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Charge transport through molecular junctions is often described either as a purely coherent or a
purely classical phenomenon, and described using the Landauer–Büttiker formalism or Marcus theory
(MT), respectively. Using a generalised quantum master equation, we here derive an expression for
current through a molecular junction modelled as a single electronic level coupled with a collection of
thermalised vibrational modes. We demonstrate that the aforementioned theoretical approaches can be
viewed as two limiting cases of this more general expression and present a series of approximations of
this result valid at higher temperatures. We find that MT is often insufficient in describing the molecular
charge transport characteristics and gives rise to a number of artefacts, especially at lower temperatures.
Alternative expressions, retaining its mathematical simplicity, but rectifying those shortcomings, are
suggested. In particular, we show how lifetime broadening can be consistently incorporated into
MT, and we derive a low-temperature correction to the semi-classical Marcus hopping rates. Our
results are applied to examples building on phenomenological as well as microscopically motivated
electron-vibrational coupling. We expect them to be particularly useful in experimental studies of
charge transport through single-molecule junctions as well as self-assembled monolayers. Published
by AIP Publishing. https://doi.org/10.1063/1.5049537

I. INTRODUCTION

In the last twenty years, single-molecule electronics
has transformed from an exotic to a well-established, fast-
developing field.1,2 This transition has been predominantly
driven by enormous technological progress in the fabrication
of single-molecule junctions (SMJs). These devices comprise
an individual molecule spanning a gap between two metallic
electrodes. Such a setup allows for the passing and measuring
of the electric current flowing through the studied structure.
There currently exist a number of techniques which can be
used to fabricate SMJs. Historically, methods utilising scan-
ning tunneling microscopy have perhaps been the most impor-
tant.3–6 Over the years, various other techniques have been
developed, based on break-junctions,7–9 electro-migrated gold
electrodes,10,11 electroburnt,12–15 and etched graphene nano-
junctions.16–18 Some of these device geometries feature a so-
called gate electrode, which allows for the electrostatic control
of the molecule. This enables operation in the resonant trans-
port regime, where the molecular energy levels lie within the
bias window, and the non-resonant regime, where they are
outside it.

Electron-vibrational (electron-phonon) interactions can
play a significant role in charge transport through molecu-
lar junctions.19 In the off-resonant regime, these effects are
typically relatively modest, but they can have an enormous

a)Electronic mail: jakub.sowa@materials.ox.ac.uk

influence on the resonant transport characteristics. The the-
ory of vibrational effects in resonant transport is by now
quite well developed. Intermediate and strong coupling to
individual molecular vibrational modes typically gives rise
to steps in the IV characteristics (or peaks in the differ-
ential conductance).10,20–22 It has further been shown that
these interactions can result in a breadth of other phenom-
ena including negative differential conductance, rectification,
and current blockade (known as the Franck–Condon block-
ade).23–28 Interactions with a collection of thermalised modes
(weakly coupled molecular modes or modes in the solvent or
the substrate) do not induce similarly clear signatures in the
current-voltage characteristics. Their influence is usually stud-
ied by considering the temperature dependence of the transport
behavior.29–33

In spite of the advancements in the field, experimental
measurements of charge transport through molecular junctions
remain challenging. The main issue continues to be the repro-
ducibility of results between different junctions comprising
the same molecular structures. This problem is inherent to
single-molecule measurements and stems mainly from dif-
ferences in the microscopic structure of the leads, variabil-
ity in the molecule-lead contacts, and geometric distortions
of the deposited molecular structures. As the result, there
currently exists a dissonance between the theoretical mod-
eling of (inelastic) resonant transport and the majority of
experimental studies on the topic. The analysis in the lat-
ter is often limited to qualitatively identifying the vibrational
features,15,34–36 as reproducing the full IV characteristics
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has often proven to be problematic (with a few notable
exceptions20,37). This is clearly unsatisfactory, and therefore,
there exists a need for a simple theoretical framework which
captures the relevant transport phenomena (beyond single-
vibrational-mode models) at the minimal required level of
complexity.

The objective of this work is to arrive at an expression
for the steady-state electric current through a weakly coupled
molecular junction in the resonant transport regime which
will capture the effects of vibrational coupling and lifetime
broadening, and also account for the charge state of the molec-
ular system. We shall achieve this using a relatively simple
generalised quantum master equation (GQME).38 Although
there currently exist a number of sophisticated theoreti-
cal approaches that have achieved the goal set out above
(most notably methods using the hierarchical equations of
motion),39–42 their complexity typically restricts their use in
explaining the experimental measurements. The second goal
of this work is to derive a number of approximate expres-
sions valid at higher temperatures which can be very eas-
ily computed or perhaps even fitted to empirical data. We
will focus on vibrational effects in short molecular junc-
tions (modelled as a single site) although the crucial role of
electron-phonon coupling in charge transport through longer
molecular wires, DNA, and similar structures has also been
demonstrated.29,32,43–47

This work is organised as follows. In Sec. II, we out-
line the theoretical model used in this study. Subsequently,
in Sec. III, we derive and discuss a compact expression
for the electric current flowing through the junction. As
mentioned above, it will be obtained using the generalised
quantum master equation in the polaron-transformed frame.
Section IV discusses approximate expressions of this result
valid in various parameter regimes. As we shall demon-
strate, a number of simplifications of the expression from
Sec. III can be obtained for increasing temperature resulting

FIG. 1. Schematic illustration of the main conceptual result of this work. T
denotes the temperature of the system, kB is the Boltzmann constant, Γ is the
lifetime broadening, and ωc is the cut-off frequency of the phonon bath.

in a tiered theoretical approach, schematically pictured in
Fig. 1. These results are further discussed and summarised in
Sec. V.

II. MODEL

Our theoretical model is schematically pictured in Fig. 2
and described by the following Hamiltonian (we set ~ = 1
throughout):

H = HS + HSE + HE + HSB + HB. (1)

We assume that the molecule possesses a single electronic
energy level with the creation (annihilation) operator a†0 (a0)
and energy ε0,

HS = ε0 a†0a0. (2)

The position of the energy level in question, with respect to
the Fermi energies of the unbiased electrodes, can be altered
by applying the gate potential Vg: ε0 = ε00 − |e|Vg, where e is
the electron charge. The left (L) and right (R) electrodes are
described by

HE =
∑

l=L,R

∑
kl

εkl c
†

kl
ckl , (3)

where c†kl
(ckl ) is the creation (annihilation) operator for the

electron in the level kl with energy εkl in the lead l. The
molecule-lead coupling is described by the usual tunneling
Hamiltonian

HSE =
∑

l=L,R

∑
kl

Vkl a
†

0ckl + V ∗kl
c†kl

a0, (4)

where Vkl is the coupling strength. Furthermore, the electronic
degree of freedom is coupled to a collection of thermalised
vibrational modes (a phonon bath) which are modelled as har-
monic oscillators with frequencies ωq and raising (lowering)
operators b†q (bq),

