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Abstract

We make use of the metric version of the conformal Einstein field equations to construct
anti-de Sitter-like spacetimes by means of a suitably posed initial-boundary value problem.
The evolution system associated to this initial-boundary value problem consists of a set of
conformal wave equations for a number of conformal fields and the conformal metric. This
formulation makes use of generalised wave coordinates and allows the free specification of
the Ricci scalar of the conformal metric via a conformal gauge source function. We consider
Dirichlet boundary conditions for the evolution equations at the conformal boundary and
show that these boundary conditions can, in turn, be constructed from the 3-dimensional
Lorentzian metric of the conformal boundary and a linear combination of the incoming and
outgoing radiation as measured by certain components of the Weyl tensor. To show that a so-
lution to the conformal evolution equations implies a solution to the Einstein field equations
we also provide a discussion of the propagation of the constraints for this initial-boundary
value problem. The existence of local solutions to the initial-boundary value problem in
a neighbourhood of the corner where the initial hypersurface and the conformal boundary
intersect is subject to compatibility conditions between the initial and boundary data. The
construction described is amenable to numerical implementation and should allow the sys-
tematic exploration of boundary conditions.

1 Introduction

Anti-de Sitter-like spacetimes, i.e. spacetimes satisfying the Einstein field equations with a neg-
ative Cosmological constant and admitting a timelike conformal boundary, constitute a basic
example of solutions to the Einstein field equations which are not globally hyperbolic —see e.g.
[31]. As such, they cannot be constructed solely from data on a spacelike hypersurface and require
the prescription of some suitable boundary data. In view of the latter, the methods of confor-
mal geometry provide a natural setting for the discussion of an initial-boundary value problem
from which anti-de Sitter-like spacetimes can be constructed in a systematic manner. From the
conformal point of view, the timelike conformal boundary of the anti-de Sitter-like spacetime
has a finite location (described by the vanishing of the conformal factor) so that analysis of the
boundary conditions and its relation to initial data can be carried out with local computations.

A first analysis of the initial–boundary value problem for 4-dimensional vacuum anti-de Sitter-
like spacetimes by means of conformal methods has been carried out by Friedrich in [19] —see
also [20] for further discussion of the admissible adS-like boundary conditions. This seminal work
makes use of a conformal representation of the Einstein field equations known as the extended
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conformal Einstein field equations and a gauge based on the properties of curves with good
conformal properties (conformal geodesics) to set up an initial-boundary value problem for a first
order symmetric hyperbolic system of evolution equations. For this type of evolution equations
one can use the theory of maximally dissipative boundary conditions as described in [28, 23]
to assert the well-posedness of the problem and to ensure the local existence of solutions in a
neighbourhood of the intersection of the initial hypersurface with the conformal boundary (the
corner). The solutions to these evolution equations can be shown, via a further argument, to
constitute a solution to the vacuum Einstein field equations with negative Cosmological constant.

Friedrich’s analysis identifies a large class of maximally dissipative boundary conditions in-
volving the outgoing and incoming components of the Weyl tensor —as such, they can be thought
of as prescribing the relation between these components. These conditions are given in a very
specific gauge and thus it is difficult to assert their physical/geometric meaning. However, it is
possible to identify a subclass of boundary conditions which can be recast in a covariant form.
More precisely, they can be shown to be equivalent to prescribing the conformal class of the met-
ric on the conformal boundary —see [19], also [31]. The question of recasting the whole class of
maximally dissipative boundary conditions obtained by Friedrich in a geometric (i.e. covariant)
form remains an interesting open problem.

An alternative construction of anti-de Sitter–like spacetimes, which does not use the conformal
Einstein field equations and which also hold for spacetimes of dimension greater than four, can
be found in [16]. A discussion of global properties of adS-like spacetimes and the issue of their
stability can be found in [2].

Numerical simulations involving anti-de Sitter-like spacetimes is a very active area of current
research —see e.g. [6, 5, 15, 14] which kick-started some of the current flurry of interest. In
particular, in [6] the evolution of the evolution of the spherically symmetric Einstein-scalar field
with relective boundary conditions was considered. Different boundary conditions for numerical
evolutions of this system have been considered in [1, 12]. Alternative Cauchy-hyperbolic and
characteristic formulations of the spherically symmetric Einstein-scalar field system have been
discussed in [30, 29].

Friedrich’s results offer a natural and systematic approach to the numerical construction of
4-dimensional vacuum anti-de Sitter-like spacetimes. However, the numerical implementation of
these results is not straightforward, among other things, because the equations involved are cast
in a form which is not standard for the available numerical codes and moreover, there is very
little intuition about the behaviour of the gauges used to formulate the equations. A further
difficulty of Friedrich’s approach is that it cannot readily be extended to include matter fields
—see however [25].

In view of the issues raised in the previous paragraph, it is desirable to have a conformal
formulation of the initial-boundary value problem for anti de Sitter-like spacetimes which is closer
to the language used in numerical simulations and which exploits familiar gauge conditions. In
this article we undertake this task. More precisely, we show that using the better know metric
conformal Einstein field equations it is possible to construct anti-de Sitter-like spacetimes by
formulating an initial-boundary value problem for a system of quasilinear wave equations for the
conformal fields governing the geometry of the conformal representation of the anti de Sitter-
like spacetimes. The partial differential equations (PDE) theory for this type of systems is
available in the literature [10, 13]. Dirichlet boundary data for this system of wave equations can
be constructed from the prescription of the 3-dimensional (Lorentzian) metric of the conformal
boundary and a relation between the incoming and outgoing components of the Weyl tensor akin
to Friedrich’s maximally dissipative conditions. Our setting makes use of generalised harmonic
coordinates. It also contains a further conformal gauge freedom which can be fixed by specifying
the value of the Ricci scalar of the conformal representation. The evolution system to be solved
can be thought of as the Einstein field equations coupled to a complicated matter model consisting
of several tensorial fields —each of which satisfies its own wave equations. This parallel should
ease the numerical implementation of the setting.

In addition to the formulation of an initial-boundary value problem, we also study the relation
between the solutions to the conformal Einstein field equations and actual solutions to the Einstein
field equations. This analysis requires a discussion similar to that of the propagation of the
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constraints in which it is shown that a solution to the evolution equations is, in fact, a solution
to the original conformal field equations. For this, one has to construct a subsidiary evolution
system for the conformal field equations and show that the boundary data prescription for the
evolution equations implies trivial boundary data for the subsidiary equations. Fortunately, most
of the lengthy calculations required for this discussion are already available in the literature —see
e.g. [27].

Our main result, stating the local existence in time of anti-de Sitter-like spacetimes in a
neighbourhood of the corner where the initial hypersurface and the conformal boundary intersect,
is provided in Theorem 1.

A feature of our analysis is that it can be extended to include tracefree matter fields. This
extension is discussed in a companion article [8].

Outline of the article

This article is structured as follows: in Section 2 we provide an overview of the relevant prop-
erties of our main technical tool —the so-called metric conformal Einstein field equations. In
particular we discuss the structural properties of the wave equations describing the evolution of
the conformal fields. We also discuss the gauge fixing for the evolution equations and the key
properties of the subsidiary evolution system responsible of the propagation of the constraints.
In Section 3 we discuss relevant properties of the constraint equations implied on spacelike or
timelike hypersurfaces by the conformal Einstein field equations —the so-called conformal Ein-
stein constraint equations. These constraint equations are both relevant for the construction of
suitable initial and boundary initial data. In Section 4 we describe the general set-up of our
construction of anti-de Sitter-like spacetimes. In particular, we analyse the construction of suit-
able boundary data directly from the knowledge of the metric at the conformal boundary. We
also study the properties of the compatibility (corner) conditions between initial and boundary
initial data required to ensure the existence of solutions to the initial-boundary value problem
for the wave equations describing the evolution of the conformal fields. In Section 5 we analyse
the issue of the propagation of the constraints —key to establish the relation between solutions
to the conformal wave equations and actual solutions to the Einstein field equations. The propa-
gation of the constraints is established through the analysis of a boundary-initial value problem
for the subsidiary evolution system. Finally, in Section 6 we summarise our analysis by stating
our main result, Theorem 1. Section 7 provides some concluding remarks to our analysis. In
Appendix A we provide a discussion of the integrability conditions associated to the metric con-
formal field equations. These integrability conditions are fundamental to establish a number of
general properties of the conformal Einstein field equations.

Conventions

Throughout, the term spacetime will be used to denote a 4-dimensional Lorentzian manifold which
not necessarily satisfies the Einstein field equations. Moreover, (M̃, g̃) will denote a vacuum
spacetime satisfying the Einstein equations with anti-de Sitter-like cosmological constant λ. The
signature of the metric in this article will be (−,+,+,+). It follows that λ < 0. The lowercase
Latin letters a, b, c, . . . are used as abstract spacetime tensor indices while the indices i, j, k, . . .
are abstract indices on the tensor bundle of hypersurfaces of M̃. The Greek letters µ, ν, λ, . . . will
be used as spacetime coordinate indices while α, β, γ, . . . will serve as indices on a hypersurface.
Our conventions for the curvature are

∇c∇dua −∇d∇cua = Rabcdu
b.

2 The metric conformal Einstein field equations

The basic tool to be used in this article are the metric conformal field equations. This section
reviews the properties of this conformal representation of the Einstein field equations that will
be used throughout.
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In what follows, let (M̃, g̃ab) denote a spacetime satisfying the vacuum Einstein field equations

R̃ab = λg̃ab, (1)

where R̃ab denotes the Ricci tensor of the metric g̃ab. Further, let (M, gab) denote a spacetime
conformally related to (M̃, g̃ab) so that, in a slight abuse of notation, we have

gab = Ξ2g̃ab,

where Ξ is some suitable conformal factor Ξ. The set of points of M for which Ξ vanishes will
be called the conformal boundary. We use the notation I to denote the parts of the conformal
boundary which are a hypersurface of M.

2.1 Basic properties

In what follows, let ∇a denote the Levi-Civita connection of the metric gab, and let Rabcd, Rab,
R, Cabcd denote, respectively, the associated Riemann tensor, Ricci tensor, Ricci scalar and
(conformally invariant) Weyl tensor. In the discussion of the conformal Einstein field equations
it is useful to introduce the Schouten tensor, defined as

Lab ≡
1

2

(
Rab −

1

6
Rgab

)
.

Moreover, let

s ≡ 1

4
∇c∇cΞ +

1

24
RΞ, dabcd ≡ Ξ−1Cabcd

denote the so-called Friedrich scalar and the rescaled Weyl tensor, respectively.

