
Game AI Research with Fast Planet Wars Variants
Simon M. Lucas

Game AI Research Group
School of Electronic Engineering and Computer Science

Queen Mary University of London

Abstract—This paper describes a new implementation of
Planet Wars, designed from the outset for Game AI research. The
skill-depth of the game makes it a challenge for game-playing
agents, and the speed of more than 1 million game ticks per
second enables rapid experimentation and prototyping. The pa-
rameterised nature of the game together with an interchangeable
actuator model make it well suited to automated game tuning.
The game is designed to be fun to play for humans, and is directly
playable by General Video Game AI agents.

I. INTRODUCTION

This short paper describes a new platform for Game AI
research based on variations of the Planet Wars game. The
platform has been designed from the ground up for speed and
flexibility. The core game has a fast forward model and an
efficiently copyable game state,1 and is therefore ideal for sta-
tistical forward planning algorithms. Furthermore, it has many
options which are all bundled into a single parameter object,
so that the details of the game can be changed dynamically
within different copies of the game.

This enables the effects of inaccurate forward models to
be systematically investigated, and also makes it well suited
to research into automated game tuning. The games are
directly playable by General Video Game AI (GVGAI) agents,
therefore adding games with strategic depth to that platform.
This is particularly useful for extending the type of games
offered by the GVGAI 2-player track [1], but can also be
used for the single player tracks [2] by providing one or more
fixed opponents. Finally, the game has also been designed to
be fun for human players.

The last decade has seen increasing interest in testing AI on
Real-Time Strategy games, with StarCraft being an obvious
example. There is also an important place for simpler and
faster games, which not only offer more convenient experi-
mentation but can be easily varied to provide more general
and varied AI challenges than can be offered by a single
game. Recent examples include microRTS [3] and ELF [4].
Compared to microRTS and ELF, the game described in this
paper runs around ten times faster due to the simpler rules
of the game, and specifically due to design decisions which
limit the number of game entities in play at any one time.
Compared to the stripped down version described in [5] the
platform in this paper offers more sophisticated game play
as described below, and introduces the additional features of
spinning turrets and a gravity field.

1Some game implementations have state variables spread throughout the
code making it awkward and possibly inefficient to copy the state.

II. PLANET WARS

Planet Wars is a popular casual two-player real-time strategy
game with versions going under many names on various
platforms. The game is a simple real-time strategy game
that is fun for humans to play and provides an interesting
challenge for AI. It was used for the 2010 Google AI challenge
(http://planetwars.aichallenge.org/) run by the University of
Waterloo in Canada [6] with great success. The game was also
successfully used by Buro et al. for a Dagstuhl AI Hackathon,
who also describe the rules of the standard game [7].

A. Rules

The aim of the game is for a player to take over all enemy
planets by sending ships to invade them. Each planet is either
owned by either player or is neutral, and each non-neutral
planet spawns new ships. Good strategy involves balancing the
need to take over as many planets as quickly as possible versus
leaving currently owned planets with enough ships to deter
invasion. The game is played out on a 2D map, and ships take
time to travel between planets, hence there is an interesting
spatio-temporal planning aspect to the game. Indeed, Leece
and Jhala [8] specifically chose the game to study the ability
of q-learning agents to deal with spatial planning.

The Map specifies how the planets are laid out in 2D space.
Planets are defined by their position, their size, growth rate
(proportional to their radius), and initial ownership. Hence
the map alone already provides for immense variations: it
is easy to generate new maps at random that will require
different tactics in order to win. All aspects of the map play
an important role in the decision making process. Hence,
even in its default setting the game already offers significant
variation, and offers a more robust test of an AI system
than the individual games of the Atari 2600 platform [9], for
example, even before we consider the actions of a varied set
of adversaries.

Beyond this, the time taken for ships to travel between
planets also affects game play, making ship speed and map
size important parameters.

Further variations are possible with the user-interface. In
some versions the player selects a single source and target
(destination) planet for each move, in other versions multiple
source planets can be selected via a drag action. However,
most versions the author is aware of use the basic source /
destination mechanism as a way to specify actions.

ar
X

iv
:1

80
6.

08
54

4v
1

 [
cs

.A
I]

 2
2

Ju
n

20
18

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

https://core.ac.uk/display/195279712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://planetwars.aichallenge.org/

B. Variations

All the above listed features are standard for the game. For
this version we introduce a number of variations. The first two
are for the purpose of efficiency. Firstly, a transporter is used
to send ships between planets, so multiple ships travel on a
single transporter. This is more efficient than sending them
individually. Secondly, each planet is restricted to having a
single transporter. This means the cost of calculating game
updates via the next state function grows only linearly with
the number of planets in the game. For comparison, the version
used for the Google AI challenge bundled multiple ships on
to a single transporter, but placed no limit on the number of
transporters that could be launched at any time, other than the
constraint that each one must carry at least one ship.

