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1 The effects & mechanisms of increasing running step rate: a feasibility study in a 

2 mixed-sex group of runners with patellofemoral pain
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4 Abstract 

5 Objectives: To explore feasibility of recruitment and retention of runners with 

6 patellofemoral pain (PFP), before delivering a step rate intervention.  

7 Design: Feasibility study

8 Setting: Human performance laboratory 

9 Participants: A mixed-sex sample of runners with PFP (n=11). 

10 Main Outcome Measures: Average/worst pain and the Kujala Scale were recorded 

11 pre/post intervention, alongside lower limb kinematics and surface 

12 electromyography (sEMG), sampled during a 3KM treadmill run. 

13 Results: Recruitment and retention of a mixed-sex cohort was successful, losing one 

14 participant to public healthcare and with kinematic and sEMG data lost from single 

15 participants only. Clinically meaningful reductions in average (MD=2.1, d=1.7) and 

16 worst pain (MD=3.9, d=2.0) were observed. Reductions in both peak knee flexion 

17 (MD=3.7˚, d=0.78) and peak hip internal rotation (MD=5.1˚, d=0.96) were observed, 

18 which may provide some mechanistic explanation for the identified effects. An 

19 increase in both mean amplitude (d=0.53) and integral (d=0.58) were observed for 

20 the Vastus Medialis Obliqus (VMO) muscle only, of questionable clinical relevance.

21 Conclusions: Recruitment and retention of a mixed sex PFP cohort to a step rate 

22 intervention involving detailed biomechanical measures is feasible. There are 

23 indications of both likely efficacy and associated mechanisms. Future studies 

24 comparing the efficacy of different running retraining approaches are warranted.   

25 Key Words

26 Patellofemoral Pain, Running, Biomechanics, Electromyography 

27
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28 INTRODUCTION

29 Recreational running positively influences cardiac, (Petrovic-Oggiano, Damjanov, 

30 Gurinovic, & Glibetic, 2010) metabolic (Williams, 2014) and mental (Ghorbani, et al., 

31 2014) health. Despite the reported benefits, recreational running is reported to bring 

32 about an increased risk of musculoskeletal pain. (Saragiotto, et al., 2014; van Gent, 

33 et al., 2007) Overall incidence of musculoskeletal pain amongst recreational runners 

34 ranges from 19% to 94%, (van Gent, et al., 2007) with patellofemoral pain (PFP) 

35 thought to be the most common. (Taunton, et al., 2002) Specific annual incidence of 

36 PFP amongst recreational runners ranges from 4% to 21%, (Noehren, Hamill, & 

37 Davis, 2013; Ramskov, Barton, Nielsen, & Rasmussen, 2015; Thijs, Van Tiggelen, 

38 Roosen, De Clercq, & Witvrouw, 2007), with overall prevalence in sports medicine 

39 facilities suggested to be 17%. (Taunton, et al., 2002) 

40

41 Running biomechanics has been reported to be a risk factor for, and associated with, 

42 running related PFP. Specifically, peak hip adduction during running has been 

43 reported to be significantly higher in female runners who develop subsequent PFP 

44 when compared to those who remain asymptomatic. (Neal, Barton, Gallie, 

45 O'Halloran, & Morrissey, 2016; Noehren, et al., 2013) In addition, based on our 

46 recent meta-analysis, (Neal, et al., 2016) peak hip adduction, peak hip internal 

47 rotation and contralateral pelvic drop are also significantly higher in runners with 

48 PFP when compared to asymptomatic controls. For neuromuscular function, females 

49 with PFP have been reported to have a delayed gluteal onset prior to foot contact 

50 and shorter gluteal activation duration compared to asymptomatic controls. 

51 (Willson, Kernozek, Arndt, Reznichek, & Scott Straker, 2011) 
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52

53 At present, evidence suggests that exercise interventions, whilst effective at 

54 reducing symptoms in runners with PFP in the short-term, do not result in full 

55 symptom resolution. (Earl & Hoch, 2011; Ferber, Kendall, & Farr, 2011) Moreover, 

56 exercise may not derive its effects by way of a kinematic mechanism, as multiple 

57 studies have demonstrated that exercise programs designed to increase hip strength 

58 do not alter running kinematics thought to be associated with PFP. (Earl & Hoch, 

59 2011; Sheerin, Hume, & Whatman, 2012; Willy & Davis, 2011; Wouters, et al., 2012) 

