-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Queen Mary Research Online

A new approach for American option pricing:
The Dynamic Chebyshev method

Kathrin Glau'?, Mirco Mahlstedt®*, Christian P6tz!3*

!Queen Mary University of London, UK
2Ecole polytechnique fédérale de Lausanne, Switzerland
3Technical University of Munich, Germany

October 25, 2018

Abstract

We introduce a new method to price American options based on Chebyshev
interpolation. In each step of a dynamic programming time-stepping we ap-
proximate the value function with Chebyshev polynomials. The key advantage
of this approach is that it allows to shift the model-dependent computations
into an offline phase prior to the time-stepping. In the offline part a family
of generalised (conditional) moments is computed by an appropriate numerical
technique such as a Monte Carlo, PDE or Fourier transform based method.
Thanks to this methodological flexibility the approach applies to a large variety
of models. Online, the backward induction is solved on a discrete Chebyshev
grid, and no (conditional) expectations need to be computed. For each time
step the method delivers a closed form approximation of the price function along
with the options’ delta and gamma. Moreover, the same family of (conditional)
moments yield multiple outputs including the option prices for different strikes,
maturities and different payoff profiles. We provide a theoretical error analysis
and find conditions that imply explicit error bounds for a variety of stock price
models. Numerical experiments confirm the fast convergence of prices and sen-
sitivities. An empirical investigation of accuracy and runtime also shows an
efficiency gain compared with the least-square Monte-Carlo method introduced
by Longstaff and Schwartz (2001). Moreover, we show that the proposed algo-
rithm is flexible enough to price barrier and multivariate barrier options.

Keywords American Option Pricing, Complexity Reduction, Dynamic Pro-
gramming, Polynomial Interpolation
2010 MSC 91G60, 41A10

1 Introduction

A challenging task for financial institutions is the computation of prices and sensi-
tivities for large portfolios of derivatives such as equity options. Typically, equity
options have an early exercise feature and can either be exercised at any time until

*The authors thank the KPMG Center of Excellence in Risk Management for their support.

https://core.ac.uk/display/195279527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

maturity (American type) or at a set of pre-defined exercise dates (Bermudan type).
In lack of explicit solutions, different numerical methods haven been developed to
tackle this problem. One of the first algorithms to compute American put option
prices in the Black-Scholes model has been proposed by Brennan and Schwartz
(1977). In this approach, the related partial differential inequality is solved by a
finite difference scheme. A rich literature further developing the PDE approach has
accrued since, including methods for jump models (Levendorskii (2004), Hilber et al.
(2013)), extensions to two dimensions (Haentjens and int Hout (2015)) and com-
binations with complexity reduction techniques (Haasdonk et al. (2013)). Besides
PDE based methods a variety of other approaches has been introduced, many of
which trace back to the solution of the optimal stopping problem by the dynamic
programming principle, see e.g. Peskir and Shiryaev (2006). For Fourier based solu-
tion schemes we refer to Lord et al. (2008), Fang and Oosterlee (2009). Simulation
based approaches are of fundamental importance, the most prominent representa-
tive of this group is the Least-squares Monte-Carlo (LSM) approach of Longstaff and
Schwartz (2001), we refer to Glasserman (2003) for an overview of different Monte-
Carlo methods. Fourier and PDE methods typically are highly efficient, compared
to simulation, however, they are less flexible towards changes in the model and par-
ticularly in the dimensionality. In order to reconcile the advantages of the PDE and
Fourier approach with the flexibility of Monte Carlo simulation, we propose a new
approach.

Like most approaches, we discretize the continuous time problem of pricing an
American option and then solve it. Hence, we actually compute the price of a
Bermudan option. It is well known that the Bermudan price converges towards
the American option price and thus one can either use a high number of exercise
rights or an extrapolation technique to obtain the American option price, see Geske
and Johnson (1984). The pricing of Bermudan options is similar to the pricing of
discretely monitored barrier options as stated in Fang and Oosterlee (2009). Our
proposed new approach will be general enough to cover this pricing problem as well.

We consider a general dynamic programming time-stepping in discrete time. Let
X, be the underlying Markov process and the value function V; is given by,

()

Vr(z) = g(z
[(g(t,), E[Vi1 (Xe1) | Xy = 2])

Vi(z)

with time steps t < t+ 1 < ... < T and payoff function g. The computational
challenge is to compute E[V;y1(Xy+1)|X¢ =] for for all time steps t and all states
x, where V11 depends on all previous time steps.

In order to tackle this problem, we approximate the value function in each time
step by Chebyshev polynomial interpolation. We thus express the value function
Vi+1 as a finite sum of Chebyshev polynomials Tj(z) = cos(j acos(z)) times coeffi-
cients c?“. In this case, the conditional expectations become

(1.1) E(Vip1 (X)X = 2] = Y STRT (X)X = 2] =) Ty,

with generalized moments I';; := E[T;(X;4+1)|X¢ = z]. The choice of Chebyshev
polynomials is motivated by the promising properties of Chebyshev interpolation
such as

e The vector of coefficients (ct-H) j=o0,..,N is explicitly given as a linear combina-
tion of the values V;(zy) at the Chebyshev grid points xj. For this, equation

(1.1) needs to be solved at the Chebyshev grid points z = xj, only.

e Exponential convergence of the interpolation for analytic functions and poly-
nomial convergence of differential functions depending on the order.

e The interpolation can be implemented in a numerically stable way.

The computation of the continuation value at a single time step coincides with
the pricing of a European option. Its interpolation with Chebyshev polynomials is
proposed in Gafl et al. (2018), where the method shows to be highly promising and
exponential convergence is established for a large set of models and option types.
Moreover, the approximation of the value function with Chebyshev polynomials has
already proven to be beneficial for optimal control problems in economics, see Judd
(1998) and Cai and Judd (2013).

The key advantage of our approach for American option pricing is that it collects
all model-dependent computations in the generalized conditional moments I'; . If
there is no closed-form solution, their calculation can be shifted into an offline phase
prior to the time-stepping. Depending on the underlying model a suitable numerical
technique such as Monte Carlo, PDE and Fourier transform methods can be chosen,
which reveals the high flexibility of the approach. Once the generalized conditional
moments I'; ; are computed, the backward induction is solved on a discrete Cheby-
shev grid. This avoids any computations of conditional expectations during the
time-stepping. For each time step the method delivers a closed form approximation
of the price function = Ecsz(x) along with the option’s Delta and Gamma.
Since the family of generalized conditional moments I';; are independent of the
value function, they can be used to generate multiple outputs including the option
prices for different strikes, maturities and different payoff profiles. The structure of
the method is also beneficial for the calculation of expected future exposure which
is the computational bottleneck in the computation of CVA, as investigated in Glau
et al. (2018).

The offline-online decomposition separates model and payoff yielding a modular
design. We exploit this structure for a thorough error analysis and find conditions
that imply explicit error bounds. They reflect the modularity by decomposing into a
part stemming from the Chebyshev interpolation, from the time-stepping and from
the offline computation. Under smoothness conditions the asymptotic convergence
behaviour is deduced.

We perform numerical experiments using the Black-Scholes model, Merton’s
jump diffusion model and the Constant Elasticity of Variance (CEV) model as a
represenative of a local volatility model. For the computation of the generalized
conditional moments we thus use different techniques, namely numerical integration
based on Fourier transforms and Monte Carlo simulation. Numerical experiments
confirm the fast convergence of option prices along with its delta and gamma. A
comprehensive comparison with the LSM reveals the potential efficiency gain of the
new approach, particularly when several options on the same underlying are priced.

The rest of the article is organized as follows. We introduce the problem setting
and the new method in Section 2 and provide the error analysis in Section 3. Section
4 discusses general traits of the implementation and Section 5 presents the numerical

experiments. Section 6 concludes the article, followed by an appendix with the proof
of the main result.

2 The Chebyshev method for Dynamic programming
problems

First, we present the Bellman-Wald equation as a specific form of dynamic program-
ming. Second, we provide the necessary notation for the Chebyshev interpolation.
Then we are in a position to introduce the new approach and its application to
American option pricing.

2.1 Optimal stopping and Dynamic Programming

Let X = (Xi)i<r a Markov process with state space RY defined on the filtered
probability space (€, F, (F;)i>0,P). Let g : [0,T] x R — R a continuous function
with E [supg<s<r [9(t, X¢)|] < co. Then

V(t,z):= sup E[g(1,X;)|X; = 7] for all (t,z) € [0,T] x R?
t<r<T

over all stopping times 7, see (2.2.2") in Peskir and Shiryaev (2006). In discrete
time, the optimal stopping problems can be solved with dynamic programming.

Namely, with time stepping t = tg < ... < t, = T the solution of the optimal
stopping problem can be calculated via backward induction

Vi (z) =g(T,)
Vtu (‘T) = max (g(twx)vE[Vtu+1(Xtu+1)|Xtu = ‘r]) .

Note that n refers to the number of time steps between ¢t and 7. For notational
convenience, we indicate the value function at each time step with subscript ¢, to
directly refer to the time step t,,. For a detailed overview of optimal control problems
in discrete time we refer to Peskir and Shiryaev (2006).

