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Abstract—Cardiac magnetic resonance (CMR) images play
a growing role in the diagnostic imaging of cardiovascular
diseases. Full coverage of the left ventricle (LV), from base to
apex, is a basic criterion for CMR image quality and necessary
for accurate measurement of cardiac volume and functional
assessment. Incomplete coverage of the LV is identified through
visual inspection, which is time-consuming and usually done
retrospectively in the assessment of large imaging cohorts. This
paper proposes a novel automatic method for determining LV
coverage from CMR images by using Fisher-discriminative three-
dimensional (FD3D) convolutional neural networks (CNNs). In
contrast to our previous method employing 2D CNNs, this
approach utilizes spatial contextual information in CMR volumes,
extracts more representative high-level features and enhances
the discriminative capacity of the baseline 2D CNN learning
framework, thus achieving superior detection accuracy. A two-
stage framework is proposed to identify missing basal and apical
slices in measurements of CMR volume. First, the FD3D CNN
extracts high-level features from the CMR stacks. These image
representations are then used to detect the missing basal and
apical slices. Compared to the traditional 3D CNN strategy, the
proposed FD3D CNN minimizes within-class scatter and maxi-
mizes between-class scatter. We performed extensive experiments
to validate the proposed method on more than 5,000 independent
volumetric CMR scans from the UK Biobank study, achieving low
error rates for missing basal/apical slice detection (4.9%/4.6%).
The proposed method can also be adopted for assessing LV
coverage for other types of CMR image data.

Index Terms—3D convolutional neural network, LV coverage,
image-quality assessment, population image analysis, Fisher dis-
criminant criterion

I. INTRODUCTION

Left ventricular (LV) cardiac anatomy and function are
widely used in the field of cardiac medicine for diagnosis and
monitoring disease progression and for assessing the patient’s
response to cardiac surgery and interventional procedures. Car-
diac ultrasound (US) and cardiac magnetic resonance (CMR)
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imaging are arguably the most widespread techniques for di-
agnostic imaging of the heart. For population imaging studies,
however, CMR remains the modality of choice. CMR is a
single technique that provides access to cardiac anatomy and
non-invasive measurements of cardiac function [1]. In large
population imaging studies or assessment of patient cohorts
from large clinical trials, the quantification of LV anatomy and
function requires automatic image quality assessment and tools
for image analysis. One basic criterion for cardiac image qual-
ity is LV coverage and detection of missing apical and basal
CMR slices [2]. CMR may display incomplete LV coverage
because of insufficient radiographer experience in planning a
scan, natural cardiac muscle contraction, breathing motion, and
imperfect triggering, all of which pose challenges in efforts at
quantitative LV characterisation and accurate diagnosis [3]. For
example, missing basal slices affect calculations of LV volume
and derived LV functional measures such as ejection fraction
and cardiac output. Even if scout images are acquired, in order
to centre the LV in view and minimize this issue, incomplete
coverage may result at any point throughout the cardiac
cycle because of changes in patient breathing and cardiac
motion. Image quality assessment is traditionally performed
by radiographers who ensure that patients do not leave the
scanner without providing diagnostically interpretable data.
However, there are limits to human attention. With CMR
examinations becoming less expensive and increasingly com-
missioned, scanning loads at some centres may be insufficient
to maintain consistent standards. Quality assessment is of par-
ticular importance in large-scale population imaging studies,
where data are acquired across different imaging sites before
core lab analysis. For example, large volumes of data may
be stored without being checked by experienced staff prior
to analysis [4] [5]. Automatic methods for these repetitive
quality assurance tasks provide the required consistency and
reliability.

To ensure consistent quantification of CMR data, automatic
assessment of complete LV coverage is the first step. LV
coverage is assessed by visual inspection of CMR image
sequences, which is a subjective, repetitive, error-prone, and
time-consuming process [6]. Automatic coverage assessment
is required to promptly intervene and correct data acquisition,
and/or discard images with incomplete LV coverage whose
analysis would otherwise impair any statistics aggregated
over the cohort. The most common causes of incomplete LV
coverage are lack of a basal slice (no atrial chamber visible
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in end-systole, hence no certainty that the base of the heart
is completely covered) and lack of an apical slice (LV cavity
remains visible at end-systole). According to the criteria used
in [2] for CMR quality assessment, a missing basal slice
carries a higher penalty than a missing apical slice, given its
impact on LV volume computation. Although technological
developments in magnetic resonance imaging (MRI) hardware
and pulse sequences have led to faster CMR acquisitions, chal-
lenges remain with regard to ensuring full heart coverage and
motion compensation. In the UK Biobank’s CMR protocol, for
instance, incomplete heart coverage is the reason for flagging
4% of all CMR examinations as providing unreliable or non-
analysable image data [7]. While 4% may seem to be a small
proportion, the challenge is to automatically sift through the
entire database to identify and exclude those cases from further
quantitative analysis. Methods for the objective detection of
basal and apical imaging planes are relevant in this context, as
their absence affects diagnostic accuracy as well as anatomical
and functional LV quantification.