HB =
∑

q

ωqb†qbq. (5)

The electronic-vibrational coupling has the usual linear form

HSB =
∑

q

gq a†0a0(b†q + bq), (6)

where gq is the electron-vibrational coupling constant. In gen-
eral, the electronic degrees of freedom in molecular junctions
can couple both to the intra-molecular and environmental

FIG. 2. A graphical illustration of the system studied in this work. We model
the molecular junction as a single electronic level coupled to a collection of
thermalised vibrational modes, as well as the left (L) and right (R) electrode.
Vb denotes the bias potential, and µL and µR are the chemical potentials of
the left and right electrode, respectively.
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vibrational modes, the latter originating from the solvent or
the surface on which the molecule is deposited. We shall treat
these interactions on an equal footing (which is possible if one
assumes thermalisation of all the molecular and broader envi-
ronmental vibrational modes) through the so-called spectral
density (SD). It is formally defined as

J(ω) =
∑

q

|gq |
2δ(ω − ωq), (7)

and describes the distribution of the vibrational modes
weighted by the strength of the electron-vibrational coupling.
Throughout this work, we assume that all vibrational modes
can be found in their thermal equilibrium state. Our approach
therefore disregards any non-equilibrium vibrational dynam-
ics although we note that it may affect the transport properties
of the junction and may be especially important in the case of
intra-molecular vibrational modes.46,48

Let us note that the transport through molecular self-
assembled monolayers49,50 can also be modelled using such
Hamiltonian although the effects of inter-molecular interac-
tions (not included here) may play an important role in those
systems.51

III. THEORY
A. Polaron transformation

We first perform the polaron (Lang-Firsov) transformation
which eliminates the HSB term from the Hamiltonian52,53

H̄ = eGHe−G, (8)

where G =
∑

q(gq/ωq) a†0a0(b†q − bq). This yields the Hamil-
tonian in the polaron-transformed frame,

H̄ = H̄S + H̄SE + HE + HB, (9)

H̄S =
*.
,
ε0 −

∑
q

|gq |
2

ωq

+/
-

a†0a0 ≡ ε̄0 a†0a0, (10)

H̄SE =
∑
l,kl

Vkl X
†a†0ckl + V ∗kl

c†kl
Xa0. (11)

As can be seen above, the position of the molecular elec-
tronic energy level has been renormalised. Furthermore, the

displacement operators X and X† have been introduced into
the molecule-lead coupling Hamiltonian,

X = exp


−

∑
q

gq

ωq
(b†q − bq)


. (12)

Physically, their presence in Eq. (11) accounts for the fact that
the charging of the molecule is accompanied by a displacement
of the vibrational modes coupled to the molecular level. Prop-
erties of the displacement operators are extensively discussed,
for instance, in Ref. 54.

B. Quantum master equation

We begin with a second-order quantum master equation
within the Born approximation (valid in the non-adiabatic
regime33 of weak molecule-lead coupling) in the form given
by Yan,55

dρ(t)
dt
= −iLρ(t) −

∫ t

0
dτ〈L′(t)G(t, τ)L′(τ)G†(t, τ)〉ρ(t),

(13)

where the superoperators in the above are defined as
L• ≡ [H̄S , •], L′• ≡ [H̄SE , •] and 〈. . .〉 denotes the trace over
all (phononic and fermionic) environmental degrees of free-
dom. G(t, τ) is the (free) system propagator, G(t, τ) ≡ e−iL(t−τ).
It can be defined in Hilbert space, as acting on an arbitrary
operator A, by

G(t)[A] = e−iH̄S tAeiH̄S t . (14)

In order to go beyond the second-order Born approximation
(and similar to what is done within the self-consistent Born
approximation56,57), we shall replace the free system propa-
gator G(t, τ) in Eq. (13) with an effective one, U(t, τ). When
deriving the second-order molecule-lead hopping rates, this
as-yet-unknown effective propagator will account for the fact
that the unitary evolution of the relevant system operators is
influenced by the system-environment coupling and allow us
to incorporate the otherwise missing lifetime broadening into
our description.38

Let us first expand the commutators in Eq. (13) and then
replace the free propagator with U(t, τ) = U(t − τ). This
yields

dρ(t)
dt
= −i[H̄S , ρ(t)] −

∑
l

∑
kl

∫ t

0
dτ

{
C+

kl
(t − τ)B(t − τ)a0 U (t − τ)

[
a†0
]
ρ(t) − C−kl

∗(t − τ)B∗(t − τ)a0 ρ(t)U (t − τ)
[
a†0
]

+ C−kl
(t − τ)B(t − τ)a†0 U (t − τ)[a0]ρ(t) − C+

kl

∗(t − τ)B∗(t − τ)a†0 ρ(t)U (t − τ)[a0]

+ C−kl

∗(t − τ)B∗(t − τ) ρ(t)U (t − τ)
[
a†0
]
a0 − C+

kl
(t − τ)B(t − τ) U (t − τ)

[
a†0
]
ρ(t)a0

+ C+
kl

∗(t − τ)B∗(t − τ) ρ(t)U (t − τ)[a0]a†0 − C−kl
(t − τ)B(t − τ) U (t − τ)[a0]ρ(t)a†0

}
. (15)

In the equation above, we denoted C+
kl

(t − τ)

= |Vkl |
2〈c†kl

(t)ckl (τ)〉 and C−kl
(t − τ) = |Vkl |

2〈ckl (t)c
†

kl
(τ)〉.

B(t − τ) is the phononic correlation function defined as

B(t − τ) = 〈X(t)X†(τ)〉 = Tr
[
X(t)X†(τ)ρB

]
, (16)

where ρB is the density matrix of the phonon bath. The
fermionic correlation functions can be written as
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∑
kl

C±kl
(t) =

∫ ∞
−∞

dε
2π
Γ
±
l (ε) e±iε t , (17)

where Γ+
l (ε) = Γl(ε)fl(ε) and Γ−l (ε) = Γl(ε)[1 − fl(ε)]. Here,

Γl(ε) = 2π
∑

kl
|Vkl |

2δ(ε − εkl ) is the spectral density for the
lead l. The Fermi distributions in each of the leads are given
by fl(ε) = (exp[(ε − µl)/kBT ] + 1)−1, where µl is the chemical
potential of the lead l. Furthermore, for thermalised vibrational
modes, the phononic correlation function is given by

B(t) = exp


−
∑

q

g2
q

ω2
q

(
Nq(1 − eiωqt) + (Nq + 1)(1 − e−iωqt)

) ,

(18)

where Nq = (eωqβ − 1)−1 is the average excitation of the mode
q at the inverse temperature β = 1/kBT. Using the definition
of the phononic spectral density, the above can be written in a
more convenient form

B(t) = exp

[∫ ∞
0

dω
J(ω)

ω2

(
coth

(
βω

2

)
×

(
cosωt − 1

)
− i sinωt

)]
. (19)

In Eq. (15), we next substitute t ′ = t − τ and, anticipating
that our interest will lie in the steady-state limit, extend the
integration limit to infinity and replace ρ(t) with the stationary
density matrix ρst such that dρst/dt = 0. The quantum master
equation now takes the form

0 = −iLρst −
∑

l

∫ ∞
−∞

dε
2π

×

{ ∫ ∞
0

dt ′ Γ+
l (ε)e+iε t′B(t ′)a0 U(t ′)

[
a†0
]
ρst − . . .