In terms of the objects defined in the previous paragraph, the vacuum metric conformal
Einstein field equations are given by:

∇a∇bΞ = −ΞLab + sgab, (2a)

∇as = −Lac∇cΞ, (2b)

∇cLdb −∇dLcd = ∇aΞdabcd, (2c)

∇adabcd = 0, (2d)

6Ξs− 3∇cΞ∇cΞ = λ. (2e)

Remark 1. Equations (2a)-(2d) will be read as differential conditions on the fields Ξ, s, Lab,
dabcd while equation (2e) will be regarded as a constraint which is satisfied if it holds at a single
point by virtue of the other equations —see Lemma 8.1 in [31].

By a solution to the metric conformal Einstein field equations it is understood a collection of
fields

(gab,Ξ, s, Lab, d
a
bcd)

satisfying equations (2a)-(2e). The relation between the metric conformal Einstein field equations
and the Einstein field equations is given by the following:

Proposition 1. Let (gab,Ξ, s, Lab, d
a
bcd) denote a solution to the metric conformal Einstein field

equations (2a)-(2d) such that Ξ 6= 0 on an open set U ⊂ M. If, in addition, equation (2e) is
satisfied at a point p ∈ U , then the metric

g̃ab = Ξ−2gab

is a solution to the Einstein field equations (1) on U .

A proof of the above proposition is given in [31] —see Proposition 8.1 in that reference.

We also recall that the causal character of I is determined by the sign of the Cosmological
constant. More precisely, one has that:

Proposition 2. Suppose that the Friedrich scalar s is regular on I . Then I is a null, spacelike
or timelike hypersurface of M, respectively, depending on whether λ = 0, λ > 0 or λ < 0.

This result follows directly from evaluation of equation (2e) on I and recalling that ∇aΞ is
normal to this hypersurface.
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2.2 Wave equations for the conformal fields

In [27] it has been shown how the conformal Einstein field equations (2a)-(2d) imply a system of
geometric wave equations for the components of the fields (Ξ, s, Lab, d

a
bcd). In the subsequent

discussion it will be convenient to split the Schouten tensor into a tracefree part and a pure-trace
part (the Ricci scalar). Accordingly, one defines the tracefree Ricci tensor as

Φab ≡
1

2

(
Rab −

1

4
Rgab

)
,

so that the Schouten tensor can be expressed as

Lab = Φab +
1

24
Rgab. (3)

In terms of the above field the main result in [27] can be expressed as:

Proposition 3. Any solution (Ξ, s, Lab, d
a
bcd) to the conformal Einstein field equations (2a)-

(2d) satisfies the equations

�Ξ = 4s− 1

6
ΞR, (4a)

�s = ΞΦabΦ
ab − 1

6
sR+

1

144
ΞR2 − 1

6
∇aR∇aΞ, (4b)

�Φab = 4Φa
cΦbc − gabΦcdΦcd − 2ΞdacbdΦ

cd +
1

3
RΦab −

1

24
gab∇c∇cR+

1

6
∇a∇bR, (4c)

�dabcd = 2Ξda
e
d
fdbecf − 2Ξda

e
c
fdbedf − 2Ξdab

efdcedf +
1

2
dabcdR. (4d)

Remark 2. The above wave equations are geometric, in the sense that they hold independently
of the choice of coordinate system. However, as they stand they are not yet satisfactory second
order evolution equations to which one can apply the theory of partial differential equations.
For this one has to provide a prescription of the Ricci scalar and introduce suitable coordinates.
These issues are discussed in the following subsections.

Remark 3. The wave equations (4a)-(4d) need to be supplemented with an equation for the
components of the metric tensor gab. This equation is given by the definition of the tracefree
Ricci tensor, equation (3), rewritten in the form

Rab = 2Φab +
1

4
Rgab, (5)

where Rab, and Φab are regarded as independent objects —the former given through the classical
expression in terms of second order partial derivatives of the components of the metric tensor
while the latter as the field satisfying equations (4a)-(4d).

2.3 Gauge considerations

The conformal Einstein field equations possess both a coordinate and a conformal freedom which
can be exploited to cast the geometric wave equations (4a)-(4d) as satisfactory hyperbolic evolu-
tion equations.

2.3.1 Conformal gauge source functions

In the following, the Ricci scalar R of the metric gab will be regarded as a conformal gauge source
specifying the representative in the conformal class [g̃] one is working with. Recall that given two
conformally related metrics gab and g′ab such that g′ab = ϑ2gab, the respective Ricci scalars are
related to each other via

Rϑ−R′ϑ3 = 6∇c∇cϑ.
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If the values of R and R′ are prescribed, the above transformation law can be recast as a wave
equation for the conformal factor relating the two metrics. Namely, one has that

�ϑ− 1

6
Rϑ = −1

6
R′ϑ3.

Given suitable initial data for this wave equation, it can always be solved locally. Accordingly, it
is always possible to find (locally) a conformal rescaling such that the metric g′ab has a prescribed
Ricci scalar R′.

Remark 4. Following the previous discussion, in what follows the Ricci scalar of the metric gab
is regarded as a prescribed function R(x) of the coordinates and one writes

R = R(x).

2.3.2 Generalised harmonic coordinates and the reduced Ricci operator

Given general coordinates x = (xµ), the components of the Ricci tensor Rab can be explicitly
written in terms of the components of the metric tensor gab and its first and second partial
derivatives as

Rµν = −1

2
gλρ∂λ∂ρgµν + gσ(µ∇ν)Γσ + gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ ,

with

Γνµλ =
1

2
gνρ(∂µgρλ + ∂λgµρ − ∂ρgµλ),

and where one has defined the contracted Christoffel symbols

Γν ≡ gµλΓνµλ.

A direct computation then gives
�xµ = −Γµ.

In what follows, we introduce coordinate gauge source functions Fµ(x) to prescribe the value
of the contracted Christoffel symbols via the condition

Γµ = Fµ(x),

so that the coordinates x = (xµ) satisfy the generalised wave coordinate condition

�xµ = −Fµ(x). (6)

Associated to the latter coordinate condition one then defines the reduced Ricci operator Rµν [g]
as

Rµν [g] ≡ Rµν − gσ(µ∇ν)Γσ + gσ(µ∇ν)Fσ(x). (7)

More explicitly, one has that

Rµν [g] = −1

2
gλρ∂λ∂ρgµν − gσ(µ∇ν)Fσ(x) + gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ .

Thus, by choosing coordinates satisfying the generalised wave coordinates condition (6), the un-
physical Einstein equation (5) takes the form

Rµν [g] = 2Φµν +
1

4
R(x)gµν . (8)

Assuming that the components Φµν are known, the latter is a quasilinear wave equation for the
components of the metric tensor.
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2.3.3 The reduced wave operator

While equations (4a) and (4b) provide satisfactory wave equations for the scalar fields Ξ and s
independently of the choice of coordinates, this is not the case for equations (4c) and (4d). The
reason for this is that in these equations the wave operator � is acting on tensors, and thus, the
terms �Φab and �dabcd, when expressed in a given coordinate system x = (xµ), involve derivatives
of Christoffel symbols —and consequently, second order derivatives of the metric tensor. This
is a problem in situations, like the one considered here, where the metric is an unknown in the
problem as the presence of these derivatives in the operator destroys the hyperbolicity of the
system.

In what follows, it will be shown how the generalised wave coordinate condition (6) can be
used to reduce the geometric wave operator � to a second order hyperbolic operator. To motivate
the procedure consider a covector ωa with components ωµ with respect to a coordinate system
x = (xµ) satisfying condition (6) for some choice of coordinate gauge source functions Fµ(x). A
direct computation using the expression of the covariant derivative in terms of Christoffel symbols
yields

�ωλ ≡ gµν∇µ∇νωλ
= gµν∂µ∂νωλ − gµν∂µΓσνλωσ + fλ(g, ∂g, ω, ∂ω),

where fλ(g, ∂g, ω, ∂ω) denotes an expression depending on the components gµν , ωµ and their first
order partial derivatives. Now, recall the classical expression for the components of the Riemann
tensor in terms of the Christoffel symbols and their derivatives,

Rσµλν = ∂λΓσνµ − ∂νΓσλµ + ΓσλτΓτ νµ − ΓσντΓτ λµ

so that

Rσλ = gµνRσµλν

= gµν∂λΓσνµ − gµν∂νΓσλµ + gµνΓσλτΓτ νµ − gµνΓσντΓτ λµ.

Making use of this coordinate expression on obtains

�ωλ = gµν∂µ∂νωλ +
(
Rσλ − gµν∂λΓσνµ

)
ωσ + fλ(g, ∂g,ω, ∂ω)

= gµν∂µ∂νωλ +
(
Rσλ − ∂λΓσ

)
ωσ + fλ(g, ∂g,ω, ∂ω)

= gµν∂µ∂νωλ +
(
Rτλ − gστ∂λΓσ

)
ωτ + fλ(g, ∂g,ω, ∂ω),

and finally
�ωλ = gµν∂µ∂νωλ +

(
Rτλ − gστ∇λΓσ

)
ωτ + fλ(g, ∂g,ω, ∂ω). (9)

Making the formal replacements

Rµν 7→ 2Φµν +
1

4
R(x)gµν , Γµ 7→ Fµ(x),

in equation (9), one defines the reduced wave operator �, acting on the components ωµ as

�ωλ ≡ gµν∂µ∂νωλ +

(
2Φτλ +

1

4
R(x)gτλ − gστ∇λFσ(x)

)
ωτ + fλ(g, ∂g,ω, ∂ω), (10)

where fλ(g, ∂g,ω, ∂ω) denotes lower order terms whose explicit form will not be required. In
fact, from the previous discussion it follows that one can write

�ωλ = �ωλ +

(
(2Φτλ +

1

4
R(x)gτλ −Rτλ)− gστ∇λ(Fσ(x)− Γσ)

)
ωτ .

A similar construction for covariant tensors of arbitrary rank leads to the following:
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Definition 1. The reduced wave operator � acting on a covariant tensor field Tλ···ρ is defined as

�Tλ···ρ ≡ �Tλ···ρ +

(
(2Φτλ +

1

4
R(x)gτλ −Rτλ)− gστ∇λ(Fσ(x)− Γσ)

)
T τ ···ρ + · · ·

· · ·+
(

(2Φτρ +
1

4
R(x)gτρ −Rτρ)− gστ∇ρ(Fσ(x)− Γσ)

)
Tλ···

τ

where � ≡ gµν∇µ∇ν . The action of � on a scalar φ is simply given by

�φ ≡ gµν∇µ∇νφ.

