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Abstract—Pac-Man and its equally popular successor Ms Pac-
Man are often attributed to being the frontrunners of the golden
age of arcade video games. Their impact goes well beyond
the commercial world of video games and both games have
featured in numerous academic research projects over the last
two decades. In fact, scientific interest is on the rise and many
avenues of research have been pursued, including studies in
robotics, biology, sociology and psychology. The most active field
of research is computational intelligence, not least because of
popular academic gaming competitions that feature Ms Pac-Man.
This paper summarises peer-reviewed research that focuses on
either game (or close variants thereof) with particular emphasis
on the field of computational intelligence. The potential usefulness
of games like Pac-Man for higher education is also discussed and
the paper concludes with a discussion of prospects for future
work.

I. INTRODUCTION

Pac-Man is the most successful arcade game of all time and
has been a social phenomenon that elevated the game to cult
status: despite having been released more than three decades
ago, interest in the game remains high and numerous research
papers have been published in recent years that focus on the
game in one way or another. Games in general have always
been a popular testbed in scientific research, particularly in the
field of computational intelligence, but also in other fields such
as psychology, where games may be used as a tool to study
specific effects using human test subjects. In the past, most
games of interest were classical two-player board games such
as Chess (and more recently Go), but today video games attract
equal attention. Numerous competitions now take place every
year where participants are asked to write software controllers
for games such as Super Mario, StarCraft, Unreal Tournament,
Ms Pac-Man and General Video Game Playing. There are also
many reasons why research on games is on the rise, both from
an academic and a commercial point of view.

Academically, games provide an ideal test bed for the devel-
opment and testing of new techniques and technologies: games
are defined by an explicit set of rules and the gamer’s perfor-
mance in playing a game is usually defined unambiguously
by the game’s score or outcome. Games are also immensely
flexible and vary greatly in complexity, from single player

P. Rohlfshagen is with Daiutum (philipp@daitum.com); J. Liu and S.
M. Lucas are with the Department of Electronic Engineering and Com-
puter Science, Queen Mary University of London, London, E1 4NS, UK
({jialin.liu,simon.lucas}@qmul.ac.uk).); D. Perez-Liebana is with the Depart-
ment of Computer Science and Electronic Engineering, University of Essex,
Colchester, CO4 3SQ, UK (dperez@essex.ac.uk).

puzzles, to two-player board games, to extensively multi-
player video games. Techniques developed specifically for
game playing may often be transferred easily to other domains,
greatly enhancing the scope with which such techniques may
be used.

There is significant commercial interest in developing so-
phisticated game AI as well. The video/computer games
industry generates annual revenues in excess of US$ 23 billion
in the USA alone, with a world-wide market exceeding US$ 94
billion [1]. Traditionally, most efforts (and finances) have been
devoted to the graphics of a game. More recently, however,
more emphasis has been placed on improving the behaviour
of non-player characters (NPCs) as a way to enrich game play.

This paper presents research that makes use of Pac-Man,
Ms Pac-Man or close variants thereof. Despite the age of
the game, the number of such studies, particularly those in
the field of computational intelligence, has been increasing
steadily over recent years. One of the reasons for this trend
is the existence of academic competitions that feature these
games (Section III) and indeed, many papers that have been
published are descriptions of competition entries. However,
research is not restricted to the area of computational intel-
ligence and this overview highlights how Pac-Man has also
been used in the fields of robotics, brain computer interfaces,
biology, psychology and sociology. The goal of this study
is to highlight all those research efforts and thereby paint a
(hopefully) complete picture of all academic Pac-Man related
research.

This paper is structured as follows: Section II introduces
Pac-Man and Ms Pac-Man and discusses why they constitute
a useful tool for academic research. This is followed in
Section III with an overview of ongoing academic gaming
competitions that focus on Ms Pac-Man and have led to a
renewed interest in these games within the academic com-
munity. The overview of peer-reviewed research is split into
three parts: first, all research related to developing software
controllers is reviewed (Section IV and Section V). Then, all
research related to game psychology (e.g., player profiles and
entertainment values of games) is discussed in Section VI.
Finally, Section VII outlines all studies in other areas of
research. The paper is concluded in Section VIII where future
prospects for Pac-Man related research are discussed.

II. THE GAMES

A. Pac-Man
Pac-Man was developed by Toru Iwatani and released by

Namco in 1980. The game was originally called Puckman but
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Fig. 1. Screenshot of the starting position in Pac-Man: Pac-Man (yellow
disc) needs to eat the pills (small dots) while being chased by the four ghosts
(red, cyan, pink and orange). The large dots are power pills (energisers) that
allow Pac-Man to eat the ghosts for a short period of time.

was renamed for the American market. It was released as a
coin-operated arcade game and was later adopted by many
other gaming platforms. It quickly became the most popular
arcade game of all time, leading to a coin shortage in Japan
[2]! The social phenomenon that followed the game’s release
is best illustrated by the song “Pac-Man Fever” by Buckner
and Garcia, which reached position 9 in the single charts in the
USA in 1981. The popularity of Pac-Man led to the emergence
of numerous guides that taught gamers specific patterns of
game-play that maximise the game’s score (e.g., [3]). The full
rules of the game as detailed below are paraphrased from the
strategy guide “Break a Million! at Pac Man” [4].

The game is played on a 2-dimensional maze as shown in
Figure 1. The gamer has control over Pac-Man via a four-
way joystick (which can be left centred in neutral position)
to navigate through the maze. The maze is filled with 240
(non-flashing) pills, each worth 10 points, and 4 (flashing)
power pills (energisers) worth 50 points. The four ghosts start
in the centre of the maze (the lair), from which they are
released one-by-one. Each ghost chases Pac-Man, eating him
on contact. Pac-Man has two spare lives to begin with and the
game terminates when all lives are lost. An additional life is
awarded at 10, 000 points. When Pac-Man eats a power pill
the ghosts turn blue for a limited amount of time, allowing
Pac-Man to eat them. The score awarded to Pac-Man doubles
with each ghost eaten in succession: 200 - 400 - 800 - 1, 600
(for a maximum total of 3, 050 points per power pill). The last
source of points comes in the form of bonus fruits that appear
at certain intervals just below the lair. There are 8 different
fruits with values of 100 to 5, 000 (higher-valued fruits appear
in later levels only).

When all pills have been cleared the game moves on to the
next level. Technically the game is unlimited but a software
bug in the original ROM code prevents the game going past
level 255 which cannot be completed. The Twin Galaxies
International Scoreboard1 states that the highest possible score
of the game (3, 333, 360 points by playing 255 perfect levels)
was set by Billy Mitchell in 1999. A perfect score is possible

1http://www.twingalaxies.com

TABLE I
CHARACTERISTICS OF THE GHOSTS IN PAC-MAN [4].

Colour Orange Blue Pink Red
Name Clyde Inky Pinky Blinky

Aggressiveness 20% 50% 70% 90%
Territory Southwest Southeast Northwest Northeast

as the behaviour of the four ghosts is deterministic. Table I
summarises the main characteristics of the ghosts which have
variable degrees of aggressiveness: Clyde, for instance, is the
least dangerous ghost that pursues Pac-Man only 20% of the
time. Furthermore, each ghost has its primary territory where
it spends most of its time. The eyes of the ghost indicate
the direction they are travelling and ghosts cannot generally
reverse direction unless Pac-Man consumes a power pill or an
all-ghost-reversal event is triggered: ghosts operate in one of
three modes (scatter, chase or frightened) and a reversal event
occurs after a number of transitions between these modes; for
example, when going from scatter mode to chase mode, or vice
versa. A detailed account of the game with all its wonderful
intricacies may be found on Gamasutra2.

The speed of the ghosts is normally constant, except when
travelling through the tunnel (where they slow down signif-
icantly) and except when edible (when they travel at half
speed). Also, as the player is near the end of a level, ghosts
may speed up (and the speed may depend on the type of ghost).
The speed of Pac-Man is variable throughout the maze: speed
increases relatively to the ghosts in tunnels, around corners
(cutting corners) and after eating a power pill, and decreases
while eating pills. These variations in the relative speed of
Pac-Man and the ghosts add significantly to the richness of
game play, and can often make the difference between life and
death. For example, an experienced player with the ghosts in
hot pursuit may seek pill-free corridors and aim to execute
multiple turns to exploit the cornering advantage.

B. Ms Pac-Man

The strategy guides published for Pac-Man contain specific
patterns that the player can exploit to maximise the score
of the game. As pointed out by Mott [5], these patterns
are not only important in mastering Pac-Man but their mere
existence is one of the game’s weaknesses: “Lacking any
particularly inspiring AI, Pac-Man’s pursuers race around
the maze, following predictable paths, meaning players can
effectively beat the game through memory and timing rather
than inventive reactions.” In other words, the determinism of
the ghosts implies that there is a pure strategy that is optimal
for playing the game. Ms Pac-Man, released in 1982 and now
sporting a female main character, changed this by introducing
ghosts with non-deterministic behaviour, that require gamers
to improvise at times rather than follow strict and predictable
patterns: “It is important to note that the monsters are much
more intelligent in Ms. Pac-Man than in the original Pac-Man
game. [...] This means that you cannot always predict what
the monsters will do.” [3, p 4].

2http://www.gamasutra.com/view/feature/3938/the pacman dossier.php?
print=1
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Fig. 2. The four mazes encountered during gameplay in Ms Pac-Man: mazes
are encountered left to right, top to bottom.

The overall gameplay of Ms Pac-Man is very similar to that
of Pac-Man and the objective of the game remains the same.
However, apart from the new behaviour of the ghosts, Ms
Pac-Man also introduced four new mazes which are played in
rotation. These new mazes are shown in Figure 2. Additional
changes include:

• Clyde has been renamed to Sue.
• Bonus fruits now move along the maze randomly.
• Edible time of ghosts reduces as the game progresses but

periodically increases again.
Unlike Pac-Man (thanks to the bug in the original ROM), Ms
Pac-Man never ends and new high scores are still being posted.
As recently as 2006, a new high score was verified by Twin
Galaxies: 921, 360 points by Abdner Ashman.

C. Why these Games?

The remainder of this paper will show that a large number
of research projects have made use of Pac-Man, probably more
than any other video game. This begs the question: why Pac-
Man is such a useful tool in research? Undoubtedly, one of the
strongest arguments for Pac-Man was its immense popularity
upon release and the fact that the game remains popular even
30 years later: the game’s characters feature on the covers of
recently released books about arcade games, including “Arcade
Fever” [6] and “The Art of Video Games” [7], and even feature
in movies such as “Pixels” (Chris Columbus, 2015). Finally,
websites such as the World’s Biggest Pac-Man highlight how
active the Pac-Man playing community is to this day: the
website allows registered users to design mazes by hand using
a graphical editor and whenever Pac-Man enters a tunnel,
the game moves on to another maze. As of 2017, almost

250,000 mazes have been designed and 114 million games
have been played using them. This popularity not only implies
an immediate familiarity with this game across all age groups
(making it easier for readers to relate to the research), but also
validates the idea that the game is fun, entertaining and at the
right level of difficulty.

Furthermore, numerous implementations of the game are
available, many of which are open source. One of these
that has been used in numerous academic studies is NJam3.
NJam is a fully-featured interpretation of Pac-Man written in
C++ (open source). The game features single and multiplayer
modes, duel mode (players compete against each other to get
more points) and cooperative mode (where players attempt to
finish as many levels as possible). There are 3 ghosts (although
each type of ghost may feature in the game more than once):
Shaddy, Hunter and Assassin, each of which has its own
behaviour. The game itself is implemented as a 2-dimensional
grid, where walls, empty spaces and the game’s characters all
have the same size.

Pac-Man has several additional attributes that make it in-
teresting from an academic point of view (also see VII-E). In
particular, the game poses a variety of challenges. The mazes
may be represented using an undirected connected graph and
hence one may make use of the many tools of graph theory,
including path-finding. Furthermore, the game is real-time,
making it more challenging for computational methods to
perform well (allowing the measurement of things like reaction
times in human test subjects). Finally, the rules of the game
are relatively simple and Pac-Man may be controlled using
a simple four-way joystick. This makes the game suitable
for studies that include primates, for instance. The game is
visually appealing (important if human testing is involved)
and the 2-dimensional layout allows one to easily visualise
the computational logic that drives the game’s characters;
this is particularly useful in higher education settings (see
Section VII-E). Unlike almost all board games, the game’s
characters are heterogeneous and amenable to predator-prey
scenarios: techniques that work well for Pac-Man may not
work well for the ghosts and hence the game provides a wider
scope for research. Finally, the game is very expandable: it is
easy to envision extensions to the game such as the design of
new mazes, additional game characters or a modified set of
rules.

III. GAME COMPETITIONS

The University of Essex, UK, has been organising game
competitions centred around Ms Pac-Man for the past 10
years. The Ms Pac-Man Screen-Capture Competition asks
participants to develop software controllers to control the
actions of Ms Pac-Man for the original game using screen-
capture. The Ms Pac-Man vs Ghosts Competition provides
its own implementation of the game and competitors may
develop software controllers for Ms Pac-Man, or the four
ghosts, that interface directly with the game engine. Based
on the Ms Pac-Man vs Ghosts Competition, the more recent
Ms Pac-Man vs Ghost Team Competition includes partial

3http://njam.sourceforge.net/
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observability and allows for the ghosts to communicate with
one another. Such competitions are essential to provide a
common platform that academics may use to test, evaluate and
compare their techniques against their peers. As Section III-D
shows, prior to the competition, most studies made use of their
own implementation of the game, making direct comparisons
impossible. The reasons for this are manifold: although the
game has simple rules, not all details are well documented
and are sometimes difficult and time-consuming to implement.
Furthermore, some studies require certain functionality that
may not be available and/or difficult to implement on top of an
already existing architecture. The code made available by the
Ms Pac-Man vs Ghosts competition attempts to address these
issues, as it provides a wide range of built-in functionality.
The code is also easy to modify.