In the field of video processing, Automatic Image Quality
Assessment (AIQA) is a well-developed corpus of techniques
concerned with detecting image distortions characteristic of
multimedia communications [8] [9]. These distortions gener-
ally differ from those affecting medical images. No-reference-
based image quality assessment (NR-IQA) [10] [11] is relevant
for medical imaging data. While there is relatively easy access
to abundant data sets of mixed quality, it is not possible to col-
lect data without some level of image degradation or artefacts.
Practical CMR image-processing applications do not provide
perfect versions of incomplete LV coverage images, but rather,
only the image to be assessed. While assessments attempt
to highlight differences in our assessed data set regarding a
hypothetical high-quality image [12], the final image quality
is estimated solely based on the characteristics of the assessed
image.

The current standard operating procedure in the UK
Biobank, for instance, involves the detection of missing
basal/apical slices based on visual assessment by experts. Few
methods have been developed for automating this process, and
prior work mostly adopted approaches that require segmenting
short-axis slices of LV [13] [14] or landmark localization
[15] [16] [17]. However, fast full LV coverage detection as
the first step of an image quantification pipeline is largely
unexplored. Hoffmann et al. pioneered this field [15] by
initially localizing the heart in raw data prior to applying
computer-aided diagnosis algorithms. Lu et al. [18] proposed
an approach to locate LV and prescribe long/short-axis views
before MR image acquisition, which could be used to evaluate
cardiac coverage in short-axis views. These methods detect
missing basal/apical slices and largely rely on the quality of
LV segmentation and localization. de Vos et al. [19] proposed
a method that automatically identifies a slice of interest (SOI)
in 3D images. A ConvNet regressor was trained to determine
the distance between each 2D slice and the SOI. However,
this solution does not consider 3D contextual information
contained across slices.

The characteristics of the LV are useful in identifying the
position that the slice belongs to, since the LV in each slice

Fig. 1. Left: A typical two-chamber view cardiac MRI with eight slices
covering from base to apex. Right: (a) a volume with whole coverage (slice
1 is the basal slice), and (b) a volume with missing basal slice (slice 1 is not
the basal slice). In each rectangle, from top to bottom, rows correspond to
adjacent axial slices.

shows a different shape and size. For example, the LV shape is
approximately circular in mid-slices, while it is more elliptical
in basal slices (Fig. 1). Recent work [20], [21] has focused
on learning data-driven features to more accurately detect
shape differences. Among them, 3D convolutional neural
networks (CNNs) are one of the most regularly used deep-
learning schemes to meet the challenges of discriminative
shape detection [22] [23]. Roth et al. [24] and Prasoon et
al. [25] adapted 2D CNNs for processing 3D volumetric
data. However, these studies reported having difficulties when
attempting to employ 3D CNN on their data, since they often
lack sufficient training samples and computational resources
to learn accurate 3D models. Although some authors [26]
[27] have utilized 3D CNNs to process medical images,
their architectural settings, convolution kernels, and prediction
score volumes have not been disclosed in the detail required
to reproduce their results [28]. Some exceptions, however,
include the work of Kamnitsas et al. [29], who devised an
effective dense training scheme based on 3D CNNs for brain
lesion segmentation and dealing with the computational burden
of processing 3D medical scans. Moreover, the 3D U-Net
architecture of Cicek et al. [30] takes 3D volumes as input
and produces volumetric image segmentation. The architecture
and data augmentation of the U-net allow learning models
with very good generalization performance from only a few
annotated samples. Owing to the success of 3D deep neural
networks in medical image segmentation, we are motivated to
devise an end-to-end network optimization without requiring
manual annotations of the visual image quality. Meanwhile,
we seek features maximally affected by partial image artefacts,
which are also not very sensitive to variability related to the
intrinsic anatomy or image modality at hand.