2.2 Chebyshev polynomial interpolation

The univariate Chebyshev polynomial interpolation as described in detail in Tre-
fethen (2013) has a tensor based extension to the multivariate case, see e.g. Sauter
and Schwab (2010). Usually, the Chebyshev interpolation is defined for a function on
a [~1,1]” domain. For an arbitrary hyperrectangular X = [z,,%1] X ... X [zp, Tp],
we introduce a linear transformation 7y : [~1,1]” — X componentwise defined by

(2.1) Tx (%) =Ti +0.5(z; — 7)) (1 — 2;).
Let N := (Ny,...,Np) with N; € Ng for i = 1,..., D. We define the index set

J={jeNP:1<j;<Npfori=1,...,d}.

The Chebyshev polynomials are defined for z € [~1,1]” and j € J by
D
TJ(Z) = HTJz(ZZ% sz('zl) = COS(jZ‘ : aCOS(Zi))7
i=1

and the j-th Chebyshev polynomial on X as p;(x) = T;(73"(x))1x(2). The Cheby-
shev points are given by

k.
zk:(zkl,...,sz), Zk; = COS (7‘(']\;> for k; =0,...,N;andi=1,...,D.
i

and the transformed Chebyshev points by z* = 7 (2*). The Chebyshev interpolation
of a function f : X — R with [[2,(N; + 1) summands can be written as a sum of
Chebyshev polynomials

(2.2) Iy(H@) =S e @) = Y epya) for wex
JjeET jeTJ
with coefficients c; for j € J

D 2]1{0<ji<Ni}

(2.3) e = (11 N) > FEh T (")

i=1 keJ

where " indicates the summand is multiplied by 1/2 if k; =0 or k; = N;.

2.3 The Dynamic Chebyshev method

In this section, we present the new approach to solve a dynamic programming prob-
lem via backward induction using Chebyshev polynomial interpolation.

Definition 2.1. We consider a Dynamic Programming Problem (DPP) with value
function

(2.4) Vp(z) =g(T,z)
(2'5) ‘/tu (x) = f (g(tu,x),IE[V}uH (’Xtu+1)‘Xtu = x]))

where t = tg < ... < t, =T and f : R x R — R is Lipschitz continuous with
constant Ly.

At the initial time T = t,,, we apply Chebyshev interpolation to the function
g(T,x), ie. forz e X,

Vr(z) = g(T,x) = Yy ¢j(T)pj(x) =: Vr(x)
JjeT
At the first time step t,,—1, the derivation of the conditional expectation E[g(ty, Xy,)| X, , =
z] is replaced by E[3_; ¢;(tn)p;(Xt,)| Xt, , = 2] yielding

Viur () = £ (9(tu1,2), BV, (X2,)| X0, _, = a])
9ltno1, 2 E[Y ¢5(ta)py (X,)| X1,y =)

<
(%=1

JjET

At time step t,,—; the value function V;, | needs only to be evaluated at the specific
Chebyshev nodes. Hence, denoting with z* = (kys - -+, Xk,) the Chebyshev nodes,
it suffices to evaluate

(2:6) Vi, (@h) % f(gtar,a"), Y ej(t)E py(X0,)

jedJ

X, , = :L'k:|) = T/Zgnfl(:xk).

A linear transformation of (TAftnfl (%)) res yields the Chebyshev coefficients accord-
ing to (2.3) which determines the Chebyshev interpolation V;, |, = > ¢i(tn—1)p;.
We apply this procedure iteratively as described in detail in Algorithm 1.

The stochastic part is gathered in the expectations of the Chebyshev polyno-
mials conditioned on the Chebyshev nodes, i.e. I'jx(t,) = E[p;j(Xy,,,)|Xs, =).
Moreover, if an equidistant time stepping is applied the computation can be further
simplified. If for the underlying stochastic process

(27) Tyrlta) = Elpj(Xe,)| Xe, = «*] = Elp; (Xe,)|Xe, = 2] =: Ty

foru =0,...,n—1, then the conditional expectations need to be computed only for
one time step, see Algorithm 2. One can pre-compute these conditional expectations
and thus, the method allows for an offline/online decomposition.

Algorithm 1 Dynamic Chebyshev algorithm

Require: N ¢ NP X = [2,,71] X ... x [zp,Tp], 0 =to,...,tn =T
1: Determine index set 7 and nodal points 2% = (7, ... Tkp)

2: Pre-computation step:

3: Forall j,ke Jand all t,, u=0,...,n—1

4 Compute T x(ty) = E[pj(Xt,,1)| Xe, = 2]

5. Time T

6 Vr(a®) = g(T, 2%), k € J, derive

T (1) = Dy(i) Lhey Vela®)Ti(2F)

8 Obtain Chebyshev interpolation Vr(z) = 3_,c 7 ¢;(T)pj(z) of Vr(z)
9: Iterative time stepping from t,11 —ty, u=n—1,...,1

10: Given Chebyshev interpolation of Vi, ., (z) = >_,c 7 ¢j(tu+1)p;(z)
11: Derivation of V., (z%), k € J at the nodal points

12: Vtu (wk) = f(g(tua xk)? Zjej Cj(tu-i-l)rj,k(tu»

13- Derive ¢j(tu) = D (j) e Vau (aF)T5(2")

14: Obtain Chebyshev interpolation V, (z) = > jer Ci(tu)pj(x) of Vi, (z)
15: Deriving the solution at ¢t =0

16: Vo(z) =3 ;c7¢(0)ps()

Algorithm 2 Simplified Dynamic Chebyshev algorithm
Require: Time steps 0 = t1,...,t, =T with At :=t, — t,_1
1: Replace in Algorithm 1 Lines 2-4 with:

2: Pre-computation step:
3. Compute I';, = E[p;(Xat)|Xo = 2¥] for all j,k € J

3 Error Analysis

In this section we analyse the error of Algorithm 1, i.e.
(3.1) er, = max|V;, () — Vi, (2)].
TEX

Two different error sources occur at t,,, the classical interpolation error of the Cheby-
shev interpolation and a distortion error at the nodal points. With distortion, we
refer to the computational noise that comes from the fact that we do not observe the
correct function values V;, (z¥) at the nodal points but distorted values V;, (z*). We
call the error induced from this noise distortion error. Later on in this section the
distortion error will be discussed in more details. The behaviour of the interpolation
error depends on the regularity of the value function. Here, we assume analyticity of
the value function. The concept can be extended to further cases such as assuming
differentiability or piecewise analyticity. The latter is discussed in preliminary form
in Mahlstedt (2017, Section 5.3) and is further investigated in a follow-up paper.
Hence, we need a convergence result for the Chebyshev interpolation which incor-
porates a distortion error at the nodal points.

First, we introduce the required notation. A Bernstein ellipse B([—1,1], o) with
o0 > 1 is defined as the open region in the complex plane bounded by an ellipse
with foci 1 and semiminor and semimajor axis lengths summing to 9. We define a
generalized Bernstein ellipse B(X, o) around the hyperrectangle X' with parameter

vector o € (1,00)? as

B(Xa Q) = B([@l,fl]a Ql) X X B([@Dafl)], QD)

[z,7],0) := Tz © B([~1,1],0), where for z € C we have the transform
. 7)) == 7+ %5(1 — R(z)) and o) (S(2)) = Z22G(x) where the sets
B([—1,1], 0;) are Bernstein ellipses for : =1,..., D.

Proposition 3.1. Let X > =z — f(z) be a real-valued function with an ana-
lytic extension to some generalized Bernstein ellipse B(X, o) for o € (1,00)P with
SUPgeB(x,0) |f ()| < b. Assume distorted values fE(@F) = f(aP)+e(a®) with |e(2¥)] <
Z at all nodes z*. Then

glea")}(clf(x) - Iﬁ(fe)(x)} < 5int(Q7N’D7B) +§AN'

with

D D 1
, 1 2
(3.2) eint(0.N,D,B) =27+ . B. <Z o 1 f2>

and Lebesgue constant Ay < M2, (2log(N; +1) +1).

Proof. Using the linearity of the interpolation operator we obtain for the Chebyshev
interpolation of f¢ with f¢(z%) = f(2*) 4 e(2¥) that

In(f)(@) = In(f) (@) + Ix(e)(2).

The tensor-based multivariate Chebyshev interpolation Iy (¢) can be written in La-
grange form

D

I(e)(@) = Y e(@)N(z) with N(x) =[] 4, 5 ()

jeg i=1

where £j,(z) = [[;,;, 7+ —= is the j;—th Lagrange polynomial. This yields

Z .—Zk

ADV z J —

mea))((]IN(|—max‘z e(x?)N (‘<6r§16a)>(<2|)\ ()] =
J

The term A is the Lebesgue constant of the (multivariate) Chebyshev nodes which

is given by

N_gle%)((z‘)\] |7Ixn€a/%(ZH|€Jz xl|_H max Z’gﬁ [m zz] l’z)’

jeT je i=1 @i€le; @]

Since maXg, ez, ,7;] Z;Y’L:O |£j¢ (T[;ijz](xl)” = maX,c[-1,1] Z;\ZZ:O |€Jz(2)| = ANm which
is the Lebesgue constant of the univariate Chebyshev interpolation, we have A+ =
Hil An,. From Trefethen (2013, Theorem 15.2) we obtain for the univariate Cheby-
shev interpolation Ay < 2log(N + 1) + 1 and hence

D
(3.3) Av<T] (% log(N; + 1) + 1).
i=1

For the distorted Chebyshev interpolation holds

(@) = I (f) ()] < (@) = I(F)(@)] + | Ix(e) () |-

Therefore, the proposition follows directly from (3.3) and Sauter and Schwab (2010).
O

We use this result to investigate the error of the Dynamic Chebyshev method.
First, we introduce the following assumption.