60 This brings into question the ability of an exercise intervention to provide long-term 

61 resolution to running related PFP, as it fails to target factors known to be associated 

62 with the development and persistence of the condition. It is this premise that 

63 originally led to the development of what has been termed running retraining, 

64 (Heiderscheit, 2011) or more specifically ‘the implementation of any cue or strategy 

65 designed to alter an individual’s running technique’. (I. Davis, 2005)   

66

67 Reports from observational studies, involving visual and verbal cues to reduce peak 

68 hip adduction, indicates running retraining may reduce pain and improve function in 

69 female runners with PFP who demonstrate more than 20˚ peak hip adduction during 

70 running. (Neal, et al., 2016; Noehren, Scholz, & Davis, 2011; Willy, Scholz, & Davis, 

71 2012) The key limitation of this work is that the results can only be extrapolated to a 

72 minority of runners with PFP (i.e. females with high peak hip adduction). In addition, 

73 a recently completed randomised controlled trial (RCT) has established efficacy for 

74 cues to transition from rearfoot to forefoot strike in combination with a load 

75 management running program in a mixed-sex, but again a predominantly female, 
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76 cohort. (Roper, et al., 2016) The limitation of this study is that cues to transition to a 

77 forefoot strike are only applicable to those who rearfoot strike at baseline. 

78 Additionally, it is thought that such a change to running mechanics may also be 

79 injurious by virtue of the increase in Achilles tendon load that is observed with 

80 forefoot strike running compared to rearfoot strike running. (Rice & Patel, 2017) This 

81 is reinforced by the fact that 25% (2/8) of the runners in this RCT who transitioned to 

82 a forefoot strike pattern reported ankle soreness at follow up. (Roper, et al., 2016)

83

84 It has been reported that cues to increase running step rate do not increase Achilles 

85 tendon load (Lyght, Nockerts, Kernozek, & Ragan, 2016) and thus may be a more 

86 widely applicable running retraining option to those previously studied. A recent 

87 feasibility study has reported that a step rate increase of 10% combined with running 

88 in a minimalist shoe was superior to foot orthoses at reducing pain and improving 

89 function at 12 week follow up in runners with PFP. (Bonacci, Hall, Saunders, & 

90 Vicenzino, 2017) An increase in step rate of 10% has also been reported to 

91 favourably alter patellofemoral joint stress in both runners with PFP and 

92 asymptomatic runners, (Willson, Sharpee, Meardon, & Kernozek, 2014), though the 

93 actual reduction in step length reported was much greater (14%). In addition, no 

94 evaluation of symptoms could be reported in this study due to the limitation of the 

95 cross-sectional, observational design. Observational work in asymptomatic runners 

96 also indicates that more modest increases in running step rate of 5% or 7.5% may 

97 still reduce peak hip adduction (Heiderscheit, Chumanov, Michalski, Wille, & Ryan, 

98 2011; Willy, et al., 2015), albeit of a smaller magnitudes. 

99
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100 A recent three-arm RCT (Esculier, et al., 2017) found that a running retraining 

101 intervention to increase step rate was no more effective than education focused on 

102 load management, or compared to the same education combined with exercise 

103 therapy in runners with PFP. Whilst no treatment group had superior outcomes, the 

104 step rate intervention did result in significant reductions in both worst and running 

105 specific pain. All three groups remained symptomatic at the primary end point (20 

106 weeks), and running-related pain was higher (2.5/10) in the step rate group 

107 compared to previous studies where hip adduction (0.5/10) (Noehren, et al., 2011; 

108 Willy, et al., 2012) and strike pattern (1.0/10) (Roper, et al., 2016) has been targeted. 

109 This could be explained by the absence of a faded-feedback protocol to facilitate the 

110 retraining intervention, (Irene Davis, 2017) which has been found to be effective by 

111 previous studies. (Noehren, et al., 2011; Roper, et al., 2016; Willy, et al., 2012) 

112

113 The primary aim of this study was to investigate the feasibility of a pragmatic 

114 running retraining intervention, by cueing a 7.5% increase in running step rate using 

115 a faded feedback protocol. Specific objectives included (i) the recruitment of an 

116 appropriate number of both males and females from a clinical population and (ii) the 

117 collection of both symptom and function data to determine an estimate of the 

118 effects derived from the intervention. The secondary aim was to investigate the 

119 potential kinematic and muscle function mechanisms explaining any effects induced 

120 by the intervention. 

