View metadata, citation and similar papers at core.ac.uk

1010.4409v1 [gr-gc] 21 Oct 2010

arXiv

brought to you by .{ CORE

provided by Queen Mary Research Online

Thermodynamics of magnetized binary compact objects

Koji Uryii,! Eric Gourgoulhon,

2

and Charalampos Markakis®

I Department of Physics, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
2 Laboratoire Univers et Théories, UMR 8102 du CNRS,
Observatoire de Paris, Université Paris Diderot, F-92190 Meudon, France
9 Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 418, Milwaukee, WI 53201
(Dated: 28 August 2010)

Binary systems of compact objects with electromagnetic field are modeled by helically symmet-
ric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived
thermodynamic laws for helically-symmetric perfect-fluid spacetimes are extended to include the
electromagnetic fields, and electric currents and charges; the first law is written as a relation be-
tween the change in the asymptotic Noether charge 6Q) and the changes in the area and electric
charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of
the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by
Bekenstein and Oron for the ideal magnetohydrodynamic (MHD) fluid, and also for the flow with
zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned
above, the relation §QQ = 0 is satisfied. We also discuss a formulation for computing numerical
solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of

the ideal MHD-Euler equation.

PACS numbers:
I. INTRODUCTION

Recent observations of anomalous X-ray pulsars, or
soft y-ray repeaters suggest the existence of neutron stars
associated with magnetic fields strong enough to affect
their structures in hydrostationary equilibrium (see, e.g.
[1]). Such objects have not been found in binary neu-
tron star systems, but hypothetically strongly magne-
tized neutron stars or black holes may form binary neu-
tron star or black hole - neutron star systems. In this ar-
ticle, we model such magnetized binary compact objects
in close circular orbits, assuming that the spacetime and
magnetic fields satisfy a helical symmetry and that the
stars are in equilibrium.

The helically symmetric spacetime was introduced by
Blackburn and Detweiler [2] to model binary compact
objects in close circular orbits in general relativity. In
such spacetimes, equal amounts of ingoing and outgoing
radiation are propagating, and hence these spacetimes do
not admit flat asymptotics, because the steady radiation
field carries an infinite amount of energy. Nevertheless,
it is expected that such a spacetime has an approximate
asymptotic region up to a certain radius, where gravita-
tional waves are propagating in a curved background, and
the energy of radiation does not dominate in the gravi-
tational mass of the system. Such a solution, however,
has not yet been calculated successfully in the regime of
strong gravity. Analogously to Schild’s result in electro-
magnetism for two oppositely charged point particles M],
circular orbits of two point particles have been obtained
in post-Minkowskian spacetimes [3]. More studies for
the helically symmetric spacetimes have been reported
by several authors [5-14)].

In [7] (hereafter FUS), thermodynamic laws for heli-
cally symmetric perfect fluid spacetimes have been de-

rived. In the first part of this paper, we extend the results
of FUS to the magnetized perfect-fluid Einstein-Maxwell
spacetimes with helical symmetry. As in FUS, we use a
helical Killing vector k% to define a conserved Noether
current and associated Noether charge @ [1521]. With
an appropriate choice of the current and a constant of
the electric potential, the charge ) becomes finite and is
independent of the 2-surface S on which it is evaluated
as long as the matter and black holes are enclosed in S.
We obtain the first law, which relates the change §Q to
the changes in the baryon mass, entropy, circulation and
electric current of the fluid, and in the area and electric
charge of the black holes. Its expression corresponds to
the mass variation formula for stationary axisymmetric
spacetimes derived by Carter [22, 23] (Eq. 7) below 1).
Concrete calculations for the variation, 6@, associated
with the classical action for an Einstein-Maxwell theory
coupled with a perfect fluid carrying an electric current,
L= (LR—G—L Fof 4 A ’a)\/—— (1)
~ \6n 167 7 o !
are summarized in Appendices [Al and [Bl to clarify nota-
tion and conventions.

When the late stages of binary inspiral are modeled us-
ing a sequence of equilibrium solutions of helically sym-
metric perfect fluid spacetimes (without electromagnetic
fields), the baryon mass, entropy, and circulation of the
flow, and the area of each black hole are assumed to be
held constant (see e.g. [], [24127]). Then, the expres-
sion of the first law becomes §@Q) = 0, or for asymptot-
ically flat systems such as the post-Newtonian, or the

I The first law Eq. [B7) is for generic flows that respect the helical
symmetry.


https://core.ac.uk/display/195279465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1010.4409v1

spatially conformally flat systems, dM = Q§.J, as a re-
sult of the conservations of those quantities (FUS). When
electromagnetic fields and electric currents are present in
neutron stars, the circulation of magnetized flow is not
conserved in general. Hence, it is not possible to find a
sequence of solutions along which the first law is simpli-
fied as above without further assumptions for the flow.
In other words, in order to approximate binary inspiral
just before a merger by a sequence of quasi-equilibrium
solutions, one needs to introduce a model for the evolu-
tion of neutron star spins. However, as shown in Sec. [TI]
with an electric current introduced by Bekenstein and
Oron for a class of ideal magnetohydrodynamic (MHD)
flows ([2830], see also [31] for non-relativistic magne-
tized flow), a generalized circulation of magnetized flow
is found to be conserved. Applying this law — the gener-
alized Kelvin theorem for ideal MHD — we show that the
relation Q) = 0 is satisfied along a sequence of helically
symmetric equilibria of magnetized binary systems, and
that the relation M = Q4.J holds for asymptotically flat
systems.

The above first law can be applied to actual sequences
of solutions, and hence in the second part of the paper, in
Sec. [V] and [V, formulations for computing such equilib-
rium solutions of magnetized binary compact objects are
discussed. In particular, we discuss the first integral of
the MHD-Euler equation, which is a key to compute equi-
libria of neutron stars numerically. Bekenstein and Oron
[29] have found a first integral of the relativistic MHD-
Euler equation using the same current for the case with
ideal MHD irrotational flow, and also for the case with
the purely convection current. As irrotational flow is con-
sidered to be more realistic in the final inspiral stage of
the binary neutron stars and the black hole - neutron star
binaries ﬂé], we introduce the first integral by Bekenstein
and Oron for ideal MHD irrotational flow, then derive
a somewhat different first integral, which may be valid
only on an initial hypersurface 3;, and write down a set
of equations for the magnetized irrotational flow suitable
for numerical computations of binary neutron stars and
black hole-neutron star binaries in equilibrium.

We follow the conventions and notation in FUS. For
a one-form w,, the exterior derivative (dw).s (within
index notation) is defined by

(dw)ap = Vowg — Vaw,, (2)
and for a two-form wap = wag by

(dw)aﬁ,y =3 V[Q’LUB,Y] = Vo‘wﬁ7+vﬁwm+vvwa5. (3)

II. THERMODYNAMIC LAWS FOR
EINSTEIN-MAXWELL SPACETIME WITH
CHARGED AND MAGNETIZED PERFECT

FLUID

A. Zeroth law and constancy of the electric
potential on the Killing horizon

We consider a globally hyperbolic spacetime (M, gag)
and a vector field k% transverse to each Cauchy surface
(but not necessarily everywhere timelike). This vector
generates the one-parameter family of diffeomorphisms
x¢- The action of y; to a spacelike sphere S on a Cauchy
surface generates a timelike surface, 7(S) = Uixt(S),
called the history of S. Then, as in FUS, k% is called
a helical vector if there is a smallest T > 0 for which P
and x7(P) are timelike separated for every point P out-
side of the history 7(S). Very often, k% can be written
kE* =t* + Q¢*, where Q = 27/T, t* is a timelike vector
and ¢“ a spacelike vector that has circular orbits with a
parameter length 27 (see, FUS).

Each Cauchy surface of the helically symmetric space-
time does not admit flat asymptotics because the energy
of the radiation generated by a binary equilibrium even-
tually dominates and causes a divergence. Therefore, as
discussed in FUS, the future (past) horizon H* in he-
lically symmetric spacetime is defined by the boundary
of the future (past) domain of outer communication D,
where P € M is in D if the future (past) timelike curve
¢(A) through P(:= ¢(0)) remains outside of T(S) of each
sphere S for a certain A\, A > A\g. It is also shown that, if
the history 7(S) of a sphere S is in D*, the future (past)
horizon agrees with the chronological past (future) of the
history T, H* = oIF(T).

The conditions of the theorems by Friedrich, Récz, and
Wald [33] are modified to make them suitable for helically
symmetric spacetimes. With the assumption that the
null energy condition holds: R,zl*l? > 0 for any null
vector [, those theorems yield the following properties:
H* are Killing horizons, the shear 0p and the expansion
6 of a null congruence vanish on H*, the Killing vector
k® is parallel to the null generators of the horizons, and
the surface gravity x of each disconnected horizon defined
by

EPVk® = kk® (4)

is constant on each connected component of H* (FUS).
The Raychaudhuri equation,

do 1
— = —Ry3l%1° — 20,30"P — =6
o\ Rap Tapo 50 (5)

is used to demonstrate the above properties. It implies
Rapl®1” = 0 on the Killing horizons H*. Assuming there
exists no material flow through the horizon but there
exists an electromagnetic field Fig := (dA)ap = Vo Ag —
VgAq, where A, is the electromagnetic potential one-



form, we have
Roph®k? = 87T sk’ = 2F o Fg7 k* kP

1
= 5 (BaE® + BoB") = 0 (6)

on H*, where " 5 1s the stress-energy tensor for the elec-
tromagnetic field, and E, and B, are the electric and
magnetic components with respect to the helical vector
defined by 2

1
E, = F.4k°, B, := §eaMF67k5. (7)
Note that, as a consequence of (@), £ and B are both
null on H*. Using the Cartan identity,

K (dA)po = £xAa — Va(kPAp), (8)

and assuming that A, respects the symmetry £5A, = 0,
one can introduce an electric potential in the rotating
frame E, = —Va®F. 3 Since E k® = B k* = 0 and
E, and B, are both null on #*, E, and B, are nec-
essarily parallel to the null generator on H*. Then, for
any vector % tangent to HT, n®E, = —n®V,®F = 0,
which implies that ®F is constant on the Killing horizon
HE [22,123].