Assumptions 3.2. We assume X 3 x — V;, (z) is a real valued function that has
an analytic extension to a generalized Bernstein ellipse B(X, oz,) with os, € (1,00)P
and SUPgep(x,0,,) |Veu (@) < By, foru=1,....n

Proposition 3.5 provides conditions on the process X and the functions f and g
that guaranty Assumptions 3.2. Under this assumptions, we can apply Proposition
3.1 to obtain an error bound for the Dynamic Chebyshev method at each time step.
This error bound has a recursive structure, since the values of V;, depend on the
conditional expectation of V;,.,. The interpolation error of the final time step is of

form (3.2). At any other time step t,, an additional distortion error by approximating
the function values at the nodal points by

Vi (@) ~ f (g<tu» 7). 3 03 (tur)Elp; (Xo,)| Xz, = x’f]) = Vi, (")
JjET
comes into play. Proposition 3.1 yields

et = max Vi, (2) = Vi, (2) < ine(er,, N, D, Br,) + Ay Fy,.

where Fy, := maxjes Vi, (z;) — Vi, (j)]. The term F;, depends on the function f
and the interpolation error at the previous time step 1.

Moreover, two additional error sources can influence the error bound. If there
is no closed-form solution for the generalized moments E[p;(Xy,)| X, = 2] a
numerical technique, e.g. numerical quadrature or Monte Carlo methods, introduces
an additional error. The former is typically deterministic and bounded whereas the
latter is stochastic. In order to incorporate this error in the following error analysis
we introduce some additional notation. The conditional expectation can be seen
as a linear operator which operates on the vector space of all continuous functions
C(RP) with finite L>°-norm

If C(RP) =R with TF (f) :=E[f(Xe,,.) | Xe, = 2"].

Define the subspace of all D variate polynomials Py (X) := span{p;, j € J}
equipped with the L°°-norm. We assume the operator Ffu is approximated by a
linear operator ffu : Pr(X) = R on Px(X) which fullfills one of the two following
conditions. For all w = 0,...,n the approximation is either deterministic and the
error is bounded by a constant &,

(GM) (I, = T4 llop = sup Iy, (p) —T%,(p)| <8 Yk €T
pEPﬁ
llpl|=1
or the approximation is stochastic and uses M samples of the underlying process
and the polynomials p may have stochastic coefficients. In this case we assume the
error bound
(GM*) ([Th = Thllp = swp E[Th () ~Th)|| <07 () Wheg
pEPﬁ
lIpll5=1
with norm ||p||%, = max,ecx E[|p(z)|]. In order to incorporate stochasticity of 1/7,5“ (z),
we replace (3.1) by

(3.4) i = maxE HVt (x) — Vi, (:r)H .

Note that in the deterministic case (3.1) and (3.4) coincide. Additionally, a trun-
cation error is introduced by restricting to a compact interpolation domain X. We
assume that the conditional expectation of the value function outside this set is
bounded by a constant

(TR) E[Viir (Xt) Loy | Xe, = 2] < &4

The following theorem provides an error bound for the Dynamic Chebyshev
method.

Theorem 3.3. Let the DPP be given as in Definition 2.1. Assume the reqularity
Assumptions 3.2 hold and the boundedness of the truncation error (TR). Then we
have

(3.5) e, <ZCJ el + AyLy Y O (e + 0, V))
Jj=u+1

with with €gm = 0 if assumption (GM) holds and €4y, = 6*(M) if assumption (GM¥)
holds and C' = AxzLf(14egm), V; = maxzex Vi, ()| and €], = €ine(0t;, N, D, By,).

Proof. The proof of the theorem can be found in the appendix.]

The following corollary provides a simplified version of the error bound (3.5) pre-
senting its decomposition into three different error sources (interpolation error £;,,,
truncation error g4 and the error from the numerical computation of the generalized
moments €gy,).

Corollary 3.4. Let the setting be as in Theorem 3.3. Then the error is bounded by
(36> €, < (&'nt(ga N, D7§) + & + Egmv) C«n+1—u

wzth é = max{2, C}, Q = minlgugn Oty s E = maxlgugn Btu; V = maxugjgn Vj.
Moreover, if e, =0, Ly <1 and N = N;, 1 = 1,..., D the error bound can be
simplified further. Under (GM*) §*(M) < c¢/VM, ¢ > 0 yields

er, < 10 Nlog(N)P™ 4 &log(N)PM 05,
for some constants ¢y, > 0. Under (GM) the term M~ is replaced by §.

Proof. Assuming C > 2 and using the geometric series, the first term in the error
bound (3.5) can be rewritten as

Z C] u < Eint Z CJ = Cint Z C = Eint <1 _10n_;1 u) S Eint Cn+17u7

where €;,; = max; Egnt = max; 5mt(gtj, N,D, Bt].) < Eint (Q, N, D,E) for 0 = mini<u<n 04
and B = maxi<y<n Bt,. For C' <2 the sum is bounded by &;;,; ontl=u_ Gimilar, we
obtain for the second term in the error bound (3.5) with 8 = (e + €gm V' ;)

n—(u+1)
AxLy Z CImg <AyLfB Y CF < AgLyBC" < BOmHT
j=u+1 k=0

where 3 = max; 3. Moreover, we used AjzLy < AjL(1 4 £g4m) = C in the last
step. Thus, we obtain the following error bound (3.5)

Etu = (gint + B) én-ﬁ-l—u = (Emt(Q’ N> D,E) + e + 5ng) C«n+1—u’

where C' = max{2,C} and V = max; V;, which shows (3.6).

10

Furthermore, using the definition of the error bound (3.2) and N = N;, i =
., D we conclude that ei,¢(0, N, D, B) < c1o~ N for a constant ¢; > 0. For the
Lebesgue constant of the Chebyshev interpolation exists a constant co > 0 such that

Ay

::]w

“log(N +1)+1) < 1)1 < ¢y log(N)P.
Z:lwog + H +) log(N) < ¢2log(NV)

Under (GM*), 6*(M) < c¢/vVM, ¢ > 0 yields with e, =0, Ly <1

< (&int(o, N, D,B) + ey + ngv) (AﬁLf(l + Egm))nﬂﬂ

< (
< (clg_N + CVM_O‘S) (02 log(N)P (1 + cM_O'S))n
&0 NV1og(N)P™ + &log(N)P M0

and this converges towards zero for N — oo if VM > log(N yPn If (GM) holds we
have eg4m = 6 and the term M ~%3 is replaced by 9. O

The following proposition provides conditions under which the value function
has an analytic extension to some generalized Bernstein ellipse and Assumptions 3.2

hold.

Proposition 3.5. Consider a DPP as defined in (2.4) and (2.5) with equidistant
time-stepping and g¢(x) = g(t,x). Let X = (Xt)o<i<r be a Markov process with
stationary increments. Assume e™g; (-) € LY(RP) for some n € RP and gy, has
an analytic extension to the generalized Bernstein ellipse B(X, 04) for u=0,...,n.
Furthermore, assume f : R x R — R has an analytic extension to C2. If

(i) the characteristic function p* of Xa¢ with Xo = x is in LY(RP) for every
T € X,

(ii) for every z € RP the mapping x — ©“(z — in) has an analytic extension
to B(X,0,) and there are constants o € (1,2] and ci,co > 0 such that
SUDsen(v g 97 (2)] < cre=®2FI for all z € RP,

then the value function x — Vi, () of the DPP has an analytic extension to B(X, o)
with 0 = og4.

Proof. At T the value function = — Vp(x) is analytic since Vr(z) = gr(z) and gr
has an analytic extension by assumption. Moreover, e gr(-) € L'(RP) for some
n € RP. We assume ™V, ,,(-) € L (RP) and V;,,, has an analytic extension to
B(X, o). Then the function

T %u(x) = f (gtu (x)7E[%u+1 (Xtu+l)|Xtu = x])

is analytic if = — E[V; ., (X¢,,,)|Xe, = 2] = E[V;,,(XX,)] has an analytic exten-
sion. From Gaf et al. (2018, Conditions 3. 1) we obtain conditions (A1)-(A4) under
which a function of the form (p',p?) E[fP'(XP*)] is analytic. In our case we only
have the parameter p> = x and so X7 = X2 X¢- Condition (Al) is satisfied since

11

eIV, (-) € LY(RP) and for (A2) we have to verify that |‘7tu+1 (—z—1in)| < cre?l?l
for constants ¢q,co > 0.

iz =) = | [ey
RD

< [l v,)] ey
RD

< He<n’->vtu+1(')HL1

and thus (A2) holds. The remaining conditions (A3)-(A4) are equivalent to our
conditions (i)-(ii) and GaB et al. (2018, Theorem 3.2) yields the analyticity of
z — E[V;,.,(XX,)] on the Bernstein ellipse B(&X,0,). Hence, x — V;, (z) is a
composition of analytic functions and therefore analytic on the intersection of the
domains of analyticity B(X, o,) N B(X, 04) = B(&X, 0) with o = min{og, 0,}.