121
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122 METHODS

123 Participants 

124 Ethical approval for this study was granted by the Queen Mary Ethics of Research 

125 Committee (QMREC2014/63). All participants provided written informed consent 

126 prior to study commencement. Participants were recruited from local sports 

127 medicine clinics. Sample size was based on the apriori power analysis conducted by 

128 the authors of the previous work on running retraining, (Noehren, et al., 2011; Willy, 

129 et al., 2012) leading to a total of 10 participants being sought. Participants were of 

130 either sex, currently or previously running a minimum of 10 km/week and aged 

131 between 18 and 45 years. To be included, participants were required to have 

132 atraumatic retropatellar or peripatellar pain during running and one other activity 

133 described by the most recent PFP consensus document, which includes squatting, 

134 stair ambulation and jumping. (Crossley, et al., 2016) Patellofemoral symptoms 

135 needed to be rated at a minimum of three (out of a maximum of 10) using a 

136 numerical rating scale (NRS). Potential participants with patellofemoral instability, 

137 previous surgery, tibiofemoral pathology or any pathology (musculoskeletal or 

138 otherwise) that precluded running participation were excluded. 

139

140 Experimental Protocol

141 Included participants were required to present to the Human Performance 

142 Laboratory at Queen Mary University of London. In the presence of bilateral 

143 symptoms, the knee that scored highest on the numerical rating scale was analysed. 

144 In the presence of equivocal symptoms, the dominant limb that would be used to 

145 kick a ball was analysed. (Willy, et al., 2012) Both limbs were not entered into the 
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146 analysis in the presence of bilateral symptoms given the potential for type I error. 

147 (Menz, 2005) Prior to data collection, participants completed the Kujala Scale as a 

148 subjective measure of function. (Kujala, et al., 1993) The Kujala Scale is a 13-question 

149 appraisal of subjective function in those with PFP, with a score of 100 representing 

150 no symptoms and a score of 0 indicating complete disability. Participants were also 

151 required to rate their average and worst pain in the past week from 0 to 10 using an 

152 NRS. Whilst there is no definitive outcome measure for use with a PFP cohort, the 

153 NRS and Kujala Scale are reported to be the most valid and responsive measures for 

154 detecting change at time of study commencement. (Crossley, Bennell, Cowan, & 

155 Green, 2004)

156

157 Kinematic Measures

158 Participant movement data were collected during running using a four-camera, 

159 infrared motion analysis system (CX-1, Codamotion, Charnwood Dynamics Limited, 

160 Leicestershire, UK). (Lack, et al., 2014) 24 infrared markers, consisting of eight 

161 individual markers and four rigid clusters of four markers, were placed on standard 

162 pelvic and lower limb anatomical landmarks using the CAST protocol. (Cappello, 

163 Cappozzo, La Palombara, Lucchetti, & Leardini, 1997) Markers from the pelvis frame 

164 to the knee joint centre tracked the thigh segment and markers from the knee joint 

165 centre to the ankle joint centre tracked the shank segment. Individual markers were 

166 applied using double-sided adhesive tape and secured with transparent surgical 

167 tape, with the rigid clusters applied using adjustable elastic straps and secured with 

168 cohesive self-adherent bandage. Virtual markers were also identified on the femoral 

169 epicondyles and the ankle malleoli, to allow for the calculation of relevant joint 
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170 centers during an upright standing trial. The hip joint centre was estimated as a 

171 projection within the pelvis frame using the methods described by Bell et al (Bell, 

172 Pedersen, & Brand, 1990) and did not vary between male and female subjects. The 

173 knee joint centre was estimated as the mid-point between the femoral epicondyle 

174 markers.   

175

176 Participants were asked to run in their usual running shoes and self-select their 

177 typical ‘steady state’ running speed on the laboratory treadmill (Kistler Gaitway, 

178 Kistler Group, Winterthur, Switzerland). Participants were instructed to run for a 

179 total of three kilometers (KM), with the option to cease if symptoms increased to 

180 four or greater on the NRS. 10 seconds of data sampled at 200Hz were collected at 

181 0.8/1.8/2.8KM, with distance as opposed to time chosen to act as a constant 

182 measure across a cohort of participants running at differing speeds. Multiple data 

183 collections were completed to increase reliability of gait analysis. (Monaghan, 

184 Delahunt, & Caulfield, 2007) Based on between group differences identified in our 

185 recent meta-analysis, (Neal, et al., 2016) variables of interest included peak hip 

186 adduction, internal rotation and flexion, peak knee flexion and contralateral pelvic 

187 drop, given their retrospective association with PFP.   