A. Ms Pac-Man Screen-Capture Competition

The Ms Pac-Man Screen-Capture Competition [8] ran from
2007 to 2011, with the last proper run in 2011 at the IEEE
Conference on Computational Intelligence and Games (CIG).

The final of each competition event coincided with a major
international conference in the field of computational intel-
ligence. The competition makes use of the original game,
either available as a Microsoft Windows application (Mi-
crosoft Revenge of Arcade version) or as a Java applet4, and
requires screen-capture to allow the algorithm to compute
the next move in real time (a rudimentary screen-capture
kit is provided). The screen-capture aspect is a significant
component of the controller’s architecture and past winners of
the competition almost always dedicated significant effort to
efficient feature detection that allowed the controller to make
good decisions.

The winner of the competition is the controller that achieves
the highest score across multiple runs: usually 10 runs are
executed prior to the conference and an additional three runs
are demonstrated live at the conference. An overview of past
competitions is shown in Table II. It is important to bear
in mind when comparing the scores, that although the game
is identical in all cases, the underlying hardware used to
execute the controllers differs. Furthermore, the performance
of a controller should not be judged without considering the
screen-capture mechanisms used.

Although the competition did not run formally for CIG
2012, Foderaro et al. [9] did demonstrate their entry and it per-
formed in line with the results described in their paper. Their
system used an internal model of the ghost decision-making
processes in order to achieve high performance, with a high
score of 44, 630 (improving on the CIG 2011 winning score
of 36, 280). A refined version was developed and described
in [10] which achieved a maximum score of 65, 200, with an
average score of 38, 172 (more details about this controller in
Section IV-A). Although this provided a clear improvement
compared to previous approaches, its average score still falls
a long way short of the human high score, indicating that
there may still be interesting research to be done on making a
super-human player of Ms Pac-Man in screen-capture mode.

4www.webpacman.com

B. Ms Pac-Man vs Ghosts Competition

The Ms Pac-Man vs Ghosts Competition [11] ran for four
iterations, having built on the success of the Ms Pac-Man
Screen-Capture Competition. It took place twice a year and
results were presented at major conferences in the field. The
competition differs from the screen-capture competition in two
important aspects: firstly, competitors interface directly with
the game (i.e., no screen-capture) and secondly, competitors
may create controllers for either (or both) Ms Pac-Man and
the ghosts.

The game provided to the competitions is written entirely
in Java, specifically for the competition. The original software
was written by Lucas [12] and was used in numerous papers.
This version came with three default ghosts teams showing
different behaviours (Random, Legacy and Pincer). It was later
extended by Samothrakis, Robles and Lucas [13] and modified
further by Rohlfshagen [11] for use in the competition. The
current version of the software bears little resemblance to
the original code and is continually improved in response to
comments by the competition’s participants. Care has been
taken to implement the game faithfully in most respects, but
it differs from the original game in several ways (and hence
is not directly comparable to the version used in the Screen-
Capture Competition). For instance, there are no bonus fruits,
the speed of all characters is constant unless the ghosts are
edible and the tunnels are shorter than in the original game.
The single most significant difference is the ghost control
algorithms, since these are now provided by the ghost-team
developers rather than being an intrinsic feature of the game.

All entries submitted compete with one another in a round-
robin tournament to establish the best controllers: Ms Pac-
Man controllers attempt to maximise the score of the game,
whilst the ghosts strive to minimise the score. There are no
restrictions regarding the techniques or algorithms used to
create the logic for either side, but controllers have only 40ms
per game step to compute a move. Each game lasts a maximum
of 16 levels and each level is limited to 3000 time steps
to avoid infinite games that do not progress. Whenever the
time limit of a level has been reached, the game moves on
to the next level, awarding half the points associated with
the remaining pills to Ms Pac-Man; this is to encourage
more aggressive behaviour of the ghosts, and avoid the ghosts
spoiling a game by grouping together and circling a few
remaining pills. Ghosts are not normally allowed to reverse,
but there is a small chance that a random reversal event takes
place that reverses all the ghosts’ movements.

A summary of results from the past four iterations of the
competition is shown in Table III. It is evident that the interest
in the competition has increased each time, with a significant
increase in the third iteration. Furthermore, an increasing
number of participants have started to develop controllers for
both Ms Pac-Man and the ghosts. This is an encouraging trend,
as the number of studies related to controllers for the ghosts
are far outnumbered by those related to Ms Pac-Man.
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TABLE II
SUMMARY OF RESULTS FROM THE MS PAC-MAN SCREEN-CAPTURE COMPETITION.

CEC’07 WCCI’08 CEC’09 CIG’09 CIG’10 CIG’11
Entries 5 12 5 4 8 5

Functional 3 11 4 3 7 5
Winner default Fitzgerald et al. Thawonmas et al. Thawonmas et al. Martin et al. Ikehata & Ito

Highest Score 3,810 15,970 13,059 30,010 21,250 36,280

TABLE III
SUMMARY OF RESULTS FROM THE MS PAC-MAN VS GHOSTS

COMPETITION.

CEC’11 CIG’11 CIG’12 WCCI’12
Competitors 13 22 44 84

Countries 9 10 13 25
Controllers 19 33 56 118

Default Controllers 3 4 2 4
Pac-Man Controller (only) 7 7 24 24

Ghost Controller (only) 3 8 8 16
Pac-Man & Ghost Controller 3 7 12 37

TABLE IV
SUMMARY OF RESULTS FROM THE MS PAC-MAN VS GHOST TEAM

COMPETITION IN CIG’16.

Entry Average Score Minimum Score Maximum Score
GiangCao 6348.85 1000 15940
dalhousie 5878.50 1140 13620

Starter Rule 2447.75 580 6730
Random 1629.85 250 5830

C. Ms Pac-Man vs Ghost Team Competition

Ms Pac-Man vs Ghost Team Competition [14] was run
for the first time at the 2016 IEEE CIG. Despite the re-
use of the Ms Pac-Man vs Ghosts Competition software, the
framework is very different because of the partial observability
implemented by Williams [14]. Both Ms Pac-Man and the
ghosts can only observe a first person view up to a limited
distance or a wall. A messenger system is added to the
game, which allows the ghosts to send default or personalised
messages to either individual ghosts or all ghosts at once.

Participants are invited to submit one controller for Ms Pac-
Man or four controllers for the ghosts (a controller for each
ghost). At each game step a 40ms time budget is allocated
for deciding either one move for Ms Pac-Man or four moves
for the ghosts (the four ghost controllers thus share the time
budget in a flexible way). All entries submitted for Ms Pac-
Man compete with all sample agents and entries submitted
for ghosts in a round-robin tournament. The final ranking in
CIG’16 is shown in Table IV. While only two entries were
submitted, this may be due to the more difficult nature of the
challenge (dealing with partial observability and messaging),
and also the fact the final version of the software toolkit
was only available two months before the deadline. The
competition series is ongoing at the time of writing and aims
to attract more entrants as the ways for dealing with partial
observability and cooperation become better understood, and
the software becomes more stable.

D. Research in Computational Intelligence

Computational Intelligence is unsurprisingly the most active
area of research centred around Pac-Man and has resulted

TABLE V
IMPLEMENTATION OF GAMES USED IN RESEARCH.

Implementation References
Original (Screen–Capture) [9], [10], [15], [16], [17], [18],

[19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35]

Public Variant [36], [37], [38], [39], [40], [41],
[42], [43]

Ms Pac-Man vs Ghosts engine [12], [44], [20], [45], [46], [47],
[13], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64],
[65], [66], [67]

Ms Pac-Man vs Ghost Team engine [14]
Own implementation [68], [69], [70], [71], [72], [73],

[74], [75], [76], [77], [78], [79],
[80], [81], [82], [83], [84], [85],
[86], [87], [88], [89], [90], [91],
[92]

in the most publications. Prior to the competitions described
above, papers were largely fragmented, with each using their
own, often much simplified version of the game. Following
the first Ms Pac-Man Screen-Capture Competition, numerous
papers emerged that made use of the original ROM via screen-
capture; authors often proposed their own screen-capture
mechanisms to improve the reliability of the process. More
recently controllers have been suggested that interface directly
with the game using the current Ms Pac-Man vs Ghosts game
engine (or its predecessor). This also allowed researchers to
start developing controllers for the ghosts in addition to Ms
Pac-Man. A summary of the variants of the game used in the
development of the controllers is shown in Table V.

The next two sections discuss peer-reviewed work in com-
putational intelligence related to (Ms) Pac-Man with sec-
tions IV and V covering Pac-Man controllers and Ghost
controllers respectively. We purposely do not mention any
scores reported in these papers as we believe this to be
misleading: scores often depend significantly on the screen-
capture method (if the original version of the game is used),
the implementation of the game and the underlying hardware
used for the experiments. The competitions provide a reliable
platform to compare the performance of different controllers
and these results may be accessed online. Table VI gives
an overview of techniques that have been used to develop
controllers for Pac-Man, Ms Pac-Man or the ghosts. Many
studies propose hybrid techniques or use multiple techniques
for different aspects of the controller, and references are listed
next to the technique that best describes it. The literature
review follows the same classification.
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Competitions [8], [11], [14] 3

AI / CI

Rule-based & Finite State Machines [71], [16], [15], [72], [18], [23], [24], [9], [52], [10], [65]

67

Tree Search & Monte Carlo [20], [25], [26], [74], [13], [29], [30], [49], [51], [59], [56], [61]
Evolutionary Algorithms [68], [69], [47], [45], [46], [48], [53], [50], [58], [57], [59], [60], [63]
Neural Networks [70], [38], [75]
Neuro-evolutionary [12], [36], [37], [44], [28], [31], [32], [33], [77], [62], [67], [64], [43]
Reinforcement Learning [73], [21], [19], [22], [78], [41], [42], [34], [82], [92], [35]
Other [27], [17], [54], [79], [90], [91]

Game psychology [93], [94], [95], [96], [97], [98], [99] 7
Psychology [100], [101], [81] 3
Robotics [102], [103] 2
Sociology [104], [105] 2
Brain Computer Interfaces [83], [84], [85] 3
Biology and Animals [106] 1
Education [102], [107], [103], [80] 4
Other [108], [39], [109], [40] 4

TABLE VI
SUMMARY OF PEER-REVIEWED RESEARCH RELATING TO PAC-MAN, CATEGORISED BY DISCIPLINE. RIGHT-MOST COLUMN INDICATES NUMBER OF

PUBLICATIONS IN EACH CATEGORY.

IV. PAC-MAN CONTROLLERS

Not surprisingly, most of the work performed in compu-
tational intelligence has been devoted to finding better con-
trollers for (Ms) Pac-Man. This includes multiple approaches,
from rule based methods to tree search or learning, as well as
several nature-inspired algorithms. This section summarises
these works and categorises them according to the nature of
the controllers implemented.

A. Rule-Based

This section describes works in Pac-Man controllers which
have as a main component a set of if-then clauses, either
in a hard-coded way or in a more structured manner, like
Finite State Machines or Behaviour Trees, including fuzzy
systems. In some cases, either the parameters of these rules
or the structures themselves can be evolved. In general, these
controllers, albeit effective, require an important amount of
domain knowledge to code the rules, transitions, conditions
and actions.

In their paper, Fitzgerald and Congdon [15] detail their
controller, RAMP (a Rule-based Agent for Ms Pac-Man),
which won the 2008 WCCI Ms Pac-Man Screen-Capture
competition. It is a rule-based approach and, like many other
competitors of the Screen-Capture competition, the authors
optimised and refined the default screen-capture mechanism
provided. The maze is discretised into a grid of 8 × 8 pixel
squares and the locations of all pills/power pills are pre-
computed and stored as a connected graph. The nodes of
the connected graph correspond to all turning points in the
original maze (i.e., junctions and corners). Additional (fake)
intersections are added on either side of the power pills to
allow quick reversals at these points. Decisions are made only
at junctions and a rule-independent mechanism is used to
reverse if a ghost is present. The decision as to which path
to follow is based on higher-level conditions and actions. The
set of conditions include, amongst many others, the number
of ghosts that are “close” or “very close” to Ms Pac-Man,
the number of remaining power pills and whether ghosts are
edible. The conditions also distinguish between the mazes and

level and the progression throughout the level to apply the
most suitable set of rules. The set of actions is composed of
Graze, Eat, Evade and Run and numerous parameters are used
to construct the full set of rules. Finally, conflict resolution
is applied in case multiple rules apply simultaneously. The
authors compare two sets of rules and also discuss the use of
evolutionary computation to choose sub-sets of rules and to
fine-tune the numerous parameters of the rule-based controller,
similar to [71].