It remains to prove that e?V; (-) € L*(RP). Here the Lipschitz continuity of
f yields

1€V, (s < Ly (11790, (Ol e+ 1609V (Vg) < 0.
O

Often, the discrete time problem (2.4) and (2.5) is an approximation of a con-
tinuous time problem and thus, we are interested in the error behaviour for n — oc.

Remark 3.6. Assume the setup of Corollary 3.4. Moreover, assume that 4 =
egm = 0. If we let N and n go to infinity, we have to ensure that the error bound
tends to zero. We use that €ini(0, N, D,B) < C10 Y for a constant C; > 0 and
N = min; N;. The following condition on the relation between n and N ensures
convergence

log(o) N

< . —
"< 0D log(hy) +log(Ly)

4 Implementational aspects of the Dynamic Chebyshev
method

In this section, we discuss several approaches to compute the generalized moments
(2.7) which contain the model dependent part. Moreover, preparing the numerical
experiments, we tailor the Dynamic Chebyshev method to the pricing of American
put options.

4.1 Derivation of generalized moments

Naturally, the question arises how the generalized moments (2.7) can be derived.
Here, we present four different ways and illustrate all approaches in the one-dimensional
case X = [z,T]. Similar formulas can be obtained for a multidimensional domain.

12

Probability density function

For the derivation of E[p;(Xy,.,)|X:, = x|, let the density function of the ran-
dom variable X;, | Xy, =z, be given as f“*(z). Then, the conditional expectation
can be derived by solving an integral,

Blpy (Xe) X, = 1) = [T3 0) £ 0y

T

using p;(y) = Tj(T);l(y))l x(y). This approach is rather intuitive and easy to imple-
ment.

Fourier Transformation

Assume the process X has stationary increments and the characteristic function
¢ of XAy is explicitly available. We apply Parseval’s identity, see Rudin (1973), and
use Fourier transforms

Bl (Xe,)X, =) = [e+ aFlan) = o [pH@e(-

—0o0 —00

where p;-”’“ (z) = pj(x + xx). Using the definition of 7, 7, we can express the Fourier
transform of pf’“ (x) with the help of the Chebyshev polynomial T(y). This yield

(4.1)
L igeh @) T—2 [T 5 (T—2
Blpy (Xrop)Xo, = o] = e e TOTE [T R (T2 2e)o-ge

™ 2

The Fourier transform of the Chebyshev polynomials fj are presented in Dominguez
et al. (2011) and the authors also provide a Matlab implementation.

Truncated moments

In this approach, we use that each one-dimensional Chebyshev polynomial can
be represented as a sum of monomials, i.e.

J
Tj(x) = Zaml, JjeN.
1=0

The coefficients a;, I = 0,...,7, can easily be derived using the chebfun function
poly(), see Driscoll et al. (2014). Then,

E[pj(Xtu+1)‘Xtu = xk] = E[E (T.;l(Xtu+1))1X(Xtu+1)|Xtu = xk]

j
= @B [(ry (Xey) e (Ko)| X, = 4]
1=0

As Ty is linear the computation of the generalized moments has thus been reduced
to deriving truncated moments.

Monte-Carlo simulation

Lastly, especially in cases for which neither a probability density function, nor a
characteristic function of the underlying process is given, Monte-Carlo simulation is

13

a suitable choice. For every nodal point x; one simulates Ny;c paths Xtiu o of Xty
with starting value X;, = x;. These simulations can then be used to approximate

Ny

1 .
Pou e () (@) = Blpy (X)Xo = 2] = 5 — 3 pi(XL,,.)
=1

for every j € J. For an overview of Monte-Carlo simulation from SDEs and variance
reduction techniques we refer to Glasserman (2003) and Korn et al. (2010).

4.2 Computational complexity of the algorithm

In this section, we investigate the complexity and thus the computational cost of
the Dynamic Chebyshev algorithm. In order to do so, the offline/online structure of
the method has to be taken into account. We assume an equidistant time stepping
and that the stationarity assumption (2.7) holds.

In the offline step, we thus need to compute the (N + 1)? generalized moments
I'jr = E[pj(Xai)|Xo = xr]. When using numerical integration to compute the
moments, the evaluation of the integrand at M, qq quadrature points is required and
similarly for the Monte-Carlo approach on Mj;c samples. In total, the complexity of
the offline phase scales with IV 2Mquad or N2Mysc. The complexity can be reduced
when the straightforward approach for the moment calculation is replaced with
a more sophisticated approach. Moreover, parallelization can help to reduce the
runtime significantly. It is important to acknowledge that the three quantities NV,
Myuaa and My are on a different scale. The number of Monte-Carlo simulations
is typically much higher than the number of quadrature points or Chebyshev nodes.
For example 50, 000 might be a good choice for My;c whereas for My,qq = 500 might
already be high enough. Later on, we will investigate the optimal relation between
N and Mj;¢ in more detail.

After the offline phase all model-dependent quantities are readily available. More-
over, the effort of the offline phase is independent of the number of time steps n or
the number of different payoffs that have to be priced.

In the online phase, we need to compute the vector of nodal values YA/tu (xy) for all
k=0,...,N and then the coefficient vector c;“ for j =0,...,N in every time step.
Both require the multiplication of a vector with N +1 entries with a (N+1) x (N+1)
matrix. Hence, the total effort scales with nN? where n is the number of time steps.
The complexity of the online phase is therefore independent of the numerical method
applied in the offline calculations. Since N is typically relatively small the method
becomes very efficient.

4.3 Application to option pricing

In the numerical section we use the Dynamic Chebyshev method to price a barrier

option and an American put option. Assuming an asset model of the form S; = eXt,

the DPP for an American put option becomes

Vr(z) = (K —e*)*t
Vi (@) = max { (K — e)F, e T IR, (X,)X, = 2]}

14

The general formulation of the DPP (2.4) and (2.5) includes also the pricing of
different types of discretely monitored barrier options. One example is an up-and-
out call option with value function

Vr(z) = (e — K) "1 (oo ()
‘/tu (ﬂf) = e_r(tu+l_tu)E[‘/tu+l (Xtu-&-l)‘Xtu = x]]l(—oo,b] ("r)

with strike K and barrier b. Other examples are a down-and-out put option or
options with multiple barriers.

Reducing the truncation error

Typically, the support of the underlying process X; is R and the restriction
to a compact domain X' = [z,Z| introduces a truncation error. The error is less
relevant for barrier options than for American options since the option value is zero
for x > b and thus the truncation error for large x is zero if T = b. For small z, we
know that the option value converges toward zero and the truncation error becomes
small for T small enough. For an American put option we exploit the asymptotic
behaviour of the payoff in order to reduce the truncation error. If X, is below the
exercise boundary the option is exercised at the value K — eXt« which we exploit for
X, < x. The function x — V;, tends to zero from above for £ — oo and thus for =
large enough the truncation to zero for x > 7 is justified. Hence, we introduce the
following modification of the Dynamic Chebyshev method:

Vi (@) = Vi (x)l{x<£} + Vi (w)l{fﬁex} t Vi (x)l{x>f}
~ (K —e")lper) + Vi () 1zex)

and thus
E[‘/tqul (Xtu+1)|Xtu = :Uk} ~ E[(K - €Xtu+1)l{Xtu+1 <£}|Xtu = wk]
N
+ 37 ej(tus))Tjn(tn)
=0

for z small and T large enough. One can precompute E[(K —e™tu+1)1{Xtu+1 <o} Xt, =
x]. We emphasize that similar modifications to reduce the truncation error can be
found for other payoff profiles, e.g. for digitals, butterfly options or any other com-
bination of different put options.

Smoothing initial step
Moreover, we also modify the first time step from ¢, to t,_1. At time ¢,_1 we
need to calculate the values at the nodal points

Vi, 1 () = f(g9(xn), E[Vr (X7)| X, = x]).

Instead of approximating Vp with Chebyshev polynomials and using (2.6) we can
directly exploit that Vp(x) = g(x) and calculate

(4.2) Vi () = f(g(an), Blg(X7)[X,y = 1]).

15

This means we need to calculate the conditional expectations E[g(X7)| Xy, , = xk]
for kK = 0,..., N which are essentially European option prices. From Gaf} et al.
(2018), we know that European option prices are analytic functions of the starting
value x for a large class stock price models and payoffs. Hence, the kink of the payoff
is no longer relevant and the method is "smoothed”, i.e. convergence is improved.
In Section 5.3, we will investigate the effect of the smoothing on the error decay
numerically.

Note that this implementation of the initial step introduces a smoothing effect
but no additional error, in the contrary, by computing the generalized moments (4.2)
directly we avoid a polyonmial approximation of the known payoff function. Hence
the modification improves the accuracy of the method.