In this paper, we focus on the analysis of short-axis (SA)
cine MRI, although the technique can also be generalized to
long-axis images. We aim to identify missing apical slices
(MAS) and/or basal slices (MBS) in 3D cardiac MRI volumes.
In our previous work, we used a 2D CNN constructed on
single-slice images and processed them sequentially [31].
However, this solution ignores contextual information con-
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tained across slices providing inferior performance compared
to a 3D analysis. We assume that 3D CNNs can easily and
effectively deal with within-class variability and between-
class similarity, which are important sources of the detec-
tion error [32]. We seek to learn a feature representation
that achieves reliable classification results even with a small
amount of training data or a small number of iterations.
In this paper, we address incomplete LV coverage detection
using a Fisher-discriminative 3D (FD3D) CNN, which utilizes
3D convolution kernels and exploits the spatial contextual
information in volumetric data. The proposed FD3D CNN uses
the Fisher discriminant criterion [33] on the fully connected
layer to render features more discriminative and insensitive to
geometric structural variations.

To the best of our knowledge, this is the first study tackling
the problem of automatic detection of missing basal and apical
slices on a CMR dataset as extensive and challenging as the
UK Biobank. Besides introducing a novel FD3D CNN archi-
tecture, we propose an effective cascaded detection strategy for
incomplete coverage identification. In the first stage, we train
two separate FD3D CNN classifiers to detect the absence of
basal and apical slices. In the second stage, we combine the
classification results from stage 1 to determine the type of
incomplete coverage found on the image.

The rest of this paper is organized as follows. Section II
introduces the proposed FD3D CNN architecture and explains
the learning strategy for its parameters. Section III presents
experimental materials and metrics. Section IV describes the
experimental design and classification results. Further analysis
and discussion of the proposed method are provided in Section
V. Conclusions are presented in Section VI.

II. FULL LV COVERAGE DETECTION METHOD

A. Problem Formulation

During image acquisition, a sufficient margin ought to
be left above and below the LV cavity according to the
established guidelines [34]. However, some image volumes
may lack sufficient information at the apical and basal levels,
which can hamper or bias the subsequent statistical analysis
of cardiac structural and functional parameters in population
imaging [35] [36]. In many LV quantification approaches,
the LV cross section is approximated using simple quasi-
circular models [37] [38]. These methods can produce a good
approximation on LV mid-slices, but not on slices containing
the left ventricular outflow tract (LVOT), which is at or near
the basal slice. Therefore, in our approach, we treat the blood
pool cross-section as a distinct model. Fig. 2 depicts the LV
shape of several slices in one cardiac volume from the apex
to base. In volumes with missing basal slice, LVOT is usually
not present.

We use a vector s to represent pixel values in each slice. A
3D cardiac MRI volume V with full coverage with n slices
can be described as follows:

V = [s1, s2, ..., sn] . (1)

Fig. 2. Schematic LV shapes showing blood pool (light grey) and myocardium
(dark grey) for different slices from apex to base. Slice 1 (left) shows LVOT,
which identifies the basal slice.

Each cardiac volume, V = [sp, ..., sq], p ≤ q ∈ [1, n], can
have a different or same number of slices but cover a different
portion of the LV.

To guarantee accurate cardiac volumetry and functional
measurements [2], full LV coverage is a basic requirement
[36]. To address this problem, we propose a two stage detec-
tion system that first computes image intensity representations
by a FD3D CNN model and then detects missing slices
based on these representations. In the first stage, we encode
spatial contextual information and hierarchically extract high-
level features, which indicate intensity representations. Our
FD3D CNN model is equipped with a fully connected Fisher
discriminative layer (F2) that takes the output of the fully
connected layer (F1) as input. In the second stage, independent
detection of any missing basal and apical slices is performed
and the results are combined to provide the final coverage
assessment.

B. Three-dimensional Intensity Representations

Lu et al. [39] proposed a pattern recognition technique built
on intra-segment correlation, using a normalization scheme,
which maps each LV slice to polar coordinates with fixed
size, shape level, and position. Intensity information and
slice position are relevant even with incomplete LV coverage
detection. In our paper, we define intensity representation for
the missing slice in a high-level feature space where slices of
cardiac MRI are used to construct a representation of intensity.
Each slice of the 3D volume is accounted for and the similarity
of neighboring slices determines the difference of the 3D
intensity distribution. Different characteristics in each slice and
contextual information about spatial relation between slices are
used to compute intensity representations.

