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Particle transport, acceleration and energisation are phenomena of major importance
for both space and laboratory plasmas. Despite years of study, an accurate theoretical
description of these effects is still lacking. Validating models with self-consistent, kinetic
simulations represents today a new challenge for the description of weakly-collisional,
turbulent plasmas. We perform simulations of steady state turbulence in the 2.5D
approximation (three-dimensional fields that depend only on two dimensional spatial
directions). The chosen plasma parameters allow to span different systems, going from
the solar corona to the solar wind, from the Earth’s magnetosheath to confinement
devices. To describe the ion diffusion, we adapted the Nonlinear Guiding Center (NLGC)
theory to the two-dimensional case. Finally, we investigated the local influence of coherent
structures on particle energisation and acceleration: current sheets play an important role
if the ions’ Larmor radii are on the order of the current sheet’s size. This resonance-like
process leads to the violation of the magnetic moment conservation, eventually enhancing
the velocity-space diffusion.

1. Introduction
Processes such as turbulence, diffusion and particle acceleration are ubiquitous both in

astrophysical and laboratory plasmas. Understanding particle diffusion is of fundamental
importance in order to characterize the distribution of the charged gas in the universe
and, more specifically, in the heliosphere. The understanding of the energetic particle
motion, originating for example from solar flares or coronal mass ejections, can help to
prevent injuries for space travelers, as well as hardware damages for satellites. Moreover
the distribution of heavy ions in the Earth’s magnetosphere can have effects on climate
changes (Luo et al. 2017). Particle transport theory is fundamental for the dynamics of the
solar corona (Lepreti et al. 2012) and of the interplanetary medium (Ruffolo et al. 2003,
2004). In laboratory plasma experiments, the magnetic confinement could be improved
by understanding what affects particle turbulent transport (Taylor & McNamara 1971;
Hauff et al. 2009).

Charged particle dynamics depends on the stochastic motion of the magnetic field lines.
The random walk of the magnetic field lines affects the diffusion both across and along
the mean magnetic field (Jokipii & Parker 1969). Particles gyrate along the magnetic field
but, if the field is turbulent, they spread in the perpendicular direction (Ruffolo et al.
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2012; Chandran et al. 2010), “jumping” from one field line to another. The turbulent
nature of space and laboratory plasmas suggests that the best way to describe their
dynamics is given by the statistical approach (Green 1951; Jokipii 1966). In this statistical
(Lagrangian) description, particles move in a turbulent electromagnetic field, similarly to
the motion of neutral tracers in atmospheric turbulence (Richardson 1926; Kolmogorov
1941). The turbulent nature of the fields that scatter the particles makes the analytical
treatment rather difficult. Because of this, we still lack an exact and universal theory to
describe diffusion (Bieber & Matthaeus 1997; Hussein & Shalchi 2016).

A common theoretical approach, applied when studying diffusion of charged particles,
relies on calculating separately the diffusion coefficient in the directions parallel and
perpendicular to the main guiding field (Jokipii 1966; Subedi et al. 2017). Currently the
Nonlinear Guiding Center (NLGC) theory (Matthaeus et al. 2003) gives a rather accurate
prediction of the diffusion coefficient for systems with a three-dimensional (3D) geometry.
However, a full 3D description of plasma turbulence requires huge computational efforts
that can be streamlined by reducing the dimensionality of the problem. In fact, if a
strong guiding magnetic field is present, turbulence becomes anisotropic and a simpler
2D model may become a good approximation. In this scenario, the structures and
phenomena related to turbulence, such as current sheets and reconnecting magnetic
islands (Matthaeus & Lamkin 1986; Greco et al. 2009a; Servidio et al. 2011b), magnetic
field topology changes and energy conversion (Parker 1957; Matthaeus et al. 1984;
Ambrosiano et al. 1988; Servidio et al. 2009, 2015), mainly occur due to dynamics in
the plane perpendicular to the main field (Bruno & Carbone 2016). Currently, magnetic
reconnection is considered one of the most effective mechanisms for particle acceleration
and energisation (Zank et al. 2014a), being crucial for explosive events in the solar
atmosphere, like solar flares (Cargill et al. 2006, 2012; Cadavid et al. 2014) and coronal
mass ejections (Gosling 2010). Analogously, in the Earth’s magnetosphere (Drake et al.
2006; Oka et al. 2010; Birn et al. 2012) and in the distant outer heliosphere (Lazarian &
Opher 2009), magnetic reconnection is thought to be a very active mechanism.

We aim to study the diffusion problem and to test the existing theories by using
self consistent simulations of plasma turbulence, where the back-reaction of particles
dynamics over the fields is taken into account. Together with diffusion, we study the
acceleration and energisation of particles (Zank et al. 2014b; le Roux et al. 2015; Lazarian
& Opher 2009; Tessein et al. 2013), especially in regions where magnetic reconnection is
expected to occur.

The present work is organized as follows. In Section 2 we will present a global overview
on the model that describes the plasmas in the low-collisionality limit. We will introduce
the numerical algorithm that simulates the plasma particle dynamics. In Section 3, the
particle trajectory statistics will be presented, interpreting the numerical results via the
plasma turbulent diffusion theories. The investigation of the acceleration process will be
the central topic of Section 4, where we will perform local analysis of the acceleration
phenomenon. Finally, in the last Section, we will present the discussions, conclusions and
future perspectives.

2. Simulations of 2.5D Plasma Turbulence
We perform three hybrid-PIC simulations, varying the ion plasma β, defined as the

ratio between thermal and magnetic pressure, namely β = Pcin/PB = v2th/v
2
A, with vth

and vA being the initial thermal and the Alfvèn speed (related to the mean field B0),
respectively. Note that we imposed equal ion and electron pressures, βi = βe ≡ β. We
performed runs with β = 5, 0.5 and 0.1, in order to cover a wide range of relevant plasma
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scenarios. These chosen values are such that the high β value is typical of plasmas found
in the Earth’s magnetosheath; the value of β = 0.5 is close to the typical solar wind
conditions, whereas the lowest β is appropriate for solar corona and laboratory devices.