188

189 Electromyography Measures

190 Surface muscle electromyography (sEMG) were collected simultaneously with the 

191 kinematic data using a wireless Delsys TRIGNO system (DELSYS Inc., Natick, 

192 Massachusetts, USA). Prior to application, participant’s skin was marked, shaved and 

193 cleaned with an alcohol swab. Self-contained bipolar electrodes were placed at the 
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194 motor points of the Gluteus Maximus (GMAX), Gluteus Medius (GMED), 

195 Semitendinosus (ST) and Vastus Medialis Obliqus (VMO) adhering to SENIAM 

196 guidelines. (Hermens, Freriks, Disselhorst-Klug, & Rau, 2000) 10 seconds of sEMG 

197 data sampled at 1926Hz were collected at three specific distance points as described 

198 above, but were not synchronised to the kinematic data.     

199

200 Running Retraining Intervention 

201 Participants completed 18 retraining sessions over the course of six weeks. Each 

202 week involved a total of three individual runs, equating to 18 runs in total. For the 

203 first four weeks, the initial run was completed in a supervised fashion with the 

204 primary investigator (BSN). During the retraining sessions, participants were cued via 

205 an audio metronome set at 7.5% above their baseline step rate (calculated during 

206 data acquisition), based on the previous work of Willy et al (Willy, et al., 2015). The 

207 additional two runs each week were completed independently. A faded feedback 

208 protocol successfully used previously was adopted. (Noehren, et al., 2011; Willy, et 

209 al., 2012) Feedback exposure was gradually reduced and treadmill run time was 

210 gradually increased from 10 minutes to 30 minutes (see figure 1), to facilitate skill 

211 acquisition. A slower progression from 10-30 minutes was used (18 sessions over six 

212 weeks) compared to previous work (8-10 sessions over two to four weeks), to better 

213 adhere to contemporary training progression approaches. (Gabbett, 2016) Further, 

214 this pace of progression is used clinically in the chosen recruitment centre, 

215 minimising ethical issues from varying usual care. For the final two weeks, all 

216 completed sessions were performed independently, without any metronome 



11

217 feedback. All data were collected prior to, and after completion of, the running 

218 retraining intervention. 

219  

220 Figure 1: running retraining schedule depicting the faded feedback protocol 
221 employed.
222
223
224 Kinematic Data Analysis 

225 Data were analysed offline using a custom written Matlab program (version 2015, 

226 Mathworks, Natick, Massachussets, USA). Initial foot contact and toe off were 

227 identified using the heel marker on the calcaneal tuberosity and the metatarsal 

228 marker on the fifth metatarsal head in the vertical (Z) plane. Consistent with 

229 previously described methods, initial foot contact was defined as the point at which 

230 the heel marker ceased its descent in the vertical plane. (Zeni, Richards, & Higginson, 

231 2008) Toe off was identified using a combination of the heel and metatarsal markers. 

232 Specifically, peak acceleration of the metatarsal marker was identified within a 

233 specific time point defined by the 70% or greater of the absolute maximum velocity 

234 region of the heel marker. (Zeni, et al., 2008) All kinematic data were aligned to 

235 initial foot contact, interpolated and normalised to percentage of stride cycle (0% = 
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236 initial contact, 100% = terminal stance) to facilitate data analysis. Clinical relevance 

237 of kinematic data was interpreted with reference to the minimum detectable change 

238 data reported by Noehren et al. (Noehren, Manal, & Davis, 2010)

239

240 sEMG Data Analysis

241 sEMG data were processed using an in-built band-pass filter from 25-500 Hz. Raw 

242 sEMG data were decomposed using wavelets. (Reaz, Hussain, & Mohd-Yasin, 2006) 

243 Post-wavelet decomposition, data were cut into strides using the mean total wavelet 

244 power of the VMO muscle, as the typical activation pattern of this muscle 

245 (onset/offset) during running is known to align closely to the initial contact (onset) 

246 and toe off (offset) phases of running gait. (Flynn & Soutas-Little, 1993) These stride 

247 cycle timings were then applied to all sEMG data. Pre and post retraining data were 

248 cut into strides independently, but were not used to describe sEMG data as though it 

249 were synchronised to the true kinematic gait cycle of the participant. As participants 

250 are unlikely to reach signal intensity akin to maximal voluntary isometric contraction 

251 (MVIC) during steady state running, data were normalised to the mean of the peak 

252 dynamic signal intensity across a single set of strides (0.8KM trial, pre-retraining), 

