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ABSTRACT In this paper, a millimeter-wave multi-folded frequency-dependent progressive phase shifter
based on substrate-integrated-waveguide (SIW) is proposed. The equations based on SIW TEjp mode
characteristic are applied to design the parameters of the phase shifter. An end-fire magneto-electric dipole
with wide beam width is employed as the radiating element. By combining the antenna element and the phase
shifter together, a frequency beam scanning antenna array is proposed and analyzed, using mathematical
calculation based on phase array theory. A prototype of the proposed array has been fabricated and measured.
The theoretical calculation of radiation pattern of the array is verified by full-wave electromagnetic solver
Ansys HFSS and measurement. The measurement results show that the array can achieve a wide scanning
range from —18° to 32°, gain variation less than 2.9 dBi, and radiation efficiency around 50% from
57 to 63 GHz. With the advantages of simple and compact structure, wide beam scanning range, and low-cost
processing, the proposed array would be a good candidate for millimeter-wave wireless communication.

INDEX TERMS Frequency scanning array, millimeter-wave antenna, phase shifter, SIW.

I. INTRODUCTION

Frequency scanning antenna has been attracting great
research interests due to its ability of beam-steering with
the frequency variation and without any mechanical rota-
tion or electrical adjustment. In recent years, with the
development of millimeter-wave communication, which is
regarded as a key solution for bandwidth expansion to address
the exploding increase demand of data traffic in mobile com-
munications, frequency scanning antenna has been employed
in various millimeter-wave communication applications,
such as WiGig (802.11.ad) systems [1] and base station
antennas (BSA) in 5"-generation mobile networks (5G) [2].
And it has also been applied in millimeter-wave imaging
system with a comparatively simple system complexity [3].
In terms of the antenna working principle, the frequency
scanning antennas can be generally categorized into three
types: quasi-optical feeding approach[4], series feeding with

open-ended structure [5], and full-corporate feeding with path
difference phase shifter [6], [7].

The first type often employs the versatile quasi-optical
approach and is ease of realizing high directivity and wide
operating bandwidth performance in millimeter frequency
band. In [8], a 3-D printed lens consisting of dielectric post
elements was proposed to achieve frequency scanning beam
around 275 GHz, where the phase difference for each element
is realized by varying the height of the each dielectric post.
But this kind of antennas is not suitable for compact appli-
cations due to its bulky structure. The second type employs
leaky-wave principle as the main radiation mechanism, and
thus has flexible broadside radiation directions, compact and
simple structure. Many leaky-wave antennas based on SIW
have been reported in [9]-[12].

The third type is a recently introduced method to achieve
the frequency scanning beam with simple working principle.
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Several works, which feed the frequency scanning antenna
by the path difference phase shifter, have been reported in [6]
and [7]. The requirement of frequency dependent progressive
phase shift for each radiation element is achieved by using
different length paths. A submillimeter-wave 2-D frequency
scanning array composed of 8 x 8 open-ended air-filled metal
waveguides and the path differences phase shifter was pre-
sented in [6]. Besides, for planarization design, eight identical
slotted waveguides are used to replace the 2-D open-ended
waveguide as the radiation element [7]. However, the spacing
of the radiation elements is too large due to the width limit of
air-filled waveguides, which increases the side-lobe level and
requires more phase difference between adjacent radiation
elements to obtain beam direction shifts. Furthermore, the
open-ended waveguide has relatively narrow beam-width,
which increases the gain variation for different direction
beam.

Substrate integrated waveguide (SIW) is a type of low-cost
and low-loss millimeter-wave transmission line and has a
similar propagation property to the air-filled metal rectangu-
lar waveguide. Because it is designed on substrate with higher
dielectric constant than air, the width of SIW is narrower
than metal air-filled waveguide. Furthermore, multi-layer
technologies for SIW have been reported in numerous
research [13]-[16], which can achieved more compact
size.

In this paper, a multi-folded phase shifter based on SIW
is designed. Because the characteristic impedance of SIW
is usually much lower than 377 Q of free space, the open-
ended structure cannot be treat as radiation element directly.
For achieving better impedance matching and lower gain
variation between different direction beams, an end-fire
ME-dipole with wide beam width and impedance bandwidth
is employed as radiation element. The phase difference of the
frequency-dependent progressive phase shifter is analyzed by
SIW TE |9 mode characteristic, and the radiation pattern of
the frequency beam scanning array is calculated by phase
array theory. The full-wave electromagnetic solver Ansys
HESS and one processing example are employed to verify
the analysis results.

The remaining parts of this paper are organized as fol-
lows. The operating principle and the structure of the SIW
frequency-dependent progressive phase shifter are presented
in Section II; the configuration and the simulation perfor-
mance of the end-fire ME-dipole is given in Section III;
Section IV describes the far field pattern of the theoretical
analysis and the design procedure of the proposed array;
Section V discusses the fabrication and measurement of one
processing example. And in Section VI, the conclusions are
summarized.