Remark 5. The operator � provides a proper second order hyperbolic operator —in contrast
to �. Accordingly, when working in generalised harmonic coordinates, all the second order
derivatives of the metric tensor can be removed from the principal part of the evolution equations
(4c) and (4d).

2.3.4 Summary: gauge reduced evolution equations

The discussion of the previous sections leads us to consider the following gauge reduced system
of evolution equations for the components of the conformal fields Ξ, s, Φab, dabcd and gab with
respect to coordinates x = (xµ) satisfying the generalised wave coordinate condition (6):

�Ξ = 4s− 1

6
ΞR(x), (11a)

�s = ΞΦµνΦµν − 1

6
sR(x) +

1

144
ΞR(x)2 − 1

6
∇µR(x)∇µΞ, (11b)

�Φµν = 4Φµ
λΦνλ − gµνΦλρΦ

λρ − 2ΞdµλνρΦ
λρ

+
1

3
R(x)Φµν −

1

24
gµν∇λ∇λR(x) +

1

6
∇µ∇νR(x), (11c)

�dµνλρ = 2Ξdµ
σ
ρ
τdνσλτ − 2Ξdµ

σ
λ
τdνσρτ − 2Ξdµν

στdλσρτ +
1

2
dµνλρR(x), (11d)

Rµν [g] = 2Φµν +
1

4
R(x)gµν . (11e)

Remark 6. The reduced system (11a)-(11e) constitutes a system of quasilinear wave equations
for the fields Ξ, s, Φµν , dµνλρ and gµν . More explicitly, one has that

gστ∂σ∂τΞ = X
(
g, ∂g,Ξ, s,R(x)

)
,

gστ∂σ∂τs = S
(
g, ∂g,Ξ, ∂Ξ, s,Φ,R(x), ∂R(x)

)
,

gστ∂σ∂τΦµν = Fµν
(
g, ∂g,Ξ,Φ,d,R(x), ∂2R(x)

)
,

gστ∂σ∂τdµνλρ = Dµνλρ

(
g, ∂g,Ξ,d,R(x)

)
,

gστ∂σ∂τgµν = Gµν
(
g, ∂g,Φ,R(x)

)
,

whereX, S, Fµν , Dµνλρ andGµν are polynomial expressions of their arguments. Strictly speaking,
the system is a system of wave equations only if gµν is known to be Lorentzian. This will be case
in a perturbative setting or close to an initial hypersurface where initial data can be prescribed to
this effect. The local existence theory of initial-boundary value problems for systems of quasilinear
differential equations of the above type with Dirichlet boundary data can be found in e.g. [10, 13].

2.4 The subsidiary evolution equations

In order to analyse the relation between solutions to the system of geometric wave equations
(4a)-(4d) and the conformal Einstein field equations (2a)-(2e) one needs to construct a subsidiary
system of equations encoding the evolution of these equations. Accordingly, one defines the
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zero-quantities

Υab ≡ ∇a∇bΞ + ΞLab − sgab, (12a)

Θa ≡ ∇as+ Lac∇cΞ, (12b)

∆cdb ≡ ∇cLdb −∇dLcd +∇aΞdabcd, (12c)

Λbcd ≡ ∇adabcd. (12d)

In terms of the latter, the conformal Einstein field equations (2a)-(2d) can be expressed as

Υab = 0, Θa = 0, ∆cdb = 0, Λbcd = 0. (13)

A lengthy computation, best done using computer algebra, leads to the following:

Proposition 4. Assume that the conformal fields Ξ, s, Lab and dabcd satisfy the geometric
wave equations (4a)-(4d). Then the zero-quantities Θa, Υab, ∆abc and Λabc satisfy a system of
geometric wave equations of the form

�Θa = Ha(Θ,Υ,∆,Λ), (14a)

�Υab = Hab(Θ,Υ,∇Υ,∆), (14b)

�∆abc = Habc(∆,Λ), (14c)

�Λabc = Labc(Θ,Υ,∆,Λ), (14d)

where Ha, Hab, Habc and Labc are homogeneous expressions of their arguments.

The original proof of this result was given in [27]. An alternative derivation, along with several
properties of the zero–quantities, can be found in Appendix A.

Remark 7. In practice, the geometric wave equations (14a)-(14d) are replaced by standard wave
equations for the components of the zero fields by exchanging the wave operator � by the reduced
wave operator �.

3 The conformal Einstein constraint equations

In order to formulate an initial-boundary value problem for the wave equations (4a)-(4d) we
will need the constraint equations implied by the conformal Einstein field equations (2a)-(2e) on
(spacelike and timelike) hypersurfaces of the unphysical spacetime (M, gab). These equations
were first discussed in [17]. A detailed discussion of their derivation and basic properties can be
found in [31], Chapter 11.

3.1 The basic expression of the conformal Einstein constraint equations

Let S denote a (spacelike or timelike) hypersurface of the unphysical spacetime (M, gab) with
unit normal na. Furthermore, let

ε ≡ nana,
so that ε = 1 if S is timelike and ε = −1 if it is spacelike. The projector to S is defined as

hab ≡ gab − εnanb.

The extrinsic curvature of S is defined as

Kab = ha
chb

d∇cnd.

The restriction of the conformal factor Ξ to the hypersurface will be denoted by Ω.

In the following let

Σ, s, hij Li, Lij , dij , dijk, dijkl

9



denote, respectively, the pull-backs of

na∇aΞ, s, gab, ncha
dLcd, ha

chb
dLcd,

nbndhe
ahf

cdabcd, nbhe
ahf

chg
ddabcd, he

ahf
bhg

chh
ddabcd

to S.

Remark 8. In particular, hij corresponds is the 3-metric induced by gab on S. Similarly, we
will denote by Kij the pull-back of Kab and K = hijKij . The metric hij will be Lorentzian or
Riemannian depending on whether S is timelike or spacelike.

Remark 9. The fields dij and dijk encode, respectively, the electric and magnetic parts of the
rescaled Weyl tensor dabcd with respect to the normal na. It can be verified that

di
i = 0, dij = dji, dijk = −dikj , d[ijk] = 0,

dijkl = 2ε(hi[ldk]j + hj[kdl]i).

The magnetic part is more commonly encoded in a symmetric traceless tensor of rank 2 defined
as

d∗ij ≡
1

2
εj
kldikl

where εijk is the volume form induced on S by hij .

In terms of the above fields, a long computation shows that the conformal Einstein field
equations (2a)-(2e) imply on the hypersurface S the conformal Einstein constraint equations

DiDjΩ = −εΣKij − ΩLij + shij , (15a)

DiΣ = Ki
kDkΩ− ΩLi, (15b)

Dis = −εLiΣ− LikDkΩ, (15c)

DiLjk −DjLik = −εΣdkij +DlΩdlkij − ε(KikLj −KjkLi), (15d)

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik, (15e)

Dkdkij = ε
(
Kk

idjk −Kk
jdik

)
, (15f)

Didij = Kikdijk, (15g)

λ = 6Ωs− 3εΣ2 − 3DkΩDkΩ. (15h)

These equations are supplemented by the Codazzi-Mainardi and Gauss-Codazzi equations which,
respectively, take the following form:

DjKki −DkKji = Ωdijk + hijLk − hikLj , (16a)

lij = −εΩdij + Lij + ε

(
K
(
Kij −

1

4
Khij

)
−KkiKj

k +
1

4
KklK

klhij

)
, (16b)

where the Schouten tensor of hij is defined as

lij ≡ rij −
1

4
rhij .

Here, rij and r are, respectively, the Ricci tensor and scalar of the metric hij .

3.2 The conformal constraints on the conformal boundary

The conformal Einstein constraint equations simplify considerably when they are evaluated on an
hypersurface corresponding to the conformal boundary of a spacetime, in which case Ω vanishes

10



identically. If the conformal boundary is timelike (ε = 1) one has the following system:

s`ij ' 6Σ 6Kij , (17a)

6Di 6Σ ' 0, (17b)

6Dis ' −6Li 6Σ, (17c)

6Di 6Ljk − 6DjLik ' −6Σ 6dkij + ( 6Kjk 6Li − 6Kik 6Lj), (17d)

6Di 6Lj − 6Dj 6Li ' 6Ki
k 6Ljk − 6Kj

k 6Lik, (17e)

6Dk 6dkij ' 6Kk
j 6dik − 6Kk

i 6djk, (17f)

6Di 6dij ' 6Kik 6dijk, (17g)

λ ' −36Σ2, (17h)

6Dj 6Kki − 6Dk 6Kji ' `ij 6Lk − `ik 6Lj , (17i)

6 lij ' 6Lij + 6K
(
6Kij −

1

4
6K`ij

)
− 6Kki 6Kj

k +
1

4
6Kkl 6Kkl`ij , (17j)

where ' denotes that the equality holds on the conformal boundary and `ij denotes the intrinsic
(Lorentzian) 3-metric on I . Moreover, we use the notation 6 to indicate that the quantities are
obtained from a 3+1 split with respect to the (timelike) conformal boundary. In particular, 6Di

denotes the Levi-Civita connection of the Lorentzian metric `ij . This notation will be used in the
rest of the article.

In [18] a procedure to solve the conformal constraints on the conformal boundary has been
given. The key observation is to identify the scalar s as gauge dependent quantity and the 3-
metric `ij on I as free data. Instead of directly working with s it is more convenient to consider
a scalar κ such that

s ' 6Σκ.

One has then that:

Proposition 5. Given a 3-dimensional Lorentzian metric `ij, a `-divergencefree and tracefree
field 6dij and a smooth function κ, then the fields

6Σ '
√
|λ|
3
, (18a)

s ' 6Σκ, (18b)

6Kij ' κ`ij , (18c)

6Li ' −6Diκ, (18d)

6Lij ' 6 lij −
1

2
κ2`ij , (18e)

6dijk ' −6Σ−1yijk, (18f)

where
yijk ≡ 6Dj 6 lki − 6Dk 6 lji

is the Cotton tensor of `ij, constitute a solution to the conformal constraint equations (17a)-(17j)
with ε = 1 and Ω = 0.

A proof of this result can be found in [31], Section 11.4.4. We will also require the following
partial converse the previous result:

Proposition 6. Assume one has a timelike hypersurface T of a spacetime (M, gab) such that
conditions (18c)-(18e) hold. If, in addition, Ω = 0 on some fiduciary spacelike hypersurface C? of
T then one has that

Ω = 0 on T .

