
Application of sequential testing problem to online detection of
transient stability status for power systems

Jhonny Gonzalez∗, Yerkin Kitapbayev†, Tingyan Guo∗∗,
Jovica V. Milanović∗∗, Goran Peskir∗, & John Moriarty‡

Abstract— We address the problem of predicting the transient
stability status of a power system as quickly as possible
in real time subject to probabilistic risk constraints. The
goal is to minimise the average time taken after a fault to
make the prediction, and the method is based on ideas from
statistical sequential analysis. The proposed approach combines
probabilistic neural networks with dynamic programming.
Simulation results show an approximately three-fold increase in
prediction speed when compared to the use of pre-committed
(fixed) prediction times.

I. INTRODUCTION

The collection of real-time and near real-time data from
phasor measurement units (PMUs) has enabled the devel-
opment of online decision support algorithms for power
system applications. An important example is the real-time
prediction of post-fault transient stability status following
a power system contingency. In this problem of stability
classification, decision rules may be trained off-line using
representative samples of stable and unstable contingencies
and then used to predict the stability class of new con-
tingencies in real time. Several methodologies have been
applied in the literature, including decision trees [1], [2],
[3], [4], [5], [6], support vector machines [7], [8], [9], and
artificial neural networks [10], [11], [12], [13]. While the
binary classification problem (where the goal is simply to
distinguish between stable and unstable contingencies) has
been more widely studied, more detailed techniques have
also been developed to distinguish between different classes
of instability [2], [13], [14].

In the immediate aftermath of a particular fault, the
accuracy of stability predictions should increase over time.
On the other hand, rapid post-fault action is necessary to
enable the application of appropriate corrective control. Thus
there is a balance to be struck in determining when to act on
such online predictions. This balance does not seem to have
been addressed in the literature, in particular considering the
availability of real-time wide area measurement data from
PMUs. Accordingly, in the present paper we address this
gap by formulating the stability classification problem as
one of sequential testing (see, for example, [15]) under risk
constraints.

∗School of Mathematics, The University of Manchester, Manchester,
M13 9PL, UK. †Questrom School of Business, Boston University, Boston,
MA 02215, US. ∗∗School of Electrical and Electronic Engineering, The
University of Manchester, Manchester, M60 1QD, UK ‡School of Mathe-
matical Sciences, Queen Mary University of London, London, E1 4NS, UK
j.moriarty@qmul.ac.uk

Our aim is twofold: firstly to develop an online prob-
abilistic prediction of the stability class, and secondly to
derive a decision rule which acts on these predictions at
the optimal time. The risk constraints express the required
level of accuracy by placing limits on the rate of stability
prediction errors of various kinds.

The optimal time we seek is not fixed, but may vary
depending on the post-fault PMU measurements. Thus al-
though our decision rule is computed offline, the time of
action is determined flexibly and appropriately in real time
rather than being pre-committed. In this way clear initial
information can be acted upon quickly and, conversely,
action can be delayed when the initial post-fault data is
ambiguous. This approach is enabled by the combination of
probabilistic neural networks (PNNs, see for example [16],
[17]) to provide an online indication of how informative
are the post-fault measurements, together with dynamic
programming which enables the optimal decision rules to be
computed efficiently. In particular, by waiting until sufficient
information is available, this approach aims to achieve the
fastest possible predictions on average while maintaining the
same accuracy as significantly longer pre-committed action
times.

II. PROBLEM FORMULATION

Consider a power system with generators labelled i =
1, . . . , g. Suppose that a transient disturbance has been
cleared at time t1, and that the rotor angle for each gen-
erator is observed until the later time tM > t1. Let δi(t)
denote the rotor angle of generator i at time t, and δ(t) =
(δ1(t), . . . , δg(t)) denote the vector of all rotor angles at time
t. Our objective is to use as few of these observation vectors
as possible to make an acceptable prediction of the sys-
tem’s post-disturbance response over the entire time interval
[t1, tM]. More precisely the goal is to make this prediction as
quickly as possible on average, so that appropriate corrective
control may be applied at the earliest opportunity, while
respecting limits on the frequency of incorrect predictions.