Handa and Isozaki [16] employ an evolutionary fuzzy
system to play Ms Pac-Man (via screen-capture): a set of
fuzzy rules is designed by hand and the parameters of the
rules are subsequently evolved using a (1+1)-ES. The screen
is captured and the following information is extracted: distance
to all ghosts (edible and non-edible), position of the nearest
pill and distance to the nearest junction from Ms Pac-Man and
the ghosts. Dijkstra’s algorithm is used to pre-compute these
distances using a coarse graph of the maze. The fuzzy rules
are defined as Avoidance, Chase and Go-Through. If none of
the rules are activated, the default Eat is used instead (Eat is
not a fuzzy rule but simply goes for the nearest pill). The rule
for avoidance, for instance, is ‘IF a ghost IS close THEN Ms
Pac-Man goes in opposite direction’. Each rule is applied to
all four ghosts to determine an action for Ms Pac-Man. Each
rule has a set of parameters (such as minimum and maximum
distance to determine membership) that are evolved using a
(1 + 1)-ES, using as a fitness measure the length of time Ms
Pac-Man survives. The authors found that it is possible to
improve performance of the fuzzy set using artificial evolution,
but results are very noisy as the number of games played per
controller had to be kept low (10 games) due to reasons of
efficiency, causing a high variance of the results.

Thompson et al. [72] analyse the impact of looking ahead
in Pac-Man and compare their approach to simpler con-
trollers based on greedy and random decisions. The game
used by the authors is based on Pac-Man but has some
important differences, most notably non-deterministic ghosts
(other differences relate to the lack of bonus fruits and speed
of the ghosts, amongst others). The controller proposed is
constructed from a knowledge base and a graph model of
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the maze. The knowledge base is a series of rules and the
overall decision making is facilitated by the use of a Finite
State Machine (FSM). The FSM has three states: Normal,
Ghost is Close and Energised. Three different strategies are
considered: Random, Greedy-Random and Greedy-Lookahead.
The former two simply make a move based on the current
state of the maze. The latter performs a search in certain
situations and subsequently employs A? to find the paths to
the targets identified during the search. Ghost avoidance is
dealt with explicitly in the FSM. The experiments compared
all three controllers as well as a range of human players and
found that the lookahead player, although not quite as good
as the best human player, significantly outperforms the other
two controllers.

Thawonmas and Matsumoto [18] describe their Ms Pac-Man
controller, ICE Pambush 2, which won the 2009 iteration of the
Screen-Capture competition (the authors also wrote reports on
subsequent versions of the algorithm for the years 2009-2011).
The authors attribute the success of their controller to two
aspects: advanced image processing and an effective decision
making system (rule-based). The former improves on the
standard toolkit supplied with the Screen-Capture competition
in terms of efficiency (non-moving objects are extracted only
once at the beginning) and accuracy (a novel representation
of the maze is proposed). The controller’s decision making
is determined by a set of seven hand-crafted rules that make
use of two variants of A? to calculate distances. The rules are
applied in order of decreasing priority. The two variants of A?

used differ in the way they calculate the costs of the paths and
several cost functions are defined to maximise the likelihood
of Ms Pac-Man’s survival.

Thawonmas and Ashida [24] continue their work with
another entry to the Ms Pac-Man Screen-Capture competition,
ICE Pambush 3, which is based on their earlier effort, ICE
Pambush 2 [18]. The controller architecture appears identical
to [18] but the authors compare different strategies to evolve
the controller’s many parameters, including parameters used
for distance calculations and for calculating costs. The authors
found the most efficient approach is to evolve the distance
parameters first and then the cost parameter, to achieve an
improvement in score by 17%. The authors also address
some interesting issues, including whether the same set of
parameters is to be used for all mazes/levels (speed of ghosts
changes as the game progresses) and whether all parameters
should be evolved simultaneously. The EA used is a simple
Evolutionary Strategy with mutation only. The authors found
that not only did the optimised parameters improve playing
strength but they also had an impact on the style of play.

The work by Bell et al. [23] describes their entry to the 2010
CIG Ms Pac-Man Screen-Capture competition. The controller
is a rule-based system using Dijkstra’s algorithm for shortest
path calculations, a benefit-influenced tree search to find safe
paths and a novel ghost direction detection mechanism. The
algorithm first records a screenshot of the game and updates its
internal model of the game state. The maze is represented as a
graph with nodes at junctions and corners of the original maze.
Once the internal state is updated, the controller determines the
best rule to apply and then determines the best path (and hence

direction) to choose. The authors employ “ghost iris detection”
to determine the direction of each ghost. This approach is
found to be more efficient than the more intuitive approach of
comparing successive frames, and may provide slightly more
up-to-date information when a ghost is turning at a junction
(the idea being that the eyes point in the new direction before
any movement has occurred). Furthermore, the authors address
the issue of when a ghost enters a tunnel as it is momentarily
not visible on the screen. This can pose problems for screen-
capture kits. The authors overcome this by memorising the
positions of all ghosts for short periods of time. The core of the
controller itself is based on six hand-crafted rules. One of the
rules makes use of the benefit-influenced tree search algorithm
that computes a safe path for Ms Pac-Man to take: starting
from the current position of Ms Pac-Man, the tree searches all
possible paths, assigning a cost to each path depending on the
distance and direction of the ghosts.

Foderaro et al. [9] propose a decomposition of the navigable
parts of the level in cells, to be then represented in a tree
based on the cells’ connectivities (and referred to by the
authors as a connectivity tree). Additionally, the screen-capture
is analysed by extracting the colours of each pixel, in order
to identify certain elements of the game (fruits, pills, ghosts,
etc). As with Bell et al. [23], the eyes of the ghosts are
analysed to determine their direction of travel. Once all these
features have been assigned to nodes in the tree, a function
determines the trade-off between the benefit predicted and the
risk of being captured, and the tree is searched to decide the
next action to play. For specific scenarios where the tracking
of the ghosts’ eyes is not reliable (i.e. when a power pill
has just been eaten), a probability model is built in order
to determine the most probable next location of the ghost.
The authors continue their work [10] and construct a more
complete mathematical model to better predict future game
states and the ghosts’ decisions. This also takes into account
their different personalities. For instance, while Inky, Pinky
and Sue have the same speed, Blinky’s speed depends on
the number of pills in the maze. The authors show that
their predictive model obtains an accuracy of 94.6% when
predicting future ghost paths. We note that the tree search
aspect of this work shares some similarity with the prior tree
search approach of Robles and Lucas (see subsection IV-B),
but the Foderaro approach used a better screen-capture module
and accurate models of the ghosts’ decision making behavior.

B. Tree Search & Monte Carlo

This section summarises the works performed on Pac-
Man based on tree search techniques (from One-Step Look-
Ahead to Monte Carlo Tree Search) and/or have Monte Carlo
simulations used in the controller. These methods, especially
MCTS, have shown exceptional performance, although they
require the simulator to have a forward model to be applicable.
Additionally, when MCTS is applied to Pac-Man, a limit needs
to be applied to the length of rollout (unlike games such as Go
where the rollouts proceed to the end of the game, at which
point the true value is known). Since the rollouts usually stop
before the end of the game a heuristic is needed to score
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the rollout, and also to scale it into a range compatible with
other search parameters, such as the exploration factor used in
MCTS. The default heuristic is to use the current game score,
but there are ways to improve on this.

Robles and Lucas [20] employ traditional tree search, lim-
ited in depth to 40 moves, with hand-coded heuristics, to de-
velop a controller for Ms Pac-Man. The controller is evaluated
both on the original game, via screen-capture, and the authors’
own implementation of the game (the game implemented is
based on [12] but has been extended significantly along the
lines of [13]). The authors find their controller to perform
approximately 3 times better on their own implementation of
the game (where the controller can interface directly with
the game but the game also differs in other aspects) than
the original game played via screen-capture. The controller
creates a new tree of all possible paths at every time step of
the game. The depth of the tree is limited to 40 moves and
ignores both the direction and the state (i.e., edible or inedible)
of the ghosts. Paths are subsequently evaluated by their utility:
a safe path contains no ghosts, whereas unsafe paths contain
a ghost (direction of ghost is ignored). The authors consider
2 situations: the existence of multiple safe paths and the lack
of safe paths. Safe paths are selected according to hand-coded
rules that take into account the number of pills and power
pills on the path. If no safe path exists, the controller chooses
the path where the ghost is furthest from Ms Pac-Man. Robles
and Lucas found that the most elaborate path selection worked
best, taking into account pills, power pills and position within
the maze at the end of the path.

Samothrakis et al. [13] were among the first to develop a
Monte Carlo Tree Search (MCTS) controller for Ms Pac-Man;
they used a Max-n approach to model the game tree. The
authors make use of their own implementation of the game,
extended from [12]. The authors discuss several issues that
become apparent when applying tree search to Ms Pac-Man.
They treat the game as turn-taking and depth-limit the tree.
Furthermore, the movement of Ms Pac-Man is restricted (no
reversals) to reduce the size of the tree and to explore the
search space more efficiently (i.e., the movement of Ms Pac-
Man is similar to the ghosts; it is still possible for Ms Pac-Man
to reverse as all directions are available from the root, just not
the remainder of the tree). Leaf nodes in the tree may either
correspond to cases where Ms Pac-Man lost a life or those
where the depth limit had been reached. To identify favourable
leaf nodes (from the perspective of Ms Pac-Man), a binary
predicate is used to label the game preferred node (the value
of one node is set to 1, all others set to 0). The target node is
identified by the distance of Ms Pac-Man to the nearest edible
ghost, pill or power pill. Ms Pac-Man subsequently receives a
reward depending on the outcome (e.g., completing the level
or dying). The ghosts receive a reward inversely proportional
to their distance to Ms Pac-Man or 0 if Ms Pac-Man clears
the maze. The authors test the performance of their algorithm
in several ways, comparing tree-variants UCB1 and UCB-
tuned [110], different tree depths as well as different time
limits. Finally, the authors also test their controller assuming
the opponent model is known which subsequently led to the
highest overall scores.

Around the same time as Samothrakis et al. [13], Ikehata
and Ito [25], [29] also used an MCTS approach for their
Ms Pac-Man controller, with heuristics added to detect and
avoid pincer moves. Pincer moves are moves that trap Ms
Pac-Man by approaching her from multiple junctions. To do
this, the authors define the concept of a C-path which is a
path between two junctions (i.e., a path without any branching
points). Similar to other studies, Ikehata and Ito model the
maze as a graph with nodes at points that require a change
in direction. Ms Pac-Man subsequently moves from node to
node while the movement of the ghosts is chosen in a non-
deterministic manner. The depth of the tree is limited given
the real-time nature of the game. A set of rules is used to
define a simplified model of the game used for the Monte
Carlo (MC) simulations. The rules are chosen to approximate
the real game dynamics in a computationally efficient manner
while preserving the essence of the game. Ms Pac-Man and
the ghosts move in a non-deterministic fashion according to a
set of rules (behavioural policies). Simulations are terminated
when the level is cleared and Ms Pac-Man dies when a certain
depth has been reached. Each non-terminal state is assessed by
a reward function that takes the score of the game, as well as
the loss of life, into account; the back propagation of values
is determined by the survival probability of the child node
only. The authors compare their approach against the then
state-of-the-art, ICE-Pambush 3 [24]. The proposed system
outperforms ICE-Pambush 3 (both in terms of high score and
maximum number of levels), but the authors highlight that
their controller is somewhat less reliable. One shortcoming
is the controller’s inability to clear mazes, focusing instead
solely on survival. The authors subsequently improve their
controller to almost double the high score achieved: pills in
dangerous places, as identified by a Danger Level Map (similar
to Influence Maps [17]), are consumed first, leaving pills in
less dangerous areas for the end.

In a similar fashion to [29], Tong and Sung [26] propose
a ghost avoidance module based on MC simulations (but
not MCTS) to allow their controller to evade ghosts more
efficiently. The authors’ algorithm is based on [16]. The
internal game state is represented as a graph, with nodes
at junctions. Arbitrary points in the maze are mapped onto
their nearest corresponding junction node, from which a path
may be obtained, using the predefined distances. The screen-
capture is mapped onto a 28×30 square grid (each cell being
8 × 8 pixels); cells can be passable or impassable. A bit-
board representation is used for reasons of efficiency. Movable
objects are found using a pixel colour counting method (based
on [18]). The controller’s logic itself is based on a multi-
modular framework where each module corresponds to a
behaviour. These behaviours include capture mode (chasing
edible ghosts), ambush mode (wait near power pill, then eat
pill and enter capture mode) and the default behaviour pill
mode (tries to clear a level as quickly as possible). These
behaviours are executed if Ms Pac-Man is in a safe situation
(this is determined using the pre-computed distances). If the
situation is dangerous, MC simulations are used. The look-
ahead is used to estimate the survival probabilities of Ms
Pac-Man. To make the MC simulations more efficient, the
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authors impose several simplifications and restrictions on the
gameplay that is possible. Most notably, the ghosts do not
perform randomly but a basic probabilistic model is used to
approximate the ghosts’ real behaviour. Given the real-time
element of the game, the authors do not simulate until the
end of the game (or level) but only until Ms Pac-Man dies or
has survived after visiting a pre-defined number of vertices.
The state of Ms Pac-Man (dead or alive) is subsequently back-
propagated. The authors found that the controller with the MC
module almost doubled the score of the controller with a ghost
avoidance module that is entirely greedy.

This concept is extended to employ MC for an evaluation
of the entire endgame: Tong et al. [30] consider a hybrid
approach where an existing controller is enhanced with an
endgame module, based on Monte Carlo (MC) simulations;
this work extends the authors’ previous efforts (see [26]). The
authors specifically consider the scenario of an endgame which
entails eating as many of the remaining pills as possible (and
thus ignoring many of the other aspects of the game such as
eating ghosts). An endgame state has been reached when the
number of remaining pills falls below a pre-defined threshold.
The endgame module consists of two major components: path
generation and path testing. The first module finds all the paths
that connect two locations in the maze (typically the location
of Ms Pac-Man and the location of a remaining pill), while the
second module evaluates the safety of each path. The latter is
done using MC simulations. Using a similar approach to [26],
a path is deemed safe if Ms Pac-Man reaches the destination
without being eaten. This data is accumulated into a survival
rate for each path and if none of the paths is deemed safe,
Ms Pac-Man attempts to maximise the distance to the nearest
ghost.

