕nΩn where
Ω0 = A, equipped with a graded-derivation d : Ωi → Ωi+1 with respect to the
product ∧ of Ω and obeying d2 = 0. More specifically, we require Ω to be generated
by Ω1 and A for a specified first order differential calculus, which is more restrictive
than a regular DGA in other contexts (one says that Ω is the exterior algebra of
the first order calculus). From this point of view, connectedness means H0

dR = k.1
as part of the cohomology of (Ω,d). For an inner DGA, we require d = [θ, }, a
graded commutator.

When A is a Hopf algebra, a first order differential calculus is left covariant if
∆L(adb) = a(1)b(1)⊗a(2)db(2) is well-defined as a map Ω1 → A⊗Ω1. If so, it becomes

an A-coaction and Ω1 a left Hopf module. It follows from Hopf algebra theory that
Ω1 is freely generated over A by its space Λ1 of left-invariant 1-forms. One can show
that these are the image of the map $ : A+ → Ω defined by $(a) = Sa(1)da(2)

(the ‘Maurer-Cartan form’), where A+ = ker(ε : A → k), with the result that
Λ1 ∼= A+/I for some right ideal A. Hence, classifying left covariant calculi amounts
to classifying ideals in A+. Moreover, the calculus is bicovariant if and only if this
ideal is also stable under the right coaction, or equivalently under a suitable adjoint
coaction. In this case Λ1 becomes a right A-crossed module (or Drinfeld-Yetter
module) which in turn leads to a canonical construction for a braided exterior
algebra Λ via the braiding of this category when S is invertible. Specifying the
semidirect product of elements of A with invariant forms then determines the full
structure of the canonical extension (Ω,d) in the bicovariant case. The theory goes
back to [27] with a treatment more along the above lines in [15, 21]. We omit details
here since in our examples A will be cocommutative, the adjoint coaction trivial (so
all left-covariant calculi are bicovariant) and the braiding the trivial transposition
map so that Λ is just the usual exterior algebra of Λ1. In characteristic 2, it means
that all elements of Λ1 square to zero.

In view of this general picture, it is enough for a left-covariant or bicovariant cal-
culus to focus on constructing and classifying the choice of Ω1. Here a morphism
between calculi over a fixed algebra A means a bimodule map forming a commut-
ing triangle with d (this is a special case of the notion of a differentiable map
between algebras equipped with first order differentials). Given the theory above,
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translation-invariant calculi on k[x] are given by ideals in k[x]+ = (x) (the poly-
nomials with no constant term) and irreducible differential calculi (those with no
proper quotients) are given by Λ1 = (x)/(xm(x)) where m is a monic irreducible
polynomial [18, 15]. Clearly m(x) also defines a field extension K = k[µ]/(m(µ))
and as a vector space over k one can identify Ω1 = K[x], with µ0 = dx, µ1, · · · , µd−1

a natural basis of Λ1 over k and of Ω1 over k[x]. Differentials do not commute with
functions except when m(x) = x, which is the classical calculus. This leads to the
explicit bimodule relations and d stated in the introduction, which look very much
like a finite-difference calculus but should be interpreted as above with µ ∈ K a
1-form, not a parameter. For d = 1, however, one can identify µ with an element of
k, including 0 for the classical calculus. Other than the classical case, the calculus
is inner with θ = µ−1 computed in K.

2.2. Construction of connected caluculi. We will need a couple of observations
relevant to the paper. The first applies to A augmented by a morphism of unital
algebras ε : A → k (so ε(1) = 1) as a ‘base-point’. In the Hopf algebra case we
will use the counit. Also in the Hopf algebra case, if Ω1 is bicovariant then Ω is a
super-Hopf algebra with ∆|Ω1 = ∆L + ∆R, [2]. Here a super-Hopf algebra is like a
Hopf algebra but we use the graded tensor product algebra, with respect to which
∆ is a homomorphism. It was shown in [22] that d is then also a super-coderivation.

Proposition 2.1. Let (A, ε) be an augmented unital algebra and Ω(A) an exterior
algebra DGA. Then Ac = A/〈H0

dR(A) ∩ kerε〉 acquires an inherited differential
calculus. If A is a Hopf algebra and Ω(A) bicovariant then H0

dR(A) is a sub-Hopf
algebra, Ac is a quotient Hopf algebra and the inherited Ω(Ac) is bicovariant.

Proof. (i) Clearly J = H0
dR(A) ∩ kerε is a subalgebra by the Leibniz rule and we

quotient by the ideal it generates intersected with the ideal A+. More generally,
we define Ω(Ac) = Ω(A)/〈H0

dR(A)∩kerε〉 where we quotient by the ideal generated
in the exterior algebra. The map d descends to this quotient since by definition
d(ga) = (dg)a + gda = gda for all g ∈ J . (ii) For the second part, by assumption
there exist left and right coactions ∆L,∆R commuting with d. Hence if a ∈ kerd =
H0

dR it follows that (id ⊗ d)∆a = ∆Lda = 0 and (d ⊗ id)∆a = ∆Rda = 0. Hence
∆a ∈ H0

dR ⊗H0
dR and we have a sub-Hopf algebra. It follows that J = H0

dR
+ is a

coideal (here if a ∈ J then ∆a = a(1)⊗(a(2)−1ε(a(2)))+a⊗1 ∈ A⊗J+J⊗A). In this
case I = 〈J〉, the ideal it generates, is a Hopf ideal and Ac = A/I is a Hopf algebra.
Employing the construction above, the assumed ∆L,R descend to Ac since these are
part of Hopf module structures, eg ∆L(ωa) = (∆Lω)∆a ⊆ AJ ⊗Ω1 +A⊗Ω1J for
a ∈ J and ω ∈ Ω1. Hence Ω1(Ac) is bicovariant. The higher order calculi will be
generated by Ω1, Ac with the inherited relations and since the latter are bicovariant,
the higher forms will be too. Equivalently, Ω(A) is a super-Hopf algebra and we
can view J as a super-coideal. �

It is not clear that the quotient DGA now has H0
dR(Ac) = k1 but this is a step in the

right direction and could be iterated. However, in our application this construction
will do the job in one step. We will also need the following lemma.

Lemma 2.2. Suppose that H0
dR(k[x];m) 6= k.1 and let g ∈ H0

dR have minimal
positive degree. Then H0

dR(k[x];m) = k[g].
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Proof. Let f ∈ H0
dR and let f = f1g+r1 where deg r1 < deg g. Then dr1 +(df1)g =

0 as dg = 0. Viewing this in the ring K[x] we have the first term degree less than
deg g and the 2nd term degree greater than or equal to deg g, hence both terms
vanish and since g had minimal degree among non-constants in H0

dR we conclude
that r1 is a constant, df1 = 0. Iterating, we conclude that f is a polynomial in
g. �

3. Structure of H0
dR(Fp[x];m)

We consider A = Fp[x] and calculi defined by monic irreducible m of degree d and
let P denote the linear subspace of Fp[x] involving only power-p exponents (we will
explain later that P is the set of primitive elements of A as a Hopf algebra). If
f ∈ P then f is additive and hence, when µ 6= 0,

df = f(µ)µ−1 ∈ Fpd , [v, f ] = f(µ)v, ∀v ∈ Fpd
where Fpd ⊂ Fpd [x] is the subspace of left-invariant 1-form in the calculus. Thus

f ∈ H0
dR∩P are characterised by f(µ) = 0, while general f ∈ H0

dR are characterised
by f(x+ µ) = f(x) which implies f(µ) = f(0) or f(µ) = 0 for f ∈ H0

dR ∩ kerε as a
necessary condition.

The case d = 1 is easy enough to analyse in full detail and includes the case where
µ = 0. Here monic irreducibles have the form m(x) = x−µ, for some µ ∈ Fp. This
gives a 1-dimensional calculus and of course no actual extension of the field. The
field extension defined by m would have generator set equal to µ, which is why we
have denoted this as the constant to fit with our previous notation. The case µ = 0
also leads to a calculus which we understand as the classical one. We let

g1(x) = xp − x = x(xp−1 − 1) = x(x− 1)(x− 2) · · · (x− (p− 1)) ∈ P.