}
(20)

and similarly for the rest of the terms. The solution to the above
QME is the stationary density matrix, ρst, which will later be
used to calculate the current flowing through the junction.

C. The effective propagator

Before we determine the effective propagator required in
Eq. (20), let us briefly discuss the free propagator present in
Eq. (13). It is defined in Eq. (14), and in the present case,
it yields G(t)[a0] = a0eiε̄0t and G(t)[a†0] = a†0e−iε̄0t . One can
easily see the origin of the problem encountered within the
standard Born approximation. Since, in the second-order QME
(13), it is assumed that the evolution of the creation (annihila-
tion) operator is unaffected by the molecule-lead coupling, the
electron hopping described by this dissipator will not include
lifetime broadening. Therefore, we replace the free propagator
with

U(t)[A] = Tr
[
e−iH̄tAeiH̄t

]
, (21)

where A = {a0, a†0}; cf. Ref. 38. In order to determine
U(t)[a0], let us consider the equations of motion for a0(t)
≡ exp

(
−iH̄t

)
a0 exp

(
iH̄t

)
and ckl (t) ≡ exp

(
−iH̄t

)
ckl exp

(
iH̄t

)
operators in the polaron-transformed frame,

ȧ0(t) = iε̄0a0(t) − i
∑
l,kl

Vkl X
†(t)ckl (t), (22)

ċkl (t) = iεkl ckl (t) − i V ∗kl
X(t)a0(t). (23)

Using the Laplace transform, a0(z) = ∫
∞

0 dte−zta0(t), we can
turn this set of differential equations into an algebraic one,

za0(z) − a0(0) = iε̄0a0(z) − i
∑
l,kl

Vkl X
†(z)ckl (z), (24)

zckl (z) − ckl (0) = iεkl ckl (z) − i V ∗kl
X(z)a0(z). (25)

Eliminating the fermionic reservoir modes gives

[z − iε̄0] a0(z) = a0(0) −
∑
l,kl

|Vkl |
2

z − iεkl

a0(z)

− i
∑
l,kl

Vkl X
†(z)

z − iεkl

ckl (0), (26)

where, crucially, the displacement operators have cancelled
in the second term on the right-hand side. We disregard the
final term (which vanishes when tracing out the fermionic
reservoirs) and replace the sum in the second term with an
integral ∑

kl

|Vkl |
2

z − iεkl

→

∫ ∞
−∞

dε l

2π
Γl(ε l)
z − iε l

. (27)

We will assume that Γl(ε l) is a Lorentzian, Γl(ε l) =
Γl δ

2
l

ε2
l + δ2

l

,

and to obtain the wide-band approximation, set δl → ∞.58

Consequently,

a0(z) =
1

z − iε̄0 + (ΓL + ΓR)/2
a0(0). (28)

Moving back to the time domain, and defining Γ

= (ΓL + ΓR)/2, yields

U(t)[a0] = a0e+iε̄0t−Γt , (29)

and similarly, for a†0, we obtain

U(t)
[
a†0
]
= a†0e−iε̄0−Γt . (30)

Let us stress here that the simplicity of the correction to the
Born approximation (e−Γ t) is only possible due to the (not
immediately obvious) cancellation of the displacement oper-
ators in Eq. (26). We note that the effective propagator of the
type introduced here may overestimate the amount of life-
time broadening; see Ref. 22 for a detailed discussion. While
more sophisticated approaches to determining the effective
evolution in this context have been developed (such as the
self-consistent approach of Galperin et al.59), their complex-
ity would prevent us from obtaining closed-form expressions
for the electric current through the junction—one of the main
objectives of this work.

D. Back to the quantum master equation

Once again, we will take Vkl = Vl = constant and assume
the wide-band approximation. Then, Γl(ε) in Eq. (17) becomes
Γl = 2π|V l |2%l, where %l is the constant density of states in lead
l. Inserting Eqs. (29) and (30) into the quantum master equation
allows us to express it in a surprisingly simple form
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0 = −i[H̄S , ρst] +
∑

l

{
υl

(
a†0ρsta0 − a0a†0ρst

)
+ υ∗l

(
a†0ρsta0 − ρsta0a†0

)
+ ῡl

(
a0ρsta

†

0 − a†0a0ρst

)
+ ῡ∗l

(
a0ρsta

†

0 − ρsta
†

0a0

)}
, (31)

where the rates υl and ῡl can be inferred from Eq. (20). The
solution to the above, in the basis of the neutral and charged
molecular states, can be written as

ρst =
*...
,

γ̄L + γ̄R

γL + γR + γ̄L + γ̄R
0

0
γL + γR

γL + γR + γ̄L + γ̄R

+///
-

, (32)

where the rates in the above are defined as γl = 2Re[υl],
γ̄l = 2Re[ῡl] and given by

γl = 2 Re

[
Γl

∫ ∞
−∞

dε
2π

fl(ε)
∫ ∞

0
dτ e+i(ε−ε̄0)τe−ΓτB(τ)

]
, (33)

γ̄l = 2 Re

[
Γl

∫ ∞
−∞

dε
2π

[1 − fl(ε)]
∫ ∞

0
dτ e−i(ε−ε̄0)τe−ΓτB(τ)

]
.

(34)

We note that coherences between the two charge states van-
ish (and are generally decoupled from the electronic popula-
tions). This is in fact universally true and is not a consequence
of the approximations made herein.60 The quantum master
equation (31) has a secular form, and consequently, we only
need to consider the real parts of the response functions, as
shown above.

The steady-state current through the molecule at the left
and right contacts is equal and opposite. Let us consider the
right contact where it can be expressed (again, in the units
of ~) simply as I = e

(
γR ρ00,st − γ̄Rρ11,st

)
.61,62 Together with

Eq. (32), this gives the generic expression

I = e
γLγ̄R − γR γ̄L

γL + γR + γ̄L + γ̄R
. (35)

The above expression, together with Eqs. (33) and (34), con-
stitutes the GQME approach, as denoted in Fig. 1, and will
serve as a basis for the remainder of this work.

E. Comparison to NEGF

First, let us note that in the limit of vanishing electron-
phonon coupling [when B(t) = 1], the above approach recov-
ers the usual Landauer-Büttiker (LB) expression for current
through a single non-interacting level; see Appendix A.