Pepels et al. [51], [61] present another MCTS controller
which managed second place at the 2012 IEEE World
Congress on Computational Intelligence (WCCI) Pac-Man vs
Ghost Team Competition, and won the 2012 IEEE CIG edi-
tion. The controller uses variable depth in the search tree: the
controller builds a tree search from the current location where
nodes correspond to junctions where Ms Pac-Man is able to
change direction. As these paths are of different lengths, not
all leaves of the tree will have the same depth. In particular,
leaves will only be expanded when the total distance from the
initial position is less than a certain amount. Another attribute
of the controller is the use of three different strategies for the
MC simulations: pills, ghosts and survival. Switching from
one strategy to the other is determined by certain thresholds
that are checked during the MCTS simulations. The authors
also implemented a tree re-use technique with value decay: the
search tree is kept from one step to the next, but the values in
the nodes are multiplied by a decay factor to prevent them from
becoming outdated. Additionally, if the game state changes too
much (Pac-Man dies, a new maze starts, a power pill is eaten
or a global reverse event occurs), the tree is discarded entirely.
Finally, the authors also include long-term rewards in the score
function, providing a rapid increase in the reward when eating
entire blocks of pills or an edible ghost is possible.

Finally, Silver [74] uses a partially observable version of
Pac-Man, called Poc-Man, to evaluate MC planning in large,

partially observable Markov decision processes (POMDPs).
In particular, Silver extends MCTS to POMDPs to yield
Partially Observable Monte Carlo Planning (POMCP) and the
game itself functions as a test-bed. The game was developed
specifically for this purpose, and features pills, power-pills
and four ghosts as usual (albeit with different layouts). Poc-
Man can, however, only observe parts of the maze at any
moment in time, depending on its senses of sight, hearing,
touch and smell (10 bits of information): 4 bits are provided
for whether a particular ghost is visible or not, 1 bit for
whether a ghost can be heard, 1 bit for whether food can
be smelled and 4 bits for feeling walls in any of the four
possible directions. Silver uses this game, in addition to some
others, to test the applicability of MC simulations for online
planning in the form of a new algorithm: MC simulations
are used to break the curse of dimensionality (as experienced
with approaches such as value iteration) and only a black-box
simulator is required to obtain information about the states.
Silver compares his POMCP algorithms on Poc-Man, both
with and without preferred actions. Preferred actions are those
better suited to the current situation, as determined by domain-
specific knowledge. The algorithm performs very well for
this domain given the severe limits on what the agent can
observe, achieving good scores after only a few seconds of
online computation. We will return to the concept of partially
observable Pac-Man in section III.

C. Evolutionary Algorithms

This subsection explores the work on Evolutionary Algo-
rithms for creating Pac-Man agents. This includes mainly
Genetic Programming (which evolves tree structures), Gram-
matical Evolution (where individuals in the population are
encoded as an array of integers and interpreted as production
rules in a context-free generative grammar) and also some
hybridisations of these (note that Neuro-Evolution approaches
are described in Section IV-E). The results of these methods
are promising. Although to a lesser extent than rule based
systems, they still require an important amount of domain
knowledge, but without the dependency of a forward model.
This is an important factor that differentiates them from tree-
based search methods: learning is typically done offline, by
repetitions, with a more limited online learning while in play.

The work by Koza [68] is the earliest research on applying
evolutionary methods to Pac-Man: Koza uses his own imple-
mentation of the game which replicates the first level (maze) of
the original game but uses different scores for the game objects
and all ghosts act the same (strictly pursuing Pac-Man 80%
of the time, otherwise behaving randomly). The author uses
a set of pre-defined rules and models task-prioritisation using
genetic programming (GP). In particular, Koza makes use of
15 functions, including 13 primitives and 2 conditionals. This
leads to outputs such as “move towards nearest pill”. This work
was later extended by Rosca [69] to evaluate further artefacts
of GP.

Alhejali and Lucas [47], using the simulator from [12]
with all four mazes, evolve a variety of reactive Ms Pac-Man
controllers using GP. In their study, the authors consider three
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versions of the game: single level, four levels and unlimited
levels. In all cases, Ms Pac-Man has a single life only. The
function set used is based on [68] but is significantly modified
and extended. It was divided into three groups: functions, data-
terminals and action-terminals. Functions include IsEdible,
IsInDanger and IsToEnegerizerSafe. Most of the data terminals
return the current distance of an artefact from Ms Pac-Man
(using shortest path). Action terminals, on the other hand,
choose a move that will place Ms Pac-Man closer to the
desired target. Examples include ToEnergizer, ToEdibleGhost
and ToSafety, a hand-coded terminal to allow Ms Pac-Man
to escape dangerous situations. The controllers were evolved
using a Java framework for GP called Simple GP (written by
Lucas) and were compared against a hand-coded controller.
The fitness was the average score over 5 games. Individuals in
the final population are evaluated over 100 games to ensure the
best controller is chosen. The authors found that it is possible
to evolve a robust controller if the levels are unlimited; in the
other cases, GP failed to find controllers that were able to clear
the mazes.

In contrast to these GP methods that use high-level action
terminals, Brandstetter and Ahmadi [50] use GP to assign a
utility to each legal action from a given state. They use 13
information retrieval terminals, including the distance to the
next pill, the amount of non-edible ghosts, etc. Then the best
rated action is performed. After varying both the population
size and the number of generations, the authors find that
a moderate number of individuals is enough to lead to the
convergence to a fairly good fitness value, which is the average
score over the 10 game tournaments during the selection.

Alhejali and Lucas later extend their work in [48] where
they analyse the impact of a method called Training Camps to
improve the performance of their evolved GP controllers. The
authors weigh the change in performance against the additional
computational cost of using Training Camps and conclude
that they improve the controller’s performance, albeit at the
cost of manually creating these camps in the first place. A
Training Camp is essentially a (hand-crafted or automatically
generated) scenario that corresponds to a specific situation in
the game (i.e., the game is divided into several sub-tasks).
Using these to evaluate a controller’s fitness addresses the
issue of having to average over multiple complete games to
account for the stochasticity of the game itself. The function
set used is a revised set used by the same authors in a
previous study [47]. The Training Camps are designed based
on the observation that an effective Ms Pac-Man controller
needs to be able to clear pills effectively, evade non-edible
ghosts and eat edible ghosts. Numerous Training Camps were
subsequently designed for each of these scenarios. Agents
were trained on the scenarios and upon achieving a satisfactory
performance, they were used as action terminals to create an
overall agent for the game. The authors found that the new
approach produced higher scores on average and also higher
maximal scores.

More recently, Alhejali and Lucas [59] enhance an MCTS
driven controller by replacing the random rollout policy used
in the simulations by the policy evolved by GP. The evolved
GP policy controls the rollouts by taking in to account the

current game state and achieves an 18% improvement on the
average score over 100 games simulated using the Ms Pac-
Man Screen-Capture Competition engine.

Galvan-Lopez et al. [45] use Grammatical Evolution (GE) to
evolve a controller for Ms Pac-Man (using the implementation
by Lucas [12]) that consists of multiple rules in the form
“if Condition then perform Action”; conditions, variables and
actions are defined a priori. The authors compared the evolved
controller to 3 other controllers against a total of four ghost
teams. In GE each genome is an integer array that is mapped
onto a phenotype via a user-defined grammar in Backus-
Naur Form. This allows the authors to hand-code domain-
specific high-level functions and combine them in arbitrary
ways using GE. The actions considered include NearestPill()
and AvoidNearestGhost(). These actions also make use of
numerous variables that are evolved. The authors found that
the evolved controller differed significantly from the hand-
coded one. Also, the controller performed better than the
other 3 controllers considered that came with the software
kit (random, random non-reverse and simple pill eater). The
ghosts used for the experiment are those distributed with the
code. The authors conclude that the improved performance
of the evolved controller over the hand-coded one (although
differences are small) is because the evolved controller takes
more risks by heading for the power pill and subsequently
eating the ghosts. This work was later extended by Galvan-
Lopez et al. [46] to use position-independent grammar map-
ping, which was demonstrated to produce a higher proportion
of valid individuals than the standard (previous) method.

Inspired by natural processes, Cardona et al. [57] use
competitive co-evolution to co-evolve Pac-Man and Ghosts
controllers. The co-evolved Pac-Man controller implements a
MiniMax policy based on a weighted sum of distance or game
values as its utility function when the ghost is not edible and
nearby, otherwise, the movement of the ghost is assumed to
be constant (towards or away from the Pac-Man).

The design of the Ghost team controller is similar. The
weights in the utility function were evolved using an evolu-
tionary strategy. A set of static controllers is used for Pac-Man
and the Ghost teams both in single-evolved and co-evolved
controllers during testing and validation. Four different co-
evolution variants are compared to the single-evolved con-
trollers, distinguished by the evaluation and selection at each
generation, and fitness function. The best performance was
obtained when evaluating against the top 3 controllers from
each competing population rather than just the single best.

D. Artificial Neural Networks

Several Pac-Man controllers have been implemented with
Artificial Neural Networks (ANN). ANNs are computational
abstractions of brains and work as universal function approx-
imators. These can be configured as policy networks that
choose actions directly given the current game state, or as
value networks which rate the value of each state after taking
each possible action. Most of this work has used hand-coded
features, but the ground-breaking work of Mnih et al [34]
showed it was possible to learn directly from the screen
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capture (pixel map), and recently this approach has also been
applied to Pac-Man5, more of which is discussed later.

Bonet and Stauffer [70] use player-centred perceptrons to
learn optimal playing strategies for both Pac-Man and the
ghosts. The perceptrons are trained over time using reinforce-
ments based on the outcomes of the games played. To simplify
the task of learning, the authors use their own (flexible)
implementation of the game and consider mazes of variable
difficulty and complexity, starting with very simple cases,
increasing the complexity once basic behaviours have been
learned. The world is represented by a two-dimensional array
of features. To enable more efficient learning, each type of
feature has its own matrix, leading to a three-dimensional
representation where each layer corresponds to the presence
or absence of a particular feature. The characters have access
to a 10 × 10 area that is centred on them to detect the
features of the game. A separate perceptron is used for each
of the four possible directions to determine the move to
make. Each perceptron is updated based on a reinforcement
learning scheme: the reward associated with each move is the
immediate score of the game that results from the move (plus
a percentage of the value of the previous move). The authors
consider 10 mazes of increasing complexity to learn essential
behaviours first, followed by more sophisticated ones.

Yuan et al. [75] are interested in recreating the ability of
novice human players to quickly learn basic skills in playing
Pac-Man. They analyse the performance of 10 human test-
subjects unfamiliar with the game over 20 games, show-
ing how performance increases monotonically. Computational
techniques on the other hand usually require many more games
before performance improves, making it a time laborious
process. The authors argue that one of the reasons for this
is that usually (at that time, when applying neural networks
to Pac-Man) only the score at the end of the game is used
as feedback, which provides little guidance to the in-game
decision making process.

In order to counter this the authors show how the concept of
’rationality’ can be used to boost learning speed, and they how
the neural networks can learn over a small number of games
when in-game training signals are provided based on eating
fruit and not attempting to move into walls. However, their
version of the game was simplified to the extent of making
it non-challenging, since it involved only one ghost and no
power-pills.

E. Neuro-Evolutionary Approaches

This particular approach, which hybridises evolutionary
algorithms and neural networks, has become a popular way
to develop controllers for game agents. Evolution can be used
to evolve the weights, topologies and reward functions of the
artificial neural networks, and literature shows that it can be
further hybridised with other techniques.

Lucas [12] was the first study to consider evolving artificial
neural networks (ANNs) to play Ms Pac-Man. Lucas used a

5Ms Pac-Man was included by Mnih et al in the set of Atari 2600 games,
but their method did not perform well compared with the best methods covered
in this survey.

multi-layer perceptron (MLP) with one hidden layer applied
to his own implementation of the game. This implementation
underwent further development to form the basis of many
future experiments and competitions such as [48] [20] [11].
Internally, the game is represented as a graph and shortest
path distances are pre-computed. The ghosts were modelled
to be aggressive and were not allowed to reverse apart from
global reversal events that would trigger with small probability
(and were beyond the influence of either controller). Several
features were identified and used as input to the MLP. These
include, amongst others: distance to edible/non-edible ghosts,
current position and nearest pill/power-pill. The evolutionary
algorithm used is a (N + N) evolutionary strategy where
N ∈ {1, 10}; this was used to evolve the weights of the MLP.
The initial weights were drawn from a Gaussian distribution
and different approaches to mutating these weights were
considered. The move to be played was the one with the
corresponding maximum value. The experiments compared the
evolved MLP with a single-layer perceptron and a hand-crafted
controller, showing best results with the evolved MLP.

The effect of noise was also studied, and it was shown
that making the game deterministic by fixing the random seed
(i.e. like the original Pac-Man as opposed to the original Ms
Pac-Man) made it much easier to evolve high performance
controllers, though they would only perform well on the
deterministic game. This also suggests there may be interesting
research in testing the robustness of approaches such as Deep
Q Networks that have shown such impressive results on
learning to play Atari 2600 games [34], since these games
are largely deterministic.