Proposition 3.1. For d = 1, H0
dR(Fp[x];m) =

{
Fp[xp] if µ = 0

Fp[g1] if µ 6= 0
.

Proof. If µ = 0 we have the classical calculus where dxm = mxm−1dx = 0 when
m = p, and clearly any non-constant polynomial of lower degree will not be in
the kernel by looking at its top degree. We then use Lemma 2.2. When µ 6= 0
we manifestly have g1(x + µ) = g1(x) (from the form of g1) and we show that
its degree p is the minimal degree of non-constant elements of H0

dR. Thus, let f
be monic of degree t < p so f = xt + cxt−1 + · · · for some c ∈ Fp. We have
f(x+µ) = xt +µtxt−1 + cxt−1 + · · · where we indicate further terms of degree less
than t. For this to equal f we need µt = 0 mod p, which requires t = 0 as t < p.
Hence f = 1. We then use Lemma 2.2. �

More generally,

(3.1) gn(x) := xp
n

− x ∈ P.
is as mentioned in the introduction the product of all irreducible monics in Fp[x]
of degree dividing n. We are interested in a fixed monic m of degree d defining our
differential calculus and associated Fpd = Fp[µ]/(m).

Lemma 3.2. For m of degree d other than m = x (or µ = 0) already covered, we
have H0

dR(Fp[x];m) ⊇ Fp[gd] and gi /∈ H0
dR(Fp[x];m) for i = 1, 2, · · · , d− 1.
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Proof. Clearly m is a factor of gd so gd(µ) = 0. This is also immediate from µp
d−1 =

1 in Fpd . Hence excluding the special case µ = 0, we have gd ∈ H0
dR(Fp[x];m)

and hence (by the Leibniz rule) that all polynomials of it are contained in the
cohomology. If gi(µ) = 0 for some i < d then µ is a zero of some irreducible monic
of degree dividing i and hence of degree less than d. This would have to be divisible
by m, which is a contradiction. Hence dgi 6= 0 for 1 ≤ i < d. �

We say that m of degree d is regular if H0
dR(Fp[x];m) = Fp[gd]. We have seen that

this happens for d = 1 precisely when µ 6= 0. We will also be interested in

(3.2) hd = xp
d−1

+ xp
d−2

+ · · ·+ x ∈ P

where hd is the trace for the field extension when viewed as a map Fpd = Fp[µ]/(m)→
Fp.

Lemma 3.3. If hd(µ) = 0 then m of degree d is not regular, and H0
dR(Fp[x];m) ⊇

Fp[hd] when d > 1.

Proof. If d = 1 and h1(µ) = 0 then µ = 0 and we know that this case is not regular
by the above. If d > 1 and hd(µ) = 0 then hd ∈ H0

dR by the above remarks and
hence so is the subalgebra Fp[h1] by the Leibniz rule. We also have

(3.3) gd = hd(h
p−1
d − 1)

so that Fp[gd] ( Fp[hd] and this is strict as hd has lower degree and clearly can’t be
written as a polynomial in gd. Hence if hd(µ) = 0 then m cannot be regular. �

Theorem 3.4. m of degree d has H0
dR(Fp[x];m) = Fp[gd], i.e. is regular, if and

only if hd(µ) 6= 0.

Proof. d = 1 was already covered so we fix d ≥ 2 and prove the assertion for
hd(µ) 6= 0 by induction. Thus, suppose for some n in the range 1 ≤ n ≤ d that if

f is of degree less than pn−1 and f(x+ µ)− f(x) = cµp
i

for some constant c ∈ Fp
and some i = 1, · · · , d − 1 then f(x) = f(0) and c = 0. We note that if f has
degree less than p and obeys the condition stated then the argument in the proof of
Proposition 3.1 is unaffected when we look at powers of x > 1 and similarly allows

us to conclude that f(x) = f(0)+cµp
i−1x. We write this as (f(x)−f(0))µ = cµp

i

x
and apply the Trace to both sides, so (f(x)−f(0)− cx)hd(µ) = 0 (using invariance
of the Trace under the Frobenius) and hence f(x) = f(0) + cx. Putting in this
information, we have gicx = 0 and hence c = 0 using the second part of Lemma 3.2.
Thus the hypothesis holds for f of degree less than p.
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Now consider f of degree less than pn and write this as f =
∑p−1
k=0 x

pn−1kfk(x)
where fk have degree less than pn−1. We also write

f(x+ µ) =

p−1∑
k=0

(xp
n−1

+ µp
n−1

)kfk(x) +

p−1∑
k=0

(xp
n−1

+ µp
n−1

)k(fk(x+ µ)− fk(x))

= f(x) +Ap−1(x)

Ar(x) =

r∑
k=0

xp
n−1k(fk(x+ µ)− fk(x)) +

r∑
k=0

k−1∑
s=0

µp
n−1(k−s)xp

n−1s

(
k

s

)
fk(x+ µ)

= xp
n−1r(fr(x+ µ)− fr(x)) +

r−1∑
s=0

µp
n−1(r−s)xp

n−1s
(r
s

)
fr(x+ µ) +Ar−1

Now suppose that f(x+µ) = f(x)+cµp
i

x for some c and some i < d, i.e. Ap−1(x) =

cµp
i

. We prove by induction that this implies that c = 0 and f is constant. Indeed,

suppose Ar(x) = cµp
i

. From the second expression for Ai(x), only the first term

has powers of degree greater than or equal to pn−1r and Ar(x) = cµp
i

tells us that
fr(x + µ) − fr(x) = 0 and hence by our inductive assumption, fr(x) = fr(0) is a
constant. Putting in this information gives us

r−1∑
s=0

µp
n−1(r−s)xp

n−1s
(r
s

)
fr(0) +Ar−1(x) = cµp

i

We now pick off the ≥ pn−1(r − 1) degrees to find

fr−1(x+ µ)− fr−1(x) + rµp
n−1

fr(0) = 0

and our induction hypothesis allows us to conclude that fr(0) = 0 and hence that

Ar−1(x) = cµp
i

. Starting at r = p − 1 we now iterate this argument to conclude

that fp−1 = 0, · · · , f1 = 0 and A0(x) = cµp
i

, and hence that f = f0 ∈ H0
dR has

degree less than pn−1. We then conclude by our overall induction hypothesis that
f is a constant and c = 0. Proceeding inductively, we have proven our hypothesis
for all f of degree less than pd.

In particular, we apply this result with c = 0 to conclude that H0
dR contains no

nonconstant elements of degree less than pd. Hence the degree pd of gd is minimal
among nonconstants in H0

dR. We then use Lemma 2.2. Lemma 3.3 provides the
other direction when hd(µ) = 0. �

Corollary 3.5. hd(µ) 6= 0 iff m of degree d has a nonzero coefficient in degree
d− 1. Moreover, there are

p− 1

pd

∑
k|d;p-k

µMöb(k)p
d
k

such m, where µMöb is the Möbius function.

Proof. Here h1(µ) = Trace(µ) is the trace for Fp[µ]/(m) → Fp and it is a fact
from number theory[10, Ch. VI/Thm. 5.1] that Trace(µ) = −md−1 where m(x) =
xd + md−1x

d−1 + · · · + m0 is the minimal polynomial of µ, which is our case by
construction. Hence h1(µ) 6= 0 if and only md−1 6= 0. Next, the number of monic
irreducibles in Fp[x] with a fixed non-zero value of this coefficient was found by
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Carlitz[3] and more recently in the form we use in [25]. As we required only a
non-zero value, we multiply this by the p− 1 possible values to give the expression
stated. �

This gives an easy criterion to tell if a given m is regular. The number of such
should be compared with Gauss’ formula for the number Nd of all irreducible m

of degree d, Nd = 1
d

∑
k|d µMöb(k)p

d
k . Thus a good fraction of m are regular. The

formula gives p− 1 regular m as it should for d = 1 by Proposition 3.1.

Also note that the factorisation (3.3) means that either hd(µ) = 0 (the non-regular

case) or m divides (hd − 1)(1 + hd + · · ·hp−2
d ) (the regular case) according to our

theorem. Meanwhile, Lemma 3.3 suggests a similar result for the cohomology for
the flip side when hd(µ) = 0:

Conjecture 3.6. m of degree d > 1 has H0
dR(Fp[x];m) = Fp[hd] if and only if

hd(µ) = 0.