The potential ®F is defined globally if the domain of
outer communications is simply connected, and ®F is
unique up to the constant of integration. The constant
may be chosen ®F — 0 as r — oo for asymptotically flat
systems. For the helically symmetric system, we set the
constant by the condition

1
_ v aB —
g fs kYA, F*?dS,5 = 0 (9)

on the boundary sphere S which encloses all black holes
and neutron stars, and on which a family of Noether
charges is defined in the next section . The total electric
charge of the system is defined by the surface integral over
the sphere S,

QY = ﬁfsmﬁdsa@, (10)

2 If k“ would be normalized by kok® = —1, E4 and Bs could be
interpreted physically as the electric and magnetic fields mea-
sured by the observer of 4-velocity k%. Note however that in
general kqok® # —1; even kok® =0 on HE.

One can avoid the assumption that the field A, respects the heli-
cal symmetry. Eq. (@) implies (dE)qg = —kY(dF)yag—£1Fap =
0 for (dF)o3y = 0 and the symmetry £;F,3 = 0. Hence, from
the Poincaré lemma, 3HE such that Eq = —Va®E if the domain
is connected and simply connected.

For an asymptotically flat spacetime, the Noether charge defined
on S with the choice of Eq. (@), and then the radius of S taken
to be r — oo, agrees with a choice ®® — 0 at »r — oo (see,

Sec. [TB).

and the condition (@) is rewritten for —k*A, = ®F + C
with

__ 1 E o
C= 4WQE£¢F dSus. (11)

B. First law for systems with a single Killing vector
1. Definition of the Noether charge Q

Given a 1-parameter family of magnetized perfect-fluid
Einstein-Maxwell spacetimes specified by

Q) := [gap(A), u®(A), p(A), 5(A), Aa(A), 7 (V)] (12)

a family of Noether charges is defined on any sphere S
that encloses all black holes and neutron stars associated
with the electric charge and current [16-21] :

Q= j{ Q*PdS.s, (13)
S
where
QP = —%V%B + ko8P — kB, (14)
Y

and B*(N) is any family of vector fields that satisfies

=) - e, (15)

©% being defined by Eq. (A30) in Appendix [Al The
vector B (\) is written,

1 .
BI(N) = m(g”gﬁ " — g9 x=0 V5 gys(\)

+$Fﬁa|,\:o Aﬁ()\) - bAﬁ(O)} + O()‘2)7 (16)

where % p is the covariant derivative of the metric g,(0)
and b is a fixed parameter.

We choose B“()) to make Q(X) finite; and, as we will
see below, Q(A) is independent of the sphere S, as long as
S encloses the fluid and black holes associated with elec-
tric charge and current. We first choose the parameter
b in definition (IG) to have Q(0) satisfy these proper-
ties. Regardless of the choice of B(0), the variation of
the Noether charge d@Q) is finite and independent of the
sphere S. The change in the Noether charge 6@ results
in the first law for the Einstein-Maxwell spacetimes with
charged and magnetized perfect fluid and Killing hori-
zons, associated with a single Killing vector to impose
the stationarity of the system.

In the calculation of the variation 6@, the Eulerian
change of each quantity in Eq. (IZ) is defined by 0Q :=
% Q(M\), and the Lagrangian change at A = 0 is given by

AQ = (6+ £¢)0, (17)

where £% is a Lagrangian displacement. The definition
of Lagrangian perturbations is given in Appendix [A 1]



2. Independence of Q(0) on the location of S

When the electromagnetic field satisfies FngF*® = 0
in the region where the sphere S is located, b = 1 is cho-
sen in Eq. ([[0) to make Q(0) finite and independent of
S. In this case, we have B*(0) = 0. When the steady
electromagnetic radiation is propagating everywhere in
the spacetime, b = 1/2 is chosen. Then, B*(0) be-
comes B(0) = FP%|,_0As(0)/87. For the former case,
a contribution from the gravitational radiation field to
the charge @Q(0) is subtracted, and for the latter case,
contributions from the gravitational and electromagnetic
radiation fields to the charge Q(0) are subtracted; Q(0)
is finite and independent of S as long as it contains the
fluid and all black holes in both cases.

To prove that the charge @ = Q(0) is independent of
the sphere S, we write Q = Qx + Qr, where Q is the
Komar charge and @7, an additional contribution related
to the surface term of the Lagrangian, with

1
Qx —gﬁvakﬁdsaﬂ, (18)

Qr = 7{(/&%" — kPB)dS,g, (19)
s
and rewrite ) in terms of integrals over a spacelike hy-
persurface X transverse to k%. The boundary of X,
ox=8Suy; B;, (20)

is the union of the sphere S and black hole boundaries
B;, which is the ith connected component of ¥ N H™.
Correspondingly, surface integrals over the ith black hole
horizon B; are written,

Qri = _si Blvakﬁdsaﬁ, (21)
Qri = ]2(/&%3 — kP9B2)dS,s. (22)
Then, from the identity
VsVek? = RYGEP, (23)
we have
Qr — Z Qi
1
=%/, v%ﬁdsag ——/RO‘ kPdS,,

— __/Ga kPdS., _—/ Rk®dS,, (24)

where the integral over the boundary 9% is related to the
surface integrals with the orientations, f o5 QP dSa.p =
($s = 2 $5:1 ) Q*PdSap. If Fop FP = 0 is satisfied in the

3
neighborhood and outside of the sphere S, the vacuum
Einstein equation is satisfied in the same region. From

Eq. (24)) and the choice B*(0) = 0, @ is then independent
of the location of S. For the case F,z F*? # 0, using

Qr — ZQLZ’
= /vﬂ(k“%ﬁ—k%a)dsa — /vﬂ%ﬁk“dsa
> b))

1 1
= — VaF*PA, — —F*PF. 5 ) k"dS 25

we have
Q-> Qi
! (G — 87TF5)k dS ! /Rk"‘dS
= T35 — o7 o T T4 -
8t Jy o P FA 167 Js,
1 1
_ By o T LY af
—|—/E<87TVVF Agk® — K" A,VsF )dSa
1
- — @ KA FPdS.s. 2
S KA (26)

where T3, the stress-energy tensor of the electromag-
netic field, is defined by Eq. (A€]). To derive Eq. (28], we
have used the Cartan identity (8]), the symmetry relation
£rA, = 0, and Eq. (@. From Eq. (26), it is obvious
that @ does not depend on the sphere S as long as it
encloses all black holes and neutron stars; all integrands
of the volume integrals over ¥ in Eq. (20) are zero in the
region where there are no matters and currents, where
the sphere S is placed. This argument may be clearer by
using an expression of the Komar charge associated with
the Lagrangian, Eq. (BY), given in Appendix

8. First law for the charge Q

The generalized first law will be obtained by evaluating
the variation 6@ in the Noether charge in terms of per-
turbations of the baryon mass, entropy, circulation and
electric current of each fluid element, and the surface ar-
eas and charges of the black holes. To find the change
0@, we first compute the difference,

JCEDICH] (27)

between the charge on the sphere S and the sum of the
charges on the black holes B;. The calculation is per-
formed in Appendix [Bl and results in Eq. (BIG). In
computing the difference (1), we choose two kinds of
gauge: the first one is to choose dk* = 0 using the dif-
feomorphism gauge freedom, and the second one £ = 0
for the Lagrangian displacement as a result of the triv-
ial displacement (see Appendix [Bl and FUS). For a per-
fect fluid spacetime, it has been shown in FUS that the
quantity (27) is invariant under gauge transformations
that respect the Killing symmetry. For the case with an



electromagnetic field, the same invariance under gauge
transformations associated with diffeomorphisms and the
U(1) gauge symmetry is shown to hold for the charge @
with a contribution from the electromagnetic fields, as is
discussed below.

In the black-hole charges Q; = Qi + Qri, Qk; i
calculated in FUS:

1 1
i = —0 kPdSns = —riA; 2
QK o BiV Sap 87THA7 (28)

where A; is the area of the ith black hole. The Qp; is
made of contributions from the geometry, electric charge,

and electromagnetic field. The former has been evaluated
in FUS following [34):

0QLi

]{B.(ka@)ﬂ — kPO%)dSqs

1 1
Sk A - Ba
3 (5!@./41 + 1 %ikaF (5A3dA. (29)

For the latter contribution, since k“Fg, = Ej3 is parallel
to the null generator kg on %™, we have

ko FPSAgdA = k*Fpag”6A,dA
= k“Fpo(—knY —0Pk7)0A,dA
= knPF,50(k7A,)dA
1
= 5(k7AV)F“5§(kan3 — kgng)dA
= §(KYA,)F*PdS,z (30)
where n® is the unique null vector field orthogonal to B;

satisfying nok®* = —1, and k7 = 0 is used. Hence

1 1
0Qri = —g=0riAi + —
8T

kYA ) FBds.,, 1
in Bi5( F*dSap  (31)

The contributions from the horizon are Eqs. ([28) and
(B31)), and the surface integral in the r.h.s. of Eq. (BIH),

1
-y el ji KA FPAS . (32)

Hence the sum of Eqs. (31), (82)) and the perturbed (28])
becomes

1
6Qi — -9

T JBi

kYA, FPdS,g,

1 1
- o v af
3 K;0A; 1 %ik A76(F dSaB)

= imAi + oFoQF, (33)
81

where the total electric charge of the system Eq. (I0) is
rewritten using Stokes’ theorem:

1
QF = /Ejo‘dSa + Zﬂé_wﬁdsaﬁ, (34)

and the electric charge on each black hole is defined by

QF =1

= FB4S, 5. 35
ey 8 (35)

Note that <I>1E is defined on each B; by
oF = — A%, =¥ 4+ C (36)

and is constant.