11



Proof. Assume first that κ 6= 0 on C?. The substitution of expressions (18c)-(18e) into the general
conformal constraint equations (15a) and (15c) yields the relations

6Di 6DjΩ = −Ω
(
6 lij −

1

2
κ2`ij

)
, (19a)

κ 6DiΩ = Ω6Diκ. (19b)

Taking the trace of equation (19a) one obtains the wave equation

�`Ω = −1

4

(
6r − 6κ2

)
Ω (20)

on T , where �` ≡ `ij 6Di 6Dj . We now consider the condition Ω = 0 on C? as initial data for
equation (20). We complement this initial condition with 6DiΩ = 0 on C? which follows from
condition (19b). It follows from the homogeneity of equation (20) and the uniqueness of solutions
to wave equations of this form that Ω = 0 on T .

To deal with the case κ = 0 we observe that it is always possible to carry out a rescaling
Ξ 7→ Ξ′ ≡ ϑΞ of the spacetime conformal factor Ξ with ϑ ' 1 and dϑ 6= 0 such that if s 6' 0
on I then s′ ' 0 —see [31] Section 11.4.4, page 268. Thus, if κ 6' 0 initially, then using the
above rescaling and taking into account relation (18b) for s′, it follows that κ′ ' 0. The rescaling
Ξ 7→ Ξ′ ≡ ϑΞ does not change the value of Ξ on T —accordingly one has that Ω = 0 on T even
if κ = 0.

3.3 Solutions to the conformal constraints on a spacelike hypersurface

In addition to analysing the conformal constraint equations on a timelike hypersurface corre-
sponding to the conformal boundary of the spacetime, we will also need to consider solutions to
the constraints (15a)-(16b) on spacelike hypersurfaces. These solutions provide part of the initial
data for the wave equations (11a)-(11d).

The conformal constraint equations (15a)-(16b) with ε = −1 can be combined to obtain the
conformal Hamiltonian and momentum constraints

λ = −1

2
Ω2KijK

ij +
1

2
Ω2K2 +

1

2
Ω2r − 2ΩKΣ + 3Σ2 − 3DiΩD

iΩ + 2ΩDiD
iΩ, (21a)

ΩDjKij − ΩDiK = 2KijD
jΩ− 2DiΣ. (21b)

For a solution of the above equations it will be understood a collection of fields (Ω, hij ,Kij ,Σ)
satisfying them. The collection (Ω, hij ,Kij ,Σ) constitutes the basic data from which the rest of
the initial data set for the conformal wave equations (11a)-(11e) can be computed. Indeed, a
calculation shows that:

s =
1

3

(
∆Ω +

1

4
Ω
(
r −KijK

ij +K2
)
− ΣK

)
, (22a)

Lij =
1

Ω

(
−DiDjΩ + ΣKij + shij

)
, (22b)

Li =
1

Ω

(
Ki

kDkΩ−DiΣ
)
, (22c)

dij =
1

Ω

(
− Lij + lij +

(
K
(
Kij −

1

4
Khij

)
−KkiKj

k +
1

4
KklK

klhij
))
, (22d)

dijk =
1

Ω

(
DjKki −DkKji + hikLj − hijLk

)
. (22e)

Observe that the above expressions are formally singular at the points where Ω = 0. This
observation leads to the following:

Definition 2 (anti-de Sitter-like initial data). For an anti-de Sitter initial data set it is
understood a 3-manifold S? with boundary ∂S? ≈ S2 together with a collection of smooth fields
(Ω, hij ,Kij ,Σ) such that:

12



462 Anti-de Sitter-like spacetimes

I +

S? @S?

D+(S? \ @S?)

D+(S? [I +)

Figure 17.1 Penrose diagram of the set-up for the construction of anti-de Sitter-like space-
times as described in the main text. Initial data prescribed on S? \ @S? allows to recover
the dark shaded region D+(S? \ @S?). In order to recover D+(S? [I +) it is necessary to
prescribe boundary data on I +. Notice that D+(S? [I +) = J+(S?).

the question: what data on S? [ I + is needed to reconstruct the anti-de Sitter-like

spacetime (M̃, g̃) in a neighbourhood U ⇢ J+(S?) of S??

As a consequence of the properties of the standard Cauchy problem and the

localisation property of hyperbolic equations, the solutions to the conformal Einstein

field equations on D+(S̃?) are determined, up to di↵eomorphisms, in a unique

manner by solutions to the constraint equations on S?. To recover J+(S?)\D+(S̃?)

one needs to prescribe suitable data on the conformal boundary I . The analysis

of the suitable boundary data requires the prescription of some appropriate gauge

near I . As it will be seen, conformal geodesics are ideally suited to provide such a

gauge.

The conformal constraints at the conformal boundary

As for anti-de Sitter-like spacetimes the conformal boundary is a g-timelike hy-

persurface, it follows that the metric g induces on I a 3-dimensional Lorentzian

metric `. As discussed in Section 11.4.4, the conformal Einstein field equations sat-

isfied by the (unphysical) spacetime (M, g) imply on I a simplified set of interior

(constraint) equations. It is recalled that a solution to these conformal constraints

at the conformal boundary can be computed from the metric `, a smooth scalar

function { and a symmetric `-tracefree 3-dimensional tensor on I —see Propo-

sition 12 in Chapter 11. The scalar function is, in particular, a conformal gauge

dependent quantity which can be set to zero by considering a di↵erent metric in

[`].

Figure 1: Penrose diagram of the set-up for the construction of anti-de Sitter-like spacetimes as
described in the main text. Initial data prescribed on S? \ ∂S? allows to recover the dark shaded
region D+(S? \∂S?). In order to recover D+(S?∪I +) it is necessary to prescribe boundary data
on I +. Notice that D+(S? ∪I +) = J+(S?).

(i) Ω > 0 on intS?;

(ii) Ω = 0 and |dΩ|2 = Σ2 − 1
3λ > 0 on ∂S?;

(iii) the fields s, Lij, Li, dij and dijk computed from relations (22a)-(22e) extend smoothly to
∂S?.

Remark 10. Anti-de Sitter-like initial data sets are closely related to so-called hyperboloidal
data sets for Minkowski-like spacetimes —see [24]. By means of this correspondence it is possible
to adapt the existence results for hyperboloidal initial data sets in [4, 3] to the anti-de Sitter-like
setting. In particular, this shows the existence of a large class of time symmetric data —i.e. data
for which Kij = 0.

Remark 11. The fields given by equations (22a)–(22e) represent part of the initial data required
to evolve the system of wave equations (11a)–(11e). A calculation shows that the remaining
component, nanbLab, can be computed directly from Lij and the gauge function R(x). On the
other hand, the normal derivatives of the fields s, Lab and dabcd on S? can be computed via
the system (2a)–(2d) along with the contracted Bianchi identity. Furthermore, notice that this
construction guarantees that the zero–quantities trivially vanish on S?.

4 General set-up

In this section we discuss in detail the gauge fixing and the boundary data prescription for an
initial-boundary problem for the conformal Einstein field equations which, in turn, gives rise to
anti-de Sitter-like spacetimes.

In what follows, let (M, gab,Ξ) denote a conformal extension of an anti-de Sitter-like spacetime
(M̃, g̃ab) with gab = Ξ2g̃ab. It will be assumed that the spacetime is causal (i.e. it contains no
closed timelike curves) and that it contains a smooth, oriented and compact spacelike hypersurface
S? with boundary ∂S? which intersects the conformal boundary I in such a way that S? ∩I =
∂S?. It is convenient to define S̃? ≡ S?\∂S?. The portion of I in the future of S? will be denoted
by I +. Furthermore, it will be assumed that the causal future J+(S?) coincides with the future
domain of dependence D+(S? ∪ I +) and that S? ∪ I + ≈ [0, 1) × S? so that, in particular,
I + ≈ [0, 1)× ∂S?.
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4.1 Coordinates

Close to the conformal boundary I we will make use of adapted coordinates x = (xµ) such that
in terms of these coordinates

I = {x ∈ R3 | x1 = 0}.
The coordinate x0 is chosen so that the initial hypersurface S? corresponds to the condition
x0 = 0. Accordingly, the corner ∂S? is described by the conditions x0 = 0 and x1 = 0.

The coordinates x = (xµ) are propagated off the initial hypersurface S? through the gener-
alised wave coordinate condition

�xµ = −Fµ(x). (23)

The value of the coordinates on S? provides the initial data for the equation (23). The initial
value of the normal derivatives to S? is obtained from the requirement that (xµ) are independent
—that is, the coordinate differentials dxµ must be linearly independent.

4.2 Boundary conditions for the conformal evolution equations

In this subsection we discuss the boundary conditions to be imposed on the various conformal
fields. In [19] it has been shown that it is possible to formulate an initial boundary-initial value
problem for anti-de Sitter-like spacetimes in which the conformal class of the metric on the
conformal boundary is specified freely. In the following, we investigate whether it is possible to
make a similar prescription in our scheme. More precisely, we would like to specify Dirichlet
boundary data for the wave equations (11a)-(11e) —that is, one would like to specify the values
of the scalar fields Ξ, s and the components of the tensors gµν , Φµν and dµνλρ on I .

4.2.1 Boundary data for the conformal factor

The evolution of the conformal factor Ξ is described by the wave equation (11a). For this equation
one naturally prescribes Dirichlet boundary conditions such that

Ξ ' 0.

In other words, one has that Ξ = O(x1) close to I . On S? one wants to identify Ξ with some
3-dimensional conformal factor Ω such that Ω = 0, dΩ 6= 0 at ∂S?, consistent with Definition 2.

4.2.2 The Friedrich scalar

The evolution of the Friedrich scalar s is governed by the wave equation (11b). In the context
of the conformal constraint equations on the conformal boundary, the Friedrich scalar s is a
gauge dependent quantity which contains information about the manner the conformal boundary
embeds in the spacetime. Following Proposition 5 we set

s ' κ(x) 6Σ, 6Σ =

√
|λ|
3
, 6Kij ' κ(x)`ij , (24)

where κ(x) is an arbitrary scalar field. This specification of s is independent of the choice of
the gauge source function R(x) associated to the Ricci scalar —see the discussion in Remark
4. In particular, it is possible, say, to have two related conformal representations of the same
physical solution with the same spacetime Ricci scalar, one with a conformal boundary which is
extrinsically curved and the other extrinsically flat.