It is not clear that this can be proven by similar methods to those of our main
theorem. We also note in passing that as well as the Trace there is a norm map
N : Fpd → Fp defined as

N(x) = xxp · · ·xp
d−1

= x1+p+p2+···pd−1

= x[d]p , [d]p =
pd − 1

p− 1

and N(µ) = (−1)dm0 6= 0 as m is irreducible. Hence N /∈ H0
dR(Fp[x];m).

Example 3.7. Conjecture 3.6 is supported by computer calculations for p = 2 and
d ≤ 4 with code available on [23] and with the following verified up to polynomials
of degree 100:

(1) H0
dR(F2[x];µ2 + µ+ 1) = F2[x4 + x] = F2[g2]

(2) H0
dR(F2[x];µ3 + µ2 + 1) = F2[x8 + x] = F2[g3]

(3) H0
dR(F2[x];µ3 + µ+ 1) = F2[x4 + x2 + x] = F2[h3]

(4) H0
dR(F2[x];µ4 + µ3 + µ2 + µ+ 1) = F2[x16 + x] = F2[g4]

(5) H0
dR(F2[x];µ4 + µ3 + 1) = F2[x16 + x] = F2[g4]

(6) H0
dR(F2[x];µ4 + µ+ 1) = F2[x8 + x4 + x2 + x] = F2[h4]

where h3(µ) = µ(µ3 + µ + 1) = 0 in (3) and h4(µ) = µ(µ3 + 1)(µ4 + µ + 1) = 0
in (6) and hd(µ) 6= 0 in the other cases. This also illustrates Theorem 3.4 and
Corollary 3.5, now proven. One can moreover see here that the regular m are
precisely the factors of degree d in hd + 1, as per the general theory when p = 2.

4. The Hopf algebras Ad

Motivated by the above cohomology computations, for each d ∈ N and each regular
m of degree d, we define

Ad := Fp[x]/(gd) = Fp[x]/(xp
d

− x), Ω(Ad;m) := Ω(Fp[x];m)/〈gd〉
Here J = H0

dR∩kerε = span{gmd | m > 0} = Fp[gd]+ where the + denotes functions
with no constant term. Hence Fp[x]J = (gd) is the ideal that we quotient out by
to define Ad.
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We think of the algebra Ad as defining a ‘space’ at a topological level in some sense,
and in this regard we note that Ad as defined depends only on the degree d of the
field extension. We think of m as adding to this data a differentiable structure
inherited from the one on Fp[x] or equivalently an element µ of a field extension of
degree d.

Corollary 4.1. H0
dR(Ad;m) = Fp1 for the inherited differential structure from any

regular monic irreducible m of degree d.

Proof. This is immediate from Theorem 3.4 and we use the notations there. Sup-
pose that f(x+µ)−f(x) ∈ (gd) in Fpd [x], i.e. products of gd with polynomials that
include powers of µ in their coefficients. In Fp[x] we let f = hgd + r where either
r = 0 (so f = 0 in Ad) or the degree of r is less than pd. Then h(x+ µ)gd(x+ µ) +
r(x+µ)− h(x)gd(x)− r(x) = (h(x+µ)− h(x))gd(x) + r(x+µ)− r(x) ∈ (gd) since
gd(x + µ) = gd(x) as gd is additive and gd(µ) = 0. Hence r(x + µ) − r(x) ∈ (gd).
But since every nonzero element of (gd) has degree greater than or equal to pd we
conclude that r(x+ µ)− r(x) = 0 and hence by Theorem 3.4 that r is a constant,
hence f is a multiple of the identity in Ad. . �

This means that we achieved our goal of having finite-dimensional quotients of Fp[x]
equipped now with (a moduli space of) connected differential calculi. We now turn
to the algebraic structure of the Ad.

Corollary 4.2. Ad is a pd-dimensional Hopf algebra and Ω(Ad) is bicovariant.

Moreover, the primitive elements of Ad are spanned by the set {xpi : 0 ≤ i < d}

Proof. As x is primitive, we have

∆xn =

n∑
k=0

(
n

k

)
xk ⊗ xn−k

By Lucas’ theorem[12, 8],
(
n
k

)
= 0 mod p iff a base p digit of k is greater than the

corresponding digit of n. Hence xn is primitive if n = pi for some i. Conversely, if
n is not a power of p, then there exist some k 6= 0, n for which

(
n
k

)
6= 0 mod p, and

so xn is not primitive. It then follows easily that the primitive elements of Fp[x]
are precisely spanned by the p-power exponents. In particular, gd is primitive and
hence Ad is a Hopf algebra. Its primitives have the same form but restricted to
degree less than pd. Here Fp[gd] is a Hopf algebra with gd primitive and in this way
a sub-Hopf algebra of Fp[x] as per the general theory in Section 2. The latter also
implies bicovariance. �

Next, Ad carries the Frobenius automorphism F (x) = xp and hence always contains
a Frobenius-fixed subalgebra Bd = AFd every element equals its p-power. For p = 2
this means that Bd is a Boolean subalgebra.

Proposition 4.3. dim Bd = 1
d

∑
k|d φ(k)p

d
k , the number of irreducible factors of

gd. Here φ is the Euler totient function.

Proof. The Frobenius automorphism has order d and permutes the set {1, x, x2, . . . , xp
d−1}.

Write this permutation in its decomposition as cycles σ1, . . . σb. When a polynomial



FINITE NONCOMMUTATIVE GEOMETRIES RELATED TO Fp[x] 11

f is the sum of monomials from an orbit of a σi it is fixed by the endomorphism.
The set of such polynomials (with all coefficients 1) is linearly independent and
generates Bd. Now let Cs = {spj mod pd − 1 : 0 ≤ j ≤ d − 1} be the cyclotomic
coset of p modulo pd− 1 containing s. Note that each Cs and Cr are either disjoint
or equal. Let C ⊂ Z/(pd − 1)Z be such that⋃

s∈C
Cs = Z/(pd − 1)Z

and each pair Cs and Cr are disjoint for s, r ∈ C, s 6= r. C is in bijection with the
set of orbits of the permutation cycles define above, excluded the singleton orbit

{xpd−1}, which comes from the additional factor of x in the polynomial modulus:

let s ∈ C, if xs ∈ orbσi, then orbσi = {xspj mod xp
d − x : 0 ≤ j ≤ d− 1}.

Let α ∈ Fpd be a generator for the multiplicative group F×
pd

. It is known [11,

Thm. 3.4.11] that

xp
d−1 − 1 =

∏
s∈C

ms(x)

for ms(x) =
∏
a∈Cs

(x − αa), hence the set of orbits of the permutation, and thus
the basis we have given, is in bijective correspondence with irreducible factors of

xp
d − x. �

Next recall from the introduction that as part of the inductive system that there are
canonical Hopf algebra maps π : Ad → A1, since 1 divides every d. To find the kernel
of this map we consider the canonical automorphism of the algebra Ad given by the

order p periodicity map ψ(x) = x+ 1. Here gi(x+ 1) = (x+ 1)p
i − (x+ 1) = gi(x)

working over Fp, so these give invariant elements of Ad for i = 1, · · · , d − 1. We

will be interested in the invariant subalgebra Cd = Aψd of Ad.

Proposition 4.4. Cd = Fp[g1]/(hd(g1)) for all d ∈ N is a Hopf algebra of dimen-
sion pd−1 and

Cd ↪→ Ad � A1

is an extension of Hopf algebras.