In [44], Burrow and Lucas compare the differences in
performance between temporal difference learning (TDL) and
evolved neural networks to play Ms Pac-Man, using the
same simulator as Lucas [12]. The authors find that tem-
poral difference learning works best with a tabular function
approximator and that evolved MLPs significantly outperform
TDL. The authors’ aim is not to create a competitive controller
but to analyse different learning techniques. Using their own
implementation of the game, the controller makes use of a state
value function (by looking ahead) to choose a move (look-
aheads are simplified as the positions of the ghosts and the
states of the pills are not updated). Two features are extracted
from the game state: the relative distance to the nearest ‘escape
node’ (a node where ghosts are not approaching from all
possible directions) and the distance to the nearest pill. A
function approximator is used to represent the state value
function: a multi-layer interpolated table [111] and an MLP are
considered. The MLP has (2, 6, 1) nodes. The learning is done
via one of two methods: TD(0) (one of the simplest forms of
temporal difference learning) and evolution strategies. For the
latter, a simple mutation-only (15 + 15)-ES is used.

Gallagher and Ledwich [36] make use of neuro-evolution
to determine whether a controller may be found that can play
Pac-Man to a reasonable standard using as input the “raw”
data of the screen. In other words, the input to the neural
network is not a set of (hand-crafted) features but instead the
screen shot of the game itself. This work may be seen as a
forerunner of the current work on using Deep Convolutional
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Neural Networks [34] to play directly from screen input.
The neural network used is a multilayer perceptron and it is
evolved in response to the performance achieved in the game.
The size of the hidden layer was determined a priori and a
(µ + λ)-EA was used to evolve the weights. To simplify the
game, the authors often only considered a single ghost, also
removing power pills and bonus fruits. The neural network has
4 outputs (one for each direction) with a (logistic) sigmoidal
activation function. The game is divided into a grid of 31×28
squares. The network takes as input a window centred on
the current position of Pac-Man with sizes considered 5 × 5,
7 × 7 and 9 × 9. The information (i.e., presence of walls,
pills and ghosts) is translated into a numerical representation.
To overcome the limitations of the small input considered,
global information pertaining to the number of remaining pills
is also considered, leading to a total of 3w2 +4 inputs where
w is the window width/height. The experiments addressed
different ghost behaviours as well as different topologies, and
the authors found that it is possible to use raw data as input,
although none of the controllers managed to clear the maze.

Oh and Cho [28] propose a hybrid controller that combines
hand-crafted rules based on Dijkstra’s algorithm with evolved
artificial neural networks (based on NEAT; see [112]): the
agent attempts to follow the rules if possible and if a safe
route cannot be found, an evolved neural network is used
instead. The authors use two sets of rules. First, if a ghost is
near, Ms Pac-Man immediately tries to move in the opposite
direction. The second set of rules is based on paths obtained
using Dijkstra’s algorithm which, in turn, makes use of an
abstract state representation: the maze is modelled as a grid
of 28× 31 nodes. The cost of each path equals its perceived
danger, as measured by the proximity of non-edible ghosts
as well as the presence of items such as pills and edible
ghosts. The neural network is based on the NEAT method
and has 20 input and 4 output nodes. The inputs are based
on the locations of Ms Pac-Man, the ghosts, the pills and
the power pills and also the direction of Ms Pac-Man. The
fitness of an evolved network is equivalent to the game’s score.
The authors compare all components in isolation (rules only,
neural network only and hybrid) and conclude that the hybrid
approach offers the best performance as it combines expert
domain knowledge with a more costly yet also more flexible
autonomous technique. An evolved neural network by itself is
considered insufficient to cover the wide variety of scenarios
Ms Pac-Man may encounter throughout the game.

Tan et al. [31], [32] also investigate the hybridisation
of nature inspired computational techniques by combining
evolutionary algorithms with artificial neural networks: the
authors make use of evolution strategies to evolve the weights
and biases of a feed-forward neural network to automatically
generate controllers to play Ms Pac-Man. The authors evolve
a 2-layer feed-forward neural network using a 1 + 1-EA and
compare its performance against a neural network found by
random search as well as a random controller (in [32] only).
The fitness of each ANN is determined by the average score
over a number of games. The authors find that the former
outperforms the latter.

More recently, Schrum and Miikkulainen [62] approach the

problem from a Multi-Modal perspective: the ghosts can be
edible, a threat or a mix in-between (when some are edible
but others have been re-spawned already). In their technique,
Modular Multiobjective NEAT (MM-NEAT), the authors use
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) as
a Multiobjective optimisation technique to evolve Artificial
Modular Neural Networks. They also employ operators that
could add new modules. Two objectives are taken into account
for NSGA-II: a pill score (number of pills eaten) and a ghost
score (ghosts eaten). Experiments are run with one, two and
three modules, and results outperform previous work with
nature inspired algorithms on this domain.

In follow up work [64], the authors deepen their analysis by
employing a variable number of modules and comparing dif-
ferent mutation operators. Additionally, the authors distinguish
between split sensors (those that assess both the distance and
the status - edible or threat - of the ghosts) and conflicting
sensors (where the edible versus threat status is ignored) in
order to get a more general and evolvable approach. Results
show that networks with conflicting sensors are actually able to
perform well in both situations, and evolution was able to find
luring behaviours to maximise score when capturing ghosts
after eating a power pill. Their work suggests that modular
approaches are able to achieve a high performance of play in
this game.

Inspired by [113], Miranda et al. [43] imitate a human-
like Pac-Man agent using neuro-evolution (NE). To reduce
the search space, the game state is shrunk by considering only
a window of 7 × 7 tiles. The authors focus mostly on the
design of the fitness function. They compare an ANN (us-
ing back-propagation) trained on a particular human player’s
movements to NE with a fitness based on the same human
player’s movements, and a similar system augmented with
high-level game features such as the final score. The two NE
approaches use a Genetic Algorithm (GA) to evolve the ANNs.
The authors suggest that there is still room for improvement,
for instance considering more information from the game by
using a larger window, and emphasise the priority of improving
the ANN.

F. Reinforement Learning

This section describes another set of offline learning meth-
ods that require episodic learning. In fact, the stochastic nature
and unpredictable behaviours found in Ms Pac-Man made this
game a popular testbed for reinforcement learning (RL) [78],
[41], [42]. The approaches described here mainly used a form
of Q-Learning or TDL. Most of the work performed with RL
methods have used different frameworks to the competitions,
making general comparisons with other methods less clear.

One of the main challenges of these methods is the large
state space and number of features. Bom et al. [78] extract the
7 most important features of a game state and train their Ms
Pac-Man agent using single action single hidden layer neural
networks with Q-learning, thus only 7 input neurons (inputs)
are required. At each time step, the action is chosen as the
argmax of the four outputs of the neural networks. Using few
high-order inputs leads to more effective and faster training. In
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addition, the good performance of neural networks trained with
Q-learning is verified by transferring, i.e., testing the learned
policy on a maze that has not been trained on. Tziortziotis et
al. [41], [42] describe a game state using 10 abstract features
for speeding up the learning. Their Ms Pac-Man agent is
initialised by a policy trained without the presence of ghosts,
then trained with the ghosts. The agent trained by two-stage
learning is able to complete 40% of the games, simulated using
the multi-agent MASON toolkit [114].

Szita and Lorincz [73] use Ms Pac-Man as an example
in their demonstration of how one may deal with a range
of combinatorial reinforcement learning tasks. The authors
make use of their own implementation of Ms Pac-Man where
ghosts chase Ms Pac-Man 80% of the time and take random
deceptions 20% of the time; ghosts may never reverse (as with
[68]). The authors develop a set of high-level actions and ob-
servations and use RL to combine these into a suitable policy.
The RL algorithm used is the cross-entropy method (CEM)
that shares much in common with evolutionary approaches and
performs policy optimisation. The authors find that this hybrid
approach performs better than either learning (from scratch) or
a rule-based system in isolation. Szita and Lorincz use domain
knowledge to preprocess the state information and to define
action modules, and RL will subsequently combine these into
a rule-based policy that may be used to play the game. The
action modules are designed to be basic to minimise the
amount of human knowledge required. Actions are temporally
extended and may be executed in parallel. Conflict resolution
between rules is achieved using priorities (which are also
learned) and the agent can switch on and off certain action
modules so that the action to take is obtained only from
modules active at the time. The learning takes place as follows:
a generation of random policies is drawn according to the
current parameter set. Policies are evaluated by playing the
game. The parameter set is then updated using the CEM.
The authors compared two approaches: one with randomly
generated rules and one with hand-crafted rules, and CEM
was compared to a simple stochastic hill climber. The best
result was obtained using CEM and hand-coded rules.

Handa [21], [22] extend their previous work ([16]) to im-
prove their controller by learning to identify critical situations
in the game that allows the controller to survive considerably
longer. This is done by adding a critical situation learning
module where the learning is achieved by means of Q-learning
using a CMAC (Cerebellar Model Articulation Controller)
function approximator. Note that CMAC provides a crude
form of interpolation when performing table lookup - a direct
alternative with more precise retrieval can be found in Lucas
[111] and also Abdullahi and Lucas [115]. The need for this
module arises as the evolved fuzzy set which sits at the heart
of the controller makes potentially poor decisions if rules are
tied. The critical situation module thus acts as a tie breaker
to ensure the right move is chosen. The input to CMAC is
prepared for each intersection in the maze in the form of
overpaying tilings. The controller thus only makes use of the
critical situation module at junctions. The tiles are size 6× 6
and the tile set of size 5 × 5 or 6 × 6. The initial Q values
are 0 and only a negative reward (−10) is given in the case

of death. The controller used in the experiments is identical
to [16] with only the addition of the new module. The author
finds that the module can capture critical situations well but
the method is too costly to be used in real time.

DeLooze and Viner [19] make use of Fuzzy Q-Learning
to develop a controller for the screen-capture version of Ms
Pac-Man. Fuzzy Q-Learning is a technique that combines
fuzzy state aggregation with Q-learning which may be applied
naturally to the state aggregation obtained by the fuzzy sets:
fuzzy state aggregation builds states given multiple fuzzy sets,
reducing the number of total states that need to be considered
and making Q-learning an applicable technique. The authors
consider the action of going to the nearest pill, the nearest
power pill, or running away from the closest ghost. The
controller decides on an action based on the current state of
the game and on what has been learned about this situation in
the past. The controller was trained by playing many games,
taking one of the 3 actions available at random. Following
a death, the actions that contributed to the death had their
coefficients decremented (negative reward; using a window of
15 state-action pairs). When playing, the controller chooses
the action corresponding to the highest coefficient. The authors
tested numerous different setups in their experiments (e.g., the
size of the fuzzy sets) and found that learning was ineffective
given a lack of persistency (a new action would be chosen
for each new screen-capture) and hence the authors forced the
controller to stick with the chosen action for a limited amount
of time.

Recently, Vezhnevets et al. [82] proposed a model named
STRategic Attentive Writer (STRAW) for learning macro-
actions and its variant STRAW-exploiter (STRAWe). Peri-
odically, STRAW takes the high-level features extracted by
a feature extractor from a game state (represented by a
frame) and outputs a stochastic action-plan during a certain
horizon. This is referred to as an action-plan module. A
module called commitment-plan is used to determine at each
time step whether the action-plan needs to be re-planned or
not. Additionally, STRAWe contains a noisy communication
channel between the feature extractor and the two modules of
STRAW. STRAWe using a convolutional network as feature
extractor and Asynchronous Advantage Actor-Critic as policy
optimiser achieves significant improvement in scores on some
Atari games, including Ms Pac-Man. The score achieved by
the STRAWe on Ms Pac-Man is more than 50% higher than
the one obtained by a recurrent LSTM. As we mention in
the conclusions, it would be very interesting to see how well
convolutional neural networks can learn to play the original
Ms Pac-Man game.

In a different work, K. Subramanian et al. [92] com-
pare the way humans extract options (i.e. abstractions of
the action space, as defined in the Reinforcement Learning
literature [116]) with that of automated methods, by collecting
data from humans playing the Taxi and Pac-Man domains.
The authors showed that human-created options provide a
better performance for a Q-Learning agent than the ones
from automatic methods, showing (particularly in the Pac-
Man domain) that human crafted options bring not only a
faster computation time, but also a higher average reward. This
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work also highlights that, however, optimal performance was
not achievable with human options in Pac-Man, because of
the way humans evaluated Pac-Man states (more interested
on higher scores than survival time) and the fact that most
human options were never executed until termination, which
poses a problem due to the lack of an optimal method for
option interruption.

Harm van Seijen et al. [35] proposed a new deep learning
method, called Hybrid Reward Architecture (HRA) to build
an agent to play PacMan in a screen-capture setting, using
the version of the game in the Atari 2600 collection. The
authors decompose the reward function of the environment
into n different (weighted) reward functions related to key
aspects of the game, each one tackled by a different sub-
agent. The authors show that the trained controller is able
to achieve a performance above that of human players and
other state-of-the-art reinforcement learning approaches. The
task decomposition approach is similar to the Training Camp
method used by Alhejali and Lucas [48].

Finally, the work by Burrow and Lucas [44] fits within
the category of Learning as it looks at the differences in
performance between temporal difference learning and evolved
neural networks to play Ms Pac-Man. This work was reviewed
in IV-E.

G. Other Approaches
This sub-section describes controllers implemented using

other techniques that do not fall under the main categories de-
scribed in this section. Examples are Ant Colony Optimisation,
influence maps, graphs and constraint satisfaction problems.