2.1. Model equations
Particles and fields are described by the Vlasov-Maxwell system 2.1 that we solve via

a hybrid-PIC approach, using kinetic ions and fluid electrons. The system of normalized
equations is given by

ẋ = v,

v̇ = E+ v ×B,

∂B
∂t

= −∇×E,

E = −(u×B) +
1

n
j×B− 1

n
∇Pe + ηj.

(2.1)

In the above equations, x is the particle position, v their velocity, E is the electric
field, B is the magnetic field, n =

∫
fdv is the proton number density, u = (1/n)

∫
vfdv

is the proton bulk velocity, and j = ∇×B is the current density. In the above definitions
f(x,v, t) is the velocity distribution function of the ions. The pressure term is adiabatic
Pe = βnγ and η = 0.006 is the resistivity that introduces a small scale dissipation,
for numerical stability. The electric field is given by the generalised Ohm’s law. In the
simulations distances are normalized to c/ωpi , where c is the speed of light and ωpi is ion
plasma frequency. The time is normalized to Ω−1cp , that is the ion cyclotron frequency.
Finally, velocities are normalized to the Alfvén speed v

A
= cΩcp/ωpi .

The three simulations have the same initial conditions: uniform density and a
Maxwellian distribution of particles velocities with uniform temperature. We impose
large scale fluctuations in order to mimic the motion of the large energy-containing
vortices. We have chosen random fluctuations, at large scale, for both magnetic field and
the ion bulk velocity field. The Eq.s 2.1 are solved on a square grid of size L0 = 128dp,
where dp is the proton skin depth defined as dp = c/Ωcp, discretized with 5122 points,
with periodic boundary conditions. This initial state consists of a 2D spectrum of
fluctuations, perpendicular to the main field B0 (the latter chosen along z). The
fluctuations amplitude is δb/B0 ∼ 0.3. To suppress the statistical noise of the PIC
method we use 1500 particles per cell (about 4× 108 total particles).

2.2. Characteristics of plasma turbulence
Turbulence properties are fundamental for the modeling and the understanding of

the transport of charged particles. In this subsection we will highlight the statistical
properties of kinetic turbulence, together with important analysis such as the power
spectra of the fluctuations and the characteristic lengthscales of turbulence. The latter
two analyses will be crucial for the theoretical modeling of turbulent diffusion and particle
acceleration.

To describe the magnetic topology, in the 2.5D approximation, it is useful to define
the in-plane magnetic field as B⊥ = ∇az × ẑ, where az is the magnetic potential and
ẑ is the out-of-plane (axial) unit vector. The current in the axial direction jz = (∇ ×
B⊥) · ẑ = −∇2az. To achieve a stationary state of fully developed turbulence, we initially
let the system to freely decay, and then we introduce a forcing at the time t∗ at which
nonlinearity reaches its peak (roughly the peak of 〈j2z 〉), namely t∗ ∼ 25Ω−1cp . The forcing
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Figure 1: Current density jz (colour map) together with vector potential az (contour
lines), at the initial state (a) , with big structures and tenuous axial current, and at the
final state (b), with coherent structures such as small vortices and intense current sheets.
The most intense current sheets are located in between reconnecting magnetic islands
(Matthaeus 1980).

consists of “freezing” the amplitude of the large-scale modes of the in-plane magnetic
field, with 1 6 m 6 4, leaving the phases unchanged. This corresponds to a large-scale
input of energy, as described in (Servidio et al. 2016).

In order to have significant statistics, we perform our analysis when a steady state
has been achieved, namely for 50 < tΩcp < 250. Fig. 1 shows the shaded contour of
the current density jz along with the contour line of the vector potential az, as the
system evolves toward turbulence. Panel (a) shows the initial state of the system, where
islands and current sheets are not defined yet. As time goes on, smaller vortices and
sharp current sheets develop. In particular, these magnetic structures represent magnetic
islands (flux tubes in 3D). The global appearance of the system remains unchanged, in
a statistical sense, when the peak of nonlinearity has been reached. Regions of intense
magnetic gradient appear in between reconnecting magnetic islands, with associated
intense current sheets (Matthaeus 1980; Servidio et al. 2015).

To better describe the state of fully developed turbulence, we computed the Fourier
spectra, as a function of the wavenumber |k|, of both the electric and magnetic fields.
The power spectra for the trace of the correlation tensor, |B̃(k, t)|2, where B̃(k, t) are the
respective Fourier coefficients, are reported in Fig. 2. These spectra exhibit the classical
scenario of MHD turbulence, in which energy flows from large to small scales. This cascade
of energy occurs over the so-called inertial subrange, where energy that scales as k−5/3
(Bruno & Carbone 2016). In particular, Fig. 2 shows the turbulent development. The
state of fully developed turbulence is achieved after 50Ω−1cp . After this time the spectra
are almost stationary (do not experience large fluctuations). It is important to note, that
as observed in the solar wind (Bale et al. 2005), the power in the electric fields is higher,
at k’s that correspond to characteristic ion lengths. This is in agreement with previous
studies and simulations of plasma turbulence (Howes et al. 2008; Matthaeus et al. 2008;
Franci et al. 2015).

In order to understand the dynamics of particles in a turbulent scenario, where
structures are present at different scales, it is useful to measure different characteristic
lengths. The correlation (or integral) length of a turbulent field generally corresponds
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Figure 2: Power spectra of electric (a) and magnetic (b) fields as a function of the
wavenumber (normalized with the proton skin depth dp), at different times. While
turbulence develops, energy is transferred from the large to the small scales. In the
steady state, at k ∼ d−1p , the electric field spectrum manifests a steeper slope.

approximately to the size of the largest energy-containing turbulent eddies, (in our
case the typical sizes of the islands.) This length can be obtained from the two-point
correlation function C(r) as

λ
C
=

∫
Ω

C(r)dr =
1

〈b2〉

∫
Ω

dr〈b(x + r) · b(x)〉. (2.2)

Here b represents the magnetic fluctuations and 〈·〉 is the average over the total volume
Ω. Note that fluctuations are isotropic in the plane perpendicular to the main field,
hence x and r are in-plane vectors and the above length is essentially the same, namely
C(rx) ∼ C(ry) ≡ C(r). Moreover, λC is very similar for the bulk velocity fluctuations,
because of the choice of the initial conditions and the driving. In the above definitions we
suppressed the time dependence because of stationarity, and we computed these lengths
averaging over time, in the steady state regime. For our system λC ∼ 10dp and does not
vary for runs wit different plasma β.