Proof. We start with Fp[x]ψ = Fp[g1]. This is known from Artin-Schreier theory but
for completeness we include an elementary proof from [24]. If f(x+1) = f(x) and f
has degree less than p then the proof of Proposition 3.1 with µ = 1 applies and allows
us to conclude that f(x) is a constant. More generally let f(x) = g1h(x) + r(x)
where r has degree less than p. Then g1(h(x+1)−h(x)) = −(r(x+1)−r(x)) which
by degrees requires both h and r to be invariant. Thus r is a constant and h is an
invariant of lower degree, leading to the result. Also clearly, the {gii} are linearly
independent over Fp (by looking at the top degree of a polynomial relation). Also

in Fp[x] we have hi(g1) = g1+gp1 +· · · gp
i−1

1 = xp−x+(xp−x)p+· · ·+(xp−x)p
i−1

=

xp−x+xp
2−xp+· · ·xpi−xpi−1

= gi on cancellation. In particular, hd(g1) = gd, and
if a polynomial in g1 of degree less than pd−1 is divisible by gd then, by degrees, it
must separately vanish. Hence polynomials in g1 up to degree less than pd−1 viewed
in Ad form a pd−1-dimensional subalgebra. Finally, if f ∈ Fp[x] has degree less than
pd and f(x+ 1)− f(x) is divisible by gd then by degrees is must separately vanish,
hence Cd = Fp[g1]/(gd) = Fp[g1]/(hd(g1)). This inclusion i : Cd ↪→ Ad makes Cd



12 M.E. BASSETT & S. MAJID

a sub-Hopf algebra as g1 is primitive. The Hopf algebra map π : Ad → A1 where
we quotient by (g1) clearly obeys π ◦ i = 1ε since it is 1 on 1 ∈ Cd and vanishes on
C+
d . It follows from general arguments since the Hopf algebras involved are finite

dimensional, see [26, Cor 3.2.2], that this gives an exact sequence of Hopf algebras
in the technical (cleft) sense provided only that the dimensions match. This is our
case as we have seen that dim(A1) dim(Cd) = dim(Ad). �

It follows from the theory of such extensions of Hopf algebras that Ad is a cocycle
bicrossproduct of Cd and A1 in the sense of [16, Sec. 6.3]. We will give this explicitly
and find in fact that the extension result applies to Fp[x] as well, not only the finite-
dimensional quotients. We first define

δi(x) = − g1

x− i
= −

∏
j 6=i

(x− j) ∈ Fp[x], i = 0, · · · , p− 1

which clearly obey ψ(δi) = δi−1. Hence
∑
i δi is ψ-invariant and has degree p − 1

hence is a constant. Evaluating at zero, only δ0(0) = −(p− 1)! = 1 is non-zero, we
have ∑

i

δi = 1.

The δi(x) are similar to the (xi ) basis functions in Mahler’s theorem[14] albeit the
context is different. The following is presumably known but we have not found it
elsewhere and include a short proof.

Lemma 4.5. A1
∼= Fp(Z/pZ) the Hopf algebra of functions on the finite group

Z/pZ.

Proof. We identify the Kronecker delta-function at i ∈ Z/pZ with δi ∈ A1 i.e.
viewed mod g1. Clearly in A1 we have δi(x − i) = 0 and hence δiδj = 0 in A1 for
i 6= j, so that δiδi = δi in A1 from

∑
δi = 1. Hence this is an isomorphism of

algebras. For the coproduct we note that the image of the coproduct of Fp[x] has
the property of invariance under ψ⊗ψ−1 acting in the two factors (this clear for ∆x
and therefore applies on any polynomial). Since {δi} by the above relations form a
basis of A1, we let ∆δk =

∑
i,j c

k
ijδi⊗ δj for some ckij ∈ Fp. Then invariance implies

that cki,j = ck0,i+j . However, ε(δi) = δi,0 and the counity axiom then implies that

ck0,i = δk,i. Hence ∆δi =
∑p−1
j=0 δi−j ⊗ δj as for Fp(Z/pZ). �

Theorem 4.6. Fp[x] = Fp[g1]⊗χA1 is a cocycle cleft extension by A1 coacting via
ψ and for p > 2 with cocycle

χ : A1 ⊗A1 → Fp[g1], χ(δi ⊗ δj) =



1 if i = j = 0
g1
j if i = 0, j 6= 0
g1
i if i 6= 0, j = 0

− g1i if i = j 6= 0

0 else.

This amounts to the new identities for δ-functions in Fp[x] for p > 2,

δiδi = δi + g1

p−1∑
k=1

δi+k
k

, δiδj = −g1
δi − δj
i− j
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for all i, j ∈ Fp and i 6= j. For p = 2 the cocycle and identities are

χ(δi ⊗ δj) = g1 + δi,0δj,0, δ2
i = δi + g1, δ0δ1 = g1.

The coproduct of Fp[x] becomes

∆δi =

p−1∑
j=0

δi−j ⊗ δj , ∆g1 = g1 ⊗ 1 + 1⊗ g1, εδi = δi,0, εg1 = 0

so that A1 is a subcoalgebra. These formulae descend to Ad = Cd ⊗χ A1 for all
d ≥ 1.

Proof. In view of Lemma 4.5, the action of Z/pZ via ψ on Fp[x] becomes a right
coaction ∆Rf =

∑
ψi(f) ⊗ δi of A1. Clearly ∆R(δi) =

∑
j δi−j ⊗ δj viewed in

Fp[x]⊗A1. Then φ : A1 → Fp[x] sending φ(δi) = δi is a right comodule map. It is
also convolution-invertible with φ−1(δj) = δ−j as∑

j

δjδj−i = δi,0.

This is because the sum is ψ-invariant hence by degrees is at most linear in g1. The
constant value is δi,0 since only δ0(0) = 1 is non-zero, while

δ2
0 = 1 +O(x2), δ0δj = −1

j
x+O(x2), δiδj = O(x2)

for all i, j 6= 0. Using that
∑p−1
i=1 1/i = 0 which is equivalent to

∑
i∈Fp

i = 0 mod

p valid for p > 2, one has that
∑
j δjδj−i has zero coefficient in degree 1, so there

is no g1 term. Hence we have a cleft extension and Fp[x] ∼= Fp[g1]⊗χ A1 for some
cocycle χ : A1 ⊗A1 → Fp[g1] which we compute from

χ(δi ⊗ δj) =
∑
k

φ(δi−k)φ(δj−k)φ−1(δk) =
∑
k

δi+kδj+kδk.

This is again ψ-invariant and has degree at most (p− 1)3, so is at most quadratic
in g1. Looking to degree 2, we have

δiδjδk = O(x3), δiδjδ0 =
x2

ij
+O(x3), δiδ

2
0 = −x

i
− x

2

i2
+O(x3), δ3

0 = 1+O(x3)

where we used that
∑p−1
i=1 1/i2 = 0 mod p for p > 3, which is equivalent to a power-

sum identity
∑
i∈Fp

i2 = 0 mod p for p > 3. Such identities are known to hold

for all powers not divisible by p − 1, see [4]. From this one can see that χ has no
x2 term, and hence is at most a constant plus linear term in g1. We then use our
expression for χ and the form of triple products of δ’s to match the constant terms
and coefficients of x, giving the cocycle as stated. From the theory of extensions,
see [16, Prop. 6.3.2], we will be able to recover the product of Fp[x] from

(4.1) (c⊗ δi)(c′ ⊗ δj) = cc′
∑
k

χ(δi−k ⊗ δj−k)⊗ δk, ∀c, c′ ∈ Fp[g1]

which implies in particular that

δiδj =

p−1∑
k=0

χ(δi−k ⊗ δj−k)δk
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holds in Fp[x]. This provides the identities stated for p > 2. For p− 2 it is easy to
verify the stated identities with δ0 = 1 +x and δ1 = x and g1 = x2 +x in this case,
from which the cocycle has to have the form stated.

Finally, we look at the coproduct. Its image in Fp[x] ⊗ Fp[x] is invariant under
ψ⊗ψ−1 which together with the factorisation as algebras already proven implies a
general form ∆δi =

∑
j,k δjc

i
j,kδk for cij,k ∈ Fp[g1]⊗Fp[g1]. The same arguments as

in the proof of Lemma 4.5 apply and tell us that ∆δi =
∑
j,k δjc

i
0,j+kδk. Writing

ci0,j = δi,j + g1⊗1bij + 1⊗ g1b
′i
j + (g1⊗ g1)c′ij where b, b′ are constants, the counit

axiom (id ⊗ ε)∆δi = (ε ⊗ id)∆δi = δi tells us that b = b′ = 0 (and also fixed the
first term as δi,j). Now, ∆ does not change the total degree so the total degree of

∆δi =
∑
j

δi−j ⊗ δj + (g1 ⊗ g1)
∑
j,k

δjc
′i
j+kδk

has to be p−1. The first term has total degree at most < 2p while the second term
has leading term (xp ⊗ xp)

∑
j,k δjc

′i
j+kδk, hence this second term must separately

vanish. This means that we have a tensor product as coalgebras, so that A1 appears
as a subcoalgebra.