Emilio et al. [27] propose a controller based on Ant Colony
Optimisation (ACO) to play Ms Pac-Man. The authors identify
some of the game’s objectives and specify different types of
ants that correspond to these objectives: collector ants and
explorer ants. The former tries to maximise the score of the
game by collecting pills, power pills and eating ghosts, while
the latter attempts to find safe paths that evade the ghosts. The
distance an ant may explore is limited due to the real-time
nature of the game. Ants are launched from positions adjacent
to Ms Pac-Man’s current position and the controller chooses
the path found by the best explorer ant if a ghost is near,
and the path found by the best collector ant otherwise. The
nodes visited by the ant are chosen according to the pheromone
distribution across the graph (proportional rule). The concept
of a dead ant is used to either label a collector ant that has
reached the maximum distance without scoring any points, or
an explorer ant has been eaten by a ghost. The parameters
of the ACO, including the number of ants, distances travelled
and learning rates, are fine-tuned using a genetic algorithm.

Wirth and Gallagher [17] propose a simple controller for
Ms Pac-Man based on influence maps: an influence indicates
the desirability (or lack thereof) of certain regions on the
maze. In particular, all game objects exert positive or negative
(from the perspective of Ms Pac-Man) influences onto to the
surroundings and the influence map is simply the sum of all
these local influences. The authors constructed the influence
map based on pills, power pills and ghosts (edible and non-
edible). The influences were designed to encode the basic

intuition as to what constitutes a good Ms Pac-Man player:
eat pills and edible ghosts, avoid non-edible ghosts. For the
controller to make a decision during the game, all surrounding
nodes are evaluated using the influence map and the maximum
value is subsequently selected: influences are local and their
impact decays geometrically (Euclidean distances have been
used) inversely to distance. In their experiments, the authors
also considered the ability of a simple hill-climber to optimise
the parameters of the influence map and found that good
parameters may be found quickly. The authors conclude that
their controller behaves sensibly but would at times oscillate if
the influence values of neighbouring nodes were very similar
(this would be resolved dynamically during gameplay).

Anthony et al. [79] explore the idea of maximising empow-
erment as an action decision mechanism for intelligent agents,
and employ a simplified version of Pac-Man (without pills,
turning it into a survival predator-prey game). Empowerment
is a measure that determines how much an agent can influence
its environment by performing actions on it. The authors intro-
duce several versions of empowerment techniques to propose
its use for general game playing, as it can be used without
the need of game or domain knowledge. Furthermore, this
study proposes a mechanism to group actions into strategies,
showing that the combination of both ideas provides the agent
with more control over the environment and policies that are
preferred by humans.

Svensson and Johansson [54] design influence map-based
controllers for both Ms Pac-Man and the Ghosts. The Ms
Pac-Man controller takes into account 7 influence maps (the
influence of lookahead positions of the Pac-Man, the distance
to the nearest pill, power pill, ghost and edible ghost, and
the influence of freedom of choice), which are measured by 5
parameters. At the first stage, the authors picked up the two
most influential parameters by running lots of experiments and
studying the landscape of the game’s score over the parameter
search space. Then these two parameters are fixed at their
optimal values to optimise the other parameters. A ghost
controller is designed in the same way but only 3 influence
maps (measured by 3 parameters) are considered: the distance
between the Pac-Man and the nearest power pill, the lookahead
positions of the ghosts and the distances between ghosts.

More recently, Costa et al. [90] models a simplified ver-
sion of the Pac-Mac game using typed graph grammar with
Negative Application Conditions. The game objects (Pac-Man,
ghosts, berry and block) are represented by nodes in the
graphs. An arrow between two nodes represents that the game
object at the arrowhead can be taken by the game object at the
tail, for instance, a Pac-Man can move to a block or a berry.
Rules are represented by such graphs.

Finally, Koriche et al. [91] transfer the Pac-Man game to a
Stochastic Constraint Satisfaction Problem with 93 variables
and 22 constraints, and design three Pac-Man agents using
Upper Confidence bounds for Trees (UCT), Maintaining Arc
Consistency together with Upper Confidence Bound method
(MAC-UCB) and classical Forward Checking (FC) together
with Upper Confidence Bound (FC-UCB), respectively. The
authors show that MAC-UCB statistically outperforms both
UCT and FC-UCB.
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H. General Video Game Playing

General Video Game Playing (GVGP) [117] is a discipline
that lies at the intersection of Game AI and Artificial General
Intelligence (AGI). The challenge of GVGP is to design
controllers that can play any video game from a diverse set
of possible games without knowing the details of the games
in advance. This makes for a much greater challenge, since
game-specific heuristics and control modules are of limited
(or zero) value.

One of the most notable works on GVGP was done by V.
Mnih et al. [34], who applied Deep Q-Learning in order to
achieve human-level of play in 49 of the games from the
classic Atari 2600 collection. Although each network was
trained separately for each specific game, the generality of
their approach resides in the fact that they all share the same
architecture, hyper-parameters and training procedures. The
network employed received only the screen-capture and the
current score of the game, and gave the action to take as output.
This method has been used successfully to outperform human
players in many other games but performed inferior to humans
in the case of Pac-Man.

The game of Pac-Man has also been featured in other
popular GVGP frameworks such as VGDL [118], developed
in to pyVGDL by Tom Schaul [86], [87] and the General
Video Game AI (GVGAI) Framework (www.gvgai.net; by
Perez et al. [88], [89]). In these works, Pac-Man (along with
other games) is implemented in the Video Game Description
Language, which allows 2D arcade games to be specified in
simple, plain text. These frameworks also enable the possibil-
ity of writing controllers, which can interact with the engine
by receiving game state and supplying an action every 40 ms.

The GVGAI framework was a re-implementation of the
PyVGDL engine in Java for the GVGAI Competition. During
the first edition of this contest, when Pac-Man featured as
an unknown game: the winning approach of the competition
(OLETS: Open Loop Expectimax Tree Search [88]) achieved
a 100% victory rate in this game (meaning it cleared all
levels). This implementation of Pac-Man differs greatly from
the original Pac-Man and Ms. Pac-Man, with ghosts that chase
the player in a simpler way. However, it is still worth pointing
out that the agent was able to clear all mazes without prior
knowledge of the game that was being played.

V. GHOST CONTROLLERS

Traditionally Pac-Man is viewed from the perspective of
the gamer, with the ghosts as opponents that are part of the
game. Far fewer papers have been published so far that aim
to develop better strategies for the ghosts (see Table V). The
data in Table III shows that a slight preference for Ms Pac-Man
controllers remains but this difference is diminishing and it is
reasonable to expect more papers to be published in the near
future centred around the ghost team. This section reviews all
studies concerned with the ghosts, as well as a small selection
of research on predator-prey models (of which Pac-Man is a
special case). The methods involved to design controllers for
ghosts are summarised in Table VI.

1) Rule-Based Approaches: Gagne and Congdon [52] de-
sign a rule-based controller, namely FRIGHT, for the ghosts.
Fifteen high-level conditions (parameters), including hard and
soft conditions, are extracted from current game state for
rule selection. The determination of a rule is similar to
a SATisfiability problem. Only the rule which has all the
conditions satisfied, is selected. Each rule refers to one single
action in {Retreat, Evade, Surround, Attack, Protect}. If more
than one rule is satisfied, the one which meets most soft
conditions is selected. If no rule is satisfied, the Attack action
is applied. Besides hand-coded rules, some rules are generated
using Evolution Strategies.

2) Nature-Inspired Heuristics: Recio et al. [53] develop
an Ant Colony-based controller for the Ghost Team. The
objective of the ghost team is to cut across Ms Pac-Man’s
path, using two different types of ants. For the Ms Pac-Man
agent, explorer ants are launched from all the adjacent nodes
to her location, indicating a measure of optimality for each
one of the possible paths she can take. Additionally, hunter
ants are launched from the nodes contiguous to each one
of the ghosts’ locations, keeping their current directions. In
this study, the proposed approaches are compared against the
benchmark NPCs and the other entries of the 2011 IEEE
Congress on Evolutionary Computation (CEC) Ms Pac-Man
Versus Ghost Team competition.

Tamura and Torii [58] generate a controller for the ghosts
using Grammatical Evolution and Backus Naur Form gram-
mars. A population of 100 individuals is evolved during 50
generations. The controller aims to minimise the average score
for Pac-Man over 10 simulations of each individual. The
designed controller is compared to three hand-coded ghost
controllers using the Ms Pac-Man versus Ghost Competition
engine, except that, only one out of the four levels is played
and the Pac-Man is not awarded one more life at 10,000 points.
The authors defined grammars which design more aggressive
ghosts and avoid two ghosts taking the same routes.

Liberatore et al. [60] design Flocking Strategies (FS), a
Swarm Intelligence (SI) technique, for the ghost team. The
authors classify the ghosts as 3 types of actors according to
their states: normal, hunted and blinking. Each FS is a mapping
of a ghost state and the type of interacted actor, among the 5
actor types (including Pac-Man and power pill), to a Flocking
Rule (FR) which calculates the next move for the ghost. 50 FSs
are randomly initialised and evolved offline as individuals in
a Genetic Algorithm aiming to minimise Ms Pac-Man’s score.
Neither online learning nor centralised control is required.
Then, more flocking strategies for the team of ghosts are
compared by Liberatore et al. [63]. Concretely, the authors
present a Genetic Algorithm with Lexicographic Ranking
(GALR) to optimise flocking strategy-based ghost controllers.
A comparison is made between flocks of homogeneous and
heterogeneous individuals, and the results are matched with
those from the agents present in the Ms Pac-Man vs Ghosts
Competition framework, and some other approaches in the
literature. The authors found that their approach obtained
better results than those agents present in the framework, and
than some of the other controllers employed, with a better
performance in the case of homogeneous teams.
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3) Reinforcement Learning: Beume et al. [37] are inter-
ested in creating effective controllers for the non-player char-
acters of the game (i.e., the ghosts), motivated by the need for
entertaining NPCs (citing the work by Yannakakis and Hallam
[94]). The focus is on how NPCs may develop different be-
haviours if different learning strategies are used. An extended
version of the NJam Pac-Man clone is used, reproducing the
original first level and creating numerous test scenarios (maps
and states of power pills); simple rules are used to control
Ms Pac-Man. Learning is done offline and two approaches
are compared: model-based and direct learning. The model-
based approach uses patterns/scenarios, while the direct ap-
proach utilises the success/failure of completed games. As in
POMDPs, the NPCs only receive local knowledge (i.e., unlike
in many modern video games where NPC-intelligence derives
from global, normally inaccessible, knowledge). Feed-forward
networks using back-propagation are used for the model-based
case and Evolutionary Algorithms for the direct case. The
inputs to the networks and the EA are identical and related
to the state and position of all game objects (i.e., pills, Pac-
Man etc.) that are within the range of sight of the ghost. The
behaviours of the ghosts are broken down into 3 states: roam,
evade and chase; a separate network is used for each and
gets activated whenever the corresponding scenario occurs in
the game. The networks are then trained offline with patterns
that correspond to these scenarios. The EA is used to learn
improvements to a set of rules which are subsequently used for
game play. Two EAs are used to evolve both pure and mixed
strategies. One (1+1)-EA is used for each of the four ghosts in
the game, with the fitness of a ghost being determined by the
number of correct decisions made while playing the game. The
authors conclude that both forms of learning were effective in
shortening the time it took to eat Pac-Man.

4) Neuro-Evolutionary Approaches: Similar to Beume et al.
[37], Wittkamp et al. [38] explore the use of CI techniques for
real time learning to evolve strategies for the ghost team. Using
a neural network to control the ghosts, the focus is on team-
work development that makes use of continuous short-term
learning to regularly update the (overall) strategy of the ghosts.
The authors make use of NEAT (see [112]) to continuously
evolve the ANN’s topology and weights. The goal is for
the ghosts to learn as a team to exploit the weaknesses of
Pac-Man, which is controlled by a hand-coded controller
(pacbot). Each ghost has its own neural network, which acts
as a move evaluator, and is evolved by playing a series of
games (offline). Real-time learning is subsequently used to
learn team-specific behaviours in the short term. The fitness
of each neural network is determined by the performance of
the team, not the individual. Four separate instances of NEAT
(four populations) are executed in parallel and the best one
is chosen for the actual game play (in the paper, the authors
actually disregard real-time and do the learning sequentially).
Each differs according to the distance of the ghost to Pac-Man.
Each neural network has 19 inputs regarding the current state
of the game, including distances to Pac-Man and the objects
in the game. The authors comment that their approach of
short-term learning allows the ghosts to avoid having to learn
complex general game-playing strategies. In the experiments,

numerous different behaviours are learned and performance
is compared against the game’s original ghost team. One of
the most important results is the emergence of structured team
play where the ghosts successfully limit the number of possible
escape routes for Pac-Man.

Hasan and Khondker [77] evolve neural networks for ghosts
using a (10 + 10)-ES, with each network having 20 hidden
neurons (this a similar setup to the one used by Lucas [12]).
The noteworthy aspect of their implementation of the game is
its integration in to social media using Heroku.

Finally, in contrast to the work focused on controlling the
entire team of ghosts, Dai et al. [33] build an agent using
evolutionary neural networks particularly for the red ghost,
Blinky, which is the most aggressive one. In this work, only the
weights of the networks are evolved. The authors show that the
evolved controller alone is able to capture PacMan more often
than the default implementation included in the software, and
the presence of the evolved ghost in the team makes a positive
difference with regards to how quickly PacMan is captured.

5) Tree Search & Monte Carlo: Nguyen and Thawon-
mas [49], [56] introduce the use of Monte Carlo Tree Search
(MCTS) to control the Ghost Team, presenting the bot that
won the first Ms. Pac-Man Versus Ghost Team Competition
at 2011 IEEE Congress on Evolutionary Computation (CEC).
In this approach, one of the ghosts (Blinky) moves with a set
of predefined rules, while the other three employ MCTS. This
was implemented like this in order to balance the complexity
of many hand-coded rule based ghosts and the reliability of
MCTS controllers. In [49], Ms Pac-Man’s movements are
predicted by the k-Nearest-Neighbour (KNN) algorithm.