Apart of the above energy-containing scale, which is a large scale characteristic length
of turbulence, it is important to characterize also the smallest scales properties. In
hydrodynamics the Taylor length is the scale at which the viscous dissipation term is
no longer negligible (Servidio et al. 2011b). This scale is related to the largest width of
the structures, where dissipation starts to be relevant. In our case, the magnetic Taylor
scale can be defined as

λ
T
=

√
b2⊥
〈j2z 〉

. (2.3)

In the above expression, b⊥ is the root mean square of the magnetic field in the plane
perpendicular to the axial direction (perpendicular to the main guiding field), and 〈j2z 〉 is
the axial current averaged over the perpendicular plane, and averaged also over the times
in which the system is in the stationary state of fully developed turbulence. This scale
can be considered as the scale at which the inertial range of turbulence terminates (Frisch
1995). In our simulations λ

T
∼ 1.7dp. Since the Taylor length λ

T
gives the largest size

of the dissipative structures, we introduce now an average measure of these structures,
namely the typical width of the layer cores (X−points). The current sheet width, δc, is
the half maximum width of the current sheet intensity profile. The average core width
of the current sheets we measured as δc ∼ 0.3dp.
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Figure 3: Particle trajectories for different values of β, namely β = 0.1 (a) and β = 5 (b).
It is possible to observe that particles in high β have bigger Larmor radii, while particles
in low β one move almost on straight lines, with more abrupt change of direction. One
can notice some particles have closed orbits like they are trapped in a magnetic island
while others experience turnovers that suddenly bend the trajectory.

3. Particle diffusion in plasma turbulence
We investigate the particle motion in steady state turbulence. Among all PIC macro-

particles, we have followed the path of 105 samples, verifying the convergence of the
statistical results. From their positions as a function of time, it is possible to compute
the diffusion coefficient, measuring their mean squared displacement. After a general
overview on the erratic trajectory of particles in 2.5D turbulence, we will see whether
the plasma β affects the statistics of ions diffusion and acceleration.

In Fig. 3 we show the 2D projections of the trajectories of some randomly selected
particles, during the whole simulation, for two distinct values of β (low and high β).
As it can be seen, particles that move in high β plasma are less magnetized and their
Larmor radii is large. Particles in low-β plasma, instead, are highly magnetized and
perform tight gyrations, with more abrupt change of direction. Small-β particles spread
less than in the high β case. Generally, in all cases, one can notice that some particles
have closed orbits as they are trapped in a magnetic island while others experience
turnovers that suddenly bend the trajectory. As we shall see, particles that perform
closed trajectories are mostly trapped in turbulent vortices, whereas sharply segmented
trajectories can belong to particles which encounter local intense turbulent structures,
as magnetic discontinuities or current sheets, that make them deviate suddenly (Drake
et al. 2010; Haynes et al. 2014).

The overall motion, as represented in Fig. 3, seems quite random: particles scatter
and diffuse in time. We computed the square displacement ∆s2 = ∆x2 + ∆y2 with
∆x = x(t) − x(t0) and ∆y = y(t) − y(t0). We define the time lag τ = t − t0, relative to
a varying origin t0, a procedure justified by stationarity in this steady state regime. We
found that, for sufficiently long time intervals, the motion is diffusive (Chandrasekhar
1943), namely

〈∆s2〉 = 2Dτ. (3.1)
In the above expression, D is the diffusion coefficient, τ is the time interval over
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Figure 4: Mean squared displacement in the perpendicular plane as a function of the
time interval τ (cyclotron units), for several particles energy ranges, indicated in the
label for the different β’s. For small times, it is possible to observe a deviation from
the linear prediction of the Brownian motion (Eq. 3.1). Normal diffusion is achieved for
rather large time intervals, namely τ > 60Ω−1cp , where we extrapolate the values of the
diffusion coefficient D via linear fits (dashed lines).

which the particle moves by ∆s, and the brackets now represent an ensemble average
computed over particles. To understand the dependence of the diffusion coefficient on
particle parallel energy, namely v2z (the kinetic energy associated with the component
parallel to the mean magnetic field), we divide the particles in energy bins, which
values are normalized with respect to squared Alfvén speed (c2

A
), and evaluate the above

diffusion coefficient, collecting particles depending their average energy. The averaged
mean squared displacement as a function of the time interval for several energy values
is shown in Fig. 4. It is possible to observe the normal diffusive behavior is achieved for
τ & 60Ω−1cp . By fitting the curves after this interval with the Eq. 3.1, we can obtain the
numerical value of D. For shorter time intervals particles seems to not follow the linear
law. Indeed, for short time intervals the particle motion cannot be stochastic since they
have “memory” of their initial condition, and temporal correlations exist. It is clear that
the higher the particles’ energy, the larger the diffusion coefficient. Before reporting the
numerical results on the diffusion of particles in self-consistent kinetic simulations, we
will introduce the theoretical background.