Finally, when Einstein’s equation, Maxwell’s equa-
tions, their linear perturbations and the equation of mo-
tion are all satisfied, the first law, which relates the
change of the Noether charge to changes in the ther-
modynamic and hydrodynamic equilibrium of matter, in
the electric current and electromagnetic field, and in the
area and electric charge of the horizon, is derived from

Egs. (BIH) and (33),

50 — /{ztA(spuadSa) ML NPT
» u

u

+ 0P A(hug pu® dSy) — Agk” A(j%dS.)
— (jOK? — jPkY)AAp dS, }

1
+ ) (S—W,ﬂmi + oF 5@;3) . (37)

Here T' is the temperature, s the entropy per baryon, h
the relativistic enthalpy and v® is defined by the following
decomposition of the fluid 4-velocity with respect to the
helical vector:

u® = u'(k* +v*) with 0v*V,t=0. (38)

Note that u® = u¥V,t. In the special case of stationary
and axisymmetric spacetimes (for which k® is a linear
combination of the stationary Killing vector and the ax-

isymmetric one), Eq. (1) reduces to the mass variation
formula derived by Carter [22,[23].

As mentioned earlier, we can verify now that Q(\) is
independent of the location of the 2-surface S on which
it is evaluated. In Sec.[[TB2] the charge Q(\) at A =0 is
shown to be independent of S, and the variation formula
Eq. 1) imply that dQ/d\ = §Q is independent of S as
long as it encloses the fluid and black holes.

5 To derive the mass variation formula for stationary and axisym-
metric spacetimes from Eq. (7)), one can replace the helical vec-
tor k% by the timelike killing vector ¢t®. All calculations above
are valid with this replacement, and now §Q becomes dM as
the sphere S goes to infinity (see Sec. and FUS). Extra
terms relating to the angular momentum of the fluid and black
hole (geometry and electromagnetic field) appear in the r.h.s of
Eq. (37) as a result of this replacement.



4.  Gauge invariance of 6Q

As shown in FUS, for perfect-fluid spacetimes, the
difference 6(Q — > Q;) is invariant under any gauge

3
transformation associated with diffeomorphisms that re-
spects the symmetry k%; in fact 6(Qx — > Qxk;) and

5(Qr — 3. Q) are separately invariant [7]. Because of

3
the contribution from the electric potential at the hori-
zon, 6(Q — Y Q;) is no longer invariant when an elec-

3
tromagnetic field is present, neither is each contribution.
We find, however, that an expression in which the con-
tribution of the electric charge times the potential at the
boundary is subtracted,

5(@ _ ZQ _ % /62 k”AVF“ﬁdSag), (39)

is invariant under the gauge transformation that respects
the symmetry and the U(1) gauge transformation as
shown below.

The gauge transformation associated with a vector
field n“ is given by

517Q = £7]Q7 §a(77) = _naa (40)

and the corresponding Lagrangian variation is identically
Zero,

A, = 6,4+ £, =0. (41)

We decompose the vector n® with respect to the symme-
try k<,

n* = n*Vat k% 4+ 7%, (42)

with NVt = 0.
Then, the change in 6(Qr — > Qr;) becomes

5,,(QL—ZQLi) - LVg@ﬁk“dS - /Zdnﬁd%

= /Va(ﬁﬁ“)d?’x -
>

F.sFY k3% dS, 4,
oy o v n B

(43)

where we used the relation 6,£ = £,£ = Vo (L7%) =
V(L Ek*V ot 7P), with k*V 4t = 1. The non-zero contri-
bution to the Lagrangian density £ at the boundary 0%
is that of the electromagnetic field Lg.

Similarly §(Qx — > Qki) is calculated from Eq. (24):

(Qx =S Qw) = = gob, [ RS,

1

= —— [ 2R* k")’ dSas
T Jox

__1 _ y 858

= B [£kA§ V5(k A,Y)]F n dSa,g
T Jox
1

+ -

FsF" kp% ds,, 44
87T o% vé n B ( )

where we have substituted R% = 877%"3 at 0% and
Eq. (AG), before using Eq. ). Finally, the last term
in Eq. (B9) becomes

1
- kYA, FYPds,,
47T5n s ¥ Sap
1
= —— kYA, FY9)dS,,
=00 [ VA, Fe0)as

1
= —— [ Vs(k"A,F*)iPdSs. (45)
27T £

Adding Eqs. (@), (3), and (45), and imposing £ 4, =0
and Vg F® = 0 at 0%, all terms cancel out :

™

o, (@ - >Qi- %/82 KA FPdS.s) = 0. (46)

Hence the difference ([B9) is invariant under a gauge trans-
formation that respects the symmetry.

For the U(1) gauge transformation, we directly show,
instead of Eq. (B9), the invariance of the difference eval-
uated at the surface S,

5(@ - i 7{5 kWAWFaBdSQB), (47)

under the transformation with a gauge potential f,
0fAq = Vaf. (48)

The change in charge ) with this transformation is

1
65Q = 0;Qr = Eﬁ(/&“mﬁ — kPFY)§; A dSas.

(49)
Then, the difference @) vanishes

1
_ Y afl

5f(Q 47T/Sk AF dsaﬂ)

= —3?4 EeFPIY fdSas = 0, (50)
47T S

because integration by part of the r.h.s. of the first equal-
ity becomes an itegration of a divergence over S that
vanishes, and an integral of

3V, (KR = oklov FAY 4 VoY FOP 4 £y OB
=0, (51)

when the Maxwell’s equation is satisfied on S where the
current is zero, and k% the Killing vector.

5. Asymptotically flat systems

FUS have derived the first law in a Hamiltonian frame-
work, and shown the relations between @k and 6@ and
the asymptotic quantities, the ADM mass M, the Komar
mass Mxk associated with the timelike asymptotic Killing



vector t“, and the angular momentum .J associated with
the asymptotic rotational Killing vector ¢®. In the pres-
ence of an electromagnetic field, the only difference with
FUS is the following term in 6@,

7{ (k08 — KPOR)dSus, (52)

where

7{0 =t f (53)

with S, is a sphere of a radius r, and Of is the sur-
face term of the variation of electromagnetic Lagrangian
defined by

1
& = —FP5Ag. 54
P 5 (54)
However, this does not contribute to 6@, because, for
asymptotically flat systems, the components of A, are
O(r~') or lower, and, accordingly, those of F*? are
O(r~2) or lower, hence

OFV,r r2dQ = 0

(55)
where the relations k*V,t = 1 and k“V,r = 0 have been
used. Therefore, as in FUS,

f{ (k0L — k?08)dS,s = lim

T—>00 S'r‘

Rk

1 1
_ \VET N [ _
3 f k dSalg 2MK OJ (56)

6Qr 7{ (k20" — kPO“)dS.ps

— oM - %5MK + 60T (57)

which results in
6Q = oM — Q46J. (58)

As we will see below, when two nearby equilibria are
compared conserving the integral quantities, including
the generalized Kelvin circulation for magnetized flow,
and the areas and electric charges of the black holes, so
that the r.h.s. of Eq. (B1) vanishes, the first law is simply
written 60Q) = 0, or IM = Q4§J for asymptotically flat
systems.

III. COMPARING STATIONARY SYSTEMS
A. Ideal MHD flow
1. Conservation of rest mass, entropy and electric charge

For an isentropic fluid, conservation of rest mass and
entropy can be expressed by means of a Lie derivative
along the fluid 4-velocity u® :

£ulpv=g9) =0, £us =0 (59)

and if these quantities are conserved in the perturbed
states, the perturbed conservation laws have first inte-
grals

A(pv/=g) = 0,

Since we assume that the electric current is not necessar-
ily colinear to the fluid 4-velocity, conservation of electric
current,

As = 0, (60)

£jV=9 =0, (61)

does not imply another perturbed conservation law anal-
ogous to Eq. ([@0) with respect to the lagrange perturba-
tion of the congruence of flow lines, that is, A(j*dS,) #
0. However, its volume integral over the neutron star
should vanish because of the conservation of electric
charge:

6QF = 5/Ejadsa = /EA(jadSa) =0. (62)

2. Conservation of magnetic flux for ideal MHD

Assuming perfect conductivity for the magnetized flow
of the neutron star matter, the ideal MHD condition

Fapu” =0, (63)
is satisfied, and the curl of Eq. (€3) becomes
£,F05 =0 (64)

as a result of the Cartan identity and (dF)ag, = 0.
Eq. (64)) implies the well known conservation law of mag-
netic flux, Alfven’s theorem. Let us introduce the map 1,
as the family of diffeomorphisms generated by u, namely
the curve 7 — 1. (P) has the tangent vector u®(P) at a
point P. For any closed curve ¢ contractable to a point,
we consider the closed curve ¢, = 1), oc obtained by mov-
ing each point of ¢ during the proper time 7 along the
fluid trajectory through that point. Then the conserva-
tion of magnetic flux, which is the integral form of the
law (64), amounts to the conservation of the integral of
the 1-form A, along the closed curve ¢, in the fluid :

j{ Aq dt® = Cp = const. (65)
When the perturbed state also satisfies the ideal MHD

condition, the perturbed version of the conservation of
magnetic flux (I2) has a first integral

AF,5 =0 (66)

and hence AF,g = (dAA).s = 0 is satisfied for any re-
gion in the fluid. For (dAA),s = 0 to be satisfied, it
suffices that AA, = V.V for some scalar field ¥. Con-
versely, as long as the fluid support (neutron star) is star-
convex, the Poincaré lemma guarantees the existence of



W. As a result, the last term of the volume integral of
Eq. (37) vanishes:

/—(jakﬂ—jﬁka)AABdsa

b))

= / — (jOK® = j°k*) U dSap
[

- /vﬂ(jakﬁ—jﬂka)wsa =0, (67)
b))

because there is no electric current on the boundary sur-
face 0%, and a relation, Vg(j*k”? — j7k®) = £, +
OV kP —k*V5° = 0, is satisfied for the conserved cur-
rent j¢ that respects the symmetry.