Which 3D intensity representations? Our intensity represen-
tations are computed as a feature distribution matrix, which
integrates information about LV shape and size. We detect
incomplete LV coverage by image classification using the
distribution matrix. We define two classes: missing apical slice
(MAS) and missing basal slice (MBS).

Given a particular describable visual representation, we can
formalize our notion of 3D intensity representations based on
Eq. 1. For example, if we are looking at the volume from base
to apex, MAS and MBS can be formalized as follows:{

VMBS = [sq, ..., sn],
VMAS = [s1, ..., sp],

(2)
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Fig. 3. Whole assessment framework. a: Positive and negative training data for each representation classifier (MBS and MAS); b: Framework for our LV
coverage assessment process; c: Structure and parameters of the 3D CNN used in panel b: Step 1.

where, p, q ∈ (1, n), s1 is the basal slice and sn is the apical
slice. Our intensity representations classifiers can be thought
of functions f (·) for mapping 3D stacks V to real value pi.
A positive value of pi indicates the presence or strength of the
ith representation, while negative values indicate its absence.
Considering our intensity representations, if we define V1

and V2 as MBS and non-MBS samples, respectively, the
representation function fMBS (·) may map V1 to a positive
value and V2 to a negative value. This is a binary classification
function. Our 3D intensity representation classifiers are trained
on the UK Biobank dataset as they provide reliable ground-
truth labels based on visual inspection and manual annotation.

C. Fisher Discriminative 3D CNN Model

In this subsection, we propose a FD3D CNN (shown in
Fig. 3b) to extract high-level features, which represent 3D
intensity representations. Our FD3D CNN model is designed
by adding a new Fisher-discriminative fully connected layer,
F2, which uses the output of the previous layer, F1, as input.
The new layer is then stacked onto a conventional 3D CNN.
To maximize inter-class distances between learned features
while minimizing intra-class distances of learned features, we
train the newly added Fisher discriminative layer F2 on CNN
features based on a Fisher discriminant criterion [33].

1) 3D CNN: Learning feature representations in three di-
mensions is important for later feature detection and image
interpretation tasks in volumetric medical imagery. We employ
3D convolution kernels to encode richer spatial information in

volumetric data. Here, feature maps are 3D blocks instead of
2D patches. Conventional 3D convolution is achieved by con-
volving a 3D kernel, with the cube formed by stacking multiple
contiguous slices. With this construction, feature maps in the
convolution layer are connected to multiple contiguous frames
of the previous layer [40] [41]. Given an input vlk, the 3D
convolution layer output equates to a filtering operation with
a filter Wl+1

ik . Computation of the 3D feature volume hl+1
i is

given by:

hl+1
i = f

(∑
k

R−1∑
r=0

S−1∑
s=0

T−1∑
t=0

Wl+1
ik (r, s, t)vl

k + bl+1
k

)
(3)

where Wl+1
ik (r, s, t) is the element-wise weight in the 3D

convolution kernel, Wl+1
ik and bl+1

k are the filter and bias terms
connecting the feature maps of adjacent layers, and f(·) is the
element-wise, non-linear activation function.

2) Fisher Discriminative 3D CNN: To boost the discrimina-
tive power of 3D CNN learned features, we impose a Fisher
discrimination criterion [33] on them. Given the 3D input
data Vt

i, where i is the representation class, with i = {1, 2},
corresponding to MAS and MBS; the superscript t in Vt

i

indicates whether the representation is positive or negative,
i.e., t = {0, 1}; Vt

i =
[
vti,1, vti,2, ..., vti,C

]
, vti,j is the input

data of jth sample from class i, for j = 1, 2, ..., C. We denote
Ft

i,j to be features in the fully-connected layer of the 3D
CNN for class i and jth sample. Using the Fisher criterion,
discrimination is achieved by minimizing within-class scatter
of Ft, denoted by Sw(Ft), and maximizing between-class
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scatter of Ft, denoted by Sb(F
t). Sw(Ft) and Sb(F

t) are
defined as follows:

Sw(Ft) =

I∑
i=1

∑
Ft

i,j∈t

(Ft
i,j −mt

i)(F
t
i,j −mt

i)
T , (4)