3.1. A Non Linear Guiding Center (NLGC) model in 2D

Currently, a useful description of perpendicular diffusion is given by the Non Linear
Guiding Center (NLGC) theory (Matthaeus et al. 2003). This theory works well for
3D turbulence, with a uniform mean magnetic field, and it has been validated with
test-particle simulations and observations (Bieber et al. 2004; Shalchi et al. 2004). We
want to develop a theory that can describe particle diffusion in the 2.5D approximation
turbulence, and test it with the self-consistent plasma simulations. As follows, we will
describe the main steps of the 3D NLGC derivation, considering the particle gyromotion.
Using the Taylor-Green-Kubo (TGK) formulation (Taylor 1922; Green 1951; Kubo 1957;
Shalchi & Dosch 2008; Shalchi 2015), one can write the diffusion coefficient Dxx, for
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Figure 5: Mean squared displacement in the z direction averaged over all particles as a
function of τ . The dashed line is the parabolic fit (∝ τ2). For every β, the assumption of
free streaming made in Eq. 3.2 is pretty solid.

instance along the x direction, as

Dxx =
1

B2
0

∫ ∞
0

dτ〈vz(0)Bx(x(0), 0)vz(τ)Bx(x(τ), τ)〉,

where it is assumed that the particle motion projected on the 2D plane follows the 2D
projection of the magnetic field lines. We assume that the magnetic field fluctuations in
the perpendicular plane are completely uncorrelated with the velocity in the z direction
and this allows us to write the diffusion coefficient as

Dxx =
1

B2
0

∫ ∞
0

dτ〈vz(0)vz(τ)〉〈Bx(x(0), 0)Bx(x(τ), τ)〉.

To develop the 2.5D version of the theory, we modify 3D NLGC by saying that the
velocity correlation function in the z direction is nothing but the square value of the z
velocity i.e.

〈vz(0)vz(τ)〉 ∼ v2z . (3.2)
This assumption has been directly shown by measuring the quantity 〈vz(0)vz(τ)〉 in
our simulations. Fig. 5 shows that the motion along z is given by free streaming, with
〈∆z2〉 ∼ t2 and therefore the velocity vz, in the direction along the main field, is almost
constant.

Using this approximation, we can estimate the diffusion coefficient neglecting the
parallel scattering, and get:

Dxx =
v2z
B2

0

∫ ∞
0

dτ 〈Bx(x(0), 0)Bx(x(τ), τ)〉.

Using the Corrsin’s independence hypothesis to transform the integrand function as

〈Bx(x(0), 0)Bx(x(τ), τ)〉 =
∫
dr Rxx(r, τ)P (r, τ)

one arrives at

Dxx =
v2z
B2

0

∫ ∞
0

dτ

∫
dr Rxx(r, τ)P (r, τ),
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where Rxx(r, τ) is the Eulerian two-point two-time correlation tensor and P (r, τ) is
the probability function of the particle having displacement r after a time interval τ
(Matthaeus et al. 2003). At this point it is convenient to express Rxx(r, τ) using its
Fourier transform

Rxx(r, τ) =
∫
dk Sxx(k, τ)eik·r.

We can model Sxx(k, τ) = Sxx(k)Γ (k, τ), where Γ (k, τ) represents the time-propagator
of the spectrum, and Sxx(k) is spatial spectrum. Usually, this functional form is described
via the so-called sweeping decorrelation mechanism, namely Γ (k, τ) ∼ e−τ/τc(k), where
τc(k) is a characteristic decorrelation time. The latter is usually thought to be the the
“sweeping decorrelation time” (Chen & Kraichnan 1989; Nelkin & Tabor 1990), in analogy
with fluid turbulence (see below).

At this point, we can proceed with the theoretical estimate of the diffusion coefficient,
given by

Dxx =
v2z
B2

0

∫ ∞
0

∫
dk Sxx(k)dτΓ (k, τ)

∫
dr P (r, τ)eik·r. (3.3)

Since P is Gaussian, then∫
dr P (r, τ)eik·r = e−(k

2
xDxx+k

2
yDyy)τ .

In axisymmetric turbulence Dxx = Dyy ≡ D, Sxx = Syy ≡ S and, since we have only
in-plane structures (i.e. kz = 0) k2x + k2y ≡ k2, the diffusion coefficient is

D =
v2z
B2

0

∫
dk S(k)

∫ ∞
0

dτ e−k
2Dτe−τ/τc(k).

Finally, integrating over τ , one gets

D =
v2z
B2

0

∫
dk

S(k)
[τC(k)]

−1
+ k2D

. (3.4)

Note that this prediction is only a small modification to the NLGC theory, having
suppressed the z-dependence by using the particle free streaming along z (Eq. 3.2).

In order to obtain a first estimate of the diffusion coefficient D, we can make an
approximation. Assuming that the sweeping decorrelation time is rather long (as in
the case of large scale slow driving, for example), we can drop the term τC(k)

−1 in
Eq. 3.4. This latter term, indeed, makes the equation more complex to solve. We therefore
obtained:

D∗ ∼
√
v2z
B2

0

∫
dk
S(k)
k2

. (3.5)

The reader may notice that this result is essentially of the same form as the so-called
Field Line RandomWalk (FLRW) limit of perpendicular particle scattering (Jokipii 1966;
Bieber & Matthaeus 1997). For such cases, D = veffDfl where Dfl is the Fokker Planck
coefficient for field line transport, and veff is the effective velocity of the particle along
the magnetic field (Matthaeus et al. 1995).

To evaluate the diffusion coefficient via Eq. 3.5 and Eq. 3.4, we computed the average
power spectrum S(k), from the simulations. Fig. 6 shows the numerical values of D
obtained by fitting the particles mean squared displacements in Fig. 4. The theoretical
values of the 2D NLGC, evaluated via both the exact and the approximated formulas,
are reported as a function of the particles energies. The simulations results follow fairly
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Figure 6: The diffusion coefficient as a function of the parallel energy v2z , calculated by
fitting the mean square displacement (red, green and blue line-points respectively for
β = 0.1, 0.5 and 5) for all the simulations. The theoretical diffusion coefficient from the
approximated 2D NLGC theory (Eq. 3.5) is reported with the black point dashed line
whereas the exact calculation (Eq. 3.4) is the orange dashed line.

well the theoretical prediction at low β . The theory slightly deviates at very high energy
(β’s), although the functional monotonic behaviour is very similar.