Clearly, these results are not changed modulo gd as higher powers of g1 were not
involved. Hence Ad = Cd ⊗χ A1 also by identifying the δ-functions. �

Such cleft extensions may also be regarded as trivial quantum principal bundles
or Hopf-Galois extensions of a certain trivial type, which are indeed classified by
cocycles as explained in detail in [17, Sec. 5]. Indeed, the above implies that they
are of the quantum homogeneous space type with right coaction (id ⊗ π)∆ of the
fibre Hopf algebra A1 on the total space Hopf algebra Ad, with base algebra Cd.
Geometrically by Lemma 4.5, the underlying structure group is Z/pZ.

5. Noncommutative geometry of A1 and A2

In this section we study A1, A2 in more detail, focussing on their Fourier theory
and translation-invariant noncommutative differential geometry respectively. The
aim is to obtain a fuller picture of these algebras as examples of the Ad family.

Fourier transform works on any finite-dimensional Hopf algebra A equipped with
(say) a right translation-invariant integral

∫
: A→ k and another

∫
: A∗ → k on its

dual such that (
∫
⊗
∫

)(exp) 6= 0. Here exp = ea ⊗ fa is the canonical coevaluation
elements for the duality pairing defined by any basis {ea} of A with dual basis
{fa}. Translation invariance means (

∫
⊗id)∆ = 1

∫
. Fourier transform is then

F : A → A∗ defined by F(f) = (
∫
eaf)fa. The inverse is similar but with the

Hopf algebra antipode, see [16, Prop. 1.77] for an exposition. Fourier transform
is compatible with any translation-invariant differential calculus Ω1 and turns the
translation-invariant differentials ∂a with respect to a basis into right multiplication
by the corresponding dual basis element fa in A∗.

The formalism of noncommutative Riemannian geometry works for any algebra A
with differential structure defined at least to Ω2. By a ‘metric’ we mean an element
g ∈ Ω1 ⊗A Ω1 which is quantum symmetric in the sense ∧(g) = 0 and invertible
in the sense of existence of a bimodule map ( , ) : Ω1 ⊗A Ω1 → A such that
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(ω, g1)g2 = ω = g1(g2, ω) for all ω ∈ Ω1. Here g = g1 ⊗ g2 (a sum of such terms
understood) is a notation. One can show[1] that such a g is necessarily central.
By a ‘left connection’, in our case on Ω1, we mean ∇ : Ω1 → Ω1 ⊗A Ω1 such that
∇(aω) = a∇ω + da ⊗ ω for all a ∈ A and ω ∈ Ω1. By a ‘bimodule connection’
we mean a left connection such that in addition ∇(ωa) = (∇ω)a + σ(ω ⊗ da) for
some bimodule map σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1. If a left connection admits such
a σ then the latter is unique, hence this is a property of ∇ and not further data.
In this case one has the notion of metric compatible connection ∇g = 0 where ∇
acts on each tensor factor Ω1 and σ is used to correctly position its output when
acting on the second tensor factor. Finally, the torsion of a connection on Ω1 is
T = ∧∇ − d : Ω1 → Ω2 and in noncommutative Riemannian geometry we are
ideally interested in finding a ‘Levi-Civita’ bimodule connection defined as metric
compatible and torsion free. More details can be found in [21].

We will be interested in the translation-invariant geometry in the case of A a Hopf
algebra. In practice this just means that the coefficients are constant with respect to
basis of left-invariant 1-forms. Unlike Lie theory, the choice of invariant differential
structure is not unique; we take the calculus on Ad inherited from that of Fp[x] for
a choice of m of degree d.

5.1. Fourier transform and geometry on A1. Here we focus on

A1 = Fp[x]/(xp − x).

as a Hopf algebra with x primitive. This is isomorphic to Fpp as a ring, hence to
the functions on p points, and indeed we have already remarked in Lemma 4.5 that
it is isomorphic to Fp(Z/pZ) where the Kronecker delta-functions on the latter are
mapped to the δi(x) for i = 0, · · · , p − 1. From the projector relations among the
δi in A1 and the evaluations δi(j) = δi,j which follow from the definition of δi(x),
it is easy to see that

(5.1) δi(x)f(x) = f(i)δi(x), ∀f(x) ∈ A1.

Thus, if f(x) ∈ A1 then the values f(i) for i ∈ Z/pZ provide the corresponding
function on the group while conversely f(x) =

∑
i δi(x)f(i). We also recall that

finite-dimensional Hopf algebras have unique translation-invariant integration up
to normalisation. In our case we have up to normalisation

(5.2)

∫
xi =

{
1 if i = p− 1

0 otherwise,

which is equivalent via the isomorphism to
∫
f =

∑p−1
i=0 f(i) for f ∈ Fp(Z/pZ).

From this or from the coefficient of xp−1 in δi being 1, we clearly have
∫
δi(x) = 1.

Next, the dual Hopf algebra to Fp(Z/pZ) is the group Hopf algebra of Z/pZ,

A∗1 = FpZ/pZ = Fp[t]/(tp − 1), ∆t = t⊗ t
and has the unique normalised translation-invariant integral

(5.3)

∫
ti =

{
1 if i = 0

0 otherwise.

We can view this Hopf algebra as dual to A1 via the Hopf algebra duality pairing

(5.4) A1 ⊗A∗1 → Fp, 〈f(x), tj〉 = f(j), ∀f(x) ∈ A1.
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As our Hopf algebras are finite-dimensional, there is necessarily a canonical coeval-
uation which we denote exp ∈ A∗1 ⊗ A1. We recall that for any finite dimensional
Hopf algebra and specified integral on it, we have a Fourier transform F : A1 → A∗1
given by integration against one factor of exp, see [16, Prop. 1.7.7] for an exposition.

In our case it is immediate from (5.4) that exp =
∑p−1
i=0 t

i ⊗ δi(x) leading to the
canonical Hopf algebra Fourier transform

(5.5) F(f) =

p−1∑
i=0

tif(i), F−1(ti) = δi(x), ∀f(x) ∈ A1, i ∈ 0, · · · , p− 1.

Note that (
∫
⊗
∫

) exp = 1 which is invertible as required for an inverse Fourier
transform. This completes our review of Fourier theory on Z/pZ.

Next, in the same way as we have described the functions on the finite group as a
quotient of the affine line Fp[x], namely A1, we can do the adjoint thing on the dual
side. Thus, FpZ/pZ already looks like an algebraic group with group-like generator
t but we can go further and write this as like the enveloping algebra of a Lie algebra
with infinitesimal generator L, say.

Lemma 5.1. Let p > 2.
A∗1 = Fp[L]/(Lp)

as a Hopf algebra via the identification

t = eL :=

p−1∑
i=0

Li

i!
, L = ln(t) := −

p−1∑
i=1

ti

i
∈ A∗1

+,

in terms of a ‘truncated exponential’ e( ) and ‘truncated logarithm’ ln( ). We have∫
Li =

{
1 if i = 0, p− 1

0 else

as equivalent to (5.3).