Sb(F
t) =

I∑
i=1

ni(mt
i −mt)(mt

i −mt)T , (5)

where mt
i and mt are mean vectors of Ft

i and Ft, respec-
tively, and ni is the number of samples from class i. The
Fisher discriminant regularization term Φ(Ft) is defined as
tr(Sw(Ft)) − tr(Sb(F

t)). To obtain a discriminative classifi-
cation result with deep learned features, we propose modifying
the objective function of the FD3D CNN model by inserting
a Fisher discriminant regularization term:

J∗(W,b) = arg min
W,b

1

I

I∑
i=1

yt log a(Vt
i,j ;W,b)

+(1− yt) log
(
1− a(Vt

i,j ;W,b)
)

+
1

2
λ ‖W‖22 +

1

2
η(tr(Sw(Ft))− tr(Sb(F

t))),

(6)

where J∗ is our new cost function that can minimize within-
class scatter and maximize between-class scatter, and y is
the output label. Output activation a(Vt

i,j ;W,b) = 1/(1 +

e−WVt
i,j−b) is typically restricted to the open interval (0, 1)

by using a logistic sigmoid, which is parametrized by W
and b on the jth training sample. ‖W‖22 is a penalty term to
the loss function that prevents weights from getting too large
and helps to prevent over-fitting. Weights in each layer can
be adjusted toward target classes and utilize input data close
to the corresponding classes in case of no large dataset or a
small number of iteration. Here, λ, η ∈ [0, 1] are two trade-
off parameters that control the relative importance of each
term and are usually chosen by experiments, which can differ
depending on different databases and network structures.

For intensity representation Vt
i,j , we define:

J(W,b) =yt log a(Vt
i,j ;W,b)

+ (1− yt) log
(
1− a(Vt

i,j ;W,b)
)
,

(7)

Φ(Ft) =
1

2
tr
(
(Ft

i,j −mt
i)(F

t
i,j −mt

i)
T
)

−1

2
tr
(
(mt

i −mt)(mt
i −mt)T

)
.

(8)

Once the new cost function is obtained, we can employ
the gradient descent method [42] to solve this optimization
problem. Our key problem is to calculate the error of output
units, which consists of output errors from two sub-functions
J(W,b) and Φ(Ft). To update parameters Wt and bt, we
first calculate the error δL,t

i (L is the output layer) of the output
layer with forward propagation, and then adopt the back-
propagation method [43] to calculate the error δl,ti (l < L)
for other layers. Partial derivatives of the overall cost function
J∗(W,b) regarding Wt and bt are:

∂J∗(W,b)

∂W l,t
=

C∑
t=0

∑
F t∈t

∂J(Wt,bt)

∂W l,t
+ η

C∑
t=0

∑
F t∈t

∂Φ(Ft)

∂W
,

(9)

∂J∗(W,b)

∂bl,t
=

C∑
t=0

∑
F t∈t

∂J(Wt,bt)

∂bl,t
+ η

C∑
t=0

∑
F t∈t

∂Φ(Ft)

∂b
.

(10)
In this stage, we use the 3D CNN model with architecture

in Table I. Algorithm 1 provides the pseudo-code to train this
new network. In our 3D CNN implementation, a rectifier linear
unit (ReLU) [44] is utilized as a non-linear activation function
in layers C and F1.

Algorithm 1: FD3D CNN Training.

Input: input-target pairs (vt
i,j , yt), corresponding jth

pairs from class i, t indicates positive or negative
sample; η.

Output: FD3D CNN weight and biases, respectively,
W = [W1,t,W2,t, ...,Wl,t] and
b = [b1,t,b2,t, ...,bl,t].

Begin
Initialize Wt

i,j and bt
i,j

while stopping criterion has not been met do
1) Classification error:
argminW,b

∑I
i=1 y

t log a(Vt
i,j ;W,b) + (1 −

yt) log
(
1 − a(Vt

i,j ;W,b)
)
.

2) Fisher discriminant: Φ(Ft) = tr
(
Sw(Ft)

)
− tr

(
Sb(F

t)
)
.

3) Discriminative objective function:
argminW,b

∑I
i=1 y

t log a(Vt
i,j ;W,b) + (1 −

yt) log
(
1 − a(Vt

i,j ;W,b)
)

+ 1
2
λ
∥∥Wt

∥∥2
2

+ 1
2
ηΦ.

4) Update Wt
i,j and bt

i,j with Eqs. (9) and (10).
end
return Wt

i,j and bt
i,j until values of J∗(W,b) in

successive iterations are close enough or the maximum
number of iterations is reached.