Here we briefly investigate the decorrelation mechanism in self-consistent, plasma
turbulence. We performed a Fourier transform in time of the magnetic fluctuations,
computing the propagator Γ (k, τ), as described in Ref. (Servidio et al. 2011a; Perri
et al. 2017). As in fluid, MHD, and Hall MHD models of turbulence, this time-dependent
correlation of turbulence strongly depends on the amplitude of k, as reported in Fig. 7.
As it can be seen, the decorrelation mechanism depends on k and drops quickly in
time (only a few inertial range modes are reported). From this functional form, we
computed the decorrelation time τC(k), represented in the panel (b) of the same figure.
The decorrelation time scales as ∼ 1/k, indicating the clear dominance of the sweeping
effect. To be more quantitative, in order to compute the diffusion coefficient for our
experiment, we found that τC(k) ∼ 3/(δb⊥kdp), where δb⊥ is the root mean square
(rms) of the in-plane magnetic fluctuations.

4. Particle Acceleration
In agreement with previous literature (Jokipii & Parker 1969; Matthaeus et al. 2003),

we have found that diffusivity depends on particles energy. The behaviour of diffusion is
in agreement with a modified model of the NLGC theory, here adapted to collisionless
2.5D plasmas. Moreover, we observed that many of these particles experience variations
of their momentum – namely an acceleration process. In this section, we investigate the
mechanisms responsible for acceleration, using conditional statistics. We will establish
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Figure 7: (a) Propagator of the magnetic field spectrum, computed for several
(perpendicular) k modes in the inertial range of plasma turbulence. (b) Decorrelation
time as a function of k (blue bullets), computed as the e-folding time of the functional
form in panel (a). The sweeping prediction is reported with the solid teal line.

the relationship between the effectiveness of the acceleration mechanism and the particle
energies, and the existence of possible resonance conditions that energize the ions.

We have computed, for each particle, the Lagrangian acceleration a = ∂v/∂t, where
v is the particle velocity. We computed the Probability Density Function (PDF) of
the Lagrangian acceleration, for all the particles, at different times and for different
simulations. The acceleration has been computed by using a 6th order finite difference
(centered) method. The distributions are reported in Fig. 8, for the two extreme β, at the
beginning and at the end of the simulation. As it can be observed, the PDFs of particle
acceleration in high β plasma are well described by the χ2 distribution that is defined as

PDF (χ2
k) =

1

2kΓ (k/2)
xk/2−1e−x/2

where k, that is commonly referred to as “degrees of freedom”, represents the number
of a set of independent normally distributed variables {x1, x2, . . . , xk}, and Γ (x) is the
gamma function. The sum of the square of these k variables distributes according to the
χ2
k PDF. In our case the three independent variables are the acceleration components
{ax, ay, az} and the square modulus of the acceleration |a|2 = a2x + a2y + a2z distributes
according to the χ2

3 with 3 degrees of freedom.
For β = 5, in particular, this distribution does not change in time, indicating the lack

of very extreme events during the evolution of the system. Whereas at low β (β = 0.1),
the acceleration, which is initially randomly distributed, develops a tail at later times
(blue solid line). This means that the number of particles with anomalous acceleration is
higher for low β plasma, suggesting that a physical process that depends on the plasma
conditions is at work.

A straightforward acceleration mechanism can be due to an electric field parallel to
the local magnetic field:

E‖ =
E ·B
|B| . (4.1)

We identified the anomalous particles, i.e. the particles with acceleration values exceeding
the variance of the followed distribution and represented their positions, at a given time,
over the parallel electric field map with a contour plot of the magnetic potential in the z
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Figure 8: PDFs of the acceleration, for β = 0.1 and β = 5. Both initial and final times of
the simulations are reported, together with the corresponding probability distributions
(dashed black lines). In the low beta case, extreme acceleration processes are observed.

direction, in order to see whether they show a correlation with the turbulent structures.
This map is reported in Fig. 9. The figure shows that particles with anomalous accel-
eration are affected by the above field: accelerating ions are non uniformly distributed,
they cluster where the parallel electric field is more intense, on the flanks of the magnetic
islands.

In order to establish a more quantitative link between the electric field and possible
local acceleration effects, we compared the PDFs of separate contributions to the electric
field (see Eq. 2.1). We focus on those terms that can be parallel to the local magnetic
field (namely ∇Pe and ηj) and of the total parallel electric field itself (E||), but we also
examine the total inductive electric field u×B. To make an association with acceleration
of particles, we accumulate the PDFs of these quantities at particle positions, where
we segregate the particles into low-acceleration and high-acceleration populations. The
particles were distinguished by thresholds with respect to the global acceleration PDF:
the anomalous particles are those which have an acceleration value exceeding the 3σ of the
global distribution, whereas “normal” particles have an acceleration value within 1σ. Note
that the above conditional statistics would give the same distribution only if acceleration
and, e.g., E||, are uncorrelated. These PDFs are shown in Fig. 10, where the quantities
with superscript ↑ are measured at the positions of anomalously accelerated ions, whereas
the fields with superscript ↓ are related to “normal” particles. It is evident that accelerated
particles have higher parallel electric field – the population of the distribution is higher
at big E|| regions. Moreover we used the Partial Variance of Increments (PVI) method
to find candidate regions likely to be identified as coherent structures. These structures
contribute to non-Gaussian statistics and therefore to intermittency. The PVI time series
is substantially defined as the normalized sequence of magnetic increments. By applying
the PVI technique, we found that the regions of bigger E|| occur in correspondence of
magnetic discontinuities and not in smooth regions, as the PDF of E|| conditioned on PVI
values (Greco et al. 2009b) clearly evidences in the inset of panel (a) of Fig. 10. In the
figure we see that each of the electric field contributions are enhanced at the positions of
high acceleration particles, indicating a variety of possible mechanisms, each associated



13

0 20 40 60 80 100 120
x/dp

0

20

40

60

80

100

120
y/

d p

E‖(tΩcp = 120)

−0.02

−0.01

0.00

0.01

0.02

Figure 9: Particles with very high acceleration (green dots), superimposed on the shaded
contour of the parallel electric field. These particles are localized in the regions where
the parallel electric field is bigger.

with high levels of dynamical activity, are at work. The apparent strong response at high
values of the parallel electric field contributions further confirm the relation between the
parallel electric field and the stochastic acceleration mechanisms in 2.5D turbulence.