Il. PHASE SHIFTER BASED ON SIW

The diagrams of the one-layer and multi-layer phase shifters
are schematized in Fig. 1, comprising a four-way power
divider and the different path distance transmission lines. The
blue arrows represent the directions of the electromagnetic
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FIGURE 1. Layouts of the one-layer and multi-layer frequency-dependent
progressive phase shifter.

wave propagation. The working mechanism of the phase
shifter based on air-filled waveguide has been analyzed in [7].
Compared with one-layer structure, the multi-folded struc-
ture can significantly reduce the surface area. As shown
in Fig. 1, the total path difference for adjacent outputs of the
three-layer structure is 4 Az. The diagram can be implemented
in multi-layer SIW transmission line with slot coupling.

Metal holes in Substrate I
Metal holes in Substrate I1
® Metal holes in Substrate IIT

Air slots between Substrate 1 /.",4'

and Substrate 1T /
e Air slots between Substr)ﬁ ‘
and Substrate U’E/ ‘

Strate |
bstrate 1
7 Substrate I1I

FIGURE 2. Configuration of the proposed multi-folded
frequency-dependent progressive phase shifter based on SIW (the
optimized values of dimensions of the phase shifter are listed in Table 1).

The three-layer SIW phase shifter corresponding to the
diagram in Fig. 1 is shown in Fig. 2, which consists
of one 1-4 power divider located at the bottom substrate
(Substrate IIT) and three groups of coupling structure with
path distance of Arf. In this design, all substrates are
NPC-H220A (processed by Nippon Pillar Packing Co., Ltd.)
with thickness of 1.2 mm, dielectric constant of 2.18 and
dielectric loss tangent of 5 x 10™*. All of the slots with length
of Sx and width §; are placed between the two laminate. The
short-ended SIW sections with offset of off, are placed in
the adjacent substrates. It is important to obtain the accurate
value of the adjacent distance of slot couplings At, due to the
decisive effect on phase shifts.

The analysis of TEjp modes propagation characteris-
tics can be transferred into the equivalent metal rect-
angular waveguide. The empirical relation between SIW
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and conventional rectangular waveguide was proposed -3
in [17],
4 4 g
Weg =w—1.08 x — 4+ 0.1 x — €))] =
S w a 2
where w is the width of the SIW, d represents the diameter of ;: 7 ;;
the metal holes and s denotes the spacing of adjacent metallic o
holes. 8 F
The operating wavelength of TEjo mode for SIW can be
calculated by
5 64"
)"g — i ; (2) Frequency (GHz)
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= 0.0 T T T
where k is the wavenumber and can be calculated by %
£ 02} .
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Then, the phase shift of the phase shifter can be s
. 206 .
obtained by =
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Ao =360 x — “) 5
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where 4 At is the path difference of adjacent outputs. %6 ¥ Frequenécoy (GHz) 62 64
The theoretical calculation and full-wave electromagnetic
simulation (solved by HFSS) of the SIW phase shifter with (b)

path distance of A7 = 2.8 mm, as shown in Fig. 2, are FIGURE 4. The simulated S-parameters and the total loss of the proposed
depicted in Fig. 3 with acceptable agreement. The simulated multi-folded frequency-dependent progressive phase shifter based on

S-parameters and total loss of the phase shifter are presented SIW. (a) S-parameters. (b) loss.

in Fig. 4. The reflection coefficients are less than —14 dB and

the transmission variations for each output port are less than TABLE 1. Dimension of the Phase Shifter (units: mm).

3.5 dB from 56 to 64 GHz. The total loss of the phase shifter

can be obtained by Parameters At Sy S, offz
Values 2.8 1.56 0.49 2

Qroral = 1 — 811 — 821 — 831 — S41 — S51 (5)

where S11, Sa1, S31, Sa1, Ss1 is presented in Fig. 4 (a).
Ill. ANTENNA ELEMENT

The antenna element of the scanning beam array with wide
beam width has the advantage of smaller gain fluctuation
Caculation for different direction beams, so that the ME-dipole is an

7 attractive candidate for scanning beam array. The working
principle and design procedure of the end-fire ME-dipole
antenna has been proposed in [18]. In this design, the ME
dipole is designed on three same NPC-H220A substrates with
thickness of 1.2 mm as shown in Fig. 5. The positions of

400 — : ; ;

- - - - Simulation:

200 [

Phase difference (degree)

200 I 7 — S . the metallic holes in substrate I and III are optimized to
- LS, — LS, —— £S,— 28, NS achieve the satisfactory radiation characteristics, such as sta-
AW s, — S —— 8, — S, 3 ble gain, wide beam width and high front-to-back ratio. The
6 P o p o4 open-ended SIW is designed in Substrate II. The optimized
Frequency (GHz) values of dimensions of the end-fire ME-dipole antenna are
. ] listed in Table 2.
e e e e erThe simulated reflecton coeffcients of the antemna e
based on SIW. ments are less than —13 dB from 56 to 64 GHz as presented
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Metallic holes in Substrate I
Metallic holes in Substrate IT
® Metallic holes in Substrate I11

FIGURE 5. The structure of the ME-dipole element (the optimized values
of dimensions of the phase shifter are listed in Table 2).