8. Conservation of circulation for ideal MHD: generalized
Kelvin’s Theorem

When two equilibria of some ideal MHD flow are com-
pared with the same rest mass, same entropy and same
magnetic flux, the perturbed conservation laws (60) and
[66), as well as Eq. (67) are satisfied. Then the change
in the Noether charge (7)) becomes

5Q = / [V A (hug pu® dS,) — AgkP A(j* dS,) |
D)

1
+ ) (871%5,41» + oF 5@?) : (68)

3

For some perfect fluid without magnetic field, the cir-
culation of the flow is conserved. The curl of the rela-
tivistic Euler equation uBof)Ba = 0 is written £,0,3 =0
where Wog is the relativistic vorticity defined by w5 =
(d(hu))ap and a corresponding integral law, known as
Kelvin’s theorem, is the conservation of circulation, the
line integral of hu, along an arbitrary closed curve co-
moving with the fluid. As shown in FUS, the contribution
from the circulation to the change in the Noether charge
0@ is included in the term

/ v? A(hug pu® dS.,,), (69)
b))

which vanishes when the circulation is conserved in the
perturbed flow, for example, when the irrotational flow,
or the corotational flow, is maintained. This can be
shown in the same way as eliminating a term (67) us-
ing the conservation of magnetic flux.

The integral in Eq. (G8]), however, does not in general
vanish for magnetized flows, or even for ideal MHD flows,
because of the lack of a conservation of circulation law in
the magnetized case. This can be seen from the relativis-
tic MHD-Euler equation which is not the inner product
of the fluid 4-velocity and an exact two form, because of
the Lorenz force on the right hand side,

WP (d(hu)) o =§ "o (70)
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Nevertheless, Bekenstein and Oron [29] (see also [30))
have found that, if the 4-current takes the form

i = V(pu®d® — puq®), (71)

where ¢“ is an auxiliary vector field, one can obtain a gen-
eralized conserved circulation for magnetized flow. This
4-current is derived from the variation of a Lagrangian in
which the ideal MHD condition is added as an interaction
term panaﬂuB with the Lagrange multiplier pg®. The
form (TI)) manifestly satisfies the electric charge conser-
vation: V,j¢ = 0. Note that, for a given 4-current 5,
one has the degree of freedom to change ¢“ according to

q* = q“ + \u® (72)

for a scalar A without affecting the value of 5.
Using Vo (pu®) = 0 [cf. Eq. (B9)], the 4-current (7))
can be rewritten

7 = £q(pu®) + puVq’. (73)
Substituting the form into the Lorenz force, we get
o s ] 8 8
~Fapj” = —FapLy(pu”) = (dn)agu”,  (74)
p p
where 1-form 7, is defined by

Na = Faﬁqﬁa (75)

and a relation (CT]) from Appendix[C] which is implied by
the ideal MHD condition (G3]), is used. Note that, thanks
to ([G3), the 1-form 7, does not depend on the specific
choice of ¢ within the range allowed by (72)). By means
of (7)), the MHD-Euler equation (Z0) is simply written,

u? (dw)ge = 0, (76)

where w, is the generalized momentum 1-form defined
by

W = Mg + Nq. (77)

From Eq. (76]) one can easily deduce a generalised con-
servation of circulation law for ideal MHD flows. Indeed,
defining the vorticity wag of a magnetized flow by

Wap = VQ’LUﬁ — V[%wa - (dw)aﬁ; (78)

the Cartan identity, combined with Eq. (Z6) and the iden-
tity dw = d?w = 0, yields

£owap = 0. (79)

By means of the Stokes theorem, this conservation law
can be put in the following integral form [using the same
notation as in Eq. ([@3)]:

f (htg + 1o ) d* = Cy, = const. (80)

cr



This law, which has been first derived by Bekenstein and
Oron @], constitutes a generalization to ideal MHD of
the relativistic Kelvin’s circulation theorem (which cor-
responds to 7, = 0, see e.g. @])

One can repeat the same argument as for the magnetic
flux in the previous section. The perturbation of Eq. (79)
for the magnetized vorticity has first integral

Awep =0, (81)

which implies Awqg = (dA(hu+n))aps = 0. The Poincaré
lemma guarantees that a function U exists on the star-
convex fluid support such that A(hug + 7)) = Vo U.

It is also suggested from Eq. (@) that an irrotational
magnetohydrodynamic flow, weg = 0, is described by a
velocity potential @ that satisfies

huq + Na = Va®, (82)
and, in this case, ¥ = A®.

4. First law for the ideal MHD with Bekenstein - Oron
current

For ideal MHD flow with the Bekenstein-Oron current
([, the first law of the form Eq. (G8) is further simpli-
fied when comparing two nearby equilibria that conserve
the circulation of a magnetized flow, [80). Substituting
Eq. () to the second term of the integrand of the vol-
ume integral in Eq. (G8]), we have

— AgkP A(j*dS.,)
= (£xAy — K Fp,) Al(pu®q" — puq®)dS,]
—V, {Ak” Al(pu®q” — pu7q*)dSs]}
= v'@A(anuo‘dSa) — v'@cﬂAF,@V pu*dS,,
1
- Eu'@Fg.y A(pu®q” dS,) — kP Fp, A(pu”q™ dS,)
— V. {Agk” Al(puq” — pu7q*)dSal} (83)

where the relation AV 5(f*?dS,) = VA(f*?dS,,), valid
for any antisymmetric tensor f*?, and the Cartan iden-
tity (8) are used, and the symmetry £, A4, = 0is imposed.
Since the ideal MHD condition (G3) is satisfied, terms
including Faguﬁ are discarded. Also a term involving
FosAu? is discarded, because Au? is colinear to u” (see
Eq. (A10)). Substituting Eq. B3)) to Eq. 1), the inte-
gral of the last term of Eq. (83) becomes a surface integral
on 0% which vanishes. Hence, the first law (31) for the
Bekenstein-Oron formulation of ideal MHD is written

5Q = /{ztA(spuo‘dSa) + h—th
» u u

+ 0P A{(hug +ng) pu® dSa)
— vﬁqvAFﬁv pudS,,

A(pu™dS,)

— (K — jPkY)A Az dS, }

1
+ Z <§mAi + oF 5@?) : (84)

i

Introducing the following notation

dMpg = pu®dS,, dS:=sdMsg,
dCy = (hug + 1e)dMsp, (85)

we further rewrite Eq. (84) as

ut ut

T h—T
5Q = / {—AdS T “AdMg + v*AdC,
b
— VP AFs, dMp — (j9k° — k™) AAg dSa}

1
+ Z (S—WméAi + oF 6@1;3) : (86)

When the circulation of magnetized flow is conserved,
there exists a potential ¥ such that A(hug+14) = Vo V.
Applying an argument analogous to that for the magnetic
flux in Sec. [ITA2] a term for the circulation of magne-
tized flow in the r.h.s. of Eq. (84]) vanishes:

/ v? A(hug +1p) pu® dS,,
)

= /E(puo‘vﬁ — puPv*) VW dS, = 0 (87)

where v¥dS, = 0 is used in the first equality, and the
last equality is proved in the same way as in Eq. (67)) be-
cause of a relation, Vg(pu®v® — puPv®) = Vg (puPk> —
pukP) = — £ (pu®) — pu®Vgk? + k*Vg(puP) = 0.
Therefore, the rest mass, entropy, circulation of magne-
tized flow and magnetic flux are all conserved in the per-
turbation of ideal MHD flow with the Bekenstein-Oron

current ([{I)), namely, Eqs. (60), (66), and (&T) are satis-
fied, the change in the Noether charge ([84) becomes

Q=3 <%m—6¢4i + oF 5@1*3) L (88)

B. MHD flow without conduction current

It is expected that the inner core of the neutron star
may be composed of a mixture of superfluid protons and
high-energy particles. Such flows are well described by
an ideal fluid without conduction current but only con-
vection current:

e

j% = peu?, (89)

where e is the electric charge per baryon mass @]
Conservation of rest mass, V,(pu®) = 0, and current,
Vaji® = 0, imply that the specific charge e is conserved
along fluid flow lines,

£4e = 0. (90)



Substituting the current (89) into the first law B7), we
have

50 — / {ztA(spuo‘dSa) + D TE A (pue dS.)
» u

A,@uﬁ

+ VP Al(hug + eAg)pu® dS,] — - A(epuo‘dSa)}

u

1
+ Z (gnﬂw + oF 5@?) , (91)

and also into the MHD-Euler equation (70,
uP (d(hu + eA))go + Asu’Vye = 0. (92)

As shown in [28)], the circulation of the magnetized flow
defined by

D= 7{ (e, + €A de°. (93)

-

is conserved only when the closed curve c; is taken along
a curve of constant specific charge e. If we further assume
that the charge is distributed initially satisfying

e =e(A,u®) (94)

(or merely e = constant in the simplest case), the curl of
Eq. [@2) becomes a law of conservation of circulation for
magnetized flow,

£u(d(hu + eA))ga = 0, (95)

and I is constant for any closed curved ¢, comoving with
the flow. Then, with the same argument in Sec. [TLA 4]
when nearby equilibrium solutions having the same value
of circulation I' are compared, the perturbed conserva-
tion law,

A(d(hu +eA))sa =0, (96)

is satisfied. Hence, with Eq. ([@6), a perturbation of

Eq. @0),
Ae =0, (97)

and conservation of rest mass and entropy (60), the first
law for a flow without conduction current is also written
simply as Eq. (8]). It should be noted that the condition
e = constant may not be too restrictive for an application
such as the superfluid proton component in a neutron star
interior.