Remark 12. Observe that the particular choice κ(x) = 0 renders a conformal boundary which
is extrinsically flat with respect to the ambient spacetime —see equation (18c).
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4.2.3 Boundary data for the components of the conformal metric

In the following it is convenient to make use of the 3+1 decomposition of the metric gab with
respect to the unit normal to the conformal boundary —namely

g = 6α2dx1 ⊗ dx1 + `γδ
(
6βγdx1 + dxγ

)
⊗
(
6βδdx1 + dxδ

)
, γ, δ = 0, 2, 3.

In particular, (`γδ) denote the components of the intrinsic metric `ij of the conformal boundary
and 6α and 6βγ are, respectively, the lapse and shift. As I is timelike, then `ij is a 3-dimensional
Lorentzian metric of signature (−+ +). Accordingly, the components (gµν) are given by

(gµν) =

(
6α2 + 6βγ 6βγ 6βγ
6βδ `γδ

)
, (25)

so that for the components of the contravariant metric one has

(gµν) =

(
6α−2 −6α−2 6βγ
−6α−2 6βδ `γδ + 6α−2 6βγ 6βδ

)
.

Remark 13. In the following we regard the components (`αβ) as our basic boundary data.

Without loss of generality, we adopt a Gaussian gauge at the conformal boundary so that

6α ' 1, 6βγ ' 0, (26)

and the metric gab takes the form

g ' dx1 ⊗ dx1 + `αβdxα ⊗ dxβ .

Remark 14. The prescription of the gauge conditions at the conformal boundary (26) is inde-
pendent of the generalised harmonic condition (23) and, thus, consistent with each other. Indeed,
a calculation shows that for a metric in the form given by (25) one has that

Γ1 =
1

6α3

(
∂1 6α− 6βγ∂γ 6α+ 6α2 6K

)
, (27a)

Γδ = γδ − 6β
δ

6α3

(
∂1 6α− 6βγ∂γ 6α+ 6α2 6K

)
+

1

6α2

(
∂1 6βδ − 6βγ∂γ 6βδ + 6α∂δ 6α

)
, (27b)

and γδ ≡ `ηθγδηθ denote the 3-dimensional contracted Christoffel symbols. Thus, the generalised
harmonic condition (23) only prescribes the propagation of the gauge fields 6α and 6βγ off the
conformal boundary and do not constraint the components of the 3-metric `ij . Observe that 6α
and 6βγ depend on the choice of κ(x) as 6K = 3κ(x) as a consequence of equation (24).

4.2.4 Boundary data for the components of the Schouten tensor

Given the 3-metric `ij of the conformal boundary, one can compute the tangential components
( 6Lαβ) and tangential-normal components (6Lα) of the spacetime Schouten tensor at the conformal
boundary using formulae (18d) and (18e). One has then that

6Lα ' −6Dακ(x), 6Lαβ ' 6 lαβ −
1

2
κ2(x)`αβ , (28)

where κ(x) is the arbitrary scalar field determining the extrinsic curvature of the conformal
boundary according to equation (18c) and 6 lαβ denotes the components of the Schouten tensor
6 lij of the metric `ij . To compute the normal-normal component 6L11 we notice that

gµν 6Lµν =
1

6
R.
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Thus, one has that

6L11 '
1

6
R(x)− `αβ 6 lαβ +

1

2
κ2(x)`αβ`

αβ

' 1

6
R(x)− 1

4
r +

3

2
κ2(x) (29)

where it is recalled that R(x) denotes the conformal gauge source function introduced in Remark
4.

4.2.5 The rescaled Weyl tensor

The boundary data for the magnetic part of the rescaled Weyl tensor is directly computed from
the metric `ij using the formula

6dijk ' −
√

3

|λ|yijk, (30)

where yijk denotes the Cotton tensor of `ij—see equation (18f) in Proposition 5.

The computation of the boundary data for the electric part requires more work. From the
discussion in Section 3.2 it follows that the electric part of the rescaled Weyl tensor satisfies on
I the equation

6Di 6dij ' 0. (31)

We now consider a 2 + 1 decomposition of this equation on I . To this end let ∂St, t ∈ [0,∞)
with ∂S0 = ∂S? denote a foliation of the conformal boundary and let νi denote the normal to
this foliation. The projector si

j onto the leaves ∂St is given by

sij = `ij + νiνj .

The covariant derivative 6Di can be decomposed, in turn, as

6Di = −νiδ + δi

where δ is the covariant directional derivative in the direction of νi and δi is the Levi-Civita
covariant derivative associated to the 2-dimensional metric sij . The normal νi induces the de-
composition

6dij = wij − νiwj − νjwi + νiνjw, wij = w(ij),

of the electric part of the rescaled Weyl tensor, where

wij ≡ siksj l 6dkl, wi ≡ sikνl 6dkl, w ≡ νiνj 6dij .

Using the above expressions, and observing that w = wi
i, one obtains the following decomposition

of equation (31):

δw − δiwi = −3

2
kw − kijw{ij}, (32a)

2δwi − δiw = −2kwi − 2ki
jwj + 2δjw{ij}, (32b)

where the 2-dimensional extrinsic curvature of the leaves of the foliation ∂St, kij , and the accel-
eration, ai, are defined via the relation

6Diνj = kij + νiaj , k ≡ sijkij ,

and w{ij} ≡ wij − 1
2sijw is the s-tracefree part of wij .

Remark 15. Expressing equations (32a)-(32b) in terms of coordinates (xA) = (t, xA) adapted to
the foliation ∂St, one finds that the former imply a first order symmetric hyperbolic system for w
and the two non-trivial independent components wA of wi provided that the components w{AB}
are known. Thus, the components w{AB} of the electric part of the rescaled Weyl tensor constitute
an independent piece of boundary data that supplements the prescription of the Lorentzian 3-
metric `ij .
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Remark 16. The restriction to I of the generalised wave coordinate conditions (23) allows to
specify, via the relation (27b), a natural choice for the lapse and shift (and thus a choice of the
foliation of ∂St) for which equations (32a)-(32b) are to be solved.

The discussion of the previous paragraphs leads to the following:

Lemma 1. Let on I be given:

(i) a smooth 3-dimensional Lorentzian metric `ij;

(ii) a prescription of coordinate gauge source functions Fµ(x) and the intrinsic gauge function
κ(x);

(iii) a smooth symmetric tensor w{ij} which is spatial with respect to the foliation induced on I
by the functions Fµ(x) and tracefree with respect to the metric induced on the leaves of the
foliation;

(iv) a smooth choice of fields w and wi on a fiduciary hypersurface ∂S? of I .

Then, there exists a t• > 0 such that on It• ≈ [0, t•) × ∂S? there exists unique fields w and wi
which together with the prescribed choice of w{ij} satisfy the constraint (31).

Proof. The proof of this result follows from the discussion in the previous paragraphs and the
theory of local existence of first order symmetric hyperbolic systems.

Remark 17. The free data w{ij} can be related to the notion of incoming and outgoing radiation.
In order make this evident, let (l, l′,m, m̄) be a Newman–Penrose tetrad satisfying the following
normalisation relations in accordance with our conventions:

lal
′a = −1, mam̄

a = 1,

while all the remaining contractions vanish. The normal unit vectors are expressed, respectively,
as na = 1√

2
(la + l′a) and 6na = 1√

2
(la − l′a). Using this, the different metrics take the following

form:

gab = −2l(al
′
b) + 2m(am̄b), `ab = 2m(am̄b) − l(al′b) − 1

2 (lalb + l′al
′
b), sab = 2m(am̄b).

Making use of this and observing that ωab = 6nq 6nssapsbrddpqrs, an expansion of the Weyl tensor
in terms of the tetrad defined above leads, after a straightforward calculation, to:

ω{ab} =
1

2

(
(ψ0 + ψ∗4)m̄am̄b + (ψ∗0 + ψ4)mamb

)
,

where ψ0 ≡ dpqrsl
pmqlrms and ψ4 ≡ dpqrsl

′pm̄ql′rm̄s —see e.g. [9]. This shows that ψ0 and ψ4

constitute part of the basic data one must provide on I .

4.2.6 Summary

The analysis of this section can be summarised as follows:

Proposition 7. Let on I be given a smooth Lorentzian metric `ij and a smooth tensor field
w{ij} as in Lemma 1. Moreover, let the fields

6Σ, s, 6Kij , 6Li, 6Lij , 6dijk
be constructed according to formulae (24), (28) and (30). Finally, let Θa, Υa, ∆abc and Λabc be
the zero-quantities defined by relations (12a)-(12d). One has then that

`b
aΘa ' 0,

`c
a`d

bΥab ' 0, 6na`cbΥab ' 0,

`e
c`f

d`g
b∆cdb ' 0, 6nb`ec`f d∆cdb ' 0,

6nb`ec`f dΛbcd ' 0, 6nb 6nd`ecΛbcd ' 0,

at least on It• ≈ [0, t•) × ∂S?, where 6na and `a
b denote, respectively, the normal and projector

of the conformal boundary I .

17



4.3 Corner conditions

In the previous sections we have discussed the problem of the determination of initial and bound-
ary data. In particular, it is clear that once boundary data have been provided on I , time
derivatives of the various conformal fields can be directly calculated. However, these data do not
necessarily match smoothly with the ones corresponding to S? at the corner. The purpose of this
section is to analyse the compatibility conditions, at different orders, arising from the conformal
Einstein field equations and the wave equations —these conditions are commonly known as corner
conditions. In the following, the subscript � will stand for a quantity evaluated at ∂S?.

4.3.1 Conditions for the metric

In terms of the adapted coordinates previously introduced, the corner ∂S? is defined by the
conditions x0 = 0 and x1 = 0. Exploiting the gauge freedom, we adopt local Gaussian coordinates
both on S? and I . Denoting as hγδ and `AB the intrinsic 3–metrics corresponding to these
hypersurfaces, respectively, this condition implies that the spacetime metric at ∂S? can be written
in the two following ways:

g = −dx0 ⊗ dx0 + hγδdx
γ ⊗ dxδ, (γ, δ = 1, 2, 3),

g = dx1 ⊗ dx1 + `ABdx
A ⊗ dxB, (A,B = 0, 2, 3).

Hereafter, the previous convention for the indices will be used. Additionally, uppercase indices
A, B, . . . will stand for the coordinates x2 and x3 (which we will refer to as angular) of the
sections of I .