This acceleration mechanism in the out-of-plane direction has a global effect of elongat-
ing the ion velocity distribution function (VDF). In order to see if this typical alignment
effect is present in our numerical experiments, we computed both the PDF of the angles
between particles’ velocity and the local magnetic field and the PDF of the angles the
particles velocity has with the main magnetic field (along z)

cos(θ) =
v ·B
|v||B| , cos(ψ) =

vz
|v| (4.2)

In Fig. 11 we report the distributions of both the angles, at the initial and final times
of the simulation, for different values of β. At the initial time, when turbulence is very
“young”, the distributions are quite flat, meaning particles are moving isotropically. As
the simulation goes on, particles tend to align with the main magnetic field in the z
direction. This effects is much more evident for the low β plasma, the more magnetized
one. Another feature one can notice in the low β plasma is that the particles orient
themselves more on the local magnetic field rather than its z component, although the z
component is its main one and the difference is not statistically relevant.

It is crucial to see now whether this acceleration mechanism, locally related to intense
parallel electric fields, can actually increase the particles energy, and up to which values.
This correspondence is not trivial since the particles with anomalous acceleration are
only a small fraction of the plasma. We have constructed the energy PDF to see whether
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Figure 10: Conditional PDFs of the magnitudes of several contributions to the electric
field (see Eq 2.1). In each case the condition is related to the particle acceleration. PDFs
designated by ↑ (blue squares) are the respective PDFs accumulated at positions of high
acceleration particles, defined as particle with acceleration value exceeding 3σ in the
global distribution of signed particle accelerations. Likewise PDFs for the low acceleration
particles indicated by ↓ (red circles) are accumulated at the positions of particles having
low accelerations, less than 1σ. The four cases shown are the conditional distributions of
magnitude of: (a) parallel electric field |E‖|; (b) parallel resistive electric field |ηj‖|; (c)
parallel electron pressure |∇Pe‖|; and (d) total inductive electric field |u×B|. The parallel
‖ components are defined relative to the local magnetic field vector. All cases show the
same qualitative behavior: particles with larger accelerations are more likely to be found
where the electric field values are larger. This supports the idea that accelerating particles
cluster close to regions where dynamical activity is occurring, notably along boundaries
of interacting flux tubes, and near the associated current sheets, suggesting an association
with magnetic reconnection. The inset of panel (a) shows the total parallel electric field
component conditioned over the PVI values. The red circles are the parallel electric field
values computed along the whole PVI path, whereas the blue squares are the parallel
electric field values computed in the regions where the PVI exceeds a threshold value.
This correlation indicates that high electric field values are more probable to be found
where magnetic field inhomogeneities are stronger.

the energy has a different behavior at different β. The energy PDFs for the low and high
β values are shown in Fig. 12. In the low β scenario, the PDF develops a power law tail,
already seen in observation and previous numerical simulations. Whereas in the high β
plasma the energy remains similar to the initial distribution, namely close to Maxwellian
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Figure 11: PDFs of the cosine of the angle between the particles velocity and the magnetic
field for low (a) and high (b) β values at the initial and final instants of the simulation.
The orange (solid) and red (dashed) lines represent the PDF of the angle the velocity
forms with the local magnetic field at the initial and final time respectively. The green
(dotted) and blue (solid-dotted) ones represent the angle that particles velocity forms
with the main magnetic field in the z direction at the same two instants. Both the two
plasma scenarios start with an isotropic distribution of the velocities with respect to
the magnetic field. Then the more magnetized particles (low β plasma) become strongly
aligned with the magnetic field. The same effect is evident, though much less pronounced,
for less magnetized particles (high β plasma).
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Figure 12: PDF of the particles energy, for the high and low β simulations, at different
times of the simulation. The high β distribution does not change during the simulation,
whereas the low β particles have a substantial energy gain because of turbulence.

distribution. This suggests that the acceleration mechanism can energize particles, and
that the process depends on the plasma β.

4.1. Magnetic Trapping
We have seen that the acceleration mechanism involves the parallel electric field.

However, there must be something else that makes this field energizing particles in low β
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Figure 13: One of the most energetic particles followed along its path. Panel (a) shows
the particle energy (blue line), its acceleration (green line) and the energy time derivative
(red line). Panel (b) shows the Lagrangian parallel current density, namely the value of
ηj‖ measured along the particle trajectory. Both the energy and the acceleration show an
increase in correspondence of a peak in the parallel current density. The energy and its
time derivative are oscillatory, although there is a slightly positive component. After the
energy boost the oscillation amplitudes grow, although the energy average value remains
almost constant. This behavior might be related to the sampling of a coherent field, until
the particle becomes energetic and free to escape. Panel (c) shows the colour map of the
parallel electric field, at t = 160Ω−1cp when the particle encounters the peak of the ηj term
along its trajectory, with the particle path which colour represents the particle’s energy.
The colour clearly shows that the particle gets energized when it remains trapped in the
magnetic island until it gets enough energy to escape. The (blue) triangle represents the
starting point of the trajectory and the (green) star is the point where the maximum
value of parallel current density is found.

plasmas. In Fig. 9 we have seen that the anomalous particles lie within (or in between)
magnetic islands, in agreement with previous discussions. The acceleration mechanism,
evidently occurs in association with magnetic reconnection. Particles temporarily trapped
inside small flux tubes or in the dynamically active region of larger flux tubes experience
Fermi-like processes. In the region near current sheets, particles can experience nearly
continuous first order energisation (Hoshino et al. 2001; Drake et al. 2010; Haynes et al.
2014). In particular we followed the trajectory of one of the most energetic particles and
monitored its energy, its acceleration, the energy derivative with respect to time and the
parallel current density it samples during its journey (the parallel pressure term is not
shown because it is too noisy for non-statistical treatment) (Fig. 13). The figure also
shows that the particle remains trapped in a magnetic island and its energy grows until
it reaches a high enough energy to escape.