In the presence of electron-phonon coupling, the expres-
sion (35) together with Eqs. (33) and (34) yields a result
that is encouragingly similar to that derived using the non-
equilibrium Green function (NEGF) approach,63–65 for con-
venience given in Appendix B. The difference between the
NEGF result given in Eq. (B1) and the one derived here stems
predominantly from the fact that our result was derived by
first determining the steady-state density matrix ρst, and con-
sequently, it accounts for the charge state of the molecular
system [unlike Eq. (B1), see Ref. 63]. This is perhaps best
demonstrated with a numerical example. In what follows, we
apply the bias voltage symmetrically µl = ±eVb/2 and, for
simplicity, assume that the electronic level considered here
is coupled to a phonon bath with a structureless super-ohmic
spectral density

J(ω) =
λ

2

(
ω

Ωc

)3

e−ω/Ωc , (36)

where λ is the reorganisation energy and Ωc is the cut-off
frequency.

First, in Fig. 3(a), we show the IV characteristics cal-
culated for the case of symmetric molecule-lead coupling
(ΓL = ΓR) and the molecular energy level being on resonance
(ε̄0 = 0). The GQME and NEGF results give rise to identical
IV characteristics (it can be shown that this is always the case
on resonance, i.e., when ε̄0 = 0).

The more interesting case is one of asymmetric molecule-
lead coupling (ΓL , ΓR) when the molecule does not lie on
resonance (ε̄0 , 0). If one of the rates is much greater than
the other, the molecule is almost always occupied (or empty,
depending on the sign of Vb). This means that depending on
the direction of the current, it is either the hopping on or off
the molecule that is the overall bottleneck of the transport. In
the presence of vibrational coupling and when the molecu-
lar level lies off resonance, this means that different inelastic
processes control the overall current which results in current
rectification (asymmetric IV characteristics).26 This effect has
been observed experimentally66,67 and as shown in Fig. 3(b) is

FIG. 3. Transport characteristics for an electronic level coupled to a super-ohmic phonon bath with λ = 150 meV and Ωc = 25 meV. (a) IV characteristics on
resonance with ε̄0 = 0 meV. (b) IV characteristics off resonance with ε̄0 = 160 meV. [(c) and (d)] Stability diagrams calculated for the case of asymmetric
coupling (ΓL = 10ΓR) using the (c) GQME and (d) NEGF approach. T = 10 K and ΓR = 2 meV throughout.
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captured by the GQME approach. On the other hand, the NEGF
result always remains symmetric with respect to the direction
of the current flow, as can be easily seen from Eq. (B1) (as long
as the bias is applied symmetrically). In Figs. 3(c) and 3(d), we
show the stability diagrams (maps of current as a function of
the applied bias and gate voltage) calculated using the NEGF
and GQME approaches for the case of asymmetric molecule-
lead coupling. The generalised quantum master equation once
again captures the asymmetry of the transport characteristics,
whereas the NEGF approach predicts a result that is sym-
metric with respect to the bias voltage. More sophisticated
NEGF approaches (of the type first developed by Galperin
et al.59) can capture the current rectification pictured in
Figs. 3(b) and 3(c),68 but they do not posses the appealing
simplicity of the methods considered herein.

In summary, our result is in complete agreement with the
scattering approach given in Appendix B on resonance, as well
as for vanishing electron-phonon coupling. In the case of asym-
metric molecule-lead coupling, it can also account for current
rectification (which as discussed above is not simply an arte-
fact of the GQME method)—an effect not captured by the
scattering approach considered here.

F. Microscopically motivated coupling

Before we proceed to study the transport behavior at
higher temperatures, we first take this opportunity and use
our GQME result to analyze the low-temperature transport

characteristics of a particular molecular system with the aid
of density functional theory (DFT) calculations. We shall
consider a molecular junction incorporating the curcuminoid-
based molecule, Fig. 4(a), recently studied experimentally by
Burzurı́ and co-workers.15 The authors estimated the electron-
vibrational coupling strength (of the anionic charge state) for
each of the molecular vibrational modes using the method
described in Ref. 69, as follows: First, one performs the geom-
etry optimisation of the neutral and charged (here anionic)
structure. By comparing the two geometries, the so-called
Duschinsky shift vector can be obtained from which the
dimensionless gq/ωq quantity can be easily determined for
each of the molecular vibrational modes.70,71 The result of
this calculation (from Ref. 15) is for convenience shown in
Fig. 4(a).

At this point, there are two ways in which we can proceed.
We can either (i) assume the molecular vibrational modes are
infinitely long-lived or (ii) introduce a small amount of damp-
ing and combine all these electron-vibrational couplings into
a single smooth spectral density. In both instances, the total
spectral density can be obtained simply as a sum

Jtot(ω) =
∑

q

Jq(ω), (37)

where Jq(ω) is a spectral density for the vibrational mode q.
For the the infinitely long-lived (undamped) modes, it is simply
Jq(ω) = |gq |

2δ(ω − ωq). In the latter case, we shall assume
that Jq(ω) takes the form given by Roden et al.,72

FIG. 4. (a) Dimensionless electron-phonon coupling parameters as a function of the vibrational frequencies ωq, from Ref. 15. Inset: the molecular structure
of the curcuminoid molecule considered therein. [(b) and (c)] Continuous spectral densities obtained from the above coupling parameters with (b) η = 1 meV,
Λ = 50 meV and (c) η = 50 meV, Λ = 60 meV. (d) IV characteristics and (e) their derivatives (differential conductance; dI/dVb) obtained for transport through
the 9ALCccmoid-based junction. ΓL = ΓR = 1 meV, ε̄0 = 0, and T = 4 K in both instances.
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Jq(ω) =
(gq/ωq)2 η ω3 e−ω/ΛΘ(ω)

π2η2ω2e−2ω/Λ + (ω−ωq + ηΛ− ηωe−ω/ΛEi(ω/Λ))2
,

(38)

where Θ(ω) is the unit step function and Ei(x) denotes the
exponential integral. The above expression was obtained by
assuming that the molecular modes are coupled to a secondary
ohmic phonon bath (with a cut-off frequencyΛ and a reorgan-
isation energy ηΛ). Figures 4(b) and 4(c) show two damped
spectral densities obtained in this way from the ab initio vibra-
tional coupling strengths plotted in Fig. 4(a) for illustrative
values of η and Λ.

We begin, in Fig. 4(d), by calculating the IV characteris-
tics on resonance at T = 4 K for the case of coupling to the
undamped vibrational modes and the continuous spectral den-
sities from Figs. 4(b) and 4(c), as well as the case of no vibra-
tional coupling (the Landauer-Büttiker limit). Coupling to
undamped and only slightly damped [JI(ω), Fig. 4(b)] vibra-
tional modes reassuringly delivers almost identical behavior.
Significantly different characteristics can be observed in the
case of much greater damping [JII(ω), Fig. 4(c)]. These dif-
ferences are clearly visible in the plot of differential con-
ductance (dI/dVb) in Fig. 4(e). At zero bias, the junction
is markedly less conductive in the case of coupling to the
undamped molecular modes. This can be explained by sig-
nificant damping of the low-frequency vibrational modes in
JII(ω).