Zero order conditions. Comparing the two last expressions for the metric, one readily finds
that

(`00)� = −1, (h11)� = 1, (`AB)� = (hAB)�, (33)

while the remaining components vanish at ∂S?.
First order conditions. In Gaussian coordinates, we can express the normal derivatives of the
metric in terms of the corresponding extrinsic curvature. Explicitly, one has:

Kγδ|S? =
1

2
∂0hγδ|S? = Γ0

γδ|S? , (34a)

6KAB '
1

2
∂1`AB ' −Γ1

AB. (34b)

As Kγδ is part of the initial data, this establishes a corner condition for ∂0hγδ; in particular, the
angular components must satisfy the condition (∂0hAB)� = (∂0`AB)�.

Recall that in Gaussian coordinates the propagation of the timelike vector (∂0)a along itself
implies that Γµ00|S? = 0; similarly, for the normal to I one has that Γµ11 ' 0. The previous
conditions on the Christoffel symbols, along with equations (34a) and (34b), imply that K11 and
6K00 vanish at the corner. Furthermore, the traces of the extrinsic curvature can be related to the
gauge functions Fµ(x) as follows:

K� = (hABKAB)� = F0(x)�, 6K� = (`AB 6KAB)� = −F1(x)�.

Finally, given that ∇ is a Levi–Civita connection and the acceleration is zero, our coordinate
choice determines the remaining partial derivatives: (∂0g0µ)� = −(Γ0

0µ)� = 0.

Second order conditions. Second order conditions can be extracted in a straightforward way
from the wave equation for the metric, equation (11e) —namely

gλρ∂λ∂ρgµν = 2

(
gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ − gσ(µ∇ν)Fσ(x)− 2Φµν −

1

4
gµνR(x)

)
.

Using the conditions discussed above for the first order derivatives, the wave equation for the
components gµν can be written schematically as:

(∂20`µν)� = (∂21hµν)� + (hCD∂C∂Dhµν)� + fµν(g,K, 6K,F(x),Φ,R(x))�.
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Apart from the components of the Schouten tensor encoded into Φµν (to be discussed below), the
second order condition can be expressed in terms of the initial data, lower order corner conditions
and gauge functions at the corner. Further application of ∂0 enables to obtain higher order
conditions.

4.3.2 Conditions for the conformal factor

As, by definition, Ξ = 0 on the conformal boundary, then all its intrinsic derivatives of any order
will vanish. In particular, ∂S? automatically inherits these conditions. Regarding the normal
derivative, solution (18a) gives its value on I . Accordingly, one has that

(6Σ)� =

√
−λ

3
.

When smoothness is imposed, higher order partial derivatives both on S? as well as on I are
forced to coincide at ∂S?.

4.3.3 Conditions for the Friedrich scalar

Zero order condition. As discussed previously, the Friedrich scalar s is determined on the con-
formal boundary by the gauge function κ(x). Nevertheless, when the 00 component of equation
(2a) is evaluated at the corner, our choice of Gaussian coordinates imply that,

s� = 0.

First order conditions. Equation (17c) —or alternatively (2b)— determines the intrinsic
derivatives of s on the boundary. In particular, the time derivative takes the following form at
the corner:

(∂0s)� = −6Σ(L01)�.

This expression is equivalent to the one given in (28) for the tangential-normal components of
Lab on I .

Second order conditions. The second order condition for s can be extracted from the wave
equation (11b) expressed in Gaussian coordinates. The evaluation of this equation at the corner
yields:

(∂20s)� = (∂21s)� + (hAB∂A∂Bs)� − (Fµ(x)∂µs+
1

6
(sR(x) + 6Σ∂1R(x))�.

Here, the spatial derivatives of s can be computed from the restriction of the initial data to ∂S?
while ∂0s corresponds to the first order condition. The functions Fµ(x) and R(x) are gauge-
dependent prescribed quantities. Furthermore, we observe that ∂20s is written in terms of the
first order derivatives, indicating then a recursive procedure to find higher order conditions —
computed by further application of ∂0 to equation (11b).

4.3.4 Conditions for the Schouten tensor

Next, we will show how the constraint equations impose restrictions on the components of Lab,
which along with the gauge quantity R(x) determines the tracefree tensor Φab on I .

Zero order corner conditions. The value of components Lαβ and L0α at the corner can be
obtained from the initial data (22b) and (22c) taking the limit Ω→ 0. Imposing smoothness, they
must match the boundary data given by equations (28) and (29) at ∂S?. The same is imposed
for component L00.

First order corner conditions. First time derivatives of the components Lαβ and L0α can be
obtained via equation (2c). More explicitly one has:

(∂0Lαβ)� = 6Σ(d1β0α)� + fαβ(L,h,K, 6K)�,

(∂0Lα0)� = 6Σ(d100α)� + fα(L,h,K, 6K)�.
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As it will be seen below, the components of the Weyl tensor appearing here, are part of the data
satisfying zero-order conditions, so they must be consistent with the last equations. On the other
hand, a condition for (∂0L00)� can be obtained via the contracted Bianchi identity.

Second order corner conditions. Second order time derivatives of Lab are to be obtained by
evaluating the wave equation (11c) at ∂S?. For Lαβ one has:

(∂20Lαβ)� = (∂21Lαβ)� + (hCD∂C∂DLαβ)� + fαβ(h,L,K, 6K, ∂F(x),R(x))�.

Similar expressions can be obtained for the rest of the components.

4.3.5 Conditions for the Weyl tensor

Information about the Weyl tensor is encoded in the electric and magnetic parts. These are
given on S? by equations (22d) and (22e), and has been discussed in section 4.2.5 for I . As these
data have been obtained using different projections, their components must be carefully matched.
One can check that they share the components d0101, d010A, d01A1, d01AB and d0A1B so, when
matched, they represent the zero-order conditions.

First order corner conditions. Given the structure of equation (2d), only certain conditions
can be extracted from it. Ultimately, when it is evaluated at the corner it takes the form:

(∂0d
0
λµν)� = fλµν(K, 6K,d)�.

Second order corner conditions. Second order time derivatives of the rescaled Weyl tensor
are given by the wave equation (11d). As Ξ vanishes at the corner, the equation is significantly
simplified. Expanding the reduced wave operator � it takes the schematic form

(∂20dλµνσ)� = (∂21dλµνσ)� + (∂A∂Bdµνλσ)� + fλµνσ(g,K, 6K,d)�.

4.3.6 Concluding remarks regarding the corner conditions

The discussion in the previous paragraphs provides a recursive procedure to compute the corner
conditions to any required order. Given this procedure, its natural to ask whether there exist
any examples of pairs of initial data and boundary conditions which satisfy the corner condi-
tions to any arbitrary order. The difficulties in implementing corner conditions to any arbitrary
order have been discussed in [20]. A way of satisfying corner conditions to an arbitrary order
is to make use of the gluing constructions for asymptotically hyperbolic initial data sets in [11].
Given an asymptotically hyperbolic initial data set satisfying certain smallness conditions, these
constructions allow to deform the data by a deformation which is supported arbitrarily far in
the asymptotic region, to ones which are exactly Schwarzschild-anti de Sitter in the asymptotic
region. This class of data is naturally supplemented by Schwarzschild-anti de Sitter boundary
initial data —and thus it trivially satisfies the corner conditions to any order. The resulting
spacetime has, accordingly, a very special behaviour near the corner. In particular, the metric
`ij must be conformally flat near the corner. It is of interest to analyse whether it is possible
to construct a more general class of initial–boundary data for adS-like spacetimes satisfying the
corner conditions at any order.

5 Propagation of the constraints

The purpose of this section is to analyse the propagation of the gauge conditions and to discuss
the relation of the evolution system (11a)-(11e) to the Einstein field equations.

5.1 Boundary conditions for the subsidiary equations

The purpose of this section is to show that the boundary conditions for the conformal wave
equations (11a)-(11e) discussed in the previous section imply trivial (i.e. vanishing) Dirichlet
boundary conditions for the subsidiary wave equations (14a)-(14d).
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5.1.1 Transport equations for the subsidiary fields

Proposition 7 shows that as a consequence of our Dirichlet boundary data prescription, the
components of the zero fields Θa, Υa, ∆abc and Λabc which only involve derivatives intrinsic
to I vanish. In order to show that the remaining components also vanish, it is necessary to
construct suitable transport equations for the zero-quantities on the conformal boundary. As
it will be seen, the equations for Υab and Θa can be constructed in a straightforward manner,
whereas ∆abc and Λabc require a more detailed treatment. The integrability conditions for the
zero–quantities (56a)–(57b) —see Appendix A.2— will prove to be key to obtain these equations.
In what follows let τ i denote a timelike vector on I with pushforward to the spacetime (M, gab)
given by τa and let P ≡ τa∇a. Notice then that 6naτa = 0

Transport equations for Θa and Υab. First, consider the expression 2τa∇[aΥb]c. On the one
hand, a calculation shows that

2τa∇[aΥb]c = PΥbc + Υacχb
a −∇b(τaΥac) ' PΥbc + Υacχb

a,

where χab ≡ ∇aτb and the second equality follows from the fact that `a
c`b

dΥcd ' 0 and
`a
cnbΥbc ' 0, which are a consequence of the validity of constraints (17a) and (17b) on I .

On the other hand, using the integrability condition (56a) one obtains the following transport
equation:

PΥbc ' 2τagc[aΘb] −Υacχb
a, (35)

which crucially is homogeneous in the zero-quantities.

Now, for Θa, consider the expression 2τa∇[aΘb]. Expanding as in the case for Υab one finds
that

2τa∇[aΘb] ' PΘb −∇b
(
τaΘa

)
+ Θaχb

a = PΘb + Θaχb
a,

where it has been used that `b
aΘa ' 0 —as this is equivalent to satisfy the constraint (17c)—

so that τaΘa ' 0. Using the integrability condition (56b), the following homogeneous transport
equation is directly obtained:

PΘb ' τa∆abc∇cΞ− τaLc[aΥb]c −Θaχb
a. (36)

Transport equations for ∆abc and Λabc. For the zero-quantity ∆abc consider 3τe∇[e∆ab]c. A
direct calculation shows that

3τe∇[e∆ab]c = P∆abc − 2χ[a
e∆b]ec + 2∇[a(τe∆b]ec). (37)

As before, one needs to show that the last term in the previous expression vanishes on the
boundary. For this purpose a decomposition with respect to `a

b can be performed. Observing

that the components `a
d`b

e`c
f∆def ≡ ∆

(3)
abc and `a

c`b
dne∆cde vanish by virtue of the constraints

(17d) and (17e), a calculation leads to

τ b∆abc ' τ b`be`cfnand∆def + τ b`b
fnancn

dne∆dfe ≡ τ b∆bcna + τ b∆bnanc.