End begin

III. MATERIALS AND METRICS

A. CMR Acquisition Protocol and Annotation
UK Biobank CMR Protocol: UK Biobank’s CMR acqui-

sitions are performed on a clinical wide bore 1.5T scan-
ner (MAGNETOM Aera, Syngo Platform VD13A; Siemens
Healthcare, Erlangen, Germany) and include piloting, sagittal,
transverse, and coronal partial coverage of the chest and
abdomen. For measuring the cardiac function, three long-axis
cines are acquired (viz. horizontal long-axis (HLA), vertical
long-axis (VLA), and LVOT in both sagittal and coronal
views). In addition, a complete SA stack is acquired. All
acquisitions use balanced steady-state free precession (bSSFP)
MRI sequences, attempting full coverage of the LV and right
ventricle [45]. In this study, we will focus on SA bSSFP cine
CMR data. To date, more than 18,800 volunteers have been
scanned. Voxel and matrix size of these CMR images are,
respectively, 1.8 × 1.8 × 8.0mm3, and 208 × 187 with, ap-
proximately, 10 slices per volume. Each volumetric sequence
contains about 50 cardiac phases.

Gold-standard image quality annotations: Quality-scored
cardiac MRI data are available for approximately 5,000 volun-
teers of the UK Biobank (UKBB) imaging resource. Following



6

TABLE I
ARCHITECTURE OF THE 3D DISCRIMINATIVE CNN MODEL

Layer Kernel Size Stride Output size Feature volumes

Input – – 120× 120× 3 1
C1 7× 7× 2 1 114× 114× 2 16
M1 2× 2× 1 2 57× 57× 2 16
C2 13× 13× 2 1 45× 45× 1 16
M2 3× 3× 1 1 15× 15× 1 16
C3 10× 10× 1 1 6× 6× 1 64
M3 2× 2× 1 1 3× 3× 1 64
F1 – 1 1× 1× 1 256
F2 – 1 1× 1× 1 4

Note: F2 is the Fisher Discriminant Layer.

visual inspection, manual annotation was carried out with
a simple three-grade quality score [7]: (1) optimal quality
for diagnosis, (2) suboptimal quality yet analysable and (3)
bad quality and diagnostically unusable. In 5,065 SA cine
CMR from the same number of volunteers, 4,361 sequences
correspond to a quality score of 1, an additional 527 sequences
have a quality score of 2, and the remaining 177 sequences
have a quality score of 3. All datasets with optimal quality
(score 1) had full coverage of the heart from base (LVOT
existing) to apex (LV cavity still visible at end-systole). These
data were used to construct the ground-truth classes for our
experiments. Note that having full coverage should not be
confused with having top/bottom slices corresponding exactly
to the base/apex.

B. Training and Testing Set Definitions

Training set: To create a training dataset for learning
intensity representations, we extract the three topmost slices
as negative samples for MBS detection (i.e. containing the
cardiac base), and the three bottom most slices as nega-
tive samples for MAS detection. To create positive samples
(i.e. not containing the cardiac base/apex), we choose three-
slice blocks, each starting from the middle slice towards
the base/apex for MBS/MAS detection training. We create
the training set from images with optimal quality and with
exclusively full coverage.

We train using three-slice stacks (or triplets) to model the
3D context. the average number of slices per image volume
is approximately 10. During training, we extract four triplets
(two samples including base/apex and two samples excluding
the base/apex). To maximize inter-class separation, it is wise to
avoid intersection between the training samples; for example,
if we use four-slice stacks (for a ten-slice volume), there
will be a two-slice overlap between basal positive/negative
examples and the apical region. By choosing the proposed slice
triplets, we ensure that there is no overlap and increase the
discriminative power of the FD3D CNN. Another important
observation that supports the choice of slice triplets is that the
CMR scan volume is not acquired immediately. Instead, each
slice is collected over several cardiac cycles leading to some
degree of slice-to-slice misalignment. This effect is minimized
when considering only slice triplets in contrast to using the full
3D volume.

Testing set: During testing, we extract every set of three
adjacent slices from top to bottom for each volume and apply
these triplets to intensity representation classifiers. Data with
known MBS/MAS are created by manually removing the three
topmost/bottom most slices from images with optimal quality,
as in the training set.