253 which has been reported to be more valid than normalizing to maximal dynamic 

254 signal peak. (Bolgla & Uhl, 2007) 

255

256 Statistical Analysis 

257 All statistical testing were performed offline using Microsoft Excel (Microsoft 

258 Corporation, Albuquerque, New Mexico, USA). A Cohen’s d was calculated to 

259 determine the size of all identified interactions, alongside the reporting of mean 
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260 differences and 95% confidence intervals (CI). Cohen’s d was interpreted as small (< 

261 0.2), medium (>0.5) and large (>0.8) respectively. (Sullivan & Feinn, 2012) As a 

262 feasibility study, not powered apriori to detect statistical significance, dependent 

263 sample t-tests were not performed and p-values for differences not reported 

264 because of the potential for type II error and to avoid giving the impression of there 

265 being robust findings from a feasibility study design. The main outcomes were those 

266 of recruitment, retention and measurement feasibility.    

267
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268 RESULTS

269 A total of 10 (out of 11) participants (four male, six female) completed the study. 

270 One female participant was lost to follow up due to a switch of care provision to the 

271 National Health Service. Demographics and baseline characteristics of the 

272 participants who completed the study are described in table 1.

273

274 Table 1

Variable Mean (SD)

Sex (Male/Female) 4/6

Age (Years) 31.6 (5.5)

Height (cm) 170.6 (7.8)

Mass (kg) 67.7 (9.8)

Symptom duration (Months) 45.1 (32.1)

Average run volume  (KM) 17.0 (9.8)

Step rate (SPM) 163.6 (4.7)

Kujala scale 86.4/100 (6.9)

Average NRS 3.0/10 (1.6)

Worst NRS 6.8/10 (1.5)

275 Participant characteristics

276 Key: cm=centimeters; kg=kilograms; KM=kilometers; SPM=steps per minute; 

277 NRS=numerical rating scale.

278

279
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280 Effects

281 Large reductions in both average (d=1.7) and worst (d=2.0) pain were identified post-

282 retraining. The mean difference (MD) of these reductions was 2.1 and 3.9 NRS points 

283 respectively and individual participant worst pain responses to the retraining 

284 intervention ranged from 1 to 8 NRS points (see figure 2). A modest improvement in 

285 function measured with the Kujala Scale was also identified (d=0.12), with a mean 

286 difference of 4.4 points.

287

288 Figure 2: mean pooled and individual worst pain responses at baseline (pre) and six 
289 weeks follow up (post). 
290
291 Mechanisms

292 Spatiotemporal 

293 An increase in running step rate at six weeks follow up was observed, with a mean 

294 increase of 7.8% (range 2.3% - 11.1%). 3 participants did not achieve a step rate of > 

295 7.5% post retraining. 
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296

297 Kinematics

298 One participant was found to have consistently corrupted marker data throughout 

299 their trials and was therefore removed from the kinematic analysis. This resulted in a 

300 kinematic sample of nine participants (five females, four males). Moderate 

301 reductions in both peak knee flexion (MD=3.7˚, d=0.78) (see figure 4a) and peak hip 

302 adduction (MD=2.4˚, d=0.54) (see figure 4b) were identified post-retraining. A large 

303 reduction in peak hip internal rotation was also identified post retraining (MD=5.1˚, 

304 d=0.96) (see figure 4c). A full breakdown of the kinematic analysis can be seen in 

305 table 2 and individual participant spatiotemporal and kinematic responses in relation 

306 to average/worst pain at six-week follow up are presented in table 3.

307

308 Figure 4a: mean pattern of hip knee flexion throughout stance at baseline (pre) and 
309 six week follow up (post). Knee flexion is positive. Solid line = mean. Dashed line = 
310 95% confidence intervals. 
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311

312 Figure 4b: mean pattern of hip adduction throughout stance at baseline (pre) and six 
313 week follow up (post). Hip adduction is positive. Solid line = mean. Dashed line = 95% 
314 confidence intervals. 