Beyond efficiency, two significant variations are introduced
to add to the game-play: the gravity field and the rotating turret
for direction selection.

The gravity field pre-computes a gravitational force that is
calculated from the position and mass of each planet with
mass being proportional to the planet’s area (since this is 2D
space). The gravity field adds significantly to the game-play:
the fact that ships now follow curved trajectories means that
players (especially when playing with the Slingshot actuator,
see below) must carefully judge the effects of gravity when
timing the release of the transporter. The curved trajectories
may be more interesting to observe than linear ones, and create
some dramatic tension around whether the transporter will
reach the targeted planet or not.

The rotating turret adds a skill aspect for human players.
Using this mechanism a player executes a long mouse press
on a planet for each action. While the mouse is pressed, ships
are loaded on to a transporter at each game tick. When the
mouse is released, the transporter leaves heading in the current
direction of the turret.

For a human player this added skill can be a source of
enjoyment or of frustration, depending on the individual player
and on how well the game is tuned for that player. For
example, if the turret rotates too quickly then it becomes
difficult to target the desired planet; if too slowly, then a long
wait may be involved for the turret to point in the desired
direction. For an AI agent, a slow turret can be a source of
challenge since it requires planning further ahead, whereas a
fast rotating turret should not make it more difficult, unless
timing noise is added to the AI agent’s actions.

C. Game Parameters

The game currently has 16 parameters which significantly
affect the game play. At the time of writing these include the
following:

• Number of planets: more planets lead to higher branching
factors and more complex game-play.

• Map dimensions: the width and height of the map in
pixels.

• Gravitational constant: multiplies planet mass to scale
gravitational force. Higher values lead to more curved
transit trajectories.

• Growth rate range: planet growth rates are sampled from
a uniform distribution in this range.

• Radial Separation: as planets are placed randomly they
must be at least this number of radii apart from the nearest
already placed planet.

• Ship launch speed: faster launch speed means ships
will tend to arrive at their destination sooner, and less
influenced by the gravity field.

• Transport tax: a subtractive amount per tick that reduces
the number of ships during transit (and may even take
them negative, hence turn them in to opponent ships.

A screenshot of the game is shown in figure 1. This version
is shown in portrait mode; the dimensions of the game can
be changed as easily as any other parameter, though there are
dependencies on other game parameters: for example, making
the screen area smaller while retaining the same planet size
will affect how many planets can be placed, and the density
of the area. Maps with denser layouts may place greater
importance on owning well-connected central planets. The
ability to easily change screen dimensions may be true of most
games with randomly generated levels, but does not hold for
games that rely on file descriptions of each level, such as Pac-
Man and Super Mario Bros. (for those games, level generation
is a topic in its own right).

D. AI Agent Considerations

AI agents can submit at most one action per game tick,
though the details depend on the actuators used, described in
section III. Currently there is no fog of war: all game states
are fully observable to the AI agents, though this is an obvious
source of future variations. An existing variation shows players
only the ownerships of each neural or opponent planet, and not
the number of ships on them. Other observability variations
are also possible, such as just showing a small window of
the map instead of the entire map. For an example of how to
explicitly vary observability in video games see the Partially
Observable Pac-Man competition [10].

The branching factor of the game (average number of legal
actions at each tick) depends very much on the actuator model:
for the source / target model, the source planet must be owned
by the player, but the destination can be any planet other
than the source. The number of the planets is a parameter
of the game, and during testing this has been varied between
10 and 100. Games may last for many thousands of ticks,
but for experiments we often limit this to between 1,000 and
5,000 ticks, which is often enough to estimate which player
is superior. Games between a strong and a weak player are
often decided (and terminated) within 1,000 ticks.

We do not have statistics to support this yet, but the game
seems to proceed in distinct phases. In the initial phase each
player owns a small number of planets and the game appears
to be finely balanced: decision on which ones to invade at
this stage are important, though we do sometimes observe AI
players throwing away an apparent lead. In the next phase
the lead frequently fluctuates with many ships in transit and
closely fought battles. This is followed by a final phase where

Fig. 1. Planet Wars with spinning planets and a gravity field, which both
have significant effects on the game play.

one player dominates and the outcome of the game is no longer
in doubt.