During training and testing, three-slice stacks are input
to the proposed FD3D CNN. Scores of the output layer
can be interpreted as the probability that triplets correspond
to negative or positive MBS/MAS. The final output is the
combination of two CNN outputs (MBS and MAS). The
three slice stacks input into our network are cropped centered
images of dimensions 120 × 120 × 3 to extract the region
of interest. Parameter setting of block-size determination is
explained in Section IV-A.

C. Training Set Augmentation

To prevent over-fitting due to insufficient training data and
to improve the detection rate of our algorithm, we employ data
augmentation techniques to artificially enlarge our dataset [46]
[47]. In our application, we augment the data by applying
a discrete set of in-plane rotations and isotropic scalings to
the training images. Unlike data augmentation choices made
for natural image datasets where variability in location and
pose of objects are relatively high, our data are comparatively
constrained due to standard imaging protocols and gross
patient positioning on the MRI scanner. We therefore chose
a set of realistic rotations and scaling factors for MRI. Based
on analysis of the in-plane orientation angle distribution for
5,000 subjects for which manual segmentations were available
(and therefore LVRV angle can be computed), we found that
LVRV orientation ranges between −45◦ and 45◦. The set of
rotations chosen was accordingly −45◦ and 45◦, with two
scaling factors of 0.75 and 1.25. This increases the number
of training samples by a factor of four, while not adding
significantly to the convergence time.

After data augmentation, we constructed 845,000 3D stacks
comprised of 2D CMR slices from 3,380 sequences each with
50 cardiac phases, with a quality score of 1. These data are
used for experiments in Section IV-A, B, and C. We set aside
981 sequences and data with quality scores of 2 and 3 for later
use, as described Section IV-D. In our experiments, 10-fold
cross-validation [48] was used to evaluate the performance of
our system. To the best of our knowledge, this is the largest
annotated dataset available to date for automatic CMR quality
assessment.

D. Learning Performance Metrics

To evaluate the learning process, we use the following
established classification metrics:

Precision = TP/(TP + FP ), (11)
Sensitivity = TP/(TP + FN), (12)

Error Rate = (FP + FN)/N, (13)

where TP , FP and FN are numbers of true-positive, false-
positive and false-negative samples, respectively, and N rep-
resents the number of subjects in the test set.
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IV. EXPERIMENTS AND RESULTS

A. Performance Analysis

We experiment to characterize the performance of our FD3D
CNN learning framework. The error (cost) functions used in
learning (Eqs. [6] and [7]) remain within this range [0, 1].
In all experiments, the learning process was terminated when
standard deviation of the error function over the last five
iterations is smaller than σ = 0.01.

1) Hyper-parameter selection: LeCun et al. [49] and Salah
et al. [50] used CNN to recognize handwritten digital numbers
with different numbers of training samples on the MNIST
dataset. Their results illustrated that, when reducing training
samples, the recognition rate of the algorithm drops sharply. To
demonstrate the behaviour of our FD3D CNN, we experiment
with different percentages of training samples. We use im-
provement defined as (1−ERD/ERT)×100 to benchmark our
method against a traditional 3D CNN, where ERD and ERT

are error rates of our FD3D CNN and the traditional 3D CNN,
respectively. Error rates of MBS/MAS representation learning
are shown in Fig. 4, where our proposed method appears to
achieve comparable results with less training data compared
to the conventional 3D CNN. We choose 80% of the 845,000
as the training samples and perform testing on the remaining
20%. the results are shown in Table II. Even when trained
with fewer iterations, our method achieves better results than
the traditional 3D CNN.

TABLE II
ERROR RATES VERSUS LEARNING EPOCHS

Epochs

Error Rate (%)
Improvement (%)

(MBS/MAS)
Traditional
3D CNN

(MBS/MAS)

Discriminative
3D CNN

(MBS/MAS)

1 32.4/30.7 28.8/27.4 11.1/10.8
10 25.4/24.2 19.2/17.6 24.4/27.3
20 19.2/18.7 11.3/10.8 41.1/42.2
30 12.7/13.1 8.3/8.6 34.6/34.4
40 6.3/5.6 4.9/4.6 22.2/17.9

With sufficient training samples and iterations, most ma-
chine learning methods can improve their accuracy at a higher
computational cost. However, we usually want to obtain a
trained network as quickly as possible. This is especially
important in population imaging as new datasets can become
available and retraining might be required. Rapid training is
also a desirable feature during algorithmic development since
finding an optimal architecture may require multiple training
procedures for different parameter settings. We illustrate that
our FD3D CNN has better error-reducting performance as a
function of the number of training samples and iterations than
other competing techniques.