To estimate the escaping times we calculated the Lagrangian auto-correlation time
using Eq. 4.3. This quantity represents the time at which each particle experiences a
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correlated field, and can be estimated as

Tesc =
1

〈vx(t0)2〉a

∫ ∞
0

〈vx(t0)vx(t0 + τ)〉adτ. (4.3)

In the above definition, the operation 〈·〉a is the average only over the particles that have
high acceleration. For the usual isotropy hypothesis. we computed the above relation
along all directions, finding similar results. We obtained the following escaping times:
T anomesc (β = 5) ∼ 0.8Ω−1cp , T anomesc (β = 0.5) ∼ 3.0Ω−1cp , and T anomesc (β = 0.1) ∼ 5.7Ω−1cp .
In addition we computed the same quantity for all the particles, obtaining these values:
T allesc(β = 5) = 0.95Ω−1cp , T allesc(β = 0.5) = 4.13Ω−1cp , T allesc(β = 0.1) = 9.64Ω−1cp . This
scenario is consistent with the fact that particles in low β plasmas develop high energy
tails, since they are confined within magnetic islands for longer periods, experiencing the
same parallel electric field. On the other hand, particles in high β plasmas easily escape
from magnetic islands and are not efficiently energized. The comparison of the trapping
times values at the same β for the different kind of particle populations also supports this
view. The escaping times calculated over all the particles are bigger than those of the
anomalous particles suggesting that more energetic particles are more likely to escape
from magnetic islands while lower energy particles remain trapped for longer periods and
can be coherently energized. This Fermi-like process, invoked in small scale reconnection
(Ambrosiano et al. 1988), is now quantitatively observed in large scale plasma turbulence.
It is interesting now to further characterize the energisation process by looking at the
characteristic parameters of these anomalous particles.

4.2. The Magnetic Moment
We now further inspect the acceleration process by looking at the magnetic moment

µ of ions, defined as

µ =
mv2⊥
2B

. (4.4)

In the above expression, m is the particle mass and v⊥ its velocity (perpendicular to
the magnetic field B, measured at the particle’s position). µ is an adiabatic invariant of
the system, if B is slowly varying. Indeed, the orbits are like closed circles and the flux of
magnetic field passing through them is almost constant. This suggests that the magnetic
moment might not be a constant of the motion in a turbulent system where several
spatial scales are present, and where magnetic field variations are neither negligible nor
adiabatic (Dalena et al. 2012). To quantify the behaviour of the magnetic moment for
each particle, we computed the normalized moment

µ̃p =
µp(t)− µp(0)

µp(0)
, (4.5)

where the label p now indicates a single particle. This measure gives us information
about the variation of the particle magnetic moment with respect to its initial value.
Fig. 14 shows µ̃p as a function of time, for some particles, randomly selected, for two
plasma β values. Particles that moves in low β plasma have the highest magnetic moment
excursions, while in the high β plasma, where particles are not so energized in time, their
magnetic moment is much more conserved.

To see whether the magnetic moment is a constant of the motion, in a more quantitative
way (Fig. 14 refers only to a small portion of particles), we calculated the standard
deviation σµ(p). This can be interpreted as the dispersion of the magnetic moment, for
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Figure 14: Magnetic moment as a function of time, for a group of 11 randomly selected
particles, for two values of β. The violation of magnetic moment conservation is much
more pronounced in the case of β = 0.1, for which particles experience great variations
though some do not. In the low-β plasma, particles have small gyro-radii and they can
probably interact with the local strong inhomogeneities, while in the high-β scenario
particles keep their magnetic moment better conserved.

each particle, and is defined as

σp =

√
1

T

∫ t0+T

t0

[µp(t′)− 〈µp〉T ]2 dt′, (4.6)

where µp(t) is the magnetic moment of the p-th particle at the time t, and the average in
the integral is calculated over the whole time. In case of a perfectly conserved magnetic
moment, this quantity is null. We have then built the PDF of

ε =
σp
〈µp〉t

, (4.7)

that indicates how much the magnetic moment deviates from its mean value – how much
the magnetic moment is “broken”. The PDF(ε) is shown in panel (a) of Fig. 15, for the
whole 105 particles. The violation of the magnetic moment is much more pronounced
(broader distribution) in the case of β = 0.1. Low-β particles have small gyro-radii and
they can probably interact with the local strong inhomogeneities, while high-β particles
keep their magnetic moment better conserved.

We can relate the magnetic moment violation directly to the turbulence characteristic
scales. Our analysis suggests that particles can interact with current sheets, if their
Larmor radius is much shorter than the Taylor length λT – the largest current sheet size
(Eq. 2.3 ). If the radius is bigger, the particle can gyrate without even “noticing” the
current sheet. The other important scale is the current width δc, that is the mean size
of the current sheet cores. Panel (b) of Fig. 15 shows a more quantitative view of the
above speculation, suggesting a kind of spatial resonance. In this figure we report the
PDF of the Larmor radius along with the turbulence characteristic lengths λ

T
and δc.

The Larmor radii of particles in high β plasma are broadly distributed and are much
bigger than the current sheets thickness (while they are on the order of the Taylor scale).
The case with β = 0.1 shows, instead, that the average RL are smaller than (or on the
order of) δc. In this scenario, particles with the resonant Larmor radius feel the presence
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Figure 15: (a) PDF of the dispersion of the magnetic moment defined in Eq. 4.7. These
PDFs show that particles are more likely to “break” their magnetic moment in the low
β case. (b) PDF of the Larmor radius for different β’s. High β particles have a wide
distribution, reaching values up to one order of magnitude bigger than in the low-β case.
The Taylor length λT and the current width δc are also indicated. The Taylor length
indicates the length of the biggest current sheet in the plane and sets an upper limit
to the particles that can effectively get energized by interacting with the current sheets.
Whereas the current width δc is the average current sheet thickness.

of the sharp discontinuities, and undergoes a magnetic moment break. This finally leads
to the acceleration mechanism, and to the energisation of ions in turbulent plasmas.

4.3. Approaching to Velocity Space Diffusion
We have studied the processes of particle acceleration and energisation. Acceleration

can be interpreted as “motion” in velocity space, i.e. v-diffusion (Subedi et al. 2017). In
this last section we will briefly mention this aspect of diffusion. As for spatial diffusion,
it is instructive to observe particles trajectories in the velocity space. In particular, we
represent these trajectories in a 2D space made by vz (parallel to the global magnetic
field) and the in-plane velocity (v2x + v2y)

1/2. The trajectories in the velocity space are
shown in Fig. 16.