TABLE 2. Dimension of the antenna element (units: mm).

Parameters h wy W, P D D, L
Values 1.2 2.8 1 0.7 0.4 0.6 1.4
-10 T T T 6.0
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FIGURE 6. The S-parameter and gains of the ME-dipole element.

in Fig. 6. The primary polarization gains of 5.55 £ 0.15 dBi
and cross polarization level less than —39 dBi are obtained.
The simulated normalized radiation pattern in E- and H-plane
at 57, 60 and 63 GHz are presented in Fig. 7. It can be seen
that the half-power-beam-widths (HPBWs) in H-plane larger
than 80° can be achieved.

IV. FREQUENCY BEAM SCANNING ARRAY

A. RADIATION PATTERN

By combining the antenna elements and the phase shifter
together, the frequency beam scanning antenna array can
be realized. Neglecting the mutual coupling of the radi-
ation antenna elements, the radiation pattern of the one-
dimensional array antenna D(6, ¢) can be expressed as the
product of a vector element pattern f (8, ¢) and a scalar array
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FIGURE 7. The radiation patterns of the ME-dipole element. (a) 57GHz.
(b) 60 GHz. (c) 63GHz.

factor F (6, ¢),

D©.9) =10, 9)F (0.9 (6

Assuming that the geometrical center of the array aperture
is located at the origin of the coordinate system, the antenna
elements are arranged in the x-axis with spacing of W; and
phase difference of A« (calculated by Eq. (4)), the F (0, ¢)
can be express as

N-1
.. ikl (i— YN=LyW, sin®
FO.9)= ) aqeided07 T Msmoesel g
i=0
Therefore, the normalized array factor for the four-elements
array case can be calculated by

kwi sinf0+ Aa

F(Q,(p):COS( >

) cos(kwy sinf+Aca)  (8)
The comparison between calculation and simulation results
are given in Fig. 8.

B. DESIGN PROCEDURE

To serve as a guide for engineers, a simple stepwise proce-
dure for designing the kind of the proposed frequency beam
scanning is presented as follows.

Step 1: Based on the operating frequency band require-
ments, designing the width of SIW under the condition of
main mode of TE( operation using Eq. (1).

Step 2: Fitting the beam directions for different frequency
by using Eq. (7), the phase shift and element number can be
obtained.

Step 3: Using Eq. (4) to obtain the path difference At.

Step 4: Correcting the theoretical error by optimized the
path difference in full-wave simulation software.
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FIGURE 8. The calculated and simulated radiation patterns of the
frequency beam scanning antenna array.

V. MEASUREMENTS

The photograph of the proposed frequency scanning array
fabricated by traditional PCB facilities is given in Fig. 9.
The simulated and measured normalized radiation patterns
in x-z plane are illustrated in Fig. 10. The direction of the
measured beam is shifted to right compared to simulations
which is caused by the variation of dielectric constant of
substrates. The main beams of measurements are coincided
with simulations. The difference of the side lobe is mainly
caused by the fabrication tolerance, such as increasing surface
roughness caused by the scratches on the cladding, the cutting
error of the radiating aperture of array and the inhomogeneity
of the ring of radiation element, as shown in Fig. 9. These
fabrication errors can be reduced to a very low level by using
laser cutting technology of PCB facilities. The measured
results show that the proposed array can achieve a beam
scanning range from —18° to 32° with side lobe level less
than —5 dB from 57 to 63 GHz.

FIGURE 9. The prototype of the fabricated frequency beam scanning
antenna array.

The simulated directivity and gain and measured gain of
the proposed array are presented in Fig. 11. It should be noted
that the reflection from the waveguide to SIW transitions have
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FIGURE 10. The simulated and measured radiation pattern of the
frequency beam scanning antenna array.
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FIGURE 11. The simulated gain and directivity and measured gain of the
frequency beam scanning antenna array.

been calibrated. The attenuation around 3 dB in measured
results are mainly caused by the increasing surface roughness
of cladding of stacked substrates in fabricated prototype [19].
The gain variations of each beam are less than 2.9 dBi. The
radiation efficiency of the array is around 50%.

VI. CONCLUSION

A novel end-fire frequency beam scanning array based
on SIW has been designed, fabricated and measured.
To achieved the lower gain variations for different directional
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beams, a ME-dipole with wide beam-width is employed as
the radiating element. A three-folded frequency-dependent
progressive phase shifter is used to feed the antenna elements.
With the proposed mathematical formula, the radiation char-
acteristics of the array can be obtained. A prototype was
also fabricated and measured to validate the effectiveness of
theoretical calculation and simulation. A 50° beam scanning
range and gain variation less than 2.9 dBi can be achieved
from 57 to 63 GHz.
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