Proof. First we note that given tp = 1 and L defined as stated, Lp = −
∑
i 6=0 1/i = 0

and
iL = i ln(t) = ln(ti)

for all integers i mod p. Conversely, given L with Lp = 0, we define t = eL and
clearly tp =

∑p−1
i=0 (Li)p/i! = 1. More generally it follows from Lp = 0 that

eiLejL =

p−1∑
k=0

p−1∑
s=0

ikjs

k!s!
Lk+s =

p−1∑
m=0

m∑
k=0

(m
k

) Lm
m!

ikjm−k = e(i+j)L

which implies in particular that ti = eiL and hence

ln(eL) = −
p−1∑
i=1

eiL

i
= −

p−1∑
i=1

1

i

p−1∑
j=0

ij
Lj

j!
= −

p−1∑
j=0

Lj

j!

p−1∑
i=1

ij−1 = −L(p− 1) = L

using the power-sum identity so that the sum over i contributes only for j = 1.
Hence the algebra map Fp[L]/(Lp)→ A∗1 sending L to ln(t) is injective (by applying
the algebra map going the other way that sends t to eL) and hence by dimensions
an isomorphism. Next, given L, for t to be group-like we need

∆L = ln(eL ⊗ eL), εL = 0
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With this coalgebra, the two Hopf algebras are isomorphic. We then convert over
the integral as stated. �

We remark that the coproduct can be written more explicitly as

(5.6) ∆L = L⊗ 1 + 1⊗ L−
p−1∑
i=1

(
p
i

)
p
Li ⊗ Lp−i

which makes sense as p divides the binomial coefficient. We have verified this by
computer for small primes. The coproduct can also be written as a multiplicative
correction

(5.7) ∆L =

(
1−

p−2∑
i=1

aiL
i ⊗ Lp−1−i

)
(L⊗ 1 + 1⊗ L)

where

ai =

(
p−1
i

)
− (−1)i

p

also make sense and obey ai = ap−1−i, a1 = 1, a2 = (p−3)/2 etc, with middle value
i = (p− 1)/2 giving the so-called ‘swinging Wilson quotients’[13]. Also note that if
we took L primitive then we would again have a Hopf algebra on Fp[L]/(Lp) but now
dually paired with Fp[x]/(xp). One could view this pair as a kind of linearisation
of our Hopf algebras, no longer isomorphic to group algebras and group function
algebras respectively. Compared to these, A1 has a modified algebra relation and
dually A∗1 has a modified coproduct.

Corollary 5.2. The coevaluation and the canonical Hopf algebra Fourier transform
in terms of x, L take the form

exp = eL⊗x ∈ A∗1 ⊗A1

F : A1 → A∗1, F(f) =

∫
eL⊗xf(x), F−1(f) =

∫
f(L)e−L⊗x.

Proof. We deduce this as

exp =

p−1∑
i=0

(eL)i ⊗ δi(x) =

p−1∑
m=0

Lm

m!
⊗
p−1∑
i=0

δi(x)im = eL⊗x

using xm =
∑
i δi(x)im. This in turn gives the Fourier transform as stated. In

principle, one can also find from (5.4) that 〈xi, L〉 = −
∑p−1
k=1

ki

k = −
∑p−1
k=1 k

i−1 = 1
if i = 1 mod p− 1 and zero otherwise, to eventually find exp from this. �

Thus, working with L puts the Fourier transform into a familiar form. We now turn
to differentials. We recall that the regular d = 1 monics are of the form m = x− µ
for µ ∈ Fp, where the corresponding field extension is trivial so we identify this
with µ in the general construction). The calculus is 1-dimensional with basis dx
and necessarily descends to A1. However, the classical calculus on Fp[x] given by
µ = 0, aside from not being regular, implies dx = dxp = 0 and hence gives the zero
calculus on A1. We therefore exclude it in what follows.
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Proposition 5.3. For any µ ∈ F∗p, the inherited calculus Ω(A1) has Ωi = 0 for

i > 1 and Ω1 = A1dx with relations

[dx, f ] = µdf

Moreover, H0
dR(A1) = Fp, H1

dR(A1) = Fp, spanned by 1 and xp−1dx respectively.

Proof. The inherited calculus has the form stated, with df = (∂f)dx where

∂f =
f(x+ µ)− f(x)

µ
, ∀f ∈ A1.

We already know H0
dR from Corollary 4.1 but we can also see this directly. If ∂f = 0

then f(x+ µ) = f(x). But nµ = λ mod p has a solution n for all λ so by iteration
f(x+λ) = f(x) for all λ. By (5.1), f(x) is determined by its values and we see that
these are constant, hence f is a multiple of 1. For H1

dR, all 1-forms are closed and
if fdx = dh for some h(x) then f = ∂h = (h(x+ µ)− h(x))/µ. Clearly this cannot
happen for f of degree p − 1 since h would need degree p which is not possible.
For smaller degree one can iteratively solve to find h by calculations that are the
same as for the trivial 1st cohomology of Fp[x] with its 1-dimensional calculi. The
calculus is manifestly inner with θ = µ−1dx. �

Note that calculi on finite sets correspond to directed graphs[19] and the above
calculi correspond to the Cayley graph on Z/pZ generated by singleton sets {µ} ⊂
Z/pZ. The directed graph here has edges of the form i

µ−→i + µ corresponding to
a finite difference with step µ on Z/pZ. It is easy to see from (5.5) by a change of
variables in F that

(5.8) F∂f = F(f)

(
tµ − 1

µ

)
,

in keeping with the general features of Fourier transform.

One can also ask on the dual side about the calculus on A∗1 = Fp[t]/〈tp−1〉. Usually
in the abelian case the problem reverts to calculi on the dual group but that is not
possible in our case where the order of the group is the characteristic. However, it
remains in any characteristic that translation invariant calculi on group algebras are
classified by group 1-cocycles[22]. In our case there is a natural choice in which the
values of the cocycle are in Fp with trivial group action. In that case a group cocycle
means a group homomorphism from Z/pZ to itself, which since p is prime can only
be trivial or the identity. We therefore have a unique 1-dimensional calculus from
this point of view, namely

Ω1(A∗1) = A∗1v, v = t−1dt, dti = it v, [dt, t] = 0

and Ω2 = 0. We see that this is the classical calculus on the algebraic circle
Fp[t, t−1] descended to A∗1. Writing df(t) = (∂f)(t)v, we have ∂tm = mtm, the
degree operator. From (5.5) one easily finds

F−1∂ = xF−1

so that differentiation on A∗1 again becomes multiplication in A1 under Fourier
transform. In terms of L, we have

v = e−LdeL = e−L
p−1∑
i=1

Li−1

(i− 1)!
dL = (1 + Lp−1)dL.
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The calculus here descends from the classical calculus on Fp[L] but v and not dL is
the basic translation-invariant differential form, because this property depends on
the coproduct on L and this was modified from the additive one. Consequently, we
have

∂L = 1− Lp−1, ∂Li = iLi−1, ∀i > 1

for the left-invariant derivative.

We now ask if there is a quantum Riemannian structure on A1 for the above cal-
culus. For this we must specify the space of 2-forms and the canonical choice here
is for dx to square to zero, so Ω2 = 0.

Proposition 5.4. The above Ω1 on A1 admits a quantum metric g if and only if
p = 2 and g = dx ⊗ dx. It then admits only one quantum Levi-Civita connection,
given by ∇dx = 0 and σ(dx⊗ dx) = dx⊗ dx.

Proof. An element of Ω1 ⊗A1
Ω1 for the above calculus has the form g = αdx⊗ dx

for some nonzero element α ∈ A1. However, a quantum metric to be invertible must
also be central and in our case [g, x] = 2µg which is zero only if p = 2. Now setting
p = 2, we need α to be invertible in which case α = 1. Next, we take a general form
of connection ∇dx = adx⊗ dx for a ∈ A1. If this is a bimodule connection then

∇((dx)x) = adx⊗ (dx)x+σ(dx⊗dx) = ∇((x+ 1)dx) = dx⊗dx+ (x+ 1)adx⊗dx

which requires σ(dx⊗ dx) = (1 + a)dx⊗ dx. This indeed defines a bimodule map
as dx ⊗ dx is central. All connections are necessarily flat and torsion free due to
the choice of Ω2 so all that remains is metric compatibility. This requires

∇g = ∇dx⊗ dx+ σ(dx⊗ adx)⊗ dx = adx⊗3 + σ((dx)a⊗ dx)⊗ dx

= adx⊗3 + (a+ ∂a)σ(dx⊗ dx)⊗ dx = (a+ (a+ ∂a)(1 + a))dx⊗3 = 0

where the first equality is ∇ applied on the two factors of g, with σ used to swap
the left output of the second instance to the far left. We also used the commutation
relations between dx and a general element a. For the result to vanish, we need
(1 + a)∂a = a, which is only solved by a = 0. �

This g = dx⊗dx is translation-invariant as the coefficients in the basis are constant
and should be seen as the intrinsic geometry of A1 over F2, with here only the
trivial quantum Levi-Civita connection ∇(fdx) = df ⊗ dx for any f ∈ A1. The
translation-invariant geometry for A2 will be more interesting.