The option’s sensitivities
The option’s sensitivities Delta and Gamma can be computed by taking the first
or second derivative of

S Vo(log(8)) = > ¢j(to)p;(log(S)).
jeT

Thus Delta and Gamma are expressed as the sum of derivatives of Chebyshev poly-
nomials. In particular, their derivation comes without any additional computational
costs in the offline phase or in the time stepping.

5 Numerical experiments

In this section, we use the Dynamic Chebyshev method to price American put
options and we numerically investigate the convergence of the method. Moreover,
we compare the method with the Least-squares Monte-Carlo method of Longstaff
and Schwartz (2001). All experiments were performed on a computer with Intel Core
i7-6700 with 3.4GHz and 16GB memory. All codes are written in Matlab version
R2017b.

5.1 Stock price models

For the convergence analysis we use three different stock price models.

The Black-Scholes model:
In the classical model of Black and Scholes (1973) the stock price process is modelled
by the SDE

dSt = TStdt + O'Stth

where r is the risk-free interest rate and o > 0 is the volatility. In this model
the log-returns X; = log(S;) are normally distributed and for the double truncated
moments

EX™y(X)] for X ~ N (,0%)

16

explicit formulas are available.Kan and Robotti (2017) present results for the (mul-
tivariate) truncated moments and provide a Matlab implementation.

The Merton jump diffusion model:
The jump diffusion model introduced by Merton (1976) adds jumps to the classical
Black-Scholes model. For S; = SpeXt the log-returns X; follow a jump diffusion
with volatility ¢ and added jumps arriving at rate A > 0 with normal distributed
jump sizes according to N(a, 3?). From Cont and Tankov (2004) we obtain the
characteristic function of X; given by

2 . 2
¢(z) = exp (t <ibz — %22 + A <e”0‘_ﬁzz2 — 1>)>

2
with risk-neutral drift b = r — %2 - A(e“”“% — 1).

The Constant Elasticity of Variance model:
The Constant Elasticity of Variance model (CEV) as stated in Schroder (1989) is a
local volatility model based on the stochastic process

(5.1) dS;, = rS,dt + 0S°2Aw, for B> 0.

Hence the stock volatility JSt(B*Q)/ 2 depends on the current level of the stock price.
For the special case 8 = 2 the model coincides with the Black-Scholes model. How-
ever, from market data one typically observes a 8 < 2. The CEV-model is one
example of a model which has neither a probability density, nor a characteristic
function in closed-form.

5.2 Expected convergence behaviour

Before we perform a numerical convergence analysis, we recall the theoretical error
analysis and point out what type of error decay we can expect.

First, we consider an analytic value function and omit a possible truncation error.
In this case we know from Corollary 3.4 that the following error bound holds

er, < c10” N og(N)P" + ¢y log(N)P"s
or with §* instead of § if (GM*) holds. This yields for the log-error
log(e,) < log (clg_N log(N)D” + c9 10g(N)D"3)

= -N Dn C2 NT
(5.2) = log (c10™" log(N)"") + log (1 + —0™)
= log(c1) — log(0)N + Dnlog(log(N)) + log (1 + ?QNS).
1

If we assume that o™Vé < 1 the log-error as a function of N should be bounded by a
function of the form N — ¢—my N +mglog(log(N)) for constants ¢, mi, mg > 0 and
since the linear term dominates the log log-term, we expect to observe an exponential
error decay in N. For ¢V > 1 we obtain
log (1 + C—QQNS) = log (CEQNS) + log (C—lngg_l + 1)
1 1 C2
1

< log (Z—i) +log(o)N + log(d) + log (Z—Z + 1).

17

When we plug this term into (5.2), the terms —log(o)N and log(¢)N cancel each
other out. Combining the two cases yields two observations for the convergence
behaviour. First, for an in the offline phase fixed accuracy § or 6* the method will
converge in the online phase where the reachable accuracy is limited by & resp. &*.
Second, in terms of the total computational effort one should choose N subject to
the accuracy of the generalized moments. For example in the Monte Carlo case the
optimal NN is a function of the number of simulations or of the number of quadrature
points in the Fourier case. In the Monte-Carlo case the error 6* decays typically
with ¢M~%5 and from ¢Vé* < 1 follows N < ¢log(M) for some constant & > 0.
If we fix N like this the complexity of the offline phase N2M becomes log?(M)M
and the complexity of the online phase N? becomes log?(M). In the Fourier case
the error § depends on the regularity of the integrand which is model dependent.
Typically the error will decrease much faster than the Monte-Carlo error.

If the value function is only continuously differentiable and not analytic, we can
no longer apply the results from Section 3. Nevertheless, we can use the Dynamic
Chebyshev method and come up with a very rough estimate of the expected con-
vergence behaviour. We know that the convergence of the Chebyshev interpolation
is of polynomial order for continuously differentiable functions. If we simply replace
the term o~ by a term NP for a p € N, we can perform the same calculations as
in the anlytic case. We obtain for the log-error

log(er,) < log(ci) — plog(N) + Dnlog(log(N)) + log (1 + %N*PS).
2

Assuming NP§ < 1 suggests that the log-error as a function of N is bounded by
a function N +— ¢ — mjlog(N) + malog(log(N)) for constants ¢, my,mg > 0. In
this case the log-error is approximately linear in log(N). If we use Monte-Carlo
simulation in the offline step with decay c¢M ~%® the condition NP§* < 1 implies for
p = 1 that N < &/M and more general N < ¢M%5/P. Similarly to the analytic
case, if we choose N = éMO5/P the complexity of the offline phase N2M becomes
MY/ and the complexity of the online phase nN? becomes nM p,

5.3 Numerical convergence analysis

In this section we investigate the convergence of the Dynamic Chebyshev method.
We price a barrier call option and an American put option along with the options’
Delta and Gamma in the Black-Scholes and the Merton jump diffusion model, where
we can use the COS method of Fang and Oosterlee (2009) as benchmark. The COS
method is based on the Fourier-cosine expansion of the density function and provides
fast and accurate results for the class of Lévy models. We use the implementations
of method which were provided for the benchmarking project of von Sydow et al.
(2015). The provided implementations are slightly modified to fit for our examples.

For the experiments, we use the following parameter sets in the Black-Scholes
model

K =100, r=0.03, 0=0.25 1T=1,
and for the Merton jump diffusion model

K =100, r=0.03, a=-05 =04, =025 A=04

18

and we use 32 time steps. The jump parameters «, 3 and A are taken from von
Sydow et al. (2015).

5.3.1 Convergence for analytic value functions

We price a barrier option with call payoff gr(z) = (e* — K)+]l(oo,b} (z) and barrier
b = log(125) in the Black-Scholes model. Defining X' = [z, b], g¢, (¥) = 1 (o p)(z) and
f(z,y) = zy the pricing problem of a barrier option as introduced in Section 4.3 can
be written in the general form of (2.4) and (2.5).

Remark 5.1. When conditions (i) and (ii) of Proposition 3.5 hold and the smooth-
ing of the payoff as stated in (4.2) is applied then the value function of an up-and-out
barrier option

‘/tu : |:£7 b] 9 T =]E[‘/;«u (Xtu+1)|Xtu = m]]}‘(—oo,b} ($)

is a function with an analytic extension to some Bernstein ellipse B([z,b], 0), o €
(1,00) for allu =0,...,n — 1. In this case the convergence result for the Dynamic
Chebyshev method of Corollary 3.4 holds.

From Gaf et al. (2018) we know that conditions (i) and (ii) of Proposition 3.5 are
fulfilled in the Black-Scholes model and thus we can expect the log-error to decay
approximately linear in the number of Chebyshev nodes.

For the following experiments, we used the density approach to calculate the
generalized moments implemented with the Matlab quadrature routine quadgk with
an absolute as well as relative error tolerance of 1073 and we set z = log(10).
Prices and sensitivities are calculated on a grid of starting values equally distributed
between 90 and 110 and compared to the benchmark method. The left plot in
Figure 5.1 shows the log-error for an increasing number of nodes N = 10,...,100.
The log-error for the prices as well as for Delta and Gamma decays linearly in N as
we expected and reaches an accuracy below 107'2. With only 50 nodal points the
method is already able to achieve an accuracy below 1076.

The right plot in Figure 5.1 shows the same experiment without the smoothing
in the initial time step. The method still converges but the decay of the log-error is
no longer linear.

19

DC error decay for BS (smoothing) 0 DC error decay for BS (no smoothing)

10°%¢ N 0%,
N — + —Prices N — + —Prices
-2 L N — + —Delt \ — + —Delt
10 x % + elta t + elta
NN Gamma X N Gamma
MOy 102 ¢ A=
4 [N NI —~
10 \Q N \ \v s/ ~+o
< \
= 6L i(\\\ i \ \
S 10 EN g N i s SN \,
3 N\ g 10 ¥ ~+._
8 -8 % 8 *
q 108f N 3
\\ ¥
-10 [
10
R 10°
N
02} '\
10 ' ' ' ' ' 10 ' ' ' ' '
0 20 40 60 80 100 0 20 40 60 80 100
Chebyshev N Chebyshev N

Figure 5.1: Error decay prices Dynamic Chebyshev in the BS model using smoothing in the first time
step(left) and without smoothing (right). The conditional expectation of the Chebyshev polynomials
are calculated with the density function.