The decision problem is the following. We suppose that
contingencies can be classified as either stable or unstable,
and that each unstable contingency can be further classified
within a finite set of different unstable classes. (In [1] and
[2], for example, a contingency is said to be unstable if
the absolute difference between the rotor angles of any
two generators exceeds 360◦ within a certain time horizon.)
Further we suppose that the unstable contingencies can be
classified into I different types. For convenience we represent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/195279559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the set of stability classes as C = {0, 1, . . . , I}, where 0 is
the stable class and the positive integers are labels for the I
unstable classes.

Our problem may be represented as the choice of a pair
of decision variables (τ, d), where t1 ≤ τ ≤ tM is the time
after the disturbance at which we ‘stop’ observing the process
δ = (δ(t))t1≤t≤tM and make the prediction d regarding
the transient stability status. Both the stopping time τ and
the prediction d must be determined using only the process
(δ(t))t1≤t≤τ , i.e. observations of the process δ up to the
stopping time τ itself. We refer to a deterministic stopping
time (the special case where τ is chosen to be constant)
as a pre-committed strategy, and shall see below that pre-
committed strategies are not optimal in general.

We also classify errors, as follows:
1) If our prediction is d = 0 (stable) when the contin-

gency is actually unstable (of any type), we say that
error A1 occurs,

2) If our prediction is d > 0 (unstable) when the contin-
gency is actually stable, we say that error A2 occurs,

3) If our prediction is d > 0 when the contingency is
actually unstable but of a different instability type, we
say that error A3 occurs.

In this work we assume that a random sample of n contin-
gencies is available, generated for example by a simulation
procedure. For each contingency we assume that the rotor
angle vectors δ(t) are given at discrete times t1 < t2 < · · · <
tM , along with the contingency’s stability class C ∈ C. We
take the uniform probability measure, denoted by P, on this
dataset. Thus the probability of error Ai for a given decision
rule and dataset is interpreted simply as the proportion of
contingencies in the dataset for which error Ai occurs under
that decision rule. Equivalently we compute expectations
as simple averages over the contingencies in the dataset.
Taking values pi ∈ [0, 1], i = 1, 2, 3 and letting E denote
expectation, the problem is then:

(RCP) Risk-constrained sequential testing problem:
Choose the pair of decision variables (τ, d) in order to
minimise the average time E [τ] taken to make the prediction
d, subject to the following risk constraints:

P [A1] ≤ p1, (1)
P [A2] ≤ p2, (2)
P [A3] ≤ p3. (3)

III. STRUCTURE OF OPTIMAL DECISION RULE

This version of the classification problem is closely re-
lated to the class of sequential testing problems studied for
example in Chapter 6 of [15]. As in the latter reference,
our approach will be to identify optimal boundaries. These
boundaries may be used in an online fashion to detect the
stopping time τ . In particular we construct a process π0 =
(π0(t))t1≤t≤tM , a lower boundary ` : [t1, tM] → [0, 1] and
an upper boundary u : [t1, tM]→ [0, 1]. The value π0(t) may
be interpreted in a Bayesian sense as the posterior probability

t
1

τ* t
MTime

0

1
t → u(t)

t → l(t)

t → π
0
(t)

π
0
(t)≥ u(t)

Contingency is predicted stable

l(t)≤π
0
(t)≤ u(t)

Continue observing π
0
(t)

Fig. 1. A stylised illustration of the lower boundary `(t), upper boundary
u(t), and trajectory of the process π0.

that the contingency is stable given the observation at time t.
The boundaries u and ` are functions of time and satisfy the
constraint 0 ≤ `(t) ≤ u(t) ≤ 1 for each t, together with the
terminal constraint `(tM) = u(tM). The decision variables
(τ, d) are then constructed as follows:

(i) The stopping time τ is the first time that the process
π0 satisfies either π0(t) ≥ u(t) or π0(t) ≤ `(t). Thus
if `(t1) < π0(t1) < u(t1) as in Figure 1, then τ is the
first time that the process π0 crosses either boundary
u or `,

(ii) If π0 crosses the upper boundary first (or if the initial
value π0(t1) ≥ u(t1)) then we immediately predict
d = 0, i.e. that the contingency is stable,

(iii) if π0 crosses the lower boundary first (or if the initial
value π0(t1) ≤ l(t1)) then we immediately predict that
the contingency is unstable, predicting the particular
instability class d which appears most likely given the
observations at time τ .