In view of this, further homogeneous transport equations for ∆ab and ∆a on I are required.
Regarding ∆ab, after performing suitable projections in equation (37) and eliminating the nor-
mal derivatives via the relevant constraints, its right–hand side takes the following form on the
conformal boundary:

P∆ab − 6Da(τe∆eb) + f(χ, 6K,∆),

where the function f is homogeneous in ∆abc. Then, using the integrability condition (57a),
a homogeneous transport equation for ∆ab on the boundary is obtained. In the case of ∆a, a
completely analogous procedure leads directly to a similar transport equation.

Finally, for Λabc consider the analogous expression 3τa∇[eΛ|a|bc]:

3τd∇[dΛ|a|bc] = PΛabc − 2χ[b
dΛ|a|c]d + 2∇[b(τ

dΛ|a|c]d). (38)
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Performing a decomposition for τdΛdbc and observing that the components `a
e`b

fndΛdef and
`a
fndneΛdef vanish on I due to constraints (17f) and (17g), a calculation yields:

τ cΛabc ' τ c`ad`be`cf∆def + τ c`a
d`c

enf∆dfenb ≡ τ cΛ(3)
abc + τ cΛacnb.

As in the analysis of ∆abc, this means that suitable transport equations must be constructed

for Λ
(3)
abc and Λab. When all the indices in equation (38) are projected with the metric `a

b, its
right–hand side takes the form:

PΛ(3)
abc + 6Db(τ

dΛ
(3)
acd) + f(χ, 6K,Λ).

Now, the left–hand side of equation (38) can be expressed via the integrability condition (57b).
Projecting in the same way as before, and after a long calculation, one finds it can be expressed
schematically as f(χ, 6K,Λ, 6DΛ(3)), being this function homogeneous in ∆abc. Thus, this implies

a transport equation for Λ
(3)
abc. Regarding Λab, an analogous transport equation is found via

suitable contractions as well as exploiting the constraints for Λabc.

Remark 18. The main observation following the previous calculations is that one has homoge-
neous propagation equations intrinsic to I for all the components of the zero-quantities which
do not directly vanish by virtue of Proposition 7. Thus, if one can ensure that these intrinsic
propagation equations have vanishing initial data at the corner, their solutions have to vanish
along the conformal boundary as well —accordingly, the full set of zero-quantities associated to
the conformal field equations will vanish on I .

5.1.2 The propagation argument

Once we have obtained the relevant transport equations we are in position to state the following
lemma:

Lemma 2. Consider vanishing initial data for the zero-quantities Υab, Θa, ∆abc and Λabc at ∂S?
and assume that the conformal constraints (17a)–(17g) are satisfied. Then, all the components of
the zero-quantities vanish on the conformal boundary.

Remark 19. A similar approach can be employed to prove that the normal derivatives of the
zero–quantities vanish on S? via projecting the integrability conditions (56a)–(57b) with respect
to na. The result readily follows from the fact that all the components of the zero–quantities
vanish on S? —see Remark 11. Thus, one has vanishing initial data for the wave equations
(14a)–(14d).

5.2 Propagation of the gauge

The discussion of the propagation of the zero-quantities associated to the conformal Einstein
field equations needs to be supplemented with a discussion of the propagation of the gauge. The
strategy in this regard is similar to that used in the analysis of the propagation of the constraints
—i.e. one introduces a set of zero-quantities associated to the gauge and purports constructing a
suitable system of subsidiary homogeneous evolution equations.

5.2.1 Basic relations

In what follows it is convenient to define

Q ≡ R−R(x), (39a)

Qµ ≡ Γµ −Fµ(x), (39b)

Qµν ≡ Rµν − 2Φµν −
1

4
R(x)gµν . (39c)

Remark 20. The zero-quantity Q encodes the relation between the Ricci scalar of the unphysical
spacetime and the conformal gauge source function. The zero-quantity Qµ corresponds to the
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relation between the contracted Christoffel symbols and the coordinate gauge source function
giving rise to the generalised wave coordinates. Finally, Qµ is associated to the relation between
the Ricci tensor and the reduced Ricci tensor —compare with equation (8).

Remark 21. In what follows we regard the field gµν as the components of a metric tensor gab
in the coordinates x = (xµ). Let Rµν denote the components of the Ricci tensor, Rab, of gab in
the coordinates (xµ) and let R be the associated Ricci scalar. The objective of the subsequent
analysis is to investigate under what circumstances one has that R coincides with R(x), Rµν
coincides with Rµν and Φµν are the components of the symmetric tracefree part of Rµν so that
one can write

Rµν = 2Φµν +
1

4
R(x)gµν .

This is equivalent to showing that

Q = 0, Qµ = 0, Qµν = 0.

The definitions of Qµ and Qµν allows one to rewrite the reduced Ricci operator, equation (7),
and the reduced wave operator acting on Φµν , equation (10), as

Rµν [g] = Rµν −∇(µQν), (40a)

�Φµν = �Φµν − (Qµσ −∇µQσ)Φσν − (Qνσ −∇νQσ)Φσµ. (40b)

5.2.2 The subsidiary gauge evolution system

In the calculations of this section we make the following assumption:

Assumption 1. Let gµν and Φµν , with Φµ
µ = gµνΦµν = 0, be smooth solutions to the equations

Rµν = 2Φµν +
1

4
R(x)gµν , (41a)

�Φµν = 4Φµ
λΦνλ − ΦλρΦ

λρgµν +
1

3
R(x)Φµν +

1

6
∇µ∇νR(x)−�R(x)gµν , (41b)

for some smooth choice of the gauge source functions Fµ(x) and R(x).

Combining equation (41a) with identity (40a) one finds the relation

Rµν = 2Φµν +
1

4
R(x)gµν +∇(µQν), (42)

in which the reduced Ricci operator has been eliminated. The latter implies, in turn, that

R = R(x) +∇µQµ,

so that, in fact
Q = ∇µQµ. (43)

Also, it follows from its definition that
Q = Qµ

µ.

Moreover, substituting equation (42) into the definition of Qµν , equation (39c), one obtains the
relation

Qµν = ∇(µQν). (44)

Taking the divergence of this last identity, commuting covariant derivatives and using expression
(42) to eliminate the components of the Ricci tensor which appears after commuting derivatives
one obtains

∇µQµν =
1

8
QνR+QµΦµν +

1

4
Qµ∇µQν +

1

2
�Qν +

1

2
∇νQ+

1

4
Qµ∇νQµ. (45)
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Remark 22. Equations (43) and (44) show that the zero–quantities Q, Qµ and Qµν are not
independent of each other. In what follows we will regard Qµ as the fundamental zero quantity.
Clearly, if Qµ = 0 then necessarily Q = 0 and Qµν = 0.

The construction of a suitable system of subsidiary equations for the fields Q, Qµ and Qµν
makes use of the properties of the Bach tensor Bab —see Appendix A.4. From the definition of
the Bach tensor given in equation (58) one can find an expression for Bab which is homogeneous
in the fields Q, Qµ and Qµν :

Bµν = − 5

12
QΦµν − Φν

λQµλ − Φµ
λQνλ +

1

24
Q2gµν −

1

48
QR(x)gµν −

5

48
Q∇µQν +

1

48
R(x)∇µQν

+2Φνλ∇µQλ −
1

4
∇µ∇λ∇λQν −

1

16
Q∇νQµ +

1

16
R(x)∇νQµ +

3

16
∇µQλ∇νQλ

+
7

4
Φµλ∇νQλ +

1

6
∇ν∇µQ+

1

4
∇λ∇µ∇λQν +

1

12
gµν∇λ∇λQ−

1

4
∇λ∇λ∇µQν

−1

4
∇λ∇λ∇νQµ +

3

4
Φνλ∇λQµ +

1

8
∇νQλ∇λQµ +

1

16
∇λQν∇λQµ +

1

2
Φµλ∇λQν

+
1

8
∇µQλ∇λQν −

1

2
Ξdµλνρ∇ρQλ −

1

4
Ξdµρνλ∇ρQλ −

3

4
Φλρgµν∇ρQλ

− 1

16
gµν∇λQρ∇ρQλ −

1

16
gµν∇ρQλ∇ρQλ.

From the previous identity one finds, after some manipulations, that

∇µBµν = −1

4
�2Qν +Hν(∇�Q,∇Q,∇Q,Q, Q).

In view of the above, it is convenient to define the auxiliary tensor field

Ma ≡ �Qa.

A further calculation then shows that

�Q = H(∇M ,∇Q,∇Q, Q).

Recalling that the Bach tensor is divergence free, i.e. ∇aBab = 0, it follows from the discussion
in the previous paragraph that the fields Ma, Qa and Q satisfy an homogeneous system of wave
equations of the form

�Mµ = 4Hµ(∇M ,∇Q,∇Q,Q, Q), (46a)

�Qµ = Mµ, (46b)

�Q = H(∇M ,∇Q,∇Q, Q). (46c)

In the following, the above system will be known as gauge subsidiary evolution system. Given the
homogeneous nature of (46a)-(46c), if the system is supplemented with vanishing boundary and
initial conditions, one necessarily has the unique solution

Mµ = 0, Qµ = 0, Q = 0, in a neighbourhood of ∂S?.

The latter, in turn, implies that

Qµν = 0 in a neighbourhood of ∂S?.

Remark 23. If this is the case, then, at least in a neighbourhood of ∂S? one has that

R = R(x), Γµ = Fµ(x)

and the tensor Φab coincides with one half of the tracefree part of the Ricci tensor, Rab, of the
metric gab.
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5.2.3 Initial and Boundary conditions for the subsidiary gauge evolution system

In this section we analyse the trivial initial conditions

Mµ = 0, Qµ = 0, Q = 0, ∇µMν = 0, ∇µQν = 0, ∇µQ = 0 on S?

and the trivial boundary conditions

Mµ = 0, Qµ = 0, Q = 0 on I

and consider the conditions under which they can be enforced.

In order to study the consequences of these vanishing initial-boundary conditions, it is con-
venient to decompose Qµ in terms of its intrinsic and normal components. In the case of I , the
projections q̂µ ≡ `µνQν and q̂ ≡ 6nνQν are naturally introduced. The fundamental zero-quantity
is then written as

Qµ ' q̂µ + q̂ 6nµ.
Adopting a Gaussian gauge as in Section 4, the conditions q̂µ ' 0 and q̂ ' 0 imply a system
of equations for the normal derivatives of the lapse and shift —see equations (27a) and (27b).
Namely, one has that

∂1 6α ' 3κ + F1, ∂1 6βδ ' Fδ − γδ. (47)

Additionally, when the conditions Q ' 0 and Mµ ' 0 are imposed, the following relations are
found:

6Dq̂ ' 0, 6D2q̂ ' 0, 6D2q̂µ + κ 6Dq̂µ ' 0. (48)

These can be read as higher order differential equations for the normal derivatives of 6α and 6β.