315
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316 Figure 4c: mean pattern of hip internal rotation throughout stance at baseline (pre) 
317 and six week follow up (post). Hip internal rotation is positive. Solid line = mean. 
318 Dashed line = 95% confidence intervals. 
319

320 Table 2

Variable Pre Post Mean Difference 95% CI Cohen’s d

 Mean (SD) Mean (SD)   

Average Pain 3.0/10 (1.6) 0.90/10 (0.9) 2.1 (*) 0.88, 3.32 1.7

Worst Pain 6.8/10 (1.5) 2.9/10 (2.3) 3.9 (*) 2.08, 5.72 2.0

Kujala Scale 86.4/100 (6.9) 90.8/100 (5.4) 4.4 -10.22, 1.42 0.1

Peak KFLEX 36.2˚ (5.3) 32.5˚ (4.2) 3.7˚ -1.08, 8.48 0.78

 Peak HFLEX 26.7˚ (9.3) 23.1˚ (4.9) 3.6˚ -3.83, 11.03 0.51

Peak HADD 15.6˚ (3.5) 13.2˚ (5.4) 2.4˚ -2.15, 6.95 0.54

Peak CLPD 4.3˚ (2.7) 2.8˚ (2.4) 1.5˚ -1.05, 4.05 0.59

Peak HIR 9.1˚ (7.7) 4.0˚ (2.9) 5.1˚ (*) -0.71, 10.91 0.96

321 Pre and post retraining means, standard deviations, mean differences, 95% 
322 confidence intervals and effect sizes
323
324 Key: (*)=mean difference exceeds MDC; SD=standard deviation; CI=confidence 
325 interval; HADD=hip adduction; HIR=hip internal rotation; CLPD=contralateral pelvic 
326 drop; KFLEX= knee flexion; HFLEX= hip flexion. 
327
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328 sEMG

329 One participant was found to have consistently corrupted sensor data throughout 

330 their trials and was therefore removed from the sEMG analysis. This resulted in a 

331 sEMG sample of 9 participants (6 females, 3 males). A mean of peak muscle 

332 amplitudes, in addition to an integral (amplitude x duration) of each decomposed 

333 signal were calculated for each muscle pre and post retraining. For mean amplitude, 

334 minimal changes post-retraining were identified for GMAX (d=0.02), GMED (d=0.07) 

335 and ST (d=0.05). However, for VMO, an increase in mean amplitude was observed 

336 post-retraining, associated with a medium effect size (d=0.53, 95% CI -0.09, 0.03). 

337 For muscle integral, a similar interaction was identified, with minimal changes seen 

338 post-retraining for GMAX (d=0.04), GMED (d=0.04) and ST (d=0.09). For VMO, an 

339 increase was observed, associated with a medium effect size (d=0.58, 95% CI -0.06, 

340 0.02). 

341
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342 DISCUSSION

343 The results of this study suggest that a faded feedback protocol to increase running 

344 step rate by 7.5%, is feasible in a clinical setting. A mixed sex cohort was successfully 

345 recruited and a low dropout rate (n=1) was achieved. Furthermore, potential 

346 clinically relevant changes in both average and worst pain were identified post-

347 retraining, suggesting that the intervention has potential efficacy and warrants 

348 further appraisal in an adequately powered RCT. 

349

350 The mean reductions in both average and worst pain seen within this study are 

351 smaller than those identified by previous running retraining studies, (Noehren, et al., 

352 2011; Roper, et al., 2016; Willy, et al., 2012) although no inference on average or 

353 worst pain as individual outcomes were made by these studies and the feedback 

354 employed was different. Further, both this feasibility study and the referenced works 

355 were essentially underpowered for all but the most preliminary of conclusions. 

356 When analysing the reductions in worst pain from this study, only 3/10 participants 

357 were asymptomatic at six-week follow up and just one participant had pain < 3/10. 

358 This means that the 6 remaining participants would continue to be eligible for 

359 inclusion into a clinical trial using currently accepted criteria, (Crossley, et al., 2016) 

360 meaning that the intervention could be defined as unsuccessful in 60% of our cohort 

361 if using worst pain as the primary outcome. 

362

363 A recent high quality RCT identified that a 7.5% step rate increase, with the option of 

364 transitioning to a forefoot strike pattern if deemed necessary, was no more effective 

365 than comparative education or exercise interventions. (Esculier, et al., 2017) When 
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366 comparing the symptom reductions achieved in this study (6 week follow up) to the 

367 relevant time point in the Esculier et al RCT (8 week follow up), (Esculier, et al., 2017) 

368 both average and worst VAS are comparable for our step rate intervention compared 

369 to all 3 intervention groups (education, exercise plus education, running retraining 

370 plus education). It could be suggested that running retraining is in fact a form of load 

371 management or graded exposure, which may explain why it was found to be no 

372 more effective than education on training loads by Esculier et al. (Esculier, et al., 

373 2017) However, Roper et al (Roper, et al., 2016) reported efficacy of retraining from 

374 rearfoot to forefoot strike running. Importantly, this retraining strategy produced 

375 larger pain reductions when delivered using a faded feedback protocol, over and 

376 above an equivocal progressive duration running protocol. This suggests that a form 

377 of feedback is required over and above a load management intervention where 

378 there is a clinical need. A further potential explanation for the more modest 

379 symptom responses to step rate retraining reported by Esculier et al, (Esculier, et al., 

380 2017) is that feedback is likely to have needed  to be subject or subgroup specific 

381 and not all participants will have a baseline step rate amenable to an increase. 