5.3.2 Convergence for differentiable value functions

Next, we price an American put option in the Black-Scholes and in the Merton
model. Here, the value function is only continuously differentiable but not analytic.
Due to the maxima function in the evaluation of the value function in every time step,
we cannot expect that the function is analytic around the optimal exercise point.
However, Peskir and Shiryaev (2006) show that the value function of an American
option is still continuously differentiable at the exercise point. This property is often
called ”smooth-fit” property. Bayraktar (2009) shows that this smoothness property
holds also in a jump-diffusion model. The expected decay of the log-error is therefore
slower than a linear decay and behaves approximately like —plog(/N'). Therefore, we
should need more nodal points as in the analytic case to obtain the same accuracy.

For both models the generalized moments are computed by the Fourier approach
as stated in (4.1). We truncate the integral at |{| < 250 and use Clenshaw-Curtis
with 500 nodes for the numerical integration. For the Fourier transform of the
Chebyshev polynomials the implementation of Dominguez et al. (2011) is used. We
run the Dynamic Chebyshev method for an increasing number of Chebyshev nodes
N = 50,100,...,750. Then, option prices and their sensitivities delta and gamma
are calculated on a grid of different values of Sy equally distributed between 60%
and 140% of the strike K. The resulting prices and Greeks are compared using the
COS method as benchmark and the maximum error over the grid is calculated. Here
we use the implementation provided in von Sydow et al. (2015).

Figure 5.2 shows the error decay for the Black-Scholes model (left hand side)
and the Merton model (right hand side). We observe that the method converges
and an error below 1073 is reached for N = 300 Chebyshev nodes. The speed of
the convergence is similar for both stock price models and slower than in the barrier
option example. The plots demonstrate an approximately polynomial error decay in
N. Hence, the experiments confirm that the method can be used for an American
put option.

20

1DC error decay for BS (Fourier approach) ch error decay for Merton (Fourier approach)

10 10°
* — 4 — Prices + — 4+ — Prices
e — + —Delta \ — + —Delta
102 ¢ x \\ Gamma 102+t " * Gamma
N VK
RN " LN
N\ N,
5 103} v VN 5 103} X
! \+ \ = \ \
= * = +
o N **/4/& ; * Y Rk
8 * \ A
¥ —+—+
S 10 # A =10 NN +
N . A N *
R e Ok
~ST+ s N .
10°F 10°
10° : : : 10 ‘ ‘ ‘
0 250 500 750 0 250 500 750
Chebyshev N Chebyshev N

Figure 5.2: Error decay prices Dynamic Chebyshev in the BS model (left) and the Merton model
(right). The conditional expectation of the Chebyshev polynomials are calculated with the Fourier
transformation.

5.3.3 Convergence for a bivariate barrier option

In this section, we provide evidence that the method also works for multivariate
options by looking at the convergence of the Dynamic Chebyshev method for a
barrier options with two barriers. We consider two assets S;, S? and an option with
payoff

g($1,l‘2) = (ezl — K)+1(—oo,b1](xl)]l(—oo,b2} (xg) with T = 10g(51), Tro = 10g(82)

strike K and barrier b. This type of option is also referred as outside/rainbow
barrier option as a second (outside) underlying is included to generate an additional
discount compared to a standard (barrier) option. An economic example could be
that a company would like to hedge against increasing prices of a commodity only
if the economy stays at or below its current level. In the scenario of an economic
boom higher prices cover the increase in costs and no hedge is required. Different
examples of options with multiple barriers and their economic interpretation can for
example be found in Escobar et al. (2017).

Here, we assume that both assets follow a geometric Brownian motion and hence
we are in a bivariate Black-Scholes type model. We fix the following model param-
eters

K =100, r=0.03, o01=025 o0,=02 p=04, T=1,

and choose as barrier b; = log(125) and by = log(120). For the calculation of the
generalized moments we use the density approach implemented using the Matlab
function integral2 with an absolute and relative error tolerance of 1076, We run
the Dynamic Chebyshev method for an increasing number of points N = N; = N»
ranging from 10 to 40 and calculate prices on a two-dimensional grid of starting
values equally distributed in [90,110] x [90, 110]. For the comparison of prices, we
run the method with N = 50.

Figure 5.3 shows the resulting error decay. We still observe that the log-error
decays almost linear in N, where N corresponds to a total number of N? grid

21

points. In a general D-dimensional framework we can expect to need N points for
the same error behaviour in N. This is often called the course of dimensionality.
Different numerical techniques have been developed to tackle this problem such as
low-rank tensor techniques and sparse grids. These can be exploited when applying
the Dynamic Chebyshev method to multivariate pricing problems.

DC error decay for 2D Barrier (BS)

lo-l -
~+\
AN
AN
_ AN
102 N
. \
]
o kN
[} ~N
N
* N
107 ~
N
~
St
10—4 L L L L
10 20 30 40

Chebyshev N

Figure 5.3: Error decay of the Dynamic Chebyshev approach for a bivariate barrier option in a
multivariate BS model. The conditional expectation of the Chebyshev polynomials are calculated
using the density function.

5.4 Dynamic Chebyshev with Monte-Carlo

So far, we have empirically investigated the error decay of the method for option
prices and their derivatives. In this section, we compare the Dynamic Chebyshev
method with the Least Square Monte-Carlo approach of Longstaff and Schwartz
(2001) in terms of accuracy and runtime.

5.4.1 The Black-Scholes model

As a first benchmark, we use the Black-Scholes model with an interest rate of r =
0.03 and volatility ¢ = 0.25. Here, we look at a whole option price surface with
varying maturities and strikes. We choose 12 different maturities between one month
and four years given by

T € {1/12,2/12,3/12,6/12,9/12,1,15/12,18/12,2,30/12, 3,4}

and strikes equally distributed between 80% and 120% of the current stock price
So = 100 in steps of 5%. We fix n = 504 time steps (i.e. exercise rights) per year,
which is equivalent to two ticks per trading day (assuming 252 trading days per
year). We use a relatively high number of exercise rights to ensure that the solution
in discrete time is a good approximation of the actually continuous time problem of
pricing an American put.

22

We compare the Dynamic Chebyshev method to the Least Squares Monte-Carlo
approach. We run both methods for an increasing number of Monte-Carlo paths
according to

(5.3) M € {2500, 5000, 10000, 20000, 40000, 80000} .

The convergence of the DC method depends on both, the number of nodes N and
the number of Monte-Carlo paths M. For an optimal convergence behaviour one
needs to find a reasonable relationship between these factors. The analysis of the
expected convergence behaviour in Section 5.2 shows that the number of Chebyshev
nodes N should be ¢v/M for a constant ¢ > 0. Numerical experiments indicated
that ¢ = /2 is a very reasonable choice and thus we fix N = VoV M.

Figure 5.4 shows the price surface and the error surface for N = 400 and
M = 80000. The error was estimated by using the COS method as benchmark.
We reach a maximal error below 0.015 on the whole option surface.

In Figure 5.5 the logyg-error is shown as a function of the log;g-runtime for both
methods. The left figure compares the total runtimes and the right figure compares
the offline runtime. For the Dynamic Chebyshev method the total runtime includes
the offline-phase and the online phase. The offline-phase consists of the simulation of
one time step of the underlying asset process Xa; for N 4 1 starting values Xy = zy,
and of the computation of the conditional expectations E[p;(Xa¢)|Xo = xi] for
4,k =0,...,N. The online phase is the actual pricing of the American option for all
strikes and maturities. Similar, the total runtime of the Least-Square Monte-Carlo
method includes the simulation of the Monte-Carlo paths (offline-phase) and the
pricing of the option via backward induction (online-phase).

We observe that the Dynamic Chebyshev method reaches the same accuracy
with much lower runtime. For example, a maximum error of 0.1 is reached in
a total runtime of 0.5s with the Dynamic Chebyshev method whereas the LSM
approach needs 98s. This means the Dynamic Chebyshev method is nearly 200
times faster for the same accuracy. For the actual pricing in the online phase, the
gain in efficiency is even higher. We observe that the Dynamic Chebyshev method
outperforms the Least-Square Monte-Carlo method in terms of the total runtime
and the pure online runtime. Moreover, we observe that the performance gain from
splitting the computation into an offline and an online phase is much higher for the
Dynamic Chebyshev method. For instance, in the example above the online runtime
of the Dynamic Chebyshev method is 0.05s whereas the LSM takes 95s, a factor of
1900 times more.

The main advantage of the Dynamic Chebyshev method is that once the con-
ditional expectations are calculated, they can be used to price the whole option
surface. The pure pricing, i.e. the online phase, is highly efficient. Furthermore, one
only needs to simulate one time step At of the underlying stochastic process instead
of the complete path. We investigate this efficiency gain by varying the number
of options and the number of time steps (exercise rights). From Section 4.2, we
know that the computational complexity of the offline phase is independent of the
number of time steps and the number of payoffs/options we want to price. Once the
generalized moments are calculated the pricing of an option requires only one run

23

BS model - Price surface (Monte-Carlo) BS model - Error surface (Monte-Carlo)

Price
Error

120 3
2

2 110
100
1

1 100
90 90

80 strike K

maturity T 0 & strike K maturity T o

Figure 5.4: Price surface and corresponding error of the Dynamic Chebyshev method in the Black-
Scholes model. The conditional expectations are calculated with Monte-Carlo.