In this construction the constraint 0 ≤ `(t) ≤ u(t) ≤ 1
for each t is thus natural. The stopping time τ is detected
‘just in time’, in the sense that the prediction d is made
immediately upon detection of the boundary crossing. The
terminal constraint `(tM) = u(tM) ensures that a prediction
is always made by the terminal time T . In the illustration of
Fig. 1 the process π0 crosses the upper boundary first, at the
time τ∗. In this case we would therefore make the prediction
at time τ∗, declaring that d = 0.

In contrast to the treatment in [15], however, our probabil-
ity measure P is empirical. In the present work we therefore
do not seek analytic solutions but instead aim to learn the
necessary posterior probabilities using PNNs, as described
in Section IV. However we first make the risk-constrained
problem (RCP) more tractable by reformulating it as an
unconstrained optimisation problem via the Lagrange method
with inequality constraints.

A. Lagrangian minimisation problem
Denote by υ the pair of boundaries

υ = {(`(s), u(s)) : t1 ≤ s ≤ tM}. (4)

Given these boundaries υ we may construct the decision rule
(τυ, dυ) as described in Section III. For each contingency i

in a given dataset, the declared stability class diυ may then
be compared with its true stability class. In this way we may
determine whether or not the decision rule (τυ, dυ) gives rise
to error Ai for each i = 1, 2, 3 and for each contingency in
the dataset. We then call the boundaries υ feasible if they
satisfy the risk constraints (1)-(3). Note that these constraints
can be written as E[1Ai

] − pi ≤ 0, for i = 1, 2, 3. Here,
for each contingency i the indicator function 1Ai takes the
value 1 if event Ai occurs in that contingency and takes the
value 0 otherwise. To each of these inequalities let us assign
a Lagrange multiplier λi ≥ 0, and write the corresponding
Lagrangian function

L(υ;λ) = E

[
τυ +

3∑
i=1

λi(1Ai
− pi)

]
, (5)

where λ = (λ1, λ2, λ3) is the vector of multipliers.
By Proposition 3.3.4 of [18] a solution of the following

unconstrained problem also solves the original constrained
problem:

(UP) Unconstrained problem:
Find a nonnegative multiplier vector λ∗ and feasible

boundaries υ∗ such that

λ∗iE[1Ai
− pi] = 0, for i = 1, 2, 3, (6)

and such that the boundaries υ∗ minimise the Lagrangian,
so that

L(υ∗;λ∗) = inf
υ
L(υ;λ∗). (7)

In the next section we provide details of our approach to
solving the unconstrained problem (UP).

IV. NUMERICAL SOLUTION

We assume that our sample of n contingencies is divided
into three disjoint subsamples which we will call the PNN
training, boundary training, and test data, containing respec-
tively nP , nB and nS contingencies, where nP +nB+nS =
n. For each time t and sample number i ∈ {1, . . . , nP } in the
PNN training data, let us write CiP and δiP (t) for its stability
class and its vector of rotor angles at time t respectively;
define CiB , δiB(t), C

i
S and δiS(t) analogously.