IV. INTEGRABILITY CONDITION FOR THE
MHD-EULER EQUATION IN IDEAL MHD

When the stationarity or helical symmetry is imposed
explicitly on the (MHD-)Euler equation, it is no longer
an evolution equation. In usual methods M], its nu-
merical solution is calculated using its first integral - a
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sufficient condition for the stationary or helically sym-
metric (MHD-)Euler equation being satisfied. Therefore,
finding the first integral is a key, and also a restriction, for
computing equilibrium solutions considered in Sec. [IIl

As shown in Sec. [ITTA3] when the Bekenstein-Oron
4-current ([T1)) is introduced, the relativistic MHD-Euler
equation for ideal MHD flows takes the form (76]). If we
assume that the generalized momentum (77) of the mag-
netized flow respects the helical symmetry, £xw, = 0,
then a first integral is immediately derived for corota-
tional and irrotational flows, in a way fully analogous
with the non-magnetized case [42] (see also [35]): the
Cartan identity kﬁwﬂa = £rw, — Va(wlgkﬂ) reduces
to kPwse = —Va(wsk?) and, for an irrotational flow
(wga = 0), or for a corotational one [u® colinear to k®
so that (T6) implies kws, = 0], we get the first integral
wok® = const.

However, it turns out that the assumption £,w, = 0
is too restrictive when applied to a corotating flow. In
view of () and (7)), it would yield the first integral
Wo k® = huak® + Fa/gko‘qﬂ = const. Now, the colinearity
of k* and u®, along with the ideal MHD condition (G3]),
implies F,3k” = 0. Hence the first integral would reduce
to huok™ = const, i.e. exactly the same as in the perfect
fluid case, without any Lorentz force term.

In Bekenstein and Oron’s theory m, @], the momen-
tum w, defined by (77) and (78) contains the Lagrange
multiplier ¢®. Because ¢“ is not a physical quantity, it
does not necessarily obey the helical symmetry. This has
been noticed by Bekenstein and Oron, but has not been
taken into account when the first integral was derived.
In this section, we briefly review the properties of the
4-current by Bekenstein and Oron, then derive integra-
bility conditions for the case when ¢ does not respect
the symmetry.

A first integral for an axisymmetric and rigidly rotat-
ing neutron star has been derived by Bonazzola, Gour-
goulhon, Salgado, and Marck [37] (hereafter BGSM). In
Appendix [D] it is shown that the Bekenstein and Oron
theory can also accommodate the BGSM formulation if a
term involving £,¢® is kept in the MHD-Euler equation.

A. Bekenstein-Oron 4-current

From ([73]), the Bekenstein-Oron 4-current can be ex-
pressed as

"= otV (98)

—pLug® + u*Vs(pq®). (99)

<.
|

Let us recall that j¢ is invariant under a change of ¢“
of the form (72)). Without loss of generality, a condi-
tion such as ¢“u, = 0, or ¢Vt = 0, may be imposed,
although these are not used below.

The 4-current must obey the helical symmetry, namely



its Lie derivative along k% must vanish:

£1J% = Valpu©£rq® — pu’£r¢*) = 0, (100)

where £1¢% # 0. Using ([@8)) and ([@9), we can write
1

£p¢ = —& puN/—g

\/_—g [k,q]( )

= —pLuLrg® + u*Vs(p £4¢”) = 0, (102)

(101)

where the commutator notation [k, ¢]* = £¢° is used.
Note the commutation relation £,£, — £,£; = £, =
0, for u® respects the symmetry. In the above expressions
for £,7°, it is noticed that we have again the freedom to
add to £x¢“ a vector proportional to u®, as £,¢% —
Lg% + Au®.

B. Helically symmetric MHD-Euler equation

We first rewrite the MHD-Euler equation by isolat-
ing the Lie derivative along the helical vector k. Using
the decomposition ([B8) of the 4-velocity, the MHD-Euler
equation (76) divided by u! is written

(k7 +0?)(dw)ga = —Val(wsk®) + Lrwa + 17 (dw)ga
= 0. (103)
Since nou® = Faﬁuo‘qﬁ = 0 for ideal MHD, we have
wWau® = (Rug + N )u® = —h, (104)
hence
W k™ = wq (? —v ) = —(?—i—wav ), (105)
Substituting this relation into (I03]), we obtain
h
Va = +wge? ) + Lpwg + 0 (dw)ge = 0. (106)

Since both hu, and F,g respect the helical symmetry,
we have, given the definition ([T7) of w,,

Lrwe = £1(hug + Fapd®) = Fapfrd®.  (107)

Hence Eq. (I06) becomes
h
VQ(E +wﬁvﬁ) + Fagfrg” + 0% (dw)ga = 0. (108)

Starting from this form of the MHD-Euler equation, let
us discuss two cases: the corotational flow and the irro-
tational one.

a. Corotational flow: The flow is corotational if the
fluid 4-velocity is parallel to the Killing vector: u® =
utk®. This amounts to setting v® = 0 in the decomposi-
tion ([B8)) of the 4-velocity. Accordingly, Eq. (I08) reduces
to

va(%) + Fagkrg® = 0. (109)
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Note that, thanks to ([@9) and the ideal MHD condition
[©3)), we have

1
Faptrg’ = o wpi’ (110)
in the corotating case.

b. Irrotational flow: In the Bekenstein and Oron
ideal MHD theory, the magnetized flow is called irrota-
tional when the vorticity wapg = (dw)ap defined by (73)
vanishes identically. The MHD-Euler equation (@) is
then always satisfied. Via the Poincaré lemma, a flow is
irrotational if, and only if, there exists (locally) a poten-
tial ® such that w, = V,®. Since w,v®* = v*V,® =
£,®, and vP (dw)g = 0, Eq. (I08) reduces to

va(% +£,8) + Fuplyg® = 0. (1)
Note that, contrary to the corotating case, the contri-
bution of the Lorentz force is divided into two terms:
Fup £1.¢° and the term involving the potential ®.

C. Integrability conditions

Under the assumption of helical symmetry without any
restriction on the fluid flow, the integrability condition
for Eq. (I08) is that the last two terms in the left hand
side be the gradient of a function f,

Fopfrd® + vP(dw)se = Vaf. (112)

It may also be possible that each term is separately inte-
grable, that is, with two functions f and g, each term is
a gradient,

Fﬂf5£kqﬂ = _£kq6(dA)5a = Va.fv (113)

and
VP (dw)sa = Vag. (114)

Therefore, the problem of finding a current with which
the helically reduced MHD-Euler equation has a first in-
tegral is replaced by the problem of finding the Lagrange
multiplier ¢® that satisfies the above integrability condi-
tions. As mentioned in @], however, the vector g% is not
a freely specifiable quantity, and hence it is not trivial to
find such a ¢%, even for corotating or irrotational flow
where the v”(dw)g, term vanishes and the integrability
condition reduces to Eq. (I3

V. FORMULATIONS FOR MAGNETIZED
BINARY NEUTRON STARS IN EQUILIBRIUM

A. Bekenstein and Oron’s first integral for
magnetized irrotational flow

As mentioned earlier, assuming the current is writ-
ten as in Eq. (), and the vector ¢* respects the sym-
metry, the MHD-Euler equation is integrable for irrota-
tional flow. Since the canonical momentum w, defined



in Eq. (T7) respects the symmetry, £,w, = 0, and the
velocity potential for the magnetized irrotational flow is
defined by Eq. ([82), the first integral is written £,® =
constant (which is equivalent to w,k® = constant), or
more explicitly, from Eq. ({11,

h
— 4+ £,0 =&,
u

(115)
where £ is a constant. Assuming a one-parameter
EOS, we have three solvable equations, the normaliza-
tion condition for the 4-velocity, the first integral, and the

rest mass conservation equation, for the three variables
{h,ut, ®}. The equation for ® is derived in Sec. [/ DI

B. A first integral for initial data of irrotational
magnetized binaries

Since part of our motivation for calculating numerical
solutions of compact binary systems is to prepare quasi-
equilibrium solutions that can be used as initial data sets
for binary inspiral simulations, we assume that the mul-
tiplier ¢® can be specified freely on an initial spacelike
hypersurface ¥;. Then, when all fields and matter sat-
isfy helical symmetry, and the vector £;¢% is, at least
instantaneously, proportional to the helical killing vec-
tor, the term Fyz £1¢° becomes integrable

£kqa = £kqt ka, (116)
and the coefficient £5q' is a function of Agk®. Note
that the assumption (II6) is valid only for irrotational
flow; for corotational flow Faguﬂ = 0 implies Fz £.¢° =
£4¢'Fopk? = 0. From the Cartan identity (®) and
£1Aq = 0, and the assumption ([I6]), the term (I3
becomes

— £gP([dA)pa = Lrg Va(Agk?).  (117)
Hence, for irrotational flow, Eq. (III) is rewritten
va(% + £U<1>) + Ergt Va(Agk®) =0,  (118)
and is integrable if there is a function f such that
Lrq' = f(Apk?), (119)
so that
ﬁt + £,0 + /£kqt d(AgkP) = €, (120)
U

where £ is a constant.

If a data set on an initial hypersurface respects heli-
cal symmetry permanently, the current should necessar-
ily be stationary, £,j% = 0. Substituting Eq. (II0]) into
Eq. (I02), we have

£1.5% = —pk“L£,L1¢" + pu®Liq = 0, (121)
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where we have used the facts that p, or u® respect the
symmetry, and a relation V,k* = 0. When the inte-
grability condition (II9) is satisfied, a coefficient of u®
in BEq. (I2I) vanishes, £7¢' = £,f(A.k®) = 0, and
hence a sufficient condition for stationarity of the cur-
rent £5,7% = 0 is that the coefficients of k% in Eq. (I2I))
vanish,

£u£0q" = £,f(Auk®™) = 0. (122)

This condition is equivalent to the component of the ideal
MHD condition along k¢,

kO Fopu® = —£,(Ank*) = 0, (123)
and is rewritten, on the fluid support of ¥;, as
£,(AkY) =0 (124)

that is, Ayk® is constant along the spatial velocity v®
defined by Eq. (38). However, as mentioned above, there
is no guarantee that solutions calculated from the ¢ of

Eq. (IT9) satisfies Eq. (I22) or (I24).
As we choose £,¢™ to be parallel to k£ in (18], we
may further restrict ¢ so that ¢ itself is parallel to k¢,
q* = q' k°. (125)

We substitute (I2H) to the current (73) to derive an ex-
plicit form for the current j¢,

i = £qr(pu®) + puVs(q'k)

= —pk®£.q" + pu*Lq". (126)
For example,
£1.¢" = constant (127)
satisfies the stationarity of the current (I22]) and
¢" = [at+b6+ fola™)]h" (128)

satisfies Eq. (IZ1), where f, is a function of coordinates
x4 A = 1,2 orthogonal to k%, k®*V,z? = 0, and a, b are
parameters that satisfy

a+bQ = 1. (129)

Remember that ¢ parametrizes the foliation and the
symmetry vector is normalized as k*V,t = 1, and ¢
parametrizes circular orbits with parameter length 27
and V¢ = Q.