Somewhat surprisingly, the structure of the transport char-
acteristics [peaks in the differential conductance, Fig. 4(e)]
even in the undamped case cannot be easily correlated with
the individual molecular vibrational modes. The origin of this
behavior can be traced back to the two low-frequency vibra-
tional modes that are strongly coupled (with gq/ωq > 1) to the
electronic degree of freedom; see Fig. 4(a). To understand this
effect, let us consider transport through an electronic level cou-
pled to a vibrational mode with frequencyωQ (with an interme-
diate coupling strength, gQ/ωQ < 1). In the absence of strong
coupling to any low-frequency modes, one would expect to
observe a peak in the differential conductance for bias volt-
age such that eVb = 2ωQ (for symmetrically applied bias and
on resonance). This corresponds to an excitation of the vibra-
tional mode in question and a simultaneous ground-state-to-
ground-state transition for all the remaining vibrational modes.
However, when the molecular electronic level is also strongly
coupled to a certain low-frequency mode (with frequencyωP),
the aforementioned transition is no longer efficient due to the
poor Franck-Condon overlap for the ground-state-to-ground-
state transition of the mode P. Instead, the visible peaks in the
differential conductance (corresponding to efficient inelastic
transitions) occur for the simultaneous excitation of both the
Q and P modes and therefore at eVb = 2(ωQ + nωP), where n
is a positive integer. The situation complicates further when,
as is the case here, ωP is smaller than the lifetime broadening
Γ. Then, the off-set of the original peak is no longer simply
an integer amount of ωP since the individual excitations of
mode P can no longer be resolved. Figure 5(a) shows the dif-
ferential conductance calculated for parameters as in Fig. 4(e)
but ignoring the two strongly coupled low-frequency modes.
Disregarding coupling to these modes recovers the expected

FIG. 5. (a) Differential conductance on resonance (ε̄0 = 0) assuming cou-
pling to the undamped modes in Fig. 4(a) with the exception of the two strongly
coupled low-frequency modes. (b) Renormalised zero-bias conductance as
a function of the gate voltage in the case of coupling to undamped vibra-
tional modes, ε̄0 = −|e |Vg. Molecule-lead coupling: ΓL = ΓR = 1 meV;
T = 4 K.

behavior—the differential conductance now features a set of
peaks which can easily be correlated with specific vibrational
excitations.

We also demonstrate the effect of these low-frequency
modes on the zero-bias conductance. Figure 5(b) shows
dI(Vb = 0)/dVb as a function of the gate voltage. The coupling
to the low-frequency modes significantly affects the width of
the conductance peak, which is often used to extract the life-
time broadening Γ. The values extracted in such a way should
therefore be treated with caution.73

Finally, we once again stress that our approach assumes
that (here, the intra-molecular) vibrational modes are ther-
malised at all times (to the same temperature as the fermionic
reservoirs). This constitutes an important limitation of our
approach since the above assumption is not necessarily always
valid as it has been observed experimentally66 and discussed
theoretically.23,25,48,74,75

IV. HIGH(ER)-TEMPERATURE LIMITS

In this section, we derive a number of approximations
of Eqs. (33) and (34) valid at increasing temperatures. This
collection of results yields a tiered set of approximations to the
original GQME, schematically pictured in Fig. 1. As we shall
demonstrate, two different approximations need to be made
within the GQME to arrive at the well-known Marcus theory
(MT)—one regarding the phononic correlation function and
the other one regarding the e−Γτ correction. The order in which
they ought to be made (and thus the pathway taken in Fig. 1)
depends on the relative magnitudes of the lifetime broadening
(quantified by Γ) and the cut-off frequency of the phonon bath
(describing the distribution of the vibrational modes).

A. Born-Markov approximation

We begin by recognising that the e−Γτ term only leads to
broadening of the IV characteristics. Broadening of the Fermi



154112-8 Sowa et al. J. Chem. Phys. 149, 154112 (2018)

distributions in the leads (at non-zero T ) will have the same
effect, and so the aforementioned correction can be ignored in
the limit of kBT � Γ. This trivially recovers the result obtained
within the usual second order Born-Markov (BM) approxi-
mation with respect to the leads (in the polaron-transformed
frame),61,76

γBM
l = 2 Re

[
Γl

∫ ∞
−∞

dε
2π

fl(ε)
∫ ∞

0
dτ e+i(ε−ε̄0)τB(τ)

]
, (39)

γ̄BM
l = 2 Re

[
Γl

∫ ∞
−∞

dε
2π

[1 − fl(ε)]
∫ ∞

0
dτ e−i(ε−ε̄0)τB(τ)

]
.

(40)

B. Marcus theory

In order to derive the semi-classical Marcus theory, we
take the limit of high temperature in Eqs. (39) and (40) and
assume a slowly fluctuating (low-frequency) environment.77

For the phononic correlation function, Eq. (19), this allows us
to approximate coth(βω/2) ≈ 2/βω, cos(ωt) − 1 ≈ −ω2t2/2,
and sin(ωt) ≈ ωt. This simplifies the phononic correlation
function to

B(t) ≈ exp
(
−λt2/β − iλt

)
, (41)

where λ is the reorganisation energy, formally defined as

λ =

∫ ∞
0

dω
J(ω)
ω
=

∑
q

|gq |
2

ωq
. (42)

Performing the one-sided Fourier transform leads to

γMT
l = 2 Γl

∫ ∞
−∞

dε
2π

fl(ε)

√
π

4λkBT
exp

(
−

[λ − (ε − ε̄0)]2

4λkBT

)
,

(43)

γ̄MT
l = 2 Γl

∫ ∞
−∞

dε
2π

[1− fl(ε)]

√
π

4λkBT
exp

(
−

[λ + (ε − ε̄0)]2

4λkBT

)
.

(44)

These are the well-known expressions for the rates of the elec-
tron hopping between a metallic electrode and a molecular
energy level, as described by Marcus theory33,78,79 (in the field
of electrochemistry, it is sometimes referred to as Marcus-DOS
or Marcus-Hush-Chidsey theory).80–83 These expressions have
been commonly used to study the charge transport through
redox molecular junctions,16,84–89 also in the case of multiple
transport channels.90

C. Modified Marcus theory

A major advantage of Marcus theory, besides its appar-
ent simplicity, is the fact that the entire complexity of the
phononic spectral density (which is often unknown in molecu-
lar systems) is reduced to a single parameter: the reorganisation
energy, λ. This is especially important in the context of experi-
mental studies, where λ can act as a fitting parameter. However,
as we shall demonstrate (also see Ref. 91), MT often inade-
quately describes the low-temperature behavior of molecu-
lar junctions: it severely overestimates vibrational effects at
low frequencies and underestimates them at high frequencies
[which is a consequence of the approximations made to arrive

at Eq. (41)]. Our goal here is to develop an extension of Marcus
theory which will (at least partially) rectify those shortcom-
ings at intermediate temperatures, whilst retaining most of its
simplicity.