BS model - total runtime vs. accuracy (])38 model - online runtime vs. accuracy

@ DC @ DC
cper LSM cperr LSM
N Q.. -05 %
0 5 .QQ .Q'.
Q o, Q o,
5 -1 ., g -1t e,
e, o, 5|9 o,
5 K S kY
0 -, 0 :
< 15t (S, 2151 ¢
0. -}
2l ‘© ol ©
25 : : ‘ ‘ 25— : ‘ ‘ ‘
1 0 1 2 3 -1 0 1 2 3

log,-runtime in seconds log;,-runtime in seconds

Figure 5.5: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the Dynamic
Chebyshev method with the Least-Square Monte-Carlo algorithm.

24

of online time stepping. Figure 5.5 shows that the online runtime even for pricing
a complete option surface is less than 1% of the total runtime. Therefore we can
expect that varying the number of options and the number of exercise rights has
nearly no effect on the total runtime of the Dynamic Chebyshev method.

Figure 5.6 compares the total runtime of the DC method with the total runtime
of the LSM method for an increasing number of options and for an increasing number
of time steps. As expected, we can empirically confirm that the efficiency gain by the
Dynamic Chebyshev methods increases with number of options and the number of
exercise rights. In both cases, the runtime of the DC method stays nearly constant
whereas the runtime of the LSM method increases approximately linearly.

Runtimes for increasing number of options (BS) Runtimes for increasing number of timesteps (BS)
120 180
@+ DC total runtime Q @+ DC total runtime o
100l «:@+- LSM total runtime 160 -+ LSM total runtime -
140
s 80r o 120
% & %
= £ 100}
L 60 o
£ £ 80 4
E ¢ E
£ oaf & g0l
40 o 60 o
401 K
201 ¢ &
::: 20 60
0 m @ srrespeanni@ennsesssnnnissyennnanans o) [O)L ol Yo YOI o VN WIVPININY; IEVPSPRINVRINIRPTTRINEY o
0 10 20 30 40 50 60 0 200 400 600 800 1000
Number of options Number of timesteps

Figure 5.6: Total runtime of the DC and the LSM method for an increasing number of options (left)
and an increasing number of timesteps (right).

5.4.2 The CEV model

Next, we use the constant elasticity of variance (CEV) model for the underlying
stock price process. We perform the same experiments as in the last section. The
parameters in the CEV model, as in (5.1) are the following

c=025 1r=003 B=15.

Similarly, we compare the Dynamic Chebyshev and the LSM method by comput-
ing the prices of an option price surface. We use the same parameter specifications
for K, T and n. We run both methods for an increasing number of Monte-Carlo
simulations M and fix N = v/2v/M. Figure 5.7 shows the price surface and the
error surface for N = 400 and M = 80000. The error is calculated using a binomial
tree implementation of the CEV model based on Nelson and Ramaswamy (1990).

25

CEV model - Price surface (Monte-Carlo) CEV model - Error surface (Monte-Carlo)

120
2

1 100
90

maturity 7 0 80 strike K maturity T 0 80

strike K

Figure 5.7: Price surface and corresponding error of the Dynamic Chebyshev method in the CEV
model. The conditional expectations are calculated with Monte-Carlo.

In Figure 5.8 the logjp-error is shown as a function of the logig-runtime for both
methods. The left figure compares the total runtimes and the right figure compares
the offline runtimes. Again, we observe that the Dynamic Chebyshev method is
faster for the same accuracy and it profits more from an offline-online decomposition.
For example, the total runtime of the DC method to reach an accuracy below 0.03
is 3.5s whereas LSM takes 136s. For the online runtimes this out-performance is 1s
to 122s.

CEV model - total runtime vs. accuracy CEV model - online runtime vs. accuracy
051 051
@ DC @ DC
ceyrr LSM ceyrr LSM
1 O'Q' GQ 1 0‘0_ & o
5 ' 5 '
= s .. =t : ...
T a5t o) © T-15F @ G
E " -0 B : 00
(- e
2 “e.... 2 ®
""" (o} (o}
2.5 ; ; ; ; ; : 25 ; ; ; ; ; :
-0.5 0 0.5 1 15 2 25 -0.5 0 0.5 1 15 2 25
log,,-runtime in seconds logy,-runtime in seconds

Figure 5.8: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the Dynamic
Chebyshev method with the Least-Square Monte-Carlo algorithm.

Investigating this efficiency gain further, we look at the performance for different
numbers of options and time steps (exercise rights). Similarly to the last section,
Figure 5.9 compares the total runtime of the DC method with the total runtime of
the LSM method for an increasing number of options and time steps. In both cases,
the runtime of the DC method stays nearly constant whereas the runtime of the
LSM method increases approximately linearly. This observation is consistent with
the theoretical considerations in Section 4.2 and the findings for the Black-Scholes
model in the previous section.

26

Runtimes for increasing number of options (CEV) Runtimes for increasing number of timesteps (CEV)

-:@--- DC total runtime -:@--- DC total runtime ‘A.O
weily-- LSM total runtime o <oy LSM total runtime
251 10l
5 20t s 8f
% %
£ ' £
O L o 0
£® - £°
- E=1
g g ? 3 B
~ o107 ~oa o
¢ £
5 60 2t 66
Q
0Nt I o (o o TP T R I>) O"'O---G---9 G FECCTTIEEERRECREE E >)
0 ———— — 0 : : : : :
0 10 20 30 40 50 60 0 200 400 600 800 1000
Number of options Number of timesteps

Figure 5.9: Total runtime of the DC and the LSM method for an increasing number of options (left)
and an increasing number of timesteps (right).

6 Conclusion and Outlook

We have introduced a new approach to price American options via backward induc-
tion by approximating the value function with Chebyshev polynomials. Thereby,
the computation of the conditional expectation of the value function in each time
step is reduced to the computation of conditional expectations of polynomials. The
proposed method separates the pricing of an option into a part which is model-
dependent (the computation of the conditional expectations) and the pure pricing
of a given payoff which becomes independent of the underlying model. The first
step, the computation of the conditional expectation of the Chebyshev polynomials,
is the so-called offline phase of the method. The design of the method admits several
qualitative advantageous:

e [f the conditional expectations are set-up once, we can use them for the pricing
of many different options. Thus, the actual pricing in the online step becomes
very simple and fast.

e In the pre-computation step one can combine the method with different tech-
niques, such as Fourier approaches and Monte-Carlo simulation. Hence the
method can be applied in a variety of models.

e The proposed approach is very general and flexible and thus not restricted to
the pricing of American options. It can be used to solve a large class of optimal
stopping problems.

e We obtain a closed-form approximation of the option price as a function of the
stock price at every time step. This approximation can be used to compute
the option’s sensitivities Delta and Gamma at no additional costs. This holds
for all models and payoff profiles, even if Monte-Carlo is required in the offline
phase.

e The method is easy to implement and to maintain. The pre-computation step
is well-suited for parallelization to speed-up the method.

27

We have investigated the theoretical error behaviour of the method and introduced
explicit error bounds. We put particular emphasis on the combination of the method
with Monte-Carlo simulation. Numerical experiments confirm that the method per-
forms well for the pricing of American options. A detailed comparison of the method
with the Least-Square Monte-Carlo approach proposed by Longstaff and Schwartz
(2001) confirmed a high efficiency gain. Especially, when a high number of options is
priced, for example a whole option price surface. In this case, the Dynamic Cheby-
shev method highly profits from the offline-online decomposition. Once the condi-
tional expectations are computed, they can be used to price options with different
maturities and strikes. Besides the efficiency gain, the closed-form approximation
of the price function is a significant advantage because it allows us to calculate the
sensitivities. Since Longstaff and Schwartz (2001) introduced their method different
modifications have been introduced. Either to increase efficiency or to tackle the
sensitivities. For example the simulation algorithm of Jain and Oosterlee (2015) is
comparable to LSM in terms of efficiency but is able to compute the Greeks at no
additional costs. Moreover dual approaches were developed to obtain upper bounds
for the option price, see Rogers (2002) and more recently Belomestny et al. (2018).
The presented experiments focused on the one dimensional case with a bivariate
application. A thorough numerical investigation of the multivariate case including
a performance study will be presented in a follow-up paper.

The presented error analysis of the method under an analyticity assumption is
the starting point for further theoretical investigations in the case of piecewise an-
alyticity and (piecewise) differentiability. The former allows to cover rigorously the
American option pricing problem and a preliminary version is presented in Mahlst-
edt (2017). The qualitative merits of the method can be exploited in a variety of
applications. Glau et al. (2018) take advantage of the closed-form approximation
to efficiently compute the expected exposure of early-exercise options as a step in
CVA calculation. Moreover, the method can be used to price different options such
as other types of barrier options, swing options or multivariate American options.

Acknowledgments
The second and the third author thank the KPMG Center of Excellence in Risk

Management for their support.