5.2. Fourier transform and geometry on A2. Here we consider

A2 = Fp[x]/(xp
2

− x)

as a Hopf algebra with x primitive. This is isomorphic as a ring to Fpp × F
p(p−1)

2

p2

and hence is not functions on any finite group. Rather, by Theorem 4.6 we know
that we can identify

A2 = C2 ⊗χ A1, C2 = Fp[y]/(yp + y)

for a certain cocycle χ, where y = g1(x) and A1 is embedded as δi(x). The structure
of C2 is almost that of A1 itself and is exactly A1 if p = 2. We focus on this
simpler case, which is also the only case where the quantum Riemannian geometry
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is manageable by known methods. In this case A2 = A1 ⊗χ A1
∼= F2(Z/2Z) ⊗χ

F2(Z2/2Z) where the first copy has generator y = g1(x) = x2 + x in A2 and the
function algebra description is via Lemma 4.5 with the Kronecker δi in the second
copy appearing in A2 as δi(x). We write δ̄i for the parallel Kronecker basis of the
first copy, embedded as δ̄0 = 1 + y and δ̄1 = y. The isomorphism in the other
direction is provided by the factorisation in A2,

1 =
∑
i,j

δ̄iδj , x = (δ̄0 + δ̄1)δ1, x2 =
∑
i6=j

δ̄iδj , x3 =
∑

not i=j=0

δ̄iδj

which one can then write as a tensor product of the factors for the A1 ⊗χ A1

description. The translation-invariant integral for A2 (as for all Ad) is required to
have support only on the top degree, which in our case means

∫
x3 = 1 and zero

on smaller degree monomials. This corresponds under the isomorphism to a tensor
product of integrals, so

∫
δ̄iδj = 1 for all i, j ∈ F2. The final ingredient for Fourier

transform is a description of the Hopf algebra dual.

Proposition 5.5. For p = 2, the Hopf algebra dual is A∗2
∼= F2[s, t]/(s2− 1, t2− 1)

as an algebra, with coalgebra and antipode

∆s = s⊗ st+ st⊗ s+ st⊗ st, ∆t = t⊗ t, εs = εt = 1, Ss = s, St = t.

Fourier transform F : A2 → A∗2 exists and is then given by

F(1) = 1 + s+ t+ st, F(x) = (1 + s)t, F(x2) = s+ t, F(x3) = s+ t+ st.

Proof. In our new terms, the cocycle and relations in Theorem 4.6 are

χ(δi ⊗ δj) = δ̄i+j+ij , δ2
i = δi + δ̄1, δ0δ1 = δ̄1.

This description implies that A∗2
∼= A∗1⊗χ

∗
A∗1 as a cocycle coproduct Hopf algebra,

where χ∗ : A∗1 → A∗1 ⊗A∗1 is the dualisation of χ. First, as an algebra

A∗1 ⊗χ
∗
A∗1
∼= F2Z/2Z⊗ F2Z/2Z

by our results in the preceding section. This is the group algebra of (Z/2Z)2 and
we write it as stated with involutive generators s, t. We use the pairing as in (5.4)
for each copy whereby {ti} and {δi} are dual bases and so are {si}, {δ̄i}. Using
this, the cocycle dualises to

χ∗(1) = 1⊗ 1, χ∗(s) = (1 + t)⊗ (1 + t)− 1⊗ 1

after which we use the general Hopf algebra construction [16, Prop. 6.3.8]

∆(x⊗ y) = x(1) ⊗ χ∗(x(3))
1y(1) ⊗ x(2) ⊗ χ∗(x(3))

2y(2)

adjoint to (4.1), where x⊗y ∈ A∗1⊗A∗1 are taken with their original tensor product
coalgebra and we have written χ∗ = χ∗1 ⊗ χ∗2 (sum understood). This computes
for s, t grouplike to the formula stated. The second copy of A∗1 is a sub-Hopf algebra
and the first copy is a subalgebra with a cocycle-modified coproduct.

Once we have the dual Hopf algebra in this form, we have the overall pairing and
an integral on A∗2

〈δ̄iδj , sktl〉 = δi,kδj,l,

∫
sitj = δi,0δj,0
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where may check that the latter remains invariant. Then clearly (
∫
⊗
∫

)(exp) = 1
giving

F(δ̄iδj) =

∫
δ̄iδj δ̄mδn ⊗ smtn = sitj

after a short computation using the product in A2 (or the cocycle product from
the A1 ⊗χ A1 point of view). The modified product of δjδm does not affect the
answer after integration. In terms of the original description of A2 this comes out
as stated. �

We also note that the fixed subalgebra B2 ⊂ A2 has dimension 3 according to
Proposition 4.3, so is the Boolean algebra on 3 elements. One has

Proposition 5.6. A2 for p = 2 is reduced and every element obeys a4 = a for
all a ∈ A2. Moreover, A2

∼= F2x ⊕ B2 as a vector space and contains B2 as a
subalgebra with orthogonal idempotents e1, e2, e3. The Hopf algebra structure of A2

in this form is

eiej = eiδij ,
∑
i

ei = 1, x2 = x+ e1, e1x = e2 + x, e2x = e2, e3x = 0

εx = εe1 = εe2 = 0, εe3 = 1, ∆x = x⊗ 1 + 1⊗ x, ∆e1 = e1 ⊗ 1 + 1⊗ e1

∆e2 = e2⊗1+1⊗e2 +e1⊗x+x⊗e1, ∆e3 = 1⊗1+e3⊗1+1⊗e3 +e1⊗x+x⊗e1

ε(e1) = ε(e2) = ε(x) = 0, ε(e3) = 1.

Proof. By writing a = α+βx+γx2 + δx3 we see that a2 = α+βx2 +γx+ δx3 and
a4 = a. This is also clear from the ring structure. The coefficients here are 0, 1 and
in this case an = 0 is not possible for any n > 0 unless a = 0. The boolean elements
(meaning a2 = a) are of the form α+β(x+x2) + δx3 and these form a subalgebra.
Here 1, e1 = x2+x, e3 = x3+1 obey e1e3 = 0 so with e2 = 1+e1+e3 = x(x2+x+1)
are a complete set of idempotents for this subalgebra. So A2

∼= F2.x ⊕ B2. We
easily work out the Hopf algebra structure as stated. The antipode is the identity
map. �

We now turn to the inherited structure of Ω(A2) and its intrinsic translation-
invariant geometry. For the calculus, there is in fact only one monic irreducible
of degree 2 in F2[x] namely m(x) = x2 + x + 1, so only one such calculus to con-
sider.

Proposition 5.7. The quotient Ω(A2) is 2-dimensional in degree 1 with basis dx, µ
and relations

[dx, x] = µ, [µ, x] = dx+ µ.

Moreover, the calculus is bicovariant, inner with θ = dx + µ and connected with
Poincare duality in the sense

H0
dR(A2) = F2, H1

dR(A2) = F2
2, H2

dR(A2) = F2.