In deriving Marcus theory, we have approximated
coth(βω/2) as 2/βω. Here we shall expand this term to the sec-
ond order: coth(βω/2) ≈ 2/βω + βω/6. Following the same
procedure as in Sec. IV B yields an almost equally simple
result

γMMT
l = 2 Γl

∫ ∞
−∞

dε
2π

fl(ε)
√

π

4λkBT + χ/3kBT

× exp

(
−

[λ − (ε − ε̄0)]2

4λkBT + χ/3kBT

)
, (45)

γ̄MMT
l = 2 Γl

∫ ∞
−∞

dε
2π

[1 − fl(ε)]
√

π

4λkBT + χ/3kBT

× exp

(
−

[λ + (ε − ε̄0)]2

4λkBT + χ/3kBT

)
. (46)

In the above, a new parameter describing the electron-phonon
coupling (χ) has been introduced,

χ =

∫ ∞
0

dω ω × J(ω) =
∑

q

|gq |
2ωq. (47)

The rates in Eqs. (45) and (46) constitute what we refer to here
as the modified Marcus theory (MMT). It is clear that χ/3kBT
acts as a low-temperature correction to MT which vanishes
for high T. As we shall demonstrate (vide infra), the modified
Marcus theory removes some of the artefacts of MT while
largely retaining its mathematical simplicity.

What is the physical meaning of the parameter χ? It
accounts for the coupling to higher frequency vibrational
modes for which the high-temperature assumption of MT is not
justified. The correction in Eqs. (45) and (46) thus vanishes if
the vibrational modes have frequencies much lower than kBT.
It is also clear that the hopping rates derived above do not
have the typical Arrhenius form (which is however recovered
at high temperatures).

Let us now demonstrate the effectiveness of the modi-
fied Marcus theory on a numerical example. We will again
assume that the electron-phonon coupling can be described
by the spectral density given in Eq. (36) and consider a case
of coupling to relatively high-frequency vibrational modes. In
Fig. 6, we plot the IV characteristics obtained using various
theoretical approaches for increasing temperature (left-hand
side of the diagram in Fig. 1). Due to relatively small lifetime
broadening, the GQME and BM approaches yield very simi-
lar results, and we shall omit the latter for clarity. The Marcus
approach gives rise to certain artefacts at lower temperatures:
current suppression at low bias voltage (effectively a spurious
Franck–Condon blockade) and current plateaus at artificially
low Vb. The origin of these features can be directly traced
back to the assumptions made in the derivation of Marcus the-
ory (Sec. IV B). As can be seen in Fig. 6, the modified Marcus
theory successfully rectifies these shortcomings at intermedi-
ate temperatures (at least at a qualitative level). It performs best
in the regime where the χ/3kBT correction is smaller than the
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FIG. 6. (a) IV characteristics on resonance (ε̄0 = 0 eV) at different temperatures. The molecular energy level is coupled to a vibrational environment with the
SD of Eq. (36) with λ = 140 meV, Ωc = 25 meV (χ = 0.0011 eV3), and ΓL = ΓR = 5 meV. (b) Plots of K(ε ), sum of the energy-dependent hopping rates, for
parameters as in (a).

4λkBT factor giving rise to the criterion χ/λ < 12(kBT )2. In
the case of the super-ohmic SD used here, this becomes simply
kBT > Ωc. At lower temperatures, the correction at hand leads
to an underestimation of the current in the resonant regime
(see Fig. 6) and its overestimation off resonance. This can be
explained as follows: the energy-dependent hopping rates in
the GQME (or the Born-Markov) approach are not symmet-
ric around ε = ε̄0 ± λ. Meanwhile, the χ/3kBT correction
introduced in the modified Marcus theory induces a symmet-
ric broadening of the Gaussian rates (predicted by MT). For
very low temperature, this additional broadening gives rise to
the effects discussed above.

To further investigate the modified Marcus approach, let
us plot the quantity K(ε) = K+(ε) + K−(ε), where K±(ε) are
given by

K±(ε) = Re
∫ ∞

0
dτ e±iετ−ΓτB(τ) (48)

and are directly proportional to the energy-dependent hopping
rates present in Eqs. (33) and (34). As discussed in Sec. III E,
on resonance, K(ε) directly determines the transport charac-
teristics. Figure 6(b) shows K(ε) obtained using the phononic
correlation functions as present in the GQME and the Mar-
cus approaches at different temperatures (let us note that the
lifetime broadening Γ is set to zero in both of the Marcus
approaches). Several aspects of transport characteristics plot-
ted in Fig. 6(a) become more clear. First, we notice the presence
of a peak at ε = 0 in the GQME result. It corresponds to an
elastic (ground state-to-ground state) electron hopping and is

naturally missing in both of the Marcus approaches which,
as the result, significantly underestimate the zero-bias con-
ductance. Second, within the Marcus approach, K±(ε) are the
Gaussian functions centred at ε = ±λ. At a given tempera-
ture, their width is determined solely by the reorganisation
energy. This may give rise to artefacts visible in Fig. 6(a).
On the other hand, within the modified Marcus approach,
the width of these Gaussian functions is also influenced by
the parameter χ, which therefore, at intermediate tempera-
tures, removes the spurious effects present in the usual Marcus
treatment.

Can the (modified) Marcus theory be applied to the
curcuminoid-based junction from Sec. III F? First, the Marcus
approaches cannot capture the effects of the structure of the
spectral density on the transport characteristics. On a qualita-
tive level, they can therefore only be valid at temperatures at
which the structure of the transport characteristics is washed
away by the thermal broadening of the Fermi distributions in
the leads. Second, the collection of the molecular vibrational
modes in Sec. III F is predominantly of very high frequency—
ωq is much larger than kBT at 300 K for most of the modes.
Consequently, the high-temperature assumption of MT will
only be satisfied well above room temperature. Similarly, the
criterion for the applicability of the modified MT yields the
temperature of over 600 K. As a result, the IV characteristics
obtained using the GQME approach at room temperature will
differ quite markedly from those obtained using the (modi-
fied) Marcus theory. However, one may expect the Marcus



154112-10 Sowa et al. J. Chem. Phys. 149, 154112 (2018)

approaches to accurately describe the low-bias transport which
is influenced predominantly by the low-frequency vibrational
modes (for which the high-temperature assumption of MT is
justified). Additionally, the molecular system in the junction
can also be coupled to environmental low-frequency modes
(of the substrate or the solution in which the junction is
immersed). If this coupling dominates, one should expect the
room-temperature validity of (M)MT to be recovered.