C. A model with ¢ = [at + b + fq(fUA)]qa

We next consider a more general form of ¢® where
neither ¢ nor £xq“ is proportional to k%. Separating
the dependence on the coordinate associated with the
k%, we assume the form of the vector ¢® to be

¢ = lat +bo + fo(z?)]§", (130)



where ¢ respects the symmetry

£:G% = 0, (131)

and hence the relation

£rq® = q° (132)

holds.

For corotational or irrotational flows, the integrability
condition (II3) is rewritten with the requirement that
there exists a function f such that

Fopi® = —3°(dA)ga = Vaf, (133)
or using the Cartan identity,
£44a = Va(A50" — ). (134)

When stationarity is imposed to the current, substituting

Eq. (I32) to Eq. (I00), we have
£0° = Valpuod® — pu®) = 0. (135)
Then, from Eq. (I30) and Eq. @), the current becomes
i = (puq” — pu®§*)Vslat + b + fo(x™)].  (136)

c.  Corotating flow:  This model can be applied to
corotating flow, as long as one can find a particular form
of ¢* that satisfies Eq. (I33) as well as the stationarity
and ideal MHD conditions consistently. For corotating
flow, u® = u'k®, Eq. (I306) becomes

j* = pu'k®@PVslat +bg+ fo(z*)] — pu'¢™.  (137)

Assuming f,(z#) = 0 and using a + Qb = 1, the combi-
nation of ¢ and ¢ components j® — Qj* becomes

i =it = put(k*® — kP4*)VagVst
= —pu'(g® - Qg").

As discussed in Appendix [D] when the system is station-
ary and axisymmetric, and if ¢* satisfies

q* = f(Ay)0%,

the formulation becomes the same as that of ﬂﬁ] for a
magnetized rotating neutron star.

(138)

(139)

d. A trivial model for the irrotational flow:  When
q“ is taken to be parallel to k%,
§* = q'k", (140)

with £5,¢" = 0, the first integral is derived as in the previ-
ous section, if ¢ is a function of A,k%; Eq. (I33]) becomes

— 7 (dA)sa = §'Va(Ask”) = Vo f. (141)
The current ([I36]) in this case is written
Jo = pute® — K Valbg + fu(e) Ha (142)
A trivial solution to the condition (I4I)) is
¢' = constant. (143)
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D. Equation for the velocity potential ®

To write down an equation for the velocity potential
® for magnetized irrotational flow used in an actual nu-
merical code, we introduce a 3+1 decomposition of the
spacetime. In this section, spatial indices are Latin. The
spacetime M = R x X is foliated by a family of spacelike
hypersurfaces (3;)ier parametrized by t. The future-
pointing unit normal to the hypersurface ¥; is defined
by no = —aV,t, where « is the lapse function. Then
the generator of time translations in an inertial frame ¢,
and rotating frame (helical vector) k% are related to n®
by t* = an®+ (% and k¢ = an® +w® respectively, where
B and w™ denote a spatial shift vector in each frame, and
are related by w® = 8% 4+ Q¢®. The spatial metric vq(t)
induced on ¥; by the spacetime metric g, is equal to the
projection tensor orthogonal to n%, 743 = gas + Nang,
restricted to ¥;. In a chart (¢,2%), the metric gos has
the form

ds? = —a?dt? + vap(da® + Bdt)(dz® + Bbdt).  (144)
The covariant derivative associated with the spatial met-
ric vqp is denoted by D,,.

In the formulation for irrotational flow, the number of
independent variables becomes three m, @] As inde-
pendent variables, we choose the relativistic enthalpy per
baryon mass, the time component of the 4-velocity, and
the velocity potential, {h,u!,®}. For the first two vari-
ables, the first integral Eq. (IT8)) and the normalization
of the 4-velocity uqu® = —1 are solved. Using a relation
derived from Eqgs. (8] and (82)),

1
7 (Da® = 1a),

o (145)

Vg + Wgq =
these equations are rewritten,

h
5+ V" Da® + /£kqt d(Auk™) = £, (146)
h? [(au')? = 1] = (D*® — n*)(Da® — na), (147)

where 7, is a spatial projection of 14, 7 = Yo" Na-
An equation to calculate the velocity potential @ is
derived from the rest mass conservation law, Eq. (£3),

T V) = ey

1
= —D,(apu'v®) =0. (148)
a

5

Substituting Eq. (I43) in the above relation, we have an
elliptic equation for @,

“0P

W
(149)
This equation is solved with a Neumann boundary condi-
tion to impose the fluid 4-velocity u® to follow the surface

h
D*D,® = Dy(n*+hu'w®)—(Dq®—n4 —hu'w,)—D
ap



of the star. The surface is defined by the vanishing pres-
sure p = 0, where the relativistic enthalpy is chosen to
be h = 1 which is always possible when a one-parameter
equation of state is assumed. Hence, the boundary con-
dition is written

u*Voh =0 at h=1. (150)
and, using £,h = 0 and Eq. (I43), it is rewritten,
(D*® — n* — hu'w*)D,h = 0. (151)

where V,h and D, h are normal to the stellar surface.

VI. DISCUSSION

A. First law associated with the Bekenstein and
Oron Lagrangian

The Lagrangian density of the Bekenstein and Oron
ideal MHD theory HE] is based on Schutz’s Lagrangian
density for relativistic fluids @] Our Lagrangian density
for a relativistic fluid £, = —e\/=¢g (AI3), and the La-
grangian variation applied to it, is equivalent for the pur-
pose of deriving the first law. Then, we rewrite the La-
grangian corresponding to that of Bekenstein and Oron
as

1 1
L= (—R — € — KFQ,BFQB + Faﬁpuaqﬂ) vV~
s

167
(152)
in which the interaction term is replaced by a term Fizu®
times the Lagrange multiplier pg® which enforces the
ideal MHD condition Fi,gu® = 0.

Associating this Lagrangian with the charge @ ([3)),
we can derive the first law; a calculation of the varia-
tion §Q is shown in Appendix [El Now, the derived first
law is for the ideal MHD flow, while our first law 37)) is
valid for more general MHD flows. Obviously, the argu-
ment in Sec. [TIl applies to the case with the Lagrangian
([I52). Hence, if a sequence of magnetized binary solu-
tions in equilibrium is constructed assuming conservation
of rest mass, entropy, magnetized circulation, magnetic
flux, black hole surface area and charge for a black hole -
neutron star binary, the first law in the form 6Q) = 0, or
oM = Q6J for asymptotically flat systems, is satisfied as
for non-magnetized ones, and for the latter case, one can
apply a turning point theorem to locate a point where
the stability of solution changes M]

B. First integral of MHD-Euler equation

As mentioned in Sec.[[V] a first integral of the relativis-
tic MHD-Euler equation is almost crucial for developing
a successful method to compute equilibrium binary so-
lutions numerically. When we derive a first integral, we
need to specify a form of the vector ¢, which should be
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consistent with the stationarity as well as the ideal MHD
condition. However, since ¢% is not a freely specifiable
vector, it is not guaranteed that a set of equations ad-
mit such a g% as solution in general. Also a difficulty to
have a helically symmetric irrotational binary solution in
ideal MHD may be explained physically as follows. Be-
cause the magnetic flux is frozen into the fluid for ideal
MHD, when the binary system is seen in the rotating
frame, a poloidal component of the magnetic field may
be winded up, since the neutron star is spinning in this
frame. This argument does not rule out the possibility
to have a helically symmetric magnetized binary neutron
stars, although it is not trivial at all to find a ¢® that
gives such solutions.

In Sec.[V] we discuss a formulation for computing equi-
librium solutions of magnetized binary neutron stars and
a possible candidate for a first integral of the relativistic
MHD-Euler equation in ideal MHD flows. Our proposal
is to assume £,¢“ be proportional to the helical vector
k®. Tt could be possible that this condition is violated
as the solution is evolved in time, that is, a solution cal-
culated from the first integral in the Appendix might
not respect the helical symmetry or the ideal MHD con-
dition. It would be applicable, however, for computing
initial data for merger simulations of magnetized com-
pact objects, because it may be allowed to freely specify
£rq“, at least instantaneously on an initial hypersurface.

In Sec. [V we also write down a set of equations to be
solved for an equilibrium of irrotational neutron star in a
binary system. The formulation for solving the Einstein
and Maxwell equations are not presented in this paper.
In usual ideal MHD simulations, the electric current j¢
does not contain dynamical degrees of freedom and, ac-
cordingly, the Maxwell equation becomes an evolution
equation for the magnetic flux density. This equation is
again hard to integrate when the stationarity condition is
imposed. Therefore our plan is to choose the electromag-
netic potential one form A, as a variable and to write the
Maxwell equation as a set of elliptic equations. These el-
liptic equations can be solved with the same numerical
method we have developed to solve for the metric poten-
tials of gravitational fields m, @] Our next project is
to develop such a numerical code.
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Appendix A: Variation of the Lagrangian

We begin with a classical action for an Einstein-
Maxwell theory coupled with a perfect fluid carrying elec-

tric current,
S = / Ld*z,

L = Lo+ L+ Ly + L

1 1
_ . ap o)
B (167TR ¢ 167 apF™ + Aaj > a

(A1)

We first define the Lagrange perturbation for the fluid.