These are spanned by 1, {xdx, µx2} and x3dx ∧ µ respectively.
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Proof. We work in the Ω1(F2[x]) = F4[x] description, reduced to A2, but we write
dx = 1 ∈ F4[x] to avoid confusion with 1 ∈ A2. Thus dx.x = (x + µ) = x.1 + µ =
dx+ µ. Similarly, µx = (x+ µ)µ = xµ+ (1 + µ) = dx+ (x+ 1)µ as stated. These
are the same basis and relations as for F2[x], just adopted for our quotient algebra.
Note also that the calculus necessarily remains inner with θ = µ−1 = dx+µ ∈ Ω1. It
necessarily remains bicovariant. If we let dn denote the restriction of the derivative
to n-th component of the graded exterior algebra and write d0f = ∂1fdx + ∂2fµ
for f ∈ A, then d1(f1dx + f2µ) = (∂1f2 − ∂2f1)dx ∧ µ for f1dx + f2µ ∈ Ω1. We
already know H0

dR by Corollary 4.1 but it is also easy to verify directly. Brute-force
calculation shows that Im(d0) is spanned over F2 by {dx, µ, x2dx + xµ}, ker(d1)
is spanned by {dx, µ, xdx, x2dx + xµ, x2µ}, and finally that Im(d1) is spanned
by {1, x, x2}dx ∧ µ. The dimensions and bases of the cohomologies follow. Note
that over F2 the exterior algebra is both commutative and anticommutative and
symmetric combinations of the basic 1-forms are in the kernel of ∧. �

By contrast, this cohomology does not hold for the universal calculus on A2 which is
necessarily acyclic and hence cannot obey Poincaré duality, and has weaker relations

[dx, x] = µ, [µ, x] = θ, [θ, x] = dx

where θ is an independent 1-form. The Ω(A2) in Proposition 5.7 is the quotient of
this by a further relation θ = dx+ µ which respects the coaction so that the result
remains bicovariant.

We now turn to the quantum Riemannian geometry with this inherited 2-dimensional
calculus. Note that in noncommutative geometry a metric, when it exists, need not
admit a ‘Levi-Civita’ connection (in the sense of torsion free and metric compati-
ble) and if it does, the connection need not be unique. In the Hopf algebra case it
is natural to consider left-invariant metrics, i.e. ones that are constant in the basic
1-forms, in our case dx, µ.

Proposition 5.8. There are three left-invariant quantum metrics g ∈ Ω1 ⊗A2
Ω1

namely

g = α(µ⊗ µ+ θ ⊗ θ) + β(dx⊗ dx+ θ ⊗ θ)
where α, β ∈ F2 (at least one of them nonzero), each with precisely two invariant
torsion free metric compatible bimodule connections, namely ∇dx = ∇µ = 0, σ =
flip on the generators and

∇dx = αdx⊗ dx+ β(dx⊗ µ+ µ⊗ dx) + αβµ⊗ µ

∇µ = βµ⊗ µ+ α(dx⊗ µ+ µ⊗ dx) + αβdx⊗ dx

σ(dx⊗ dx) = αdx⊗ dx+ βθ ⊗ θ + αβ(dx⊗ µ+ µ⊗ dx)

σ(µ⊗ µ) = βµ⊗ µ+ αθ ⊗ θ + αβ(dx⊗ µ+ µ⊗ dx)

σ(dx⊗ µ) = αθ ⊗ dx+ βµ⊗ θ + αβ(µ⊗ dx+ θ ⊗ θ)
σ(µ⊗ dx) = αdx⊗ θ + βθ ⊗ µ+ αβ(dx⊗ µ+ θ ⊗ θ).

Moreover, the connections in both cases are flat.

Proof. We let f = dx⊗ µ+ µ⊗ dx and h = dx⊗ dx+ µ⊗ µ and compute

[dx⊗ dx, x] = f = [µ⊗ µ, x], [dx⊗ µ, x] = dx⊗ µ+ h, [µ⊗ dx, x] = µ⊗ dx+ h
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from which it follows that central combinations must be of the form

g = αdx⊗ dx+ βµ⊗ µ+ (α+ β)f

which can also be written as stated. Here α, β could be functions. We now focus on
the constant case. Writing in the dx, µ basis, invertibility then needs αβ+α+β = 1
which is all cases except α = β = 0.

Next, we look for bimodule connections. The direct approach is not practical and
we use a result in [19] that when the calculus is inner, as it is here with θ = dx+µ,
biodule connections are of the form ∇ω = θ⊗ω−σ(ω⊗θ) + α̃ω for bimodule maps
σ, α̃, and is torsion free if and only if

(5.9) ∧α̃ = 0, ∧σ = −∧

and metric compatible if and only if

(5.10) θ ⊗ g + (α̃⊗ id)g + σ12(id⊗ (α̃− σθ))g = 0.

Thus, if we suppose a map

α̃(dx) = adx⊗ dx+ bθ ⊗ θ + cf

then

α̃(µ) = α̃([dx, x]) = [α̃(dx), x] = (a+ b+ c)f

using [f, x] = f and the above. Then

adx⊗ dx+ bµ⊗ µ+ (a+ b)f = α̃(dx+ µ) = α̃([µ, x]) = [α̃(µ), x] = (a+ b+ c)f

requires a, b, c = 0. Hence there are no non-zero module maps α̃ with the required
property in (5.9). We therefore drop the bimodule map α̃. Similarly, let

σ(dx⊗ dx) = adx⊗ dx+ bµ⊗ µ+ cf

σ(µ⊗ µ) = Adx⊗ dx+Bµ⊗ µ+ Cf

σ(dx⊗ µ) = a′dx⊗ dx+ b′µ⊗ µ+ c′f + µ⊗ dx

as dictated by ∧σ = −∧. Then

σ(f) = σ([dx⊗ dx, x]) = [σ(dx⊗ dx), x] = (a+ b+ c)f = (A+B + C)f

(by f = [µ⊗ µ, x] for the second version) so that

a+ b+ c = A+B + C.

Similarly σ([dx⊗ µ, x]) = [σ(dx⊗ µ), x] gives us two further equations

a′ = 1 + a+A, b′ = 1 + b+B

This leaves us parameters a, b, c, A,B, c′ for σ with the required symmetry. Then
writing σθ = σ( , θ) we have

σθ(dx) = (1 +A)dx⊗ dx+ (1 +B)µ⊗ µ+ (c+ c′)f + µ⊗ dx,

σθ(µ) = (1 + a)dx⊗ dx+ (1 + b)µ⊗ µ+ (A+B + c′)f + µ⊗ dx

and hence

∇dx = Adx⊗ dx+ (1 +B)µ⊗ µ+ (c+ c′)f,

∇µ = (1 + a)dx⊗ dx+ bµ⊗ µ+ (1 +A+B + c′)f.
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Up to this point we have been fairly general but we now assume the connection is
translation-invariant which amounts to our functions being constants. Then

(id⊗ σθ)g = dx⊗2 ((α(a+A) + β(1 + a))dx+ (α(A+B + c) + β(A+B + c′))µ)

+ µ⊗2 ((α(1 + c+ c′) + β(A+B + c))dx+ (α(1 +B) + β(b+B))µ)

+ dx⊗ µ ((α(A+B + c) + β(1 +A+B + c′))dx+ (α(b+B) + β(1 + b))µ)

+ µ⊗ dx ((α(1 +A) + β(a+A))dx+ ((α(c+ c′) + β(A+B + c))µ)

Applying σ⊗id and equating to θ⊗g so as to solve the metric compatibility equation
(5.10) we obtain a system of quadratic equations for our 6 parameters. Over F2,
we try all 64 parameter values for each of the three non-zero cases of α, β, finding
two solutions in each case. These are the unique nontrivial connections stated and
one common connection which is zero on the basic forms and for which σ flips
the generators as is the case classically. One may then verify metric compatibility
directly as a check. That all four connections have zero curvature is obvious for the
trivial one and a calculation for the other case. For example

R∇dx = (d⊗ id− id ∧∇)∇dx = (αdx+ βµ) ∧∇dx+ (αβµ+ βdx) ∧∇µ = 0

where we used the solution for ∇dx and the d ⊗ id does not contribute as all
the coefficients are constant. Using ∇dx and ∇µ and that only µ ∧ dx = dx ∧ µ
products are non-zero and collecting dx ∧ µ⊗ dx and dx ∧ µ⊗ µ terms, we obtain
zero. Similarly for R∇µ = 0. �

The trivial connection here can still be nonzero since ∇(adx+bµ) = da⊗dx+db⊗µ
for all a, b ∈ A2, and corresponds geometrically to what we might expect on an affine
line. The other connection in each case is more unexpected and it is remarkable
that for each metric we find a unique other one. The existence of such a second
‘nonclassical’ quantum Levi-Civita connection was also a feature in the concrete
model in [1]. The general case of nonconstant α, β and non-constant connection
coefficients in Proposition 5.8 is much harder but can in principle be analysed in the
same way with additional dα,dβ terms entering in the equations for the connection.
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