Following the same approach, in the case of S? one defines the projections qµ ≡ hµ
νQν and

q ≡ nνQν , so one has
Qµ = qµ − qnµ.

Setting Qµ = 0, an analogous decomposition of the metric implies a pair of evolution equations
for α and β in terms of the gauge source functions. When the remaining vanishing initial data
are analysed, a series of straightforward calculations leads to the following conditions on q and
qµ:

q = 0, qµ = 0, D(n)q = 0, D(n)qµ = 0, n = 1, 2, 3. (49)

Therefore, more restrictions in the form of higher order constraints for the lapse and shift functions
are imposed.

Remark 24. Even though the condition Q = 0 on S? and I implies, respectively, that Dq = 0
and 6Dq̂ ' 0, this can be equivalently stated as imposing that the function R(x) coincides with
the Ricci scalar of the metric gab.

The discussion of the section can be summarised in the following lemma:

Lemma 3. Let Q, Qµ and Qµν be defined as in (39a)–(39c). If conditions (47) and (48)
are satisfied on I , and (49) is satisfied on S?, then Q, Qµ and Qµν vanish identically in a
neighbourhood of ∂S?.

6 The local existence result

We are now in the position of formulating the main result of this article: a local in time existence
result for the conformal Einstein field equations in a neighbourhood of the corner ∂S?. This result
can, in turn, be patched together with the domain of dependence of open subsets of S? away from
∂S? to obtain a solution on a slab around S? —see e.g. [31], Section 12.3.

One has the following:
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Theorem 1. Let S? be a 3-dimensional spacelike hypersurface with boundary ∂S? and smooth
anti-de Sitter-like initial data defined on it. Consider the cylinder [0, τ•)× ∂S?, for some τ• > 0,
endowed with a smooth 3-dimensional Lorentzian metric `ij and let ψ0, ψ4 be two complex-valued
scalar functions. Assume that the data on S? and the cylinder satisfy the corner conditions at ∂S?.
Then, there exists a smooth solution to the Einstein field equations with λ < 0 in a neighbourhood
of S?.

Proof. Consider initial data on S? given as in Definition 2. Given a 3–dimensional Lorentzian
metric `ij on the cylinder [0, τ•) × ∂S?, the data given by (24), (28) and (30) can be computed.
On the other hand, 6dij is determined via the system (32a)–(32b), which requires the specification
of ψ0 and ψ4 along with initial values for w and wi. Notice that the latter ones are prescribed by
the initial data at ∂S?. If these two sets of initial and boundary data satisfy the corner conditions
at ∂S? then the theory of initial-boundary value problems, as given in e.g. [10, 13], guarantees
the existence of a unique solution to the system of wave equations (11a)–(11e) in a neighbourhood
of ∂S?.

Given the boundary data described above, Proposition 7 and Lemma 2 imply that all the
components of the zero-quantities vanish on the cylinder. On the other hand, from Remark 11
and Remark 19 we have that the initial data on S? yield vanishing data for the zero–quantities and
their first-order derivatives on this hypersurface. Thus, Proposition 4 implies that a solution to the
system (11a)–(11e) guarantees the existence and uniqueness of a vanishing solution of equations
(14a)–(14d). From the definition of the zero–quantities it follows then that the conformal Einstein
field equations (2a)–(2e) are satisfied in a neighbourhood of ∂S?.

Finally, having a solution to the conformal Einstein field equations, Proposition 1 implies that
the metric g̃ab = Ξ−2gab is a solution to the Einstein field equations (1) with λ < 0 for Ξ 6= 0.

Remark 25. A more precise statement about the regularity of the initial data and boundary
conditions needs to be expressed in terms of suitable Sobolev spaces and goes beyond the scope
of this article. Here, for the sake of simplicity of the presentation we have opted for phrase these
conditions in terms of the word smooth.

7 Conclusions

The construction carried out in this work can be implemented to numerical codes in a systematic
way. Moreover, it represents a step forward with respect to the work in [19] as the wave equations
to be solved are manifestly hyperbolic. Furthermore, the free boundary data for the Weyl tensor
are explicitly related to the incoming and outgoing radiation. This may make possible to study
more general boundary conditions, relevant for a better understanding of the instability of anti-de
Sitter-like spacetimes. Nevertheless, as the geometric character of these data is broken by the
performed decompositions, further work must be done in order to obtain a completely covariant
formulation.

The local existence result presented assumes a vanishing matter–energy component. However,
under the methods of conformal geometry, it is not clear how completely general scenarios can
be studied —see [21] for a discussion of a particular case of the Einstein-massive scalar field case
which is particularly amenable to the use of conformal methods and [22] for a discussion about
dust models coupled to Einstein equations with λ > 0. Despite this fact, if a tracefree matter field
is considered, it is possible to establish a well–posed problem and analyse it in a similar fashion to
the one described here. In this context, work is currently under progress to investigate a possible
extension of the result to anti-de Sitter-like spacetimes for this class of energy–momentum tensors.
Moreover, this naturally leads to several particular cases of interest, namely, Maxwell, Yang–Mills
and scalar fields.
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A Zero-quantities and integrability conditions

The zero-quantities (12a)–(12d) defined in Section 2.4 possess a set of integrability conditions
which allow us to understand the interrelations between the various equations. These con-
ditions arise in a natural way when appropriate antisymmetrisations of the derivatives of the
zero-quantities are taken into consideration.

A.1 Basic properties

First, the zero–quantities possess the following symmetries:

Υab = Υ(ab), ∆abc = ∆[ab]c, ∆[abc] = 0, Λabc = Λa[bc], Λ[abc] = 0. (50)

Directly from their definitions and using wave equations (4a)–(4c) some useful identities are found,
namely:

Υa
a = 0, ∇bΥa

b = 3Θa, ∇aΘa = ΥabLab, ∆a
b
b = 0, Λbab = 0,

∇c∆a
c
b = Λabc∇cΞ, ∇c∆ab

c = −Λcab∇cΞ, ∇cΛcab = 0.
(51)

Remarkably, the second Bianchi identity implies the following relation:

∆abc = −ΞΛcab. (52)

Given the structure of Λabc as given in (12d), it will be more convenient to define the following
auxiliary zero–quantity:

Λabcde ≡ 3∇[adbc]de = Λd[abgc]e − Λe[abgc]d. (53)

As noticed in [7], this new object arises in a natural way when (2d) is suitably contracted with
the 4–volume form εabce. Also, observe that Λabcde has only two independent divergences. From
its definition, and assuming the validity of the wave equation (4d), it follows that

∇cΛabcde = 2∇[aΛb]de, (54a)

∇eΛabcde = 3∇[aΛ|d|bc]. (54b)

Moreover, by contracting equation (54a), an additional identity involving the other independent
divergence of Λabc is directly found:

∇cΛabc = ∇cΛbac. (55)

Finally, one can observe that the expressions for Υa
a, ∇aΘa, ∇c∆a

c
b and ∇cΛabcde given

above represent the geometric wave equations (4a)-(4d), respectively.

A.2 Integrability conditions

Making use of the identities presented in previous section, direct computations yield the following
integrability conditions for Υab and Θa:

2∇[aΥb]c = 2gc[aΘb] + Ξ∆abc, (56a)

2∇[aΘb] = −2L[a
cΥb]c + ∆abc∇cΞ. (56b)

27



Regarding the other two zero–quantities, equation (54b) represents an integrability condition
for Λabc. The latter, along with identity (52), implies an analogous equation for ∆abc:

3∇[a∆bc]d = −3Λd[ab∇c]Ξ− Ξ∇eΛbcade, (57a)

3∇[aΛ|d|bc] = ∇eΛabcde. (57b)

Equations (56a)–(57b) are the integrability conditions for the zero-quantities associated to vacuum
conformal Einstein field equations:

Remark 26. Notice that equation (54a) is also an integrability condition for Λabc. In this sense,
the wave equations obtained form (56a)–(57b) are in general not unique.

A.3 The subsidiary equations

With the previous equations at hand, and assuming that the fields Ξ, s, Lab and dabcd satisfy the
wave equations (4a)–(4d), suitable evolution (i.e. wave) equations for the zero-quantities can be
obtained by direct application of a covariant derivative. Commuting derivatives, and using the
identities exposed in A.1, straightforward but lengthy calculations yield:

∇d∇dZab = −ΞZdcdadbc +
1

6
ZabR+ Zb

dLad + 3Za
dLbd − 2Zdc Ldcgab +∇aZb + 3∇bZa − Ξ Λdab∇dΞ,

∇b∇bZa = 6LabZ
b − Zbc∆abc + 2ΞLbc∆abc + Zbc∇aLbc − 1

6Zab∇bR+ Zbc∇cLab,

∇d∇d∆abc = −4Λcabs− Ξ2Λc
dedadbe + 2Ξ2Λd[a

edb]dce +
1

6
ΞΛcabR− 4ΞΛdabLcd + 4ΞΛdc[aLb]d

−2Ξ2Λdefgc[adb]edf − 4Ξgc[aΛdb]
eLde − 2∇dΛcab∇dΞ,

∇e∇eΛabc = ΞΛa
efdbecf − 2ΞΛe[b

fdc]eaf + 4ΛebcLae − 4Λea[bLc]e + 2ΞΛefdga[bdc]fed + 4ga[bΛ
e
c]
fLef .

These equations are clearly homogeneous in the zero-quantities and their first derivatives.

A.4 The Bach tensor

The Bach tensor in 4-dimensions is defined as

Bab ≡ ∇c∇aLbc −∇c∇cLab − CacbdLcd. (58)

It can be written in terms of zero-quantities as

Bab = ∇c∆acb − Λabc∇cΞ− dacbdZcd. (59)

Thus, for any solution to the conformal Einstein field equations one has that Bab = 0. Finally, it
is observed that

∇aBab = 0

independently of whether the conformal Einstein field equations hold or not.
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15, 595 (1990).

[24] J. Kánnár, Hyperboloidal initial data for the vacuum field equations with cosmological con-
stant, Class. Quantum Grav. 13, 3075 (1996).

29
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