A. Role of the PNN

Firstly for each observation time tm, m = 1, . . . ,M ,
a PNN is created whose input is the vectors
δ1P (tm), . . . , δnP

P (tm) and whose target vector is
(C1

P , . . . , C
nP

P) (note that this is independent of m).
Thus for each observation time tm a probabilistic neural
network, which we denote PNNm, is trained to learn
configurations of rotor angles that are characteristic of the
different stability classes. More precisely, let δ̂ be any test
vector of rotor angles observed at time tm. Then PNNm
maps δ̂ to a discrete probability distribution: that is, a
nonnegative vector

π = (π0, π1, . . . , πI) (8)

10 20 30 40 50 60
Time (cycles)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
o
to

r
a
n
g
le

s

d
if
fe

re
n
c
e
 (

d
e
g
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty
 π

0

Fig. 2. Illustrative training trajectories for the probabilistic neural networks
in the two-rotor example of Section IV-A. The difference between the two
rotor angles is plotted for the unstable training trajectory (red, triangular
markers) and the stable training trajectory (blue, asterisks). A test trajectory
(yellow, squares) is also shown, together with illustrative output from the
trained PNNs (purple dashes).

with
∑I
j=0 π

j = 1 and where πj is a measure of dis-
tance from δ̂ to the jth stability class. This may be in-
terpreted as the posterior distribution of the stability class
j ∈ {0, 1, ..., I}, given that the vector δ̂ of rotor angles is
observed at time tm. The idea is illustrated in Fig. 2 in the
following two-rotor example.

Example. In order to illustrate the role played by PNNs
in our approach, let us temporarily consider only the binary
classification problem (that is, distinguishing stability from
instability) in a system with two generators. We take the
smallest nontrivial PNN training dataset, namely nP = 2
with the first contingency (i = 1) labelled as stable and
the second (i = 2) labelled as unstable. Suppose that
(t1, . . . , tM) = (10, 20, . . . , 60) cycles. This means that 6
PNNs are trained: PNNm is trained using the two vectors
δ1P (10m) and δ2P (10m), where the vector δiP (10m) consists
of the two generator rotor angles at time 10m cycles in
the ith PNN training sample. The trajectory of differences
between these rotor angles is plotted in Fig. 2. In order to
illustrate the output of the trained PNNs we also plot the
trajectory of rotor angle differences for a test contingency,
and the resulting PNN outputs π0(10), . . . , π0(60). It can
be seen that at time 10 cycles, the posterior probabilities
are equal (0.5) for both the stable and unstable class. The
posterior probability then favours the unstable class at time
20 cycles, then consistently favours the stable class from 30
cycles onwards. This completes our example.

Next the trained PNNs are applied to each sample in the
boundary training data in turn, thus mapping trajectories
of rotor angles into trajectories of posterior distributions.
More precisely, taking the ith sample (δiB(t1), . . . , δ

i
B(tM))

in the boundary training data and applying the PNNs, we
obtain a time series πi = (πi(t1), πi(t2), . . . , πi(tM)), where
πi(tm) is the posterior distribution of the stability class
at time tm. These nB time series will be used together
with dynamic programming in Section IV-B to construct the
optimal boundaries.

Each sample in the test dataset is similarly converted from
a trajectory of rotor angles into a trajectory of posterior
distributions by applying the trained PNNs. For each test
sample, this allows the associated optimal stopping time
τ to be detected and the stability prediction d made, as

described in (i)–(iii) of Section III. It remains to make precise
the step (iii). If the lower boundary is crossed before the
upper (at time τ) then we immediately inspect the posterior
probabilities (π1

i (τ), π
2
i (τ), . . . , π

I
i (τ)). The maximum of

these posterior probabilities corresponds to the most likely
unstable class d ∈ {1, . . . , I} given the rotor angles observed
at time τ (conditional on the contingency being unstable),
and this unstable class is then immediately declared.

B. Computing optimal boundaries

The optimal boundaries are obtained as follows, using the
boundary training dataset. For each given multiplier vector
λ a backward induction procedure is employed from t =
tM to t = t1. In this procedure we consider a sequence
of subproblems of (UP) in which the optimisation begins
at some fixed time t ≤ tM . Correspondingly we generalise
definition (4), denoting by υ(t) the portion of the boundaries
given by

υ(t) = {(`(s), u(s)) : t ≤ s ≤ tM}. (9)

We also generalise the Lagrangian (5) to

L(t, υ(t);λ) = E

[
τυ − t+

3∑
i=1

λi(1Ai − pi)

]
. (10)

Fixing λ, at each step the Lagrangian L(t, υ(t);λ) is min-
imised over the choice of boundaries υ(t). As tM is the
terminal time, in this case one must stop immediately and
make a decision. Hence the boundaries ` and u coincide
at tM , i.e. we impose `(tM) = u(tM) = x for some
x ∈ [0, 1], making the Lagrangian a one dimensional function
of x. Therefore it is enough to minimise the Lagrangian
L(tM , x;λ) over x and set `(tM) = u(tM) = x∗, where
x∗ is the minimiser.