D. Lifetime-broadened Marcus theory

Let us now return to Eqs. (33) and (34) and assume that
the molecular level interacts predominantly with a relatively
low-frequency vibrational environment while Γ is comparable
to kBT. We can then take the same limits as in Sec. IV B (but
retaining the lifetime broadening) to yield

γLBMT
l = 2 Γl

∫ ∞
−∞

dε
2π

fl(ε)

×Re

[√
π

4λkBT
exp

(
(Γ − iν+)2

4λkBT

)
erfc

(
Γ − iν+
√

4λkBT

)]
,

(49)

γ̄LBMT
l = 2 Γl

∫ ∞
−∞

dε
2π

[1 − fl(ε)]

×Re

[√
π

4λkBT
exp

(
(Γ − iν−)2

4λkBT

)
erfc

(
Γ − iν−
√

4λkBT

)]
,

(50)

where, for brevity, ν± = λ ∓ (ε − ε̄0) and erfc(x) denotes the
complementary error function. Equations (49) and (50) form

the basis of what we refer to as the lifetime-broadened Marcus
theory (LBMT).

Naturally, ignoring the lifetime broadening, by setting
Γ = 0 in Eqs. (49) and (50), again gives Marcus theory. On
the other hand, by taking the limit λ→ 0, one can recover the
Landauer–Büttiker expression for transport through a single
non-interacting level (in a way analogous to what has been
done in Appendix A).

What happens for comparable λ and Γ? Off resonance
(eVb/2 < ε̄0), lifetime-broadened Marcus transport interpo-
lates between the results obtained using Marcus theory and
the LB formalism, as shown in Fig. 7(a). In other words, the
otherwise elastic Landauer-Büttiker transport is suppressed by
the vibrational coupling, or conversely, the incoherent Marcus
transport is enhanced in the presence of lifetime broadening.
In the off-resonant regime, transport occurring solely through
the hopping mechanism (as described by Marcus theory) yields
lower values of current than the purely elastic transport (for
given ΓL and ΓR). We believe this to be generally the case for
the single-site model studied here. With the molecular energy
level within the bias window (eVb/2 > ε̄0), lifetime-broadened
Marcus theory yields lower values of current than the
remaining transport mechanisms since it includes all sources
of broadening of the IV characteristics (lifetime, phonon,
and thermal broadening of the Fermi distributions); see
Fig. 7(b).

The temperature dependence of the zero-bias conductance
is often used experimentally to identify the transport mech-
anism. We consider two cases with the energy level lying
ε̄0 = 0.1 eV and 0.5 eV above the Fermi energy of the unbiased
leads, in the temperature range between 150 and 350 K.

FIG. 7. [(a) and (b)] IV characteristics
obtained using the Landauer–Büttiker
formalism, Marcus theory, and lifetime-
broadened MT for T = 240 K and sym-
metric molecule-lead coupling ΓL = ΓR
= 15 meV. [(c) and (d)] Zero-bias con-
ductance in units of the conductance
quantum, G0. The reorganisation energy
in the MT and lifetime-broadened MT
was set to λ = 0.14 eV. The positions of
the energy level: (a) ε̄0 = 0.3 eV; (b)
ε̄0 = 0 eV; (c) ε̄0 = 0.1 eV; (d) ε̄0
= 0.5 eV. For consistency, the same
(renormalised) position of the energy
level was used within the Landauer–
Büttiker approach.
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In both cases, the elastic LB transport exhibits a weak tem-
perature dependence (although much more pronounced closer
to resonance) stemming from the thermal broadening of the
Fermi distributions in the leads. The temperature dependence
of Marcus hopping is dominated by the Arrhenius charac-
ter of the MT rates giving rise to an almost linear depen-
dence of log(G/G0) on inverse temperature (G0 is the con-
ductance quantum); see Figs. 7(c) and 7(d). Perhaps surpris-
ingly, lifetime-broadened Marcus transport does not mani-
fest such linear behavior. Since in the off-resonant regime
the elastic (LB) transport through a single-site junction is
always more efficient than the incoherent Marcus hopping,
even modest amount of lifetime broadening (as incorporated
in LBMT) will have a profound effect on the off-resonant
conductance.

Let us now repeat the calculation from Fig. 6(a) for the
case of lower cut-off frequencyΩc. As can be seen in Fig. 8(a),
MT gives rise to the same artefacts as in Sec. IV C. Incorpo-
rating the lifetime broadening (as is done in LBMT) yields
a better agreement with the GQME result, especially at low
temperatures.

FIG. 8. (a) IV characteristics on resonance (ε̄0 = 0 eV) at different temper-
atures. (b) Transport characteristics in the off-resonant regime at T = 300 K,
ε̄0 = 0.3 eV. In both (a) and (b), the molecular energy level is coupled to
a vibrational environment with SD of Eq. (36) with λ = 140 meV and Ωc
= 12 meV; ΓL = ΓR = 8 meV.

We also consider the case of the off-resonant transport
regime at high temperature; see Fig. 8(b). Therein, lifetime-
broadened MT is in an excellent agreement with the GQME
result. On the other hand, Marcus theory greatly underes-
timates the molecular conductance. As shown here, life-
time broadening appears to be a vital part of the transport
description off resonance, even at temperatures significantly
exceeding Γ.

Typically, resonant transport (as described by the
Landauer–Büttiker formalism) and semi-classical electron
hopping (Marcus theory) are regarded as two distinct trans-
port mechanisms; see for instance the discussion in Ref. 16.
As shown here, it is possible to capture both of these phenom-
ena in a simple unifying expression. It is also apparent that
the elastic (Landauer–Büttiker) transport and Marcus hopping
cannot be considered independently (the total conductance is
clearly not a sum of these two contributions). While Marcus
theory may reasonably well describe the resonant transport
regime, its use in the off-resonant case is highly questionable.

Finally, analogously to what has been done in Sec. IV C,
in deriving Eqs. (49) and (50), keeping the higher-order term in
the expansion of coth (βω/2) results in expressions equivalent
to Eqs. (49) and (50) but with 4λkBT terms replaced by 4λkBT
+ χ/3kBT. This is what we refer to in Fig. 1 as the modified
lifetime-broadened MT.

V. CONCLUDING REMARKS

In this work, we derived an expression for current through
a molecular junction, modelled as a single electronic level
coupled to a bath of thermalised vibrational modes. In appro-
priate limits, it recovers the well-established Marcus theory
(Sec. IV B), the perturbative Born-Markov result (Sec. IV A),
and the Landauer–Büttiker expression for transport through
a non-interacting electronic level (Appendix A). We have
also derived certain extensions of Marcus theory containing
a low-temperature correction (Sec. IV C); lifetime broadening
(Sec. IV D); and both of the above simultaneously (also in
Sec. IV D). We have shown that the Marcus theory description
of transport through molecular junctions gives rise to several
artefacts: In the resonant tunneling regime, it often predicts a
spurious Franck–Condon blockade and early plateaus in the IV
characteristics. Off resonance, due to the absence of lifetime
broadening, it greatly underestimates the molecular conduc-
tance. These issues can be rectified by our here-derived mod-
ified Marcus theory and lifetime-broadened Marcus theory,
respectively.