The game was recently tested during a graduate level AI
Assisted Game Design course.2 During the course students
developed their own statistical forward planning agents and
also their own tuned versions of the game, by adjusting
parameters and varying the rules. All game variants were able
to clearly separate the agents in to different levels of skill,
measured by win rates in round robin leagues (leagues in
which each player plays every other player a fixed number of
times), providing evidence that the game variants have skill
depth. Interestingly, the game variants interesting produced
very different ranking of the AI agents.

2https://github.com/GAIGResearch/AIGD2

III. IMPLEMENTATION

The game is implemented in Java, and has been designed
from the ground up to run efficiently, offer flexibility for the
Game AI researcher, and also allow for easy human interac-
tion. Enabling easy human interaction enables automatically
tuned games to be tested by human players. Efficiency is
important for all aspects of the research.

Key features of the design include:
• All variable parameters are stored in a single GamePa-

rameter object, and are never declared as static variables.
A reference to a GameParameter object is passed to all
copies of the game, but can be copied and modified on
demand.

• Each planet has only a single Transporter (these are the
angular space ships shown journeying through space in
figure 1). This enables the cost of game state copying and
updating to be kept linear rather quadratic in the number
of planets. This does not seem to have a detrimental effect
on the game play.

• The game state contains no circular references and can
therefore be serialised into JSON for convenient storage
and transmission. The largest part of the game state is the
Gravity Field (which is a 2D array of Vector2D objects),
but this can be nullified for serialisation and re-created
on demand when needed.

• The actuator model has been decoupled from the game
state. This means that different ways of controlling game
actions can be plugged in.

Regarding the last of these points, so far two actuators
have been implemented. An additional actuator based on a
directional catapult is planned.

A. Source Target Actuator

Each move consists of a source planet being selected,
followed by a destination planet. The move is executed only
if the source planet’s transporter is currently at home, and the
planet is owned by the player. If these conditions are satisfied,
then the ship is loaded with a percentage of the planet’s ships,
and launched in the direction of the target planet.

AI players currently see the number of actions at each tick
as being equal to the number of planets. Low-level actions are
grouped in to source-target pairs, with illegal actions (ones
in which the player does not own the source planet) being
ignored. A video of a rolling horizon evolution agent playing
against a hand-coded heuristic agent can be viewed here:
https://www.youtube.com/watch?v=G2aoxYODs9U.

B. Slingshot Actuator

Each move consists of a user selecting a planet for a
number of game ticks. The selection only happens if the
player owns the chosen planet. When the planet is deselected,
the ship is launched at a standard speed in the direction
the turret is facing. A video of a human player (the author)
playing against a heuristic agent player can be viewed here:
https://www.youtube.com/watch?v=y2q5VW8kS8k.

TABLE I
SPEED OF KEY OPERATIONS IN UNITS OF THOUSANDS OF OPERATIONS PER

SECOND (IMAC WITH 3.4 GHZ INTEL CORE I5 CPU). NOTE THAT THE
GRAVITY FIELD (GF) IS JUST COMPUTED ONCE AT THE START OF EACH

GAME, AFTER THE POSITION AND SIZE OF EACH PLANET HAS BEEN FIXED.

Operation kop/s (1) kop/s (4)
nextState 870 1,640
copy 1,600 3,230
compute GF 1 2

C. Timing Results

Table I shows the timing results for a single thread and
four threads running on an iMac with core m5 processor.
The software includes the facility to run multiple games in
multiple threads, or different game agents in different threads,
enabling speeds in excess of 1.6 million ticks per second
when running four threads simultaneously. For comparison,
ELF and microRTS offer speeds of around 50k ticks per
second when running single-threaded, meaning that this game
is more than 10 times faster. The games are obviously different
so comparing timings may seem unfair, but the point of the
comparison is to highlight the speed offered by our platform
and the rapid generation of results that this enables, even on
a standard laptop or desktop computer.

IV. GENERATING AI AGENT RESULTS

The software distribution includes the following experi-
ments ready to run, including human versus AI and AI versus
AI. For human versus AI, the AI controllers are generally
superior to casual human players, but their intelligence can
easily be varied and decreased if necessary by reducing the
simulation budget or the sequence or rollout length, in order
to provide an easier challenge.

For AI versus AI, the game has been tested on the graduate
student course mentioned above, and also for this paper a small
but representative test was run using 3 different controllers,
reported in table II. RHEA is the rolling horizon agent from
Lucas et al [5], but with a sequence length of 200 and 20
iterations per move. The MCTS agent is the sample agent
from the GVGAI 2-player track, but with a rollout length set
to 100 and iterations per move set to 40. Hence both RHEA
and MCTS used an evaluation budget of approximately 4, 000
game ticks per move. Rand is a uniform random agent. Games
were limited to 2, 000 moves but often terminated with a win
before reaching the limit. Running the 60 games for this mini-
tournament took less than 5 minutes on the iMac computer
described above. A follow-up paper will investigate these
results more thoroughly, but recent experiments on this and on
some other games show rolling horizon evolution frequently
outperforming MCTS.