In [56] Ms Pac-Man’s movements and position are predicted
using Monte Carlo simulations from her current location,
where it is assumed that the Pac-Man agent is trying to
minimise the distance to certain objectives, according to her
moves in previous time steps. Instead of simulating moves
on a tick per tick basis, the authors simulate actions as
moving from one crosspoint to another, providing a deeper
lookahead for the simulations. Nodes are evaluated according
to different criteria, such as inverted Pac-Man score, spread in
the location of ghosts and relative distance to Pac-man. The
authors show that the combination of MCTS and rule-based
ghosts outperforms that of solely MCTS controllers, as this
provides a natural way of introducing domain knowledge into
the problem while keeping the search capabilities of MCTS.

6) Predator-Prey Scenarios: Finally, it is also worth con-
sidering some related work that focuses on the more general
case of predator-prey scenarios (as reviewed in [11]). For
instance, Haynes et al. [119], [120] strive to generate programs
for the coordination of cooperative autonomous agents in
pursuit of a common goal. The authors consider a simple
predator-prey pursuit game, noting that the problem is easy to
describe yet extremely difficult to solve. An extension of GP
was used to evolve teams of agents with different strategies for
their movements. Similarly, Luke and Spector [121] consider
different breeding strategies and coordination mechanisms
for multi-agent systems evolved using GP. In particular, the
authors are interested in the performance of homogeneous and
heterogeneous teams: in a heterogeneous team of agents, each
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agent is controlled by a different algorithm, whereas homoge-
neous agents are all controlled by the same mechanism. The
problem considered is called the Serengeti world: a toroidal,
continuous, 2-dimensional landscape, inhabited by gazelles
and lions.

Examples of more recent work regarding predator-prey
scenarios include Rawal et al. [122], Rajagopalan et al. [123]
and Cardona et al. [57]. In the first two cases, the authors
consider the co-evolution of simultaneous cooperative and
competitive behaviours in a complex predator-prey domain.
The authors propose an extended neural-network architec-
ture to allow for incremental co-evolutionary improvements
in the agents’ performance. This mechanism demonstrates
hierarchical cooperation and competition in teams of prey and
predators. The authors further note that due to sustained co-
evolution in this complex domain, high-level pursuit-evasion
behaviours emerge. The third case has been discussed previ-
ously in Section IV-C, in which competitive co-evolution was
applied to evolve both Pac-Man and Ghost controllers.

VI. PLAYER PROFILES AND MEASURES OF FUN

The research reviewed in Section IV and Section V is
primarily concerned with the development of controllers that
play the game as well as possible. Pac-Man has also been
used extensively as a tool to gain a better understanding of
the behaviour of gamers and what constitutes fun in a game.
These studies are outlined next.

Beume et al. [97] are interested in measuring the perceived
level of fun a player experiences when playing Pac-Man (based
on NJam). Instead of questioning gamers directly regarding
their enjoyment of the game, the authors propose to use Theory
of Flow6, as defined in the field of psychology, and query
whether this provides a more reliable indicator of this subjec-
tive subject matter. The authors conduct a sizeable study with
human players (85 samples were effectively used in the study),
using various techniques to control the ghosts, including neural
networks and evolutionary algorithms. The study combines
measures of fun with questionnaires to validate the feasibility
of the measures.

The work is based on the assumption that flow is experi-
enced when the player’s skill is close to what is required to
achieve the task (based on [124]). In contrast to the work by
Yannakakis et al. (see below), Beume et al. take the player’s
point of view to measure what is perceived (rather than
the analysis of game statistics from automatically generated
games). Beume et al. measure the time-fraction of the game
in which the player is confronted with interesting situations.
These are defined as interactions with the ghosts (based on
proximity), which should also be correlated to the perceived
difficulty of the game, and hence can be matched to skill to
establish flow. The experiments attempt to establish whether
flow is measurable and whether it is a good measure of fun.
The authors also compare their interaction measure against that

6The concept of flow basically refers to the involvement of a person in a
task: heavier involvement minimises the perception of external events. Flow is
subsequently defined as an optimal experience whereby a person is so engaged
in what they are doing, everything else (including their self-consciousness) is
perceptually eliminated.

of Yannakakis and Hallam [93]. They found divergence in the
results, concluding that neither measure is able to accurately
capture the degree of fun experienced by the players.

Cowley et al. [98], [99] present a series of studies aimed
at analysing player behaviour in the game Pac-Man. The goal
of this work is to gain a better understanding of player pro-
files (in particular, skill and preference for certain situations)
and to use this information for in-game adaptation to create
games better suited to individual gamers (dynamic player
modelling). The authors use their own, somewhat simplified,
implementation of the game where the ghosts move entirely
randomly. Their approach is based on low-level in-game
data capture that measures deviations from optimal choices
throughout the game, potentially revealing the gamer’s skill
and play preference. This data constitutes key information in
the analysis of optimal player experience. The authors also
use Theory of Flow and consider games as Information Theory
Systems, using Decision Theory to model the player’s choices.
Acknowledging that players seldom play perfectly, due to skill
and preference, deviations from optimal decisions may reveal
useful information regarding the player’s profile. In particular,
the authors relate the difficulty of decision making on a move-
by-move basis to the overall challenge of the game.

In the first study, Cowley et al. define utility functions for
5 different states that correspond to basic behaviours in the
game (such as hunt and flee). The authors find that although
prediction rates are not overly reliable (47%-60%), players
are categorised reasonably well, although not sufficiently so
for in-game content adaptation. Then the authors increase the
reliability and granularity of predictions, albeit at the cost of
speed: the improved approach takes into account all relevant
features of the state (weighted feature vector), looking ahead in
time using tree search. The authors find that overall accuracy
is lower than before (44%) but that some features can lead
to robust prediction of player movements. Cowley et al. [99]
finally improve the previous two approaches to increase the
prediction accuracy significantly (by 26% to 70.5%) as tested
on a variety of gamers in an extended experimental study.

The concept of “fun” is difficult to measure and quantify.
Yannakakis and Hallam [93], [94], [96] and Yannakakis and
Maragoudakis [95] present a series of studies aimed at better
understanding what constitutes fun and enjoyment in video
games. The original emphasis is on predator-prey multi-
character video games and Pac-Man was chosen as the case
study throughout all these works. The authors use their own
implementation of the game which does not feature power
pills. In [93] Yannakakis and Hallam view Pac-Man from the
ghosts’ perspective and attempt to evolve neural-controlled
ghost teams that play effectively against a fixed strategy Pac-
Man player. The authors find that near-optimal play makes the
game less interesting, as the player is constantly eliminated
(see [125] cited in [93]). The authors subsequently propose
a general metric of interest for predator-prey video games
and this measure is then used to adapt opponent (i.e., ghosts)
strategies online, to maintain high levels of interest throughout
the game: starting with near-optimal offline trained behaviours,
the ghost controller is adapted online according to the level of
interest (based on the player’s behaviour). The authors inves-
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tigate different learning procedures to achieve this reliably in
real-time. A fully connected multi-layered feedforward neural
network is used to control the ghosts and three fixed (non-
evolving) strategies are used as a control (including a near-
optimal strategy).

To define a measure of interesting behaviour, Yannakakis
and Hallam first define criteria that make a game interesting
and then quantify these attributes into a mathematical formula.
These behaviours are subsequently measured based on game
data and combined into an overall measure of interest. Each
neural controller is evolved offline by playing a series of
games. The authors observe both the performance of the
controller as well as its impact on the interest of the game. The
authors show that the best controllers, in terms of performance,
do not have the highest rating for interest, illustrating the
tradeoff one has to make. The best performing ghosts are then
used for online adaptation using the interest of the game as
the goal. The latter experiment includes different strategies
for Pac-Man that may change mid-game, and results show a
successful adaptation to the changing game dynamics.

In [95], Yannakakis and Maragoudakis continue this line
of work to take into account the player’s contribution to the
emergence of interest using a player modelling mechanism.
In particular, the authors use Bayesian Networks, trained on
player data, to infer appropriate parameter values for the
online learning procedure. The model of the player is based
on numerous features of the game, including score and time
played. The authors find that the player model improves the
online adaptation process. In [94], Yannakakis and Hallam
continue this work to test the online learning mechanism over
more complex stages (mazes) of the game. The authors also
consider the relationship between the interest measure and the
topology of each stage (a complexity measure of each topology
is also proposed). They find that the interest measure is robust
and independent of the stage. All these studies are summarised
and extended in [96] including motivation and background.

Sombat et al. [55], [66] focus on understanding user pref-
erence (as correlated to a perception of what constitutes fun)
and collect data from human players using the resources of the
Ms Pac-Man vs Ghosts competition. Every human player is
required to play two games against each of the ghost teams and
select their preferred team. Interestingly, the ghost controllers
which ranked highest in the competition, are usually not voted
as the most enjoyable. Similarly, Baumgarten [76] collects
game data of more than two hundred players online, then
studies game feature and playing style using linear discrim-
inant analysis on the discretised survey data. The physical
interaction with the device is determined to be a key feature
during the game playing. More analysis and discussion on
feature influence may be found in [76].

VII. RESEARCH IN OTHER FIELDS

Not all work in Pac-Man has aimed to create a better AI
controller for the game, or even to estimate and control aspects
of player experience: there has also been work on using it as a
test-bed to study some other phenomena. An example of this is
a cross-disciplinary analysis written by Wade [126], in which

he analyses the game from several different points of view. His
work touches on game design (using sprites and animations to
suggest a non-violence intent), as well as including references
to classic culture (such as the Theseus’ Minotaur Labyrinth
and the breadcrumbs of Hansel and Gretel) and, mainly, a
sociological approach focused on the need to strike a balance
between survival and the consumerism of modern times. Wade
makes a direct connection between the success of the game
and the societal and political systems of the western world.

A. Sociology

Cheok et al. [104], [105] use the concept of Pac-Man to
propose Human Pac-Man, an interactive implementation of the
game where teams of Pac-Men and ghosts move in the real
world using a variety of sensors and head-mounted displays.
The goal of this work is to pioneer a new form of gaming
where virtual worlds and reality merge seamlessly to allow
gamers a socially interactive experience. Players move freely
in the real world, equipped with a variety of sensors tracking
their position and a head-mounted display that super-imposes
virtual entities on the real world. These entities resemble
the pills of the original game. Other entities include actual
physical objects equipped with Bluetooth, allowing gamers to
physically interact.

The game is played by a team of Pac-Men and a team
of ghosts and the rules of the game are quite similar to the
original. Catching an opponent is done by tapping a sensor
on the opponent’s shoulder. Each gamer has a helper who is
not part of the game but instead sits at a desktop showing an
overview of the game, and may help the gamers to achieve
their objectives. The sensors include GPS, dead-reckoning
modules and inertial sensors to keep track of the players’
positions, both inside buildings and outside. The players’
heads are also tracked to display virtual entities via head-up
displays. Bluetooth is used to allow the gamers to interact with
physical objects scattered around the world. Communication
to a central server that maintains the state of the game is
done wirelessly and the game state is translated into a virtual
world where the positions of all players correspond to those
in the real world. In [105], Cheok et al. carry out a user
study consisting of 23 test subjects to test the viability of their
approach. Given the feedback from the gamers, collected via
questionnaires, the authors find that most aspects of the game
are well perceived while some aspects, such as the amount of
hardware required, are somewhat cumbersome.

B. Psychology

Ohno and Ogasawara [100] use Pac-Man as an example do-
main to develop a cognitive model of information acquisition
processes in highly interactive tasks. The goal of this work is
to provide a cognitive model with the potential to estimate
the performance of a human in performing a bidirectional
interactive task on a computer which dynamically responds
to user inputs. Such models may help interface designers
to optimise the user experience. The authors propose the
Information Acquisition Model that focuses on the symbol
encoding process on the computer display. Data was obtained
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by tracking eye movement of the user while playing Pac-
Man. The authors use their own implementation of the game
which differs in many ways from the original but is able
to record sequences of moves and keystroke information.
The experiment challenged each participant to maximise the
game’s score and included an exercise where some objects
would disappear from the screen mid-game with the user asked
to note where these objects had been. The primary goal of the
study was a comparison between the authors’ proposed model
and GOMS (Goals, Operators, Methods and Selection rules),
a simpler model on which their model was based. One of the
results shows that a key factor in improving the gamer’s skill
is the ability to focus on the most relevant parts of the screen,
given the very limited time to execute a move, and how quickly
the relevant game objects are identified.

Mobbs et al. [101] investigate the reaction of humans (14
subjects were tested) in the face of threats, using a predator-
prey scenario where volunteers are pursued through a 2-
dimensional virtual maze and experience pain if captured by
the predator. This work relates to studies that examine the abil-
ity of any organism to switch flexibly between defensive states
in response to threat. The authors monitored the subjects’
brain activity using magnetic resonance imaging and found
that certain shifts occurred in brain activity as the predator
moved closer. The scenario only corresponds loosely to Pac-
Man as only a single predator (ghost) was used and the mazes
were created specifically for the task at hand (they were much
simpler than the original mazes consisting of 9 × 13 cells in
a rectangular grid).

Based on the psychological Belief-Desire Theory of Emo-
tion, seven emotions are determined by a rule-based partition
using the belief and desire of the given state. Moerland et al.
[81] study the models of emotion generation for two emotions
in particular: fear and hope. The fear and hope of a state
can be estimated though forward planning using reinforcement
learning agents. Both ε-greedy and softmax policies have been
applied to estimate the fear and hope of Pac-Man with the
presence of a ghost nearby or not.