382

383 Previous studies on running retraining have established a potential kinematic 

384 mechanism at the hip to explain their positive effects, specifically a 5˚ reduction in 

385 peak hip adduction. (Noehren, et al., 2011; Willy, et al., 2012)  The results of this 

386 study are in line with this, identifying a smaller but still clinically meaningful mean 

387 difference of 2.4˚ that was associated with a moderate effect size (Table 2). Our 

388 mixed-sex sample could explain this smaller mean difference, as the previous work 

389 of both Noehren et al (Noehren, et al., 2011) and Willy et al (Willy, et al., 2012) 
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390 purposefully recruited female participants with higher than average peak hip 

391 adduction, which may be more amenable to change. However, as our results have 

392 identified a reduction in peak hip adduction equivalent to a previous 7.5% step rate 

393 increase study in asymptomatic runners, (Willy, et al., 2015) it is suggested that a 

394 larger increase in step rate (10%) will result in greater reductions in peak hip 

395 adduction equivalent to those seen in asymptomatic runners (Heiderscheit, et al., 

396 2011). A 10% step rate increase is known to reduce both patellofemoral joint stress 

397 (Willson, et al., 2014) and pain (Bonacci, et al., 2017) in runners with PFP, whereas a 

398 7.5% step rate increase (Esculier, et al., 2017) resulted in non-significant changes in 

399 both peak patellofemoral reaction force and average patellofemoral loading rate in a 

400 recent RCT. Clinically, it may be sensible to start retraining with a more modest 7.5% 

401 step rate increase, increasing to 10% or greater if tolerated, especially in those with 

402 low baseline step rate. 

403

404 In addition to reducing peak hip adduction, the results of this study have identified 

405 two novel potential kinematic mechanisms, being a reduction in both peak hip 

406 internal rotation and knee flexion. The identified mean difference in peak hip 

407 internal rotation of 5.1˚ is above the MDC of 3.7˚ reported by Noehren et 

408 al (Noehren, et al., 2010) and was associated with a large effect size (d=0.96). Peak 

409 hip internal rotation is associated with running related PFP (Neal, et al., 2016) and 

410 can result in increased patellofemoral joint stress by increasing contact pressures at 

411 the lateral patellar facet. (Salsich & Perman, 2007) Thus, given the plausibility for 

412 reducing hip internal rotation during running gait to favourably alter PFP symptoms 
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413 and the size of the identified effect, one could argue that a clinically meaningful 

414 change has been identified. 

415

416 A reduction in peak knee flexion of 3.7˚ is in line with the work of Lenhart et al, 

417 (Lenhart, Thelen, Wille, Chumanov, & Heiderscheit, 2014) who reported a reduction 

418 in peak knee flexion of 3.3˚ with a 10% step rate increase in a normative cohort. 

419 Within this musculoskeletal model, (Lenhart, et al., 2014) peak knee flexion 

420 correlates positively with patellofemoral joint force, indicating this finding may be 

421 clinically relevant. This effect is likely due to changes in patella contact pressures, as 

422 a subsequent modeling study reports that lateral patellar arthrokinematics were not 

423 significantly altered by a 10% step rate increase. (Lenhart, et al., 2015) At an 

424 individual level, kinematic changes seem to correlate poorly with symptom 

425 improvements post-step rate retraining (see table 3). For example, two participants 

426 (one male, one female) had an increased peak hip adduction post-retraining (see 

427 table 3), with both participants asymptomatic for both average and worst pain 

428 variables. For the female participant, the increase in peak hip adduction (6.6˚) 

429 exceeds the MDIC (2.6˚) and is thus less likely to be related to measurement error. 

430 Future studies should look to investigate alternative potential mechanisms of 

431 running retraining, such as kinetic changes, load management or graded exposure.