For t = tj with j < M , suppose inductively that we
know the optimal boundaries `∗(t), u∗(t) for each t =
tj+1, . . . , tM . We now compute the optimal boundaries at
time tj . Note that now the Lagrangian L(tj , υ(tj);λ) is
a two-dimensional function of (x, y) = (`(tj), u(tj)) ∈
[0, 1]× [0, 1] with x ≤ y. By minimising L(tj , υ(tj);λ) with
respect to (x, y) we get `∗(tj) = x∗ and u∗(tj) = y∗, where
(x∗, y∗) is the minimiser. The backward induction step is
repeated until t = t1 to obtain the optimal boundaries `∗

and u∗ over [t1, tM].
In this way, for each nonnegative vector λ of Lagrange

multipliers the optimal boundaries υ∗λ are obtained. We
exclude any λ which leads to infeasible optimal boundaries
υ∗ by setting L(υ∗;λ) =∞ for such λ. Finally we minimise
the Lagrangian L(υ∗λ;λ) over λ to obtain a candidate solution
to (UP). Note that in the empirical approach of this paper, the
quantities pi and E[1Ai] take values on different lattices in
general and as such, the condition (6) can only be expected
to hold approximately. Instead these values are reported for
our case study in Sections V and VI-A respectively.

V. CASE STUDY
To illustrate the potential of the proposed methodology we

apply it to a 16-machine, 68-bus, five-area network represent-
ing a reduced order equivalent model of the interconnected
New England Test System and New York Power System as
detailed in [20] and [21]. The 16 generators are represented
by sixth order models. Generators 1-8 are equipped with a
slow IEEE-DC1A excitation system, while generator 9 uses
a fast acting IEEE-ST1A1 static exciter and power system
stabiliser. The remaining generators 10-16 are under constant
manual excitation control. Power system loads are modelled
as constant impedance.

A PNN training dataset with 3000 contingencies and
a boundary training dataset with 2000 contingencies were
constructed with the same system data and specifications
as those in [2] (see their Section III.A), with rotor angle
responses given at times t = 10, 20, . . . , 60 cycles and the
convention that 60 cycles is equivalent to 1 second. We
assume that generator 13 is slack and has a constant rotor
angle. An additional test dataset with 2000 contingencies
was also constructed. Applying the classification method of
[2] to all 7000 simulations led to the identification of 14
different instability classes in total. The PNN training dataset
had in total 2733 stable contingencies with the remaining
267 unstable contingencies distributed among 10 instability
classes, while the boundary training dataset had 1833 stable
contingencies and 14 instability classes were represented
among the 167 unstable contingencies. The test dataset had
1829 stable contingencies and 12 instability classes were
represented among the 171 unstable contingencies. The two
instability classes not observed in the test dataset occurred
once each in the training datasets.

A. Choice of error constraints pi
The values pi specify the target accuracy for the classifi-

cation procedure. Since the decision rule is constructed by
learning from the training datasets, it is clear that classifi-
cation error rates equal to zero, for example, may not be
achievable when applied to the test dataset. In particular, as
described above, by chance there happen to be four instability
classes which are absent from the PNN training dataset. The
training datasets should therefore be suitably large, in order
to provide a sufficiently faithful representation of the set of
possible contingencies and their stability classes.