A Proof of Theorem 3.3

Proof. Consider a DPP as defined in Definition 2.1, i.e. we have a Lipschitz contin-
uous function

|f(z1,91) — f(z2,92)] < Ly(|z1 — 22| + Y1 — 2l)-

Assume that the regularity Assumption 3.2 and the assumption on the truncation
error (TR) hold. Then we have to distinguish between the deterministic case (GM)
and the stochastic case (GM*). In the first case, the expectation in the error bound
can simply be ignored. First, we apply Proposition 3.1. At time point T" there is no

28

random part and no distortion error. Thus,

max E ||Vr(x) = V()] | = max |Ve(2) = Vr(@)| < cineler,, N. D, M),

For the ease of notation we will from know on write sgnt = eint(0t;, N, D, My;). We
obtain for the error at t,

(A1) maxE | Vi, (@) = Vi, (@)|] < ey + AgF (S, 1)

zeX
with maximal distortion error F(f,t,) = maxgec 7 E []Vtu (zF) — f}tu (zF)|].

Note that whether (GM) or (GM*) hold an approximation error of the condi-
tional expectation of V}uﬂ is made, i.e. E[V}uH(XtuH)\Xtu =2f = I‘fu(VtuH) R
I} (Vi,,.). The Lipschitz continuity of f yields

Vi (@) = Vi, (@) = | £ (gt a). T8 (Vi) = £ (9t @), TF, (V)|
< Ly ([otus®) = gltusa®)| + |TE, (Vi) = T, (Vars)
= Ly (|PE (Vi) = TH()])
< Ly ([Th, (Visa 1) = T, (Vo)

).

Next, we consider the expectation for each of the three error terms. For the first
term we obtain

)

+ ‘Ffu (Viuia 1RD\X)’

|0, (Vo) = T, (V)

E |0, (Vesa12) = T, (Veus)

} =k [‘E[Wu+1(Xtu+l)ﬂX - ‘//\;‘/u+1(Xtu+l)|Xt“ - :Ek]H

< mAxXE | Viyor (2) = Vios ()] = et
xeEX
and for the second term we have
E[|TE, (Viusi lzon2)|| < Elen] = or

For the last term we have to distinguish two cases. If we assume (GM) holds, the

operator norm yields
= | (8= L) (Vi)

< ||k -1,

I8 (Pru) = T, (Vi)

op

S 3 H‘Zu-kl

Next, we consider the second case and assume that (GM*) holds. Then we have

E (|0 () = T (V)] < |06, - T,

o 7

<own

u+1 u+1 u+1
o0

29

Hence in either case the following bound holds

E[|TE, () = TF, (Fhocn)

| < cgmmaxE ||V, ()]

with €4, = 0 if assumption (GM) holds and g4, = 6*(M) if assumption (GM*)
holds. We need an upper bound for the maximum of the Chebyshev approximation

rznea;%(E [‘%”H(x)’} = I:?ea%E |:|‘/tu+1 (:C) - Vtu+1 (x)|] + rznea;\},’(|Vtu+1 (x)| < Etuyr +Vu+1

with V11 := maxgex |V, (z)]. Hence, the error bound (A.1) becomes
€, < E;ng + AﬁLf((l + 5gm)5tu+1 + &t + snguH).

By induction, we now show (3.5). For u = n we have ¢;, < ¢, and therefore (3.5)
holds for u=n. We assume that for n,...,u + 1 equation (3.5) holds. For the error
£¢, we obtain

€, < 8?,“5 + AﬁLf((l + ng)gtu.H + ey + ngvu+1)
n n
< Eipt T ANLf((l + 5gm)(Z Cj_(uﬂ)ggnt + AxLy Z CI(r2) (er + 5gmvj))
j=u+1 Jj=u+2
+ e + 5gmvu+1>
=l +C Y I AL (C e e R v
j=u+1 J=u+2

+ ey + ‘sgmvu-‘rl)

=cl,+ > CIe L, + AﬁLf< > O eyt egm V) + e + 5ngu+1)

j=u+1 Jj=u+2
n . n
= 0, A AgLy > G ey 460, V)
j:u j:u+1
which was our claim. O
References

Bayraktar, E. (2009). A proof of the smoothness of the finite time horizon American
put option for jump diffusions. SIAM Journal on Control and Optimization 48(2),
551-572.

Belomestny, D., S. Héafner, and M. Urusov (2018). Regression-based complexity
reduction of the nested Monte-Carlo methods. SIAM Journal on Financial Math-
ematics 9(2), 665-689.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.
Journal of Political Economy 81(3).

30

Brennan, M. J. and E. S. Schwartz (1977). The valuation of American put options.
The Journal of Finance 2(32), 449-462.

Cai, Y. and K. L. Judd (2013). Shape-preserving dynamic programming. Mathe-
matical Methods of Operations Research 77(3), 407-421.

Cont, R. and P. Tankov (2004). Financial Modelling With Jump Processes. Financial
Mathematics. Chapman & Hall/CRC Press.

Dominguez, V., I. Graham, and V. Smyshlyaev (2011). Stability and error estimates
for Filon—Clenshaw—Curtis rules for highly oscillatory integrals. IMA Journal of
Numerical Analysis 31(4), 1253-1280.

Driscoll, T. A., N. Hale, and L. N. Trefethen (2014). Chebfun guide.

Escobar, M., M. Mahlstedt, S. Panz, and R. Zagst (2017). Vulnerable exotic deriva-
tives. The Journal of Derivatives 24 (3), 84-102.

Fang, F. and C. W. Oosterlee (2009). Pricing early-exercise and discrete barrier
options by Fourier-cosine series expansions. Numerische Mathematik 114 (1), 27.

GaBl, M., K. Glau, M. Mabhlstedt, and M. Mair (2018). Chebyshev
interpolation for parametric option pricing. Finance and Stochastics.
https://doi.org/10.1007/s00780-018-0361-y.

Geske, R. and H. E. Johnson (1984). The American put option valued analytically.
The Journal of Finance 39(5), 1511-1524.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering, Volume 53.
Springer Science & Business Media.

Glau, K., R. Pachon, and C. P6tz (2018). Fast Calculation of Credit Exposures for
Bermudan Options using Chebyshev Interpolation. Working Paper.

Haasdonk, B., J. Salomon, and B. Wohlmuth (2013). A reduced basis method for
the simulation of American options. In Numerical Mathematics and Advanced
Applications 2011, pp. 821-829. Springer.

Haentjens, T. and K. J. int Hout (2015). ADI schemes for pricing American options
under the Heston model. Applied Mathematical Finance 22(3), 207-237.

Hilber, N., N. Reich, C. Winter, and C. Schwab (2013). Computational Methods for
Qantitative Finance. Springer.

Jain, S. and C. W. Oosterlee (2015). The stochastic grid bundling method: Effi-
cient pricing of Bermudan options and their Greeks. Applied Mathematics and
Computation 269, 412—431.

Judd, K. L. (1998). Numerical methods in economics. MIT press.

Kan, R. and C. Robotti (2017). On moments of folded and truncated multivariate
normal distributions. Journal of Computational and Graphical Statistics 26(4),
930-934.

31

Korn, R., E. Korn, and G. Kroisandt (2010). Monte Carlo methods and models in
finance and insurance. CRC press.

Levendorskii, S. (2004). Pricing of the American put under Lévy processes. Inter-
national Journal of Theoretical and Applied Finance 7(03), 303-335.

Longstaff, F. A. and E. S. Schwartz (2001). Valuing American Options by Sim-
ulation: A Simple Least-Squares Approach. Review of Financial studies 14 (1),
113-147.

Lord, R., F. Fang, F. Bervoets, and C. W. Oosterlee (2008). A fast and accurate
FFT-based method for pricing early-exercise options under Lévy processes. STAM
Journal on Scientific Computing 30(4), 1678-1705.

Mabhlstedt, M. (2017). Complezity Reduction for Option Pricing. Ph. D. thesis,
Technische Universitat Miinchen.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontin-
uous. Journal of Financial Economics 3, 125-144.

Nelson, D. B. and K. Ramaswamy (1990). Simple binomial processes as diffusion
approximations in financial models. The review of financial studies 3(3), 393-430.

Peskir, G. and A. Shiryaev (2006). Optimal Stopping and Free-Boundary Problems.
Springer.

Rogers, L. C. (2002). Monte Carlo valuation of American options. Mathematical
Finance 12(3), 271-286.

Rudin, W. (1973). Functional Analysis. McGraw-Hill Book Co.

Sauter, S. and C. Schwab (2010). Boundary Element Methods, Translated and ex-
panded from the 2004 German original, Volume 39. Springer Series Computational
Mathematics.

Schroder, M. (1989). Computing the constant elasticity of variance option pricing
formula. The Journal of Finance 44 (1), 211-219.

Trefethen, L. N. (2013). Approzimation Theory and Approximation Practice. STAM
books.

von Sydow, L., L. Josef H60k, E. Larsson, E. Lindstréom, S. Milovanovié¢, J. Persson,
V. Shcherbakov, Y. Shpolyanskiy, S. Sirén, J. Toivanen, et al. (2015). BENCHOP-
The BENCHmarking project in option pricing. International Journal of Computer
Mathematics 92(12), 2361-2379.

32