432

433 Previous observational research investigating increasing step rate by 10% has 

434 identified increased quadriceps activation (Chumanov, Wille, Michalski, & 

435 Heiderscheit, 2012) comparable to the increase seen within this study. VMO activity 

436 is known to be altered in some individuals with PFP (Chester, et al., 2008) and VMO 
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437 weakness is reported to correlate with lateral patella shift. (Sakai, Luo, Rand, & An, 

438 2000) Whilst this study design prohibits inference of causality, this sEMG finding may 

439 be associated with the reduction in pain seen post-retraining. 

440

441 The lack of change in mean gluteal EMG identified by this study is perhaps not 

442 surprising given the work of Willson et al, (Willson, et al., 2011) who report no 

443 differences in mean gluteal sEMG when comparing female runners with PFP to 

444 matched controls. Willson et al (Willson, et al., 2011) do however report that female 

445 runners with PFP demonstrate a shorter GMED activation window and delayed onset 

446 prior to foot contact in females with PFP. Additionally, Willy & Davis (Willy & Davis, 

447 2013) reported earlier GMED activation and an increased GMED activation duration 

448 in a small case series of 2 female runners with PFP post-mirror running retraining. 

449 Combined with findings from our study, this indicates that changes to gluteal muscle 

450 activation patterns rather than magnitude may provide mechanistic explanation for 

451 the reduction in pain. Further research is needed to explore this and a limitation of 

452 the current study is the fact that the sEMG were not synchronised to the kinematic 

453 system, meaning not all variables of interest from the previous literature could be 

454 investigated. 

455

456 Future Directions

457 Based on the results of this feasibility study, a future RCT should look to compare a 

458 step rate intervention against an exercise therapy control and investigation of effects 

459 to long-term follow up (~12 months) is advocated. Future work on running retraining 

460 should seek to use a faded feedback protocol, as it appears to result in superior 
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461 outcomes. Recruitment of participants with a step rate of <160 (>1 SD below the 

462 mean of this cohort) who are more likely to be amenable to step rate retraining or 

463 stratifying outcome analysis by baseline cadence is worth considering – a strategy 

464 that would require greater samples but produce more generalisable findings. Sub-

465 group analysis by baseline kinematic variables associated with PFP such as hip 

466 adduction may also be indicated, though kinematic variables do not appear to be 

467 sensitive to predicting those who may respond to a step rate intervention. 

468

469 Whilst this feasibility trial was not powered apriori to investigate these effects, a 

470 post-hoc calculation using the mean difference of both average and worst pain 

471 revealed that a sample of 10 participants is adequate to investigate symptom 

472 changes post-step rate retraining with adequate statistical power (α=0.05, β=0.20). It 

473 is therefore advisable that future trials adhere to the so-called rule of 10, recruiting 

474 10 participants per individual variable investigated to minimize risk of bias (Peduzzi, 

475 Concato, Kemper, Holford, & Feinstein, 1996) 10% of the biomechanical data in this 

476 study was lost due to data corruption and it is advisable that this be factored in to 

477 any sample size calculation for mechanistic outcomes in future studies. 

478

479 Comparing the results of this study to the previous work on running retraining 

480 proved challenging given the heterogeneity of pain outcomes collected. It is 

481 advisable that future work collects data on both average/usual and worst/running 

482 related symptoms to allow for more clinically meaningful comparisons. The mean 

483 difference in the Kujala scale identified falls well below the accepted MCID of 10 

484 points (Crossley, et al., 2004) and given the high baseline scores seen in the 
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485 population studied, a ceiling effect can be suggested. Future studies are advised to 

486 consider an alternative measure of subjective function, with the lower extremity 

487 functional scale (LEFS), used by previous studies, (Noehren, et al., 2011; Willy, et al., 

488 2012) and the recently developed patellofemoral subscale of the Knee Osteoarthritis 

489 Outcome Score (KOOS), (Crossley, Macri, Cowan, Collins, & Roos, 2017) particularly 

490 worthy of consideration. 

491
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492 CONCLUSION

493 The results of this study confirm that increasing running step rate using a faded-

494 feedback protocol is a feasible and effective intervention for use in a mixed sex UK 

495 cohort. Future studies should focus on investigating the long-term efficacy of 

496 running retraining in a cohort that have a clear treatment target (i.e. low step rate), 

497 compared to an appropriate control. A sample size of ten participants per 

498 group/variable is adequate to detect minimum clinically important differences with 

499 adequate statistical power. In addition to future work establishing efficacy, 

500 exploration of both forms of feedback and treatment mechanisms is encouraged. 

501
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