The velocity space trajectories show, from another point of view, the same behavior we
have seen in the previous sections. In the high β plasma, particles are accelerated but not
effectively energized by the parallel electric field. This means that they can diffuse only
in pitch-angle and gyrophase, namely they move on the surface of iso-energetic shells,
varying only the angle the velocity forms with the magnetic field. In the low β scenario,
particles, instead, are accelerated and decelerated by the current sheets and the islands
(note, however, that the percentage of high-energy particles is very low). The combined
acceleration, deceleration and energisation phenomena make particles trajectories in the
velocity space more complex and the trajectories become almost ergodic, since particles
can diffuse both in pitch-angle and momentum-amplitude. The ergodicity domain is
bounded by the upper limit of energy a particle can gain before escaping a vortex and
run into a decelerating (de-energising) electric field. This interesting aspect of velocity
diffusion will be further inspected in future works.
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Figure 16: Velocity space trajectories for the particles of Fig. 14, at high and low
β’s. Particles moving in the high β plasma are more energetic and do not undergo
energisation processes. They diffuse in pitch angle and hence move on quasi-isoenergetic
shells. Differently, in the low β scenario, particles manifest more complex (ergodic)
trajectories: they are not locked on isoenergetic shells as they can effectively gain/lose
energy throughout their magnetic islands journey.

Discussion and Conclusions
In this work we described the diffusion and the acceleration of ions in plasma turbu-

lence, using self-consistent hybrid simulations (kinetic ions and fluid electrons). These
topics are of primary importance both in astrophysical and laboratory plasmas. We
simplified the problem by using a 2.5D geometry, which can be a valid approximation to
understand the nature of strongly anisotropic (magnetized) fluctuations (Shebalin et al.
1983; Dmitruk et al. 2004; Matthaeus & Lamkin 1986). Particles have been evolved
making use of a PIC algorithm. The PIC algorithm is very useful and of practical
fundamental importance when treating non-equilibrium plasmas for which the wave-
particle interactions are crucial. The 2.5D hybrid-PIC simulations have been performed
for three different β’s, in order to reproduce a wide range of physical systems. The
different values of β used vary for more than one order of magnitude allowing us to
describe plasma scenarios spanning from the solar corona to fusion devices. The 2D
maps of the current density along with the magnetic field showed the development of
fundamental turbulent structures, such as vortices and current sheets.

We have then studied the motion of ions, moving self-consistently in the electromag-
netic field. As suggested by previous (and numerous) test-particles studies, the motion is
very erratic. Particles can be trapped in magnetic vortices or scattered away by current
sheets, wandering like a pollen in the atmosphere (Servidio et al. 2016), or field lines in
the solar corona (Rappazzo et al. 2017). This kind of trajectories are achieved after rather
long time intervals and can be statistically described within the theory of diffusion. The
particle motion becomes uncorrelated when the particle is no longer trapped by the same
vortex. Low energy particles have been found to have longer correlation times as they
cannot easily escape from vortices.

All the existing theories on the diffusion coefficient can describe 3D systems and all
these theories have been verified only with test-particle models. The NLGC theory is
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possibly the most precise theory that gives an estimate of the diffusion coefficient. We
have then “reduced” this theory to the bi-dimensional case. This 2D NLGC theory has
been found to be valuable in describing the diffusion coefficient of particles moving in
self-consistent turbulent fields.

From the acceleration process, the PDFs show that the acceleration nature depends
on the plasma β. Acceleration is a stochastic variable for high β plasmas, whereas it is
distributed with power-law tails for low β case. We have found that the electric field
component parallel to the magnetic field is correlated with particle acceleration. The
“anomalously” accelerated particles, i.e. the particles with acceleration values that exceed
the variance of the distribution, are connected to regions with high parallel electric field.
This has been seen, qualitatively, by spotting these particles on the parallel electric field
map and, quantitatively, by computing the conditional statistics. It is worth noting that
only a small percentage of particles is affected by the acceleration mechanism. Therefore,
this result is consistent with the free streaming of average out of plane speeds, described
in Fig. 5. The acceleration is more efficient in the perpendicular plane (not shown here).

By looking at the energy PDFs, we noticed that particles in low β systems, such as in
the solar wind, are more effectively energized. This process can be linked to the presence
of narrow current layers. The main phenomenon acting on the particle is the breaking of
the particle magnetic moment. Local spatial resonances break this constant of motion,
leading to acceleration and finally to energisation of particles. In this process, particle
undergo a spatial resonance with the background turbulent structures: ions that have
their Larmor radius on the order of the current sheet thickness experience large excursions
of their magnetic moment. These particles experience a local acceleration process, while
in the case with much larger β, as can be found in the magnetospheric environment, the
plasma elements do not “see” the reconnecting current sheets and the embedded parallel
electric field. This kind of interaction with vortices and current sheets has been shown
also by looking at resonances between characteristic scales. Particles’ characteristic scale
is the Larmor radius, whereas for turbulence we computed the Taylor length and the
current sheets’ cores average width. A consistent percentage of high energy particles has
Larmor radii bigger than the Taylor length, that is, qualitatively, the in-plane length
of the biggest current sheet. This means high energy particles barely notice the current
sheets.

Finally, we have introduced the concept of velocity space diffusion, because the above
processes might be related to the stochastic motion of particles in the velocity space. We
still lack a fundamental theory to determine the diffusion coefficient in velocity space
(Miller et al. 1990; Miller & Roberts 1995), and we leave this work for future studies.
Future works can be focused on an analytical treatment of the velocity-space diffusion.
Moreover, a full 3D study will be performed in the future, taking into account also the
role of kinetic electrons.

To conclude, it would be very interesting to highlight the main effects on diffusion
and acceleration due to the self-consistent (kinetic) treatment of particles, performing
for example a direct comparison with MHD test particle simulations, with the same
numerical setting presented here. We will investigate these issues in future work.
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