V. CONCLUSIONS

The Planet Wars platform described in this paper provides
a useful addition to a growing number of games designed
for AI research. The platform is efficient and well suited to
testing statistical forward planning algorithms such as Monte

TABLE II
RESULTS OF PLAYING THREE AGENTS AGAINST EACH OTHER IN A

ROUND-ROBIN LEAGUE ON 10 FIXED MAPS, PLAYING EACH MAP TWICE,
SO 60 GAMES IN TOTAL. SEE TEXT FOR DESCRIPTION OF EACH AGENT.

THE TABLE SHOWS THE ROW AGENT WINS AGAINST THE COLUMN AGENT,
WITH THE RIGHTMOST COLUMN SHOWING THE TOTAL NUMBER OF WINS

FOR THE ROW AGENT.

RHEA MCTS Rand Wins
RHEA - 18 20 38
MCTS 2 - 17 19
Rand 0 3 - 3

Carlo Tree Search and Rolling Horizon Evolution. The game
already has sixteen parameters that can be varied in order to
significantly affect the game play and provide a thorough test
of the strengths and weaknesses of the competing agents.

Future work includes introducing further variations while
retaining the speed of the game, integration with AI environ-
ments such as OpenAI Gym, and additional actuator models
such as a directional catapult. The speed of the game and its
extensive parameter set also make it well suited to automated
game tuning [11], [12].

REFERENCES

[1] R. D. Gaina, A. Coutoux, D. J. N. J. Soemers, M. H. M. Winands,
T. Vodopivec, F. Kirchgener, J. Liu, S. M. Lucas, and D. Perez-Liebana,
“The 2016 two-player gvgai competition,” IEEE Transactions on Games,
vol. 10, no. 2, pp. 209–220, June 2018.

[2] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game AI: a Multi-Track Framework for
Evaluating Agents, Games and Content Generation Algorithms,” arXiv
preprint arXiv:1802.10363, 2018.

[3] S. Ontanón, “Combinatorial multi-armed bandits for real-time strategy
games,” Journal of Artificial Intelligence Research, vol. 58, pp. 665–702,
2017.

[4] Y. Tian, Q. Gong, W. Shang, Y. Wu, and L. Zitnick, “ELF: an
extensive, lightweight and flexible research platform for real-time
strategy games,” CoRR, vol. abs/1707.01067, 2017. [Online]. Available:
http://arxiv.org/abs/1707.01067

[5] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation,” arXiv preprint
arXiv:1802.05991, 2018.

[6] A. Fernández-Ares, A. M. Mora, J. J. Merelo, P. Garcı́a-Sánchez, and
C. Fernandes, “Optimizing player behavior in a real-time strategy game
using evolutionary algorithms,” in Evolutionary Computation (CEC),
2011 IEEE Congress on. IEEE, 2011, pp. 2017–2024.

[7] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius,
“Artificial and computational intelligence in games: Integration (dagstuhl
seminar 15051),” in Dagstuhl Reports, vol. 5, no. 1. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[8] M. Leece and A. Jhala, “Reinforcement Learning for Spatial Reasoning
in Strategy Games,” 2013.

[9] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J.
Hausknecht, and M. Bowling, “Revisiting the arcade learning
environment: Evaluation protocols and open problems for general
agents,” CoRR, vol. abs/1709.06009, 2017. [Online]. Available:
http://arxiv.org/abs/1709.06009

[10] P. R. Williams, D. P. Liebana, and S. M. Lucas, “Ms Pac-Man Versus
Ghost Team CIG 2016 Competition,” IEEE Conference on Computa-
tional Intelligence and Games, 2016.

[11] E. J. Powley, S. Colton, S. Gaudl, R. Saunders, and M. J. Nelson, “Semi-
automated level design via auto-playtesting for handheld casual game
creation,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), Sept 2016.

[12] K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M.
Lucas, “The n-tuple bandit evolutionary algorithm for automatic game
improvement,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 2201–2208.

http://arxiv.org/abs/1707.01067
http://arxiv.org/abs/1709.06009

	I Introduction
	II Planet Wars
	II-A Rules
	II-B Variations
	II-C Game Parameters
	II-D AI Agent Considerations

	III Implementation
	III-A Source Target Actuator
	III-B Slingshot Actuator
	III-C Timing Results

	IV Generating AI Agent Results
	V Conclusions
	References