Our objective is therefore stated in relative terms: we im-
pose risk constraints comparable to the accuracy achieved by
the longest pre-committed observation times considered, and
then minimise the average time taken to make the prediction.
Since some trade-off between speed and accuracy may be
expected, we will interpret this objective by prioritising the
minimisation of error type A1 over types A2 and A3. To
choose the error rate bounds pi we therefore aim to be
as strict as possible with error A1 while allowing some
flexibility for error types A2 and A3 (these priorities could
equally have been chosen differently).

Recall that the test dataset had 1829 stable and 171
unstable contingencies. From Table I the lowest frequency

t
1
 = 10 20 30 40 50 t

6
 = 60

Time (cycles)

0

0.2

0.4

0.6

0.8

1
Optimal decision rule

Continuation region

Stopping region:
stable contingency

Stopping region:
unstable contingency

Optimal stopping boundaries

Fig. 3. Optimal upper and lower boundaries as function of time.

for error A1 achieved by a pre-committed strategy on this
dataset was 5/171, for predictions always made at 40 cycles.
In this case the remaining error rates were 2/1829 for A2

and 18/171 for A3. (The relatively high error rate for A3 is
due to several instability classes having a small number of
representatives in the training datasets.) When these values
were imposed as error rate bounds in the constrained prob-
lem, however, the algorithm failed to find feasible boundaries
υ. The risk constraints were therefore successively relaxed
until a feasible optimal solution was found. For the results in
this paper we then specified a maximum of six errors of type
A1 and A2 by setting p1 = 6/171 and p2 = 6/1829, and a
maximum of 22 errors of type A3 by setting p3 = 22/171.

VI. NUMERICAL RESULTS

For the results in this section, all PNNs were generated by
the MATLAB function ‘newpnn’ [19], which is a two-layer
network, without applying a neural transfer function to the
output of the second layer.

A. Optimal boundaries

A pattern search algorithm [22] was employed to minimise
the Lagrangian over λ, with an accuracy of 0.1 in each com-
ponent λi. The optimisation algorithm was found to converge
to a feasible solution with (λ1, λ2, λ3) = (310.9, 127.9, 0.0),
whose units are cycles.

Fig. 3 displays the optimal lower and upper boundaries `∗

and u∗ as functions of time. As time progresses and more
information becomes available, we observe that the upper
boundary tends to decrease while the lower boundary tends
to increase, and consequently the continuation region (the
region where we postpone making predictions) tends to nar-
row over time. (For completeness we also report the values
E[1Ai], which are the error rates on the boundary training
data which appear in condition (6), see the discussion at the
end of Section IV. For i = 1, 2, 3 these are 6/167, 6/1833
and 21/167 respectively).

B. Distribution of optimal decision time

We see from Fig. 3 that by time t = 40 cycles (0.677s)
the lower and upper boundaries are separated by a relatively
small vertical distance (significantly less than 0.1). This
suggests that the process π0 will typically cross one or other

boundary before time t = 40 cycles. In order to make this
assertion precise we record, for each simulation in the test
dataset, the decision time τ . Inspection of the results reveals
that under our optimal decision rule most contingencies
(89.95%) are classified at the earliest opportunity (t =
10 cycles, or 0.167s). A significant minority (7.85%) of
contingencies are classified at t = 20 cycles (0.33s), while
none are classified after t = 50 cycles (0.83s). From these
results we find that the average decision time E[τ] is 11.25
cycles (0.188s) under the optimal decision rule.

In our problem formulation, it is of course possible for the
decision time to be longer than this average in the relatively
rare unstable contingencies. While late detection of the stable
contingencies may not represent a concern, it is the early
detection of unstable contingencies which is necessary to
avoid system instability. When the average decision time is
calculated only over the unstable contingencies in the test
data, however, it rises to just 12.14 cycles (0.2s) and our
conclusions are qualitatively unchanged.

C. Actual error rates

By construction the error rates satisfy the probabilistic
constraints given in Section V when the optimal policy is
applied to the boundary training data. Since both the bound-
ary training and test data are merely samples, however, these
error rates are of course not guaranteed to hold empirically
when applied to the out-of-sample test data. Indeed the actual
error rates for the optimal decision rule on our test data were
(with the probabilistic constraints in brackets):

• Error A1: 7/171 (6/171)
• Error A2: 7/1829 (6/1829)
• Error A3: 22/171 (22/171).