1. Lagrange displacement

We describe a perfect fluid by its four-velocity u® and
stress-energy tensor

T°F = euu” + pg*?, (A3)

where p is the fluid’s pressure, € its energy density, and

¢*? = g*" + uuP (A4)

is the projection tensor orthogonal to u®. We assume
that the fluid satisfies an equation of state of the form

p=p(p,s), €e=¢(p,s), (A5)

with p the baryon-mass density and s the entropy per

unit baryon mass. (That is, p := mpn, with n the num-

ber density of baryons and mp the mean baryon mass.)
The electromagnetic stress-energy tensor is given by
1ef = L (peaps, ~ Lgesp o A

P~ v T g9 e ’ (A6)

where electromagnetic field 2-form F,3 relates to the po-

tential 1-form by
Fop = (dA)ap = VaAp — VgA,. (A7)

Given a family of magnetized perfect-fluid Einstein-
Maxwell spacetimes specified by

Q) = [gap(X), u™(A); p(A); s(A); Aa(A), ¥ (N)], (A8)

one defines the Eulerian change in each quantity by 6Q :=
QM)
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We introduce a Lagrangian displacement £ in the fol-
lowing way: Let Q := Q()), and let ¥y be a diffeomor-
phism mapping each trajectory (worldline) of the initial
fluid to a corresponding trajectory of the configuration
Q()). Then the tangent {*(P) to the path A — U, (P)
can be regarded as a vector joining the fluid element at P
in the configuration Q(A) to a fluid element in a nearby
configuration. The Lagrangian change in a quantity at
A =0, is then given by

AQ = S L0 koo = (5 + £0)Q.

The fact that Uy maps fluid trajectories to fluid tra-

jectories and the normalization u“u, = —1 imply

(A9)

Au® = %uo‘uﬁu'yAgﬁv. (A10)

2. Variation of Lagrangian

Although the variation of the Lagrangian density (A2l
is well known, those calculations are summarized below
to clarify notation and conventions. A surface term ©¢
is kept for the calculation of the first law in Sec. [[IBl

The wvariation of the FEinstein-Hilbert Lagrangian is
written as

1 1
—Le = ———G*P5g, NCR All
/—g G 167 9ap + VaOg ( )
a ay B5 _ _af ~o ) A12
G = 15-(9"9" — 9797 ) V5955 (A12)
The wvariation of the perfect fluid Lagrangian is de-

scribed by the Lagrange perturbations. Considering gen-

eral perturbations in which the entropy and baryon mass

of each fluid element are not conserved along the family
Q()\), one obtains

Ap 1 1

— = ual(pu®v=g) = 54" Agag;

p =g " 2 o

and the local first law of thermodynamics for the fluid,

(A13)

Ae = pT'As+ hAp, (A14)
with the relativistic enthalpy h defined by
h= P (A15)
p
yields
A T A
€ = P A4 22 (A16)
etp e+p P

Hence, we have

1 1
Ae = pTAs — ——hua A(pu®/=g) — = (e+p)q*P Agas.
p = (pu®V=9) = 5(e+P)a" Agas
(A7)



From these relations, the variation of the Lagrangian
density for a perfect fluid

L =—6v/—g (A18)
becomes
Lo, = ——Lsev=9)
V=9 \/_
= =) + =LV )
= e~ €59 Agas + Valet?)
= —pTAs + \/%_ghuaA(puo‘\/—_g)
+ %To‘ﬁégag — & VT + V,08,
(A19)
with the surface term
o5 = (e +p)q"¢s. (A20)

The wvariation of the Lagrangian for the electromag-
netic field

Lr= -1 s F* /=g, (A21)
is calculated as
L sop = ! S(FapFP\/=g)
V=g "7 TTomy=g /
1
= 2(d5A)apF* + 2F, Fg" 5g°°

167

1
+2F,;F° 3 9°%6gas

1, . 1 o o
§TF6(59QI@ — -VeF B5A, + V.08,
(A22)

where ©F is defined by
Q= —FﬂasAﬂ (A23)

The variation of the interaction term between matter
and the electromagnetic field,

Lr = Ayj“V/—g, (A24)
becomes
1 1
——0L1 = 0A.LJY + A
=00 J 7= A(*V=g)
1
—Ay—£:(5%/—9). A25
7= ¢(1V=9) (A25)

Using the relation

Le(jV=g) = Va(i*P—5%¢*) + €2V 557, (A26)

3-
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we have
L&E = jJ¥AL. + A LA(jo‘\/—g)
V=g A
+ £ [Fapj® — AV’ | + VaO7, (A27)
where the surface term is defined by
of = Ap(j¢" - j7¢%). (A28)

Variation of the Lagrangian density: Finally, the
above terms are collected and the variation of the La-
grangian density (A2) is derived,

5L = (0LG + 6Lm + 0Ly + 6L1)

b
V=9

= —pTAs +

a-

j_ghuamqu——g)
1 o
+ Aa\/——A(j \/_g)
[Gaﬁ (T + T;B)} 3gas

167T
— E(VBFW —47j*)5 Ay
+V,0°, (A29)

where the surface term © is defined by
0% = 0% + 0% + 08 + OF
1 1
= ot *Bg1°)V 56 —FPe5A
167T(gg =99 )Vsdgys + o 5
+(e+p) a6 + Ap(jE” — 7€), (A30)

Appendix B: Calculation of §(Q — > Q;)

In calculating a contribution from the volume integral
to the charge ([21)), we restrict the gauge in two ways:
We use the diffeomorphism gauge freedom to set Jk* =
0. The description of fluid perturbations in terms of a
Lagrangian displacement £“ has a second kind of gauge
freedom: a class of trivial displacements, including all
displacements of the form fu®, yield no Eulerian change
in the fluid variables. We use this freedom to set At = 0.
Because 0t = 0 (¢ is not dynamical), this is equivalent to
the condition £ = 0. The relation (AT0) now implies

s

t

= %u U Agag. (B1)

u
Then, from Egs. (AIQ) and (BI), we have Au® =
Aut(k* 4+ v¥), while, by u® = uf(k* + v%), Au® =
Alut (k* + v®)]; thus

Ak + 1) = 0. (B2)



Then, in the variation of the Lagrangian density (A29]),
a term involving a perturbation of the rest mass density
is rewritten

M A(pu®/7g) = — 5 Alpu' ).

To find the change Q@ in the Noether charge, we first
compute the difference,

Q-2 ).

between the charge on the sphere S and the sum of the
charges on the black holes B;.

The difference in the Komar charge Eq. [24]) is associ-
ated with the Lagrangian density as

Qx — ZQ}Q

1
= —_— —R_
/E<167T ‘

—/( % 4+ Tr% ) kP dS.,
>

1
- — F.3F* — A,i“ )| k"dS
Jo (e g st = dai ) ias,

L [G% — 8m(T% + T&%) ] kPdS.,.
81 s

(B3)

(B4)
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gF? + Aaj"‘> k7dS,

(B5)

Using the relations
—T%kPdS, = —T%(k® +vP)dS, + T%v"dS,
= ¢k¥dS, + (e + p)u®upv?dS,, (B6)

and

1
e 1Bgg aB o)
T kP dS, (167r wsFOP Ay )k ds,,

1
= - [£xA, — V., (kP Ap) ] dSa + Aaj®KkVdS,
7
1 1
= — —F£,A,dSe + —V,(F*7kP Ag)dS,
A k4iy S, + 4.7TV’Y( ﬁ) S,

1 (03 e
= A (Vs F B — 4rj*)dS,
+ Ao (UK — §7kY)dS,,
Eq. (BY) is rewritten

Qk — ZQKi

(B7)

= - / Ldz + /(6 + p)u®ugv?dS,
by by
1 1
—— | FY£,A,dSq + — | kYA, F°BdS,
47T/E by + 47 /62 v A

—i—/Ag(jﬂko‘—jo‘kﬂ)dSa
>

1
8 »

1
0% af e
1. /k AW(V[;F — 475)dS,.

[G%% — 87(T% + Tx") | kdS.,

(B8)
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The variation of Eq. (BS)) is then
6(Qx =Y Qus)

—/5£d3x —I—/A[(e—l—p)uo‘u;ngdSa}
) )

1 1
- ary . o af
47T5‘/EF £kA'deo¢ + 47T6/82k A,YF dSap
+/A[A3(j6ka—jak5)dsa]
)

—ié/ (G — 87(T% + Ti%) | kP dS,,
8t Js

— i 5/2 kYA, (VaFP — 4mj®)dS,. (B9)
The integrand of the second term becomes
Af(e+ p)uo‘qu'BdS’a]
= hugv® A(pu®dS,) + v° A(hug)pu® dS.,
+ (e + p)uu? £,.6° dS.,, (B10)

where Av? = —AkP = £,.6° was used, and the integrand
of the fifth term is

A [Ap (P — j°KP)dS,]
= AAg (77K~ — j°kP) dS,,

1
+ Ag——=A(j’/=g)k*dS,
e ( )
— Apk” A(j*dSa)
+Ap (O £18% — jP£4EY) S, (BID)
where Ak® = £:5% = —£,€%, because of our gauge

choice 0k = 0.
The variation of Qr — > Qp; is given by

5(QL - Z QLi)
- j{ (k*0° — KPO“)dS.s
ox
= /vﬁ(kaeﬁ — kPO%)dS,,
b))

= /vﬁ@ﬁkadsa—/ £,0%dS,,  (B12)
b)) b))

where we have used the relation V k% = 0 to obtain the
last equality. The integrand of the last term in Eq. (BI12)
is written as

£,0%dS, = (e +p)gs £x6° dS,,
+ Ap(* £1€° — 7 ££6%) dSa
(e + p)uup £,6° dS,,

+ Ap(j* £4° — P £,6%) dS,, (B13)

where we used the fact that £ as well as its Lie deriva-
tive along k® is spatial £,£*V,t = 0. These two terms



in Eq. (BI3) cancel out with the last terms of Eqs. (BI0Q)
and (BId). Note that the current j* respects the sym-

i(o-xa)