We have applied our framework to electron-vibrational
coupling that was described by both a structureless and a struc-
tured spectral density. The former can account for coupling
to a broader environment: the solvent92–97 or the substrate
on which the molecule is deposited.20,98 The latter describes
coupling to the intra-molecular vibrational modes and was
obtained with the help of ab initio calculations.

We believe that the theoretical framework established
here will prove especially useful in interpreting experimen-
tal single-molecule and self-assembled monolayer transport
measurements. Its simplicity should further allow for fitting
of the empirical data, thus extracting various parameters such
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as the vibrational reorganisation energy and the molecule-lead
coupling strengths.
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APPENDIX A: LIMIT OF NO VIBRATIONAL COUPLING

It is instructive to consider the expression (35) in the
limit of zero electron-vibrational coupling, J(ω) = 0, and
consequently B(t) = 1. Then,

γl = 2 Re Γl

∫ ∞
−∞

dε
2π

fl(ε)
∫ ∞

0
dτei(ε−ε0)τe−Γτ (A1)

and equivalently for γ̄l. The one-sided Fourier transform
Ψ(ε) = Re ∫

∞
0 dτ exp [(+i(ε − ε0) − Γ)τ] can be easily eval-

uated as

Ψ(ε) =
Γ

Γ2 + (ε − ε0)2
. (A2)

The numerator in Eq. (35) is given by

γLγ̄R − γR γ̄L = 2ΓLΓR

∫ ∞
−∞

dε
2π

[fL(ε) − fR(ε)]Ψ(ε), (A3)

and the denominator simplifies to∑
l=L,R

γl + γ̄l =
∑

l=L,R

2 Γl

∫ ∞
−∞

dε
2π
Ψ(ε) =

∑
l=L,R

Γl. (A4)

This yields the following expression for the current:

I = e
∫ ∞
−∞

dε
2π

[fL(ε) − fR(ε)]
ΓLΓR

(ε − ε0)2 + Γ2
, (A5)

which is the usual Landauer-Büttiker expression for a single
non-interacting level.99

APPENDIX B: NEGF RESULT

The problem considered here has been approached using
the non-equilibrium Green function (NEGF) approach by a
number of authors.22,63–65,100,101 Here, for convenience, we
give the result in the form derived by Jauho et al.64 Using the
same notation as in the main body of this work, the electric
current is given by

I =
e
~

ΓLΓR

ΓL + ΓR

∫ ∞
−∞

dε
2π

[fL(ε) − fR(ε)]
∫ ∞
−∞

dτeiετa(τ), (B1)

where a(τ) = i[Gr(τ) − Ga(τ)]. The retarded Green function
is given by

Gr(τ) = −iθ(τ) e−iτε̄0 e−ΓτB(τ). (B2)

In the above, θ(τ) is the Heaviside step function and
Ga(τ) = [Gr(−τ)]†.
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R. J. Brooke, M. R. Bryce, P. Cea, J. Ferrer, S. J. Higgins, C. J. Lambert
et al., J. Phys. Chem. C 120, 15666 (2015).

98S. Fatayer, B. Schuler, W. Steurer, I. Scivetti, J. Repp, L. Gross, M. Persson,
and G. Meyer, Nat. Nanotechnol. 13, 376 (2018).

99N. A. Zimbovskaya, Transport Properties of Molecular Junctions
(Springer, 2013), Vol. 254.

100M. Galperin, A. Nitzan, and M. A. Ratner, Mol. Phys. 106, 397 (2008).
101A. Mitra, I. Aleiner, and A. Millis, Phys. Rev. B 69, 245302 (2004).

https://doi.org/10.1063/1.3660206
https://doi.org/10.1039/c2cp41017f
https://doi.org/10.1103/physrevb.94.201407
https://doi.org/10.1063/1.4992784
https://doi.org/10.1063/1.2732746
https://doi.org/10.1103/physrevb.71.235116
https://doi.org/10.1063/1.4981022
https://doi.org/10.1103/physrevb.95.085423
https://doi.org/10.1063/1.5005057
https://doi.org/10.1103/physrevlett.102.146801
https://doi.org/10.1021/ja017706t
https://doi.org/10.1021/cr0300789
https://doi.org/10.1021/jp503887p
https://doi.org/10.1103/physreva.58.2721
https://doi.org/10.1021/jp103369s
https://doi.org/10.1063/1.4884390
https://doi.org/10.1103/physrevb.97.165308
https://doi.org/10.1103/physrevb.73.045314
https://doi.org/10.1103/physrevb.78.235424
https://doi.org/10.1039/c7cp06237k
https://doi.org/10.1039/c7cp06237k
https://doi.org/10.1209/epl/i2004-10351-x
https://doi.org/10.1103/physrevb.40.11834
https://doi.org/10.1103/physrevb.50.5528
https://doi.org/10.1021/acs.nanolett.5b03434
https://doi.org/10.1103/physrevlett.93.236802
https://doi.org/10.1039/c1cp21161g
https://doi.org/10.1039/c1cp21161g
https://doi.org/10.1021/nn800170h
https://doi.org/10.1021/ct8004744
https://doi.org/10.1021/ct8004744
https://doi.org/10.1063/1.4765329
https://doi.org/10.1021/acs.nanolett.8b01127
https://doi.org/10.1021/acs.jpclett.8b00550
https://doi.org/10.1021/acs.jpclett.8b00550
https://doi.org/10.1016/0304-4173(85)90014-x
https://doi.org/10.1063/1.1742723
https://doi.org/10.1126/science.251.4996.919
https://doi.org/10.1016/j.jelechem.2014.09.038
https://doi.org/10.1021/jp0041510
https://doi.org/10.1021/jp0041510
https://doi.org/10.1016/j.electacta.2011.10.026
https://doi.org/10.1016/j.electacta.2011.10.026
https://doi.org/10.1021/ja401336u
https://doi.org/10.1039/c2cp41442b
https://doi.org/10.1103/physrevb.78.153403
https://doi.org/10.1063/1.3253699
https://doi.org/10.1038/s41565-018-0068-4
https://doi.org/10.1038/srep18400
https://doi.org/10.1021/nn202206e
https://doi.org/10.1021/ja307407e
https://doi.org/10.1021/cr068073+
https://doi.org/10.1021/nl404459q
https://doi.org/10.1039/c5sc02595h
https://doi.org/10.1021/nl200324e
https://doi.org/10.1021/acs.jpcc.5b08877
https://doi.org/10.1038/s41565-018-0087-1
https://doi.org/10.1080/00268970701837784
https://doi.org/10.1103/physrevb.69.245302