Nevertheless these actual error rates are only slightly larger
than their corresponding error rate bounds. The discrepancy
arises because the training and test datasets have different
statistical properties such as the number of stable/unstable
contingencies, instability classes and so forth. This effect
may be reduced by ensuring that all datasets are sufficiently
large. These error rates for our optimal decision rule are
given in the ‘Optimal’ row of Table I.

D. Comparison with pre-committed prediction times

The main innovation in the present paper, relative to
the existing literature on the identification of power system
dynamic signatures, is that we allow the prediction time τ
to vary. Thus when the initial observations are sufficiently
informative, an appropriate prediction may be made without
delay. Conversely in cases where the initial observations are
uninformative, rather than making a quick but inappropriate
declaration, the prediction is delayed until sufficient infor-
mation is revealed. In this way we are able to derive a
flexible decision time which is fastest on average subject to
given risk constraints. We therefore close our analysis with
a comparison to pre-committed prediction times.

For each of the deterministic prediction times τ =
10, 20, . . . , 60 cycles we constructed a PNN as above on
our PNN training dataset. These PNNs were then used

TABLE I
ERROR RATES WITH PRE-COMMITTED STRATEGY AND

SEQUENTIAL TESTING SOLUTION

Time Error rate A1 Error rate A2 Error rate A3

(cycles) (out of 171) (out of 1829) (out of 171)
10 25 5 19
20 13 5 19
30 9 2 18
40 5 2 18
50 6 3 19
60 6 3 19

Optimal (avg.):11.25 7 7 22

for classification at these fixed times. Table I provides the
resulting error rates when applied to the test dataset. Only the
pre-committed strategies for the later times τ = 40, 50, 60
are within the probabilistic constraints, meaning that pre-
committed strategies needed a relatively long observation
time to meet these risk constraints. In contrast, as described
in Sections VI-B and VI-C above, our optimal rule returned
a classification within 11.25 cycles on average (or 12.14
cycles on average among the unstable contingencies only),
nevertheless achieving an accuracy almost equal to that of
these longer pre-committed times.

VII. CONCLUSIONS
In order to predict post-fault transient stability status as

quickly as possible under risk constraints we have com-
bined machine learning, in particular probabilistic neural
networks, with statistical sequential analysis. Thus we allow
the prediction time to vary, and achieve shorter average
times while maintaining the prediction accuracy associated
with longer pre-committed times. The optimal decision rules
are computed via dynamic programming, as time-dependent
boundaries for an online process of posterior predictive
distributions derived from PNNs. The prediction is made at
the first time these boundaries are crossed, and classification
is then performed using the posterior distributions.

The accuracy and advantages of the method were demon-
strated in simulations of the interconnected New England
Test System and New York Power System. In this example
predictions were made 0.188 seconds after the disturbance on
average. The error rates for this optimal decision rule were
comparable to those achieved by pre-committed prediction
times of 0.5–0.67 seconds.

VIII. ACKNOWLEDGMENTS
This work was supported by the UK Engineer-

ing and Physical Sciences Research Council (EPSRC)
grant EP/I031650/1. JM was supported by EPSRC grant
EP/K00557X/2.

REFERENCES

[1] S. Rovnyak, S. Kretsinger, J. Thorp, and D. Brown, “Decision trees for
real-time transient stability prediction,” IEEE Transactions on Power
Systems, vol. 9, no. 3, pp. 1417–1426, Aug. 1994.

[2] T. Guo and J. Milanovic, “Online Identification of Power System
Dynamic Signature Using PMU Measurements and Data Mining,”
IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–9, 2015.

[3] L. Wehenkel, T. V. Cutsem, and M. Ribbens-Pavella, “An artificial
intelligence framework for online transient stability assessment of
power systems,” IEEE Transactions on Power Systems, vol. 4, no. 2,
pp. 789–800, May 1989.