18

metry £,7% = 0.
Finally, we obtain an expression for §(Q — Y Q;):

T h
= / { EAS pu®dSs + [E + hum}ﬁ] A(pu® dS,) + vPA(hug)pu® dS,
)

— AgkP A(j*dS,) — (jOK® — PE*)AAs dSa} — %5/ F£4A.dS, + 4i5
T Jw

kYA, F*%dS,s
T Jox

1 1
- = 5/ [G% — 87 (T% + Tv%) | kP dS, — — 5/ kYA (V5 FP — 4mj®)dS,
87T b)) 4.7T »

1

+ / { — [Gaﬁ — 87 (TP + T}?B)} 8Gap + i(vﬂFQB — A7)0 A0 + € [VsTo” — Fapj® ] } k7 dS,. (B14)
s | 167 4dm

Note that k*dS, = /—gd>z. When the field equations, their perturbations, and equations of motion are satisfied,
using £, A = 0, and Eq. (@) noting [, = §s — >, $5,» Eq. (BI) is rewritten

T h
5(@ — ZQZ) = /Z { EAspuo‘ dSe + [E + huBUB} A(pu® dSy) + v° A(hug)pu® dS,

— AgkP A(j¥dS,) — (Ok® — Pk AA dsa} -y 4i )

Appendix C: Calculation of Eq. ([74])

A relation used in Eq. (7d) is proved in [30], which
is repeated here for a reference. Consider a closed 2-
form F,s ((dF)agy = 0), and a vector N® such that
FagNﬁ = 0. Then, for any vector ¢, a relation

(dn)as NP = Fap £,N” (C1)

is satisfied, where 7, is defined by 7o, = Fap ¢®. This can
be shown as follows:

(dn)asN® = (d(F - q))apN"
= [(q-dF)ap — £4Fap] N”

= F.p£,N”. (C2)
The Cartan identity was used in the second equality and
the relation F,sN” = 0 in third one.

Appendix D: First integral of MHD-Euler equation
in BGSM formulation

A formulation for uniformly rotating axisymmetric
stars with poloidal magnetic fields is derived in M] In
this section, we show that the Bekenstein and Oron for-
mulation of ideal MHD includes a first integral of the
MHD-Euler equation derived in the BGSM formulation,
assuming the same symmetry and suitably choosing an
auxiliary vector ¢* in the current (ZTJ).

YA, F*PdS,s.  (B15)

T JBi

In the BGSM formulation, a stationary, axisymmetric
and circular spacetime is assumed. And more specifically
the flow field of rotating star is assumed to be uniform:;
with a constant angular velocity €2, 4-velocity is written
u® = utk® = u'(t* + Q@) where t* and ¢ are killing
vectors.

Carter has shown m] that in stationary, axisymmet-
ric and circular spacetime, the vector potential and the
current are such that A, = AVt + A3Va¢ and j& =
it 4§ respectively. Since the vector potential A,
is assumed to respect the symmetry £, A, = 0, the ideal
MHD condition Faguﬁ = 0 implies, for a corotating flow,

Fopk? = —£1. A0 + Va(Ask?) = Vo (45k%) = 0, (D1)

hence

Ak = Ay + QA, = constant. (D2)
Using this relation, the vector potential is written
Ag = Ap(Vad — QV 0 1). (D3)

Note that V,0—QV ,t is orthogonal to the helical vector,
E*(Vap — QV4t) = 0.
Rewriting the current as
7%=k + J¢%, (D4)

with J = j¥(Vad — QV4t) = j® — Qjt, the Lorenz force
becomes
1 . J J
p wsd’ = " apd’ = > [—£4540 + Va(4597) ]

(D5)



Then, with the symmetry £4A4,
equation ([70)) is written

= 0, the MHD-Euler

J

kP (d(hw)ga = an(Awﬁ), (D6)
or using k?(d(hn))ga = —Va(hugk?) = Vo (h/ut),
(B Lo o

Hence, an integrability condition of this equation is

J
— = f(4y).
o f(Ag)
Equation (D7) and MHD-Euler equation for the co-
moving flow ([I09) with the current (71)) agree if the re-
lation

(D8)

J
Fopfrgd® = ——V,A D9
sLrq putV ¢ (D9)
is satisfied. For example, if the vector ¢® satisfies
£ig” = — Lg% = f(Ag)e".  (D10)
kg = i’ = )0,

the Bekenstein and Oron formulation becomes the BGSM
formulation [cf. Eq. (D3))].

Appendix E: Calculation of 6(Q — ZQZ) for the

K3
Lagrangian with Bekenstein and Oron’s interaction
term

In the Bekenstein and Oron theory, the ideal MHD
condition Faguﬁ = 0 is imposed by adding a constraint
to the Lagrangian density with a Lagrange multiplier ¢,

L1 = Foppu®q®/=g. (E1)

This term replaces an interaction term, A,j%/—g, of the
field and electric current. The variation of £ becomes,

1
——0L1 = —Vg6Aa(pu®q” — pulq®)

V=g
1
+ —F.3 |A(pu “Pv=9) — £e pu®q®/=9)| ., (B2
The last term is calculated as
1
— ———Fo£e(puqg®/=
\/_—g B f(p g)
= puq” [&7(dF)yap + d(& - Fagp]
+ Va(Fgy pu?q%¢%), (E3)

where the Cartan identity for the 2-form Fig, £cFa5 =
EV(dF )yap + (d(& - F))ap is used, and

puq’(d (§-F))aﬂ =
= {*Fop i’ + Va [(puq® — pu’q

(pu®q® —pu q*)Va(&Fyp)
q*)E Fyp] . (E4)
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Hence, using j* = Vg (pu®q® — puPq®), we have

1 1
—— 0L = —
V=o o Vg

+7 A0 + €% [Fapi® + pu’q

FapA(pu®q”v/=g)

¢ (dF)agy] + VaOF,
(E5)

where

0 = (pu“q® — puPq®)sAs
— (pu®q" + puP € + pu7q*EP) F,. (EG)

To calculate the difference of Noether charge §(Q —
> Qi), we first associate Qx — > Qx; with the La-

grangian (I52) as
Rk — Z Qki
— / Ldz + /(6 + p)u®ugv?dS,
) )
—i /E FoV £, A,dS, + i /6 § kYA, F*?dS,s

+ / Fop pu®q®k7dS., — / kYA, %dS,.
> >

1
“55 /s [G%% — 87(T°% + Tx") | kP dS,
1
- mA L(VFP — 47§®)dS,, (ET7)
™

which corresponds to Eq. (BS)). The integrand of the fifth
term in the r.h.s. of Eq. (E7)) is rewritten

Fop pu®q®k7dS, = Fap p(k® +v*)¢Pu7dS,,
= k%Fap qﬁpu'de’V + v, pudS,, (E8)

and combined with the sixth term as

Vg, pu'@dS,g — Va(kﬂAB) q“pu’dS, — kBAB j4dSq
= vy puPdSs — £,(kP Ag pudS.,) (E9)

where Eq. (@) and £;A4, = 0 were used. The integral
of the last term of Eq. (E9) over ¥ is rewritten a surface
integral over 0% that vanishes, because of the gauge in-
variance under the transformation ¢® — ¢ + Au® which
can always be used to make ¢* spatial, ¢*V,t = 0.

The third line of Eq. (E2) is replaced by v¥n,, pu’dSg,
then a variation of the charge is calculated.

A difference from the calculation of §(Qx — > Qk;) in

K3

Appendix [Blis the terms,
Alle+ p)uo‘ulgvﬁdsa} + A(WPnp pu®dSy)
= (hug 4+ 1s)v° A(pu®dS,) + v? A(hug + 1g)pu®dS,
+ (e+p)uug £,.6°dSy + £xEP15 pu®dS,, (E10)



where AvP = —AEP = £,.£P is used. In the calculation
of §(Qr — > Qri), a term £,0dS, becomes,

£,0%dS, = (e +p)uug £,.6°dS,

£xET Fyp(pua” — pu’q®) dSa

(6Ap + & Fyp)(pu® £4q” — pu” £4q%) dSa
(E11)

where £€* and £,£% are both spatial. The first term and

a part of the second term in the r.h.s. of Eq. (EI1]) cancel

out with the last two terms in Eq. (EIQ). With the Car-
tan identity, £7F g = £:Ag — V({7 A,) the last term of

—ZQ»
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Eq. (EII) becomes

(0Ag + &V Fyp) (pu® £4q° — pu” £4¢™) dS,

[AAs — Vg(§7A) ] (pu®£xq” — pu’ £4¢) dSa,

= AAg (pu“Lq” — puP £4xq®) dSs + EVA,£4,5* dS,
Vi [£7 A, (pu®£rq” — pu” £,4%) ] dSa, (E12)

where the second term of the r.h.s. of the last equality

vanishes for the symmetry, £;7% = 0, and an integral of

the last term over ¥ vanishes for the Stokes theorem.
Finally, we obtain an expression for §(Q — > Q;) for

the Bekenstein and Oron ideal MHD theory:

T h
/ { EAS pu®dS, + {E + (hug + 775)1)5} A(pu®dSs) + vPA(hug +ng)pu® dSs
)

1 1
— (pu£1q” — puP £4,*)AAg dS, } + Eé}ég kYA, F*PdS,p + /EFaguﬁ {EA(qamﬂ dS,) + £x&%pq" dS,

- 5/ 5 — 8m(T% + Te") | kPdS,, ——5/1&4 (Vs F*P — 47j*)dS,

_|_

+ €2 [VpTo — Fapj”® — pu’ ¢ (dF ) aps | } k° dSs.

This expression is compared with Eq. (BI4). Note that,
in the second line of Eq. (EI3)), the circulation of mag-

af af - af _ -
/{W[G 8r(T° + T2 )]5gaﬁ + 4W(vﬁF A5 A,

(E13)

netized flow explicitly appears as in Eq. (&4).
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