C. Brain Computer Interfaces

A Brain Computer Interface (BCI) is a form of human-
machine interaction that analyses signals from the brain cortex,
in response to certain stimuli. The variations of electrical
activity can be measured with appropriate technology and used
for machine control. Due to the limitations of these techniques
as forms of user input and data collection, researchers typically
implemented their own versions of Pac-Man to address these
difficulties.

In their work, Krepki et al. [83] read and classify elec-
troencephalogram (EEG) and electromyogram (EMG) signals
to determine when Pac-Man will turn, and in which direction.
The authors employed Motor Imagery (in which the algorithm
learns to associate imaginary movements with certain outputs)
with two classes: turn right and left. Information about the
intended command is fed back to the player (i.e. the direction
PacMan’s nose is pointing). Users were able to clear the level
(eating pills and finding an exit added to the maze) by means

of this approach, although the time spent to do so was much
longer than when using a conventional keyboard.

Girouard et al. [84], employ this technique as a way to pro-
vide an additional input, rather than using BCI to control and
play the game. This form of Passive BCI works in conjunction
with traditional input means (arrow keys on a keyboard).
The authors employed functional Near-InfraRed Spectroscopy
(fNIRS), which measures changes in hemoglobin concentra-
tions, in order to differentiate between the state of play in
two dimensions: play versus rest, and different difficulty levels
(easy versus hard). Results showed an accuracy of 94.4% in
the first dimension, and 61.6% in the second.

Finally, Reuderink et al. [85] used a modified version of
Pac-Man to analyse the effect of frustration in EEG signals.
Frustration is induced in two different ways: at the input level
(15% of the key presses are missed at random) and at the visual
output stage (freezing the screen with a probability of 5% for
two to five frames). Analysis of the collected data shows that
frustration can deteriorate BCI performance and that it should
be possible to detect player state changes (boredom, fatigue,
etc.) during game play.

D. Biology & Animals

In [106], Van Eck and Lamers investigate as to whether it is
possible to play video games against animals: motivated by the
entertainment value of playing with pets, the authors pose the
question whether a similar experience could be obtained in a
video game-like scenario. In particular, Van Eck and Lamers
replace the computer AI with field crickets in a simplified
version of Pac-Man, recreated as a real maze. The authors con-
centrate on the differences that emerge when gamers interact
with traditional NPCs or real animals. Four crickets are used to
replace the ghosts and camera tracking is employed to update
the game state of the video game. The instinctive behaviour
of the animals leads to some interesting observations: when
agitated, the animals move erratically through the maze to later
group together and remain stationary. Also, the speed varies
whenever a cricket is moving through the maze. To create
greater interaction between the animals and the gamer, the
authors use vibrations, which the crickets perceive as danger,
to either lead the crickets towards or away from Pac-Man.

E. Education

Pac-Man (or Ms Pac-Man) has featured in research centred
around education as well as being used as a teaching aid. In
many cases, Pac-Man has been used merely as a metaphor,
while in other cases the game took on a central role. Kurt
Squire [127] presents a general survey of video games in
education, arguing that educators have ignored the educational
potential of gaming. The survey highlights how Pac-Man was
amongst the games that sparked the “Pac-Man Theory of
Motivation” [128] which posed the question as to whether the
magic of Pac-Man can be exploited for student involvement,
enjoyment and commitment ([128] cited in [127]).7

7Bowman [128] analyses Pac-Man players using the concept of flow (see
[124]; this concept is also exploited by [97] to measure fun in games).
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DeNero and Klein [107] use their own implementation of
the game to teach fundamental concepts in their introductory
course on Artificial Intelligence. The authors comment that the
breadth of techniques in AI may appear incoherent to students
new to the subject matter and subsequently propose a series
of programming projects centred around the game of Pac-
Man to tightly integrate the different techniques covered in
the course. These topics include state-space search, Markov
decision processes, reinforcement learning, and probabilistic
tracking [107]. DeNero and Klein motivate their choice of Pac-
Man as the game is interesting and fun to play, and it supports
a range of domains that may be tackled using a variety of
techniques. Furthermore, the framework lends itself nicely to
the visualisation of techniques in 2-dimensional space. The
framework is publicly available and has been adopted by
several other universities.

Their software is implemented to approximate the original
game sufficiently well while offering the flexibility to create
different scenarios. Furthermore, the software lends itself to
automatic assessment using scripts. Interestingly, DeNero and
Klein often include (mini) competitions for each exercise to
determine the best technique, hinting at the potential of game
competitions in education, particularly in conjunction with
online courses (which have recently grown in popularity).
Similarly, the game competitions outlined in Section III have
contributed to the wider use of Pac-Man in higher education. In
particular, the Ms Pac-Man vs Ghosts Competition framework
has been used by several universities in their AI courses
(e.g., University of California Santa Cruz, Georgia Institute
of Technology, New York University) and numerous students
have made use of the software for their BSc and MSc projects.

Following [107], Silla [80] presents an assignment which
allows their students to learn genetic algorithms using another
java Pac-Man framework, developed by Ted Grenager, which
is less known than the Ms Pac-Man vs Ghosts competitions.

Another example of how Pac-Man is used in higher educa-
tion is given by Dickinson et al. [102] from Brown University:
the authors recreate Pac-Man as a physical game played
with robots. The fifth floor of the computer science building
functions as the maze, complete with pills, power pills and
ghosts. The implementations of the students subsequently
compete against one another to achieve the highest score. The
hardware setup is purposely kept inexpensive, using off-the-
shelf Roomba robots (Roomba robots are vacuum cleaners and
hence can collect pills by suction). The Roomba Pac-Man task
is used throughout the course as a common theme to guide
students through a series of labs and projects that include
obstacle avoidance, object seeking, AI behaviour by means
of subsumption, Monte Carlo localisation and path planning.
The authors conclude that this approach has been successful
and that students were motivated by the challenge the game
represented.

Rao [103] is also interested in using games to provide
a stimulating environment grounded in real-world problems.
Their intent is to teach robotics. The setup here is similar to
[102] in terms of hardware used but the game is simplified
to two robots, one being Pac-Man and the other a ghost. The
maze used consists of a small square arena with 4 blocks near

the corners. The behavioural model of Pac-Man tries to escape
the ghost which in turn is trying to catch the Pac-Man.

Finally, Pac-Man has a role to play in continuing education.
For example, Tose8 was not a computer science researcher but
taught himself Java especially to enter the Ms Pac-Man versus
Ghosts Competition, and went on to win the Pac-Man category,
and finish third in the ghost-team category. We do not have
details of the entries beyond these slides9 but they contain a
number of good ideas such as using a recursive flood fill to
work out how ghosts can propagate through a maze that takes
in to account their current directions of travel, and hence goes
beyond a simple shortest path analysis. This was used in order
to analyse danger points in the maze. We have not included
this in the previous sections on Pac-Man and ghost controllers
as it has not been written up in the peer-reviewed literature,
but it is a good example of the wide and deep appeal of the
game.

F. Other

Yacoub et al. [129] review the PRotocol MEta LAnguage
(PROMELA) and its three extensions for modelling and ver-
ification of software, and present their own extension called
Discrete-Event PROMELA (DEv-PROMELA). As implied by
its name, DEv-PROMELA is based on the concept of discrete-
event simulation. To demonstrate how DEv-PROMELA can
be applied, the authors use Pac-Man: the game is modelled as
an asynchronous protocol between Pac-Man and the ghosts.
The game state, player events (i.e., an action) and event(s)
from the ghosts are checked every 0.1 unit of time. The DEv-
PROMELA can help the game designers check the specifica-
tions at an early stage, before implementation.

The difficulty of Pac-Man has been commented on in a
few studies. DeNero and Klein [107] point out that Pac-Man
is a challenging game as just eating all the pills in as few
time steps as possible corresponds to a non-planar travelling
salesman problem. Viglietta [109] takes this notion further,
showing that the game is indeed NP-hard: Viglietta aims to
single out recurrent features/mechanics in video games that
allow reduction of the game to a known hard problem. The
focus is on “script-less” games from the period 1980 to 1998.
Several metatheorems are defined and applied to a variety of
games to establish their hardness. The metatheorems focus on
various characteristics such as doors, switches and pressure
plates. Among the many games considered, the authors show
that Pac-Man is NP-hard: The decision problem considered is
whether a level may be cleared without losing a life. Viglietta
assumes full configurability of the game, including the number
of ghosts and their behaviours, the locations of pills, power
pills and walls: given a very specific set-up, the author shows
the existence of single-use paths, a metatheorem proven to lead
to NP-hardness given a reduction from a Hamiltonian Cycle.

Ogland [108] makes use of Pac-Man in a rather abstract
manner (similar to the Pac-Man Theory of Motivation) and
uses the game to produce quality plans for organisational
development frameworks. Ogland is motivated by research that

8http://www.diego-perez.net/DarylTose.pptx
9See footnote 8



21

shows playing video games may have an impact on people’s
decision making processes, including conflict resolution. The
purpose of his study is to identify a Pac-Man model for
developing optimal strategies for total quality management
(TQM). In particular, Ogland shows how Pac-Man strategies
may be used effectively as TQM strategies. To achieve this,
Pac-Man is viewed (from a game-theoretic perspective) as
a five-player game of imperfect information. TQM policies
are expressed in terms of the Pac-Man model, assigning Pac-
Man scores to TQM activities. For instance, eating a dot
could correspond to document verification. A long-term TQM
strategy is subsequently described in terms of playing the
game, and strategies effective in the game are translated to
effective strategies for TQM management.

Becroft et al. [39] implement a game-independent behaviour
tree tool, called AIPaint, aimed at helping game designers
build behaviour decision trees for AI agents by drawing simple
schema using different shapes provided: for instance, using an
arrow to show the direction to move towards. No additional
programming by a human designer is required. AIPaint has
been used for designing Blinky and Clyde’s behaviours, eval-
uated by some undergraduate students with little programming
experience, and obtained positive feedback.

Finally, Maycock and Thompson [40] try to improve the
human playing experience on touchscreen devices and imple-
mented an android game as a testbed, based on the original Ms
Pac-Man Screen-Capture Competition engine. An A∗ search
is used to visit the checkpoints periodically and help better
understand the screen taps and navigation. Though the im-
provement in terms of game scores and number of successful
taps is small, this work is still particularly interesting as May-
cock and Thompson combine the AI methods to commercial
products to improve user experience.

VIII. CONCLUSIONS AND PROSPECTS FOR THE FUTURE

This paper presents a detailed overview of peer-reviewed
studies that focus, in one way or another, on the video game
Pac-Man (or any of its many variants) as part of scientific
research. The overview highlights the wide variety of research
that exists, including studies in computer science, neural
engineering, psychology, sociology, robotics and biology. The
reasons for the interest in this game are discussed, including
the potential of Pac-Man in higher education (as a tool
for teaching and assessment). The renewed interest in the
game, most likely spurred on by the recent academic game
competitions that focus on Ms Pac-Man, is easily justified:
Pac-Man remains a promising platform for research due to
its many characteristics that make it stand out from other
games such as Chess or Go. It has a suitable degree of
complexity, with challenges that include real-time components
and heterogeneous player types. The noise of the game caused
by the stochasticity of opponents and rules (e.g., random
reversals) is a particular challenge that requires a controller
to be robust to perform well.

On the other hand, the complexity of the game is contained,
allowing for relatively efficient representations of game states
(e.g., graphs, heatmaps). Furthermore, the action set is quite

limited and performance can be judged precisely by the
game’s score. This balance of complexity, combined with the
immense popularity of the game (past and present) and the
recent availability of the game in various formats (screen-
capture, various game engines), makes it a promising choice
for research in artificial intelligence and beyond. In the future,
other computer games may become more popular for research,
but until then there are still plenty of opportunities to advance
research in Pac-Man.

In particular, rule-based approaches are still a dominant
force in terms of performance when it comes to playing the
game as well as possible (although other approaches such as
Monte Carlo Tree Search have recently caught up with them).
It is interesting to observe how specific aspects of gameplay
may make a significant impact on the performance of the
controller, such as the order of how the pills are consumed
(see [29]) or the absolute position in the maze (see [20]).
However, even if computational techniques should converge
into a near-optimal playing strategy in the near future, the
game as a concept remains interesting. For example, the work
of Silver [74] has shown how giving the agent a restricted view
of the game can transform the problem into a POMDP. This
area of research has also been captured by the most recent
Ms. Pac-Man competition, where characters can only observe
the game state partially [14].

The screen-capture competition has highlighted how the
game may pose auxiliary challenges (i.e., developing good
screen-readers). An important experiment to carry out is to test
the performance of Deep Q Networks on the original Ms Pac-
Man game, as we only know of reports of their performance
on the Atari 2600 version [34][35], which is not only easier
but also lacks the wealth of human play data for comparison
purposes. Challenges may also be extended to include new
aspects such as automatic content generation (mazes, rules).

We also envisage versions of the game that move closer
towards the challenges of general game playing, where the
maze layout may be varied and the rules may be modified or
extended in a variety of ways (e.g. with additional power-ups
such as missiles, or the ability to block corridors or unlock
doors), the exact details of which would not be known to
the agent prior to the commencement of a competition. Given
the range of possibilities and the continued human interest
in the game, we see a bright future for Pac-Man variants in
AI research, and also the possibility of AI contributing to the
development of new versions of the game that are even more
fun for people to play.
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24
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