[4] N. Senroy, G. T. Heydt, and V. Vittal, “Decision Tree Assisted
Controlled Islanding,” IEEE Transactions on Power Systems, vol. 21,
no. 4, pp. 1790–1797, Nov. 2006.

[5] M. He, V. Vittal, and J. Zhang, “Online dynamic security assessment
with missing pmu measurements: A data mining approach,” IEEE
Transactions on Power Systems, vol. 28, no. 2, pp. 1969–1977, May
2013.

[6] M. He, J. Zhang, and V. Vittal, “Robust Online Dynamic Security
Assessment Using Adaptive Ensemble Decision-Tree Learning,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4089–4098, Nov.
2013.

[7] L. S. Moulin, A. P. A. d. Silva, M. A. El-Sharkawi, and R. J. Marks,
“Support vector machines for transient stability analysis of large-scale
power systems,” IEEE Transactions on Power Systems, vol. 19, no. 2,
pp. 818–825, May 2004.

[8] A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley, and V. V.
Terzija, “Rotor Angle Instability Prediction Using Post-Disturbance
Voltage Trajectories,” IEEE Transactions on Power Systems, vol. 25,
no. 2, pp. 947–956, May 2010.

[9] F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T. Fernando,
“Support Vector Machine-Based Algorithm for Post-Fault Transient
Stability Status Prediction Using Synchronized Measurements,” IEEE
Transactions on Power Systems, vol. 26, no. 3, pp. 1474–1483, Aug.
2011.

[10] C.-W. Liu, M.-c. Su, S.-S. Tsay, and Y.-J. Wang, “Application of
a novel fuzzy neural network to real-time transient stability swings
prediction based on synchronized phasor measurements,” IEEE Trans-
actions on Power Systems, vol. 14, no. 2, pp. 685–692, May 1999.

[11] N. I. A. Wahab, A. Mohamed, and A. Hussain, “Fast transient stability
assessment of large power system using probabilistic neural network
with feature reduction techniques,” Expert Systems with Applications,
vol. 38, no. 9, pp. 11 112–11 119, 2011.

[12] A. G. Bahbah and A. A. Girgis, “New method for generators’ angles
and angular velocities prediction for transient stability assessment of
multimachine power systems using recurrent artificial neural network,”
IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1015–1022,
May 2004.

[13] N. Amjady and S. F. Majedi, “Transient Stability Prediction by a
Hybrid Intelligent System,” IEEE Transactions on Power Systems,
vol. 22, no. 3, pp. 1275–1283, Aug. 2007.

[14] S. Kretsinger, S. Rovnyak, D. Brown, and J. Thorp, “Parallel decision
trees for predicting groups of unstable generators from synchronized
phasor measurements,” in Precise Measurements in Power Systems
Conference, Arlington, Virginia, 1993.

[15] G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary
Problems. Springer Science & Business Media, Nov. 2006.

[16] D. F. Specht, “Probabilistic neural networks for classification, map-
ping, or associative memory,” in Neural Networks, 1988., IEEE
International Conference on. IEEE, 1988, pp. 525–532.

[17] L. Rutkowski, “Introduction to Probabilistic Neural Networks,” in
New Soft Computing Techniques for System Modeling, Pattern Clas-
sification and Image Processing, ser. Studies in Fuzziness and Soft
Computing. Springer Berlin Heidelberg, 2004, no. 143, pp. 21–57.

[18] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[19] P. D. Wasserman, Advanced Methods in Neural Computing, 1st ed.

New York, NY, USA: John Wiley & Sons, Inc., 1993.
[20] G. Rogers, Power System Oscillations. Springer Science & Business

Media, Dec. 2012.
[21] B. Pal and B. Chaudhuri, Robust control in power systems. Springer

Science & Business Media, 2006.
[22] R. Lewis and V. Torczon, “A Globally Convergent Augmented La-

grangian Pattern Search Algorithm for Optimization with General
Constraints and Simple Bounds,” SIAM J. Optim., vol. 12, no. 4, pp.
1075–1089, Jan. 2002.