A 3D CNN requires a suitable receptive field (i.e. input
size) to achieve the best discrimination. Based on a random
sample of 200 image volumes, we determine the smallest crop
size that ensures the coverage of the LV structure compared
to three block-size configurations, namely, 120 × 120 × 3
(which removes redundant background information based on
the central point of original images), 180 × 180 × 3 (which

(a)

(b)

Fig. 4. Error rates and improvements for increasingly larger training sets: (a)
MBS detection, (b) MAS detection.

is the original size as extracted and resized from the UK
Biobank), and 80 × 80 × 3, which mostly contains the LV
at the centre. We test sizes smaller than the original block
size of the classification model because we want to determine
whether a larger input block with more contextual information
can enhance the model’s discriminative capacity. The results
obtained with these settings are shown in Table III. With a
block size of 80 × 80 × 3, MBS/MAS detection precision
rate reaches 89.01% and 88.36%, respectively. The detection
performance improves to a precision rate of 91.81% and
90.73% under block size 120 × 120 × 3, demonstrating that
increasing contextual information can enhance the discrimi-
native capacity of 3D CNN. Without cropping, the detection
precision rate decreases to 90.12% and 89.78% for MBS and
MAS detection, respectively. This may have been because too
much redundant contextual information clutters the actual LV
signature, and hence degrades detection performance. Based
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(a) Sample volumes for MBS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac image expert’s visual (VQ2) qualities.

(b) Sample volumes for MAS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac image expert’s visual (VQ2) qualities.

Fig. 5. Sample test volumes and their AQ, expert cardiologist (VQ1) and cardiac image expert’s visual (VQ2) qualities for MBS detection (top row) or MAS
detection (bottom row) are shown. The left seven samples in each row show consistency between AQ and VQ1, which means our algorithm yields an accurate
prediction; The right two samples in each row show the wrong quality prediction and show inconsistency between VQ1 and VQ2.

on these experiments, we set block size to 120× 120× 3, to
achieve optimal detection performance.

TABLE III
PERFORMANCE VERSUS BLOCK SIZE

Block Size
Precision Sensitivity

MAS MBS MAS MBS

80× 80× 3 89.01% 88.36% 88.24% 87.94%
120× 120× 3 91.81% 90.73% 90.92% 90.25%
180× 180× 3 90.12% 89.78% 89.63% 88.92%

Typical classification results using the proposed FD3D CNN
architecture are shown in Fig. 5. A few basal stacks (top row)
and apical stacks (bottom row) in the test datasets with their
AQ or corresponding posterior probability values are shown.
High score values on the stack correspond to the likelihood of
being a correct basal or apical triplet. Basal slices with existing
LVOT indicate higher probability values of being correctly
classified. This shows that the training captures the LVOT as
a prominent feature in correctly positioned basal slices.

2) Comparison to other machine learning methods: We
compare our framework with a traditional 3D CNN and with
our previous 2D CNN study [31]. Table IV lists the results for
these architectures.The architecture of a traditional 3D CNN
is similar to that of our FD3D CNN, replacing the fisher layer
(F2) with a traditional fully connected layer including 256
ReLU activation neurons. We use the same training and testing
approaches for the 3D CNN and list the results obtained using
the hand crafted features used in [51]. In [51], the basal slice
was identified following these steps: 1. Choose the mid-slice
image as the start image and process each image sequentially
in the basal direction. 2. Apply the optimal threshold method
to convert the ROI to a binary image. 3. Identify the binary
object with blood pool, which shows an elliptical shape. 4.
Calculate the length of the major axis L of the ellipse that has
the same normalized second central moments as the binary
object. 5. If the ratio of the current to preceding L exceeds

a predefined threshold (e.g. > 1.2 in this work), then a basal
slice is identified; otherwise, the basal slice is missing. We
use a similar method to identify the apical slice. We process
each image sequentially from base to apex. If the ratio of the
current to preceding L is smaller than a predefined threshold
(e.g. < 0.2 in this study), an apical slice is detected; otherwise,
the apical slice is missing. We employ this feature extraction
procedure for prediction. The proposed FD3D CNN shows the
best precision and sensitivity figures in each representation
classifier, and full LV coverage detection performance.

B. Inter-Observer Reliability
To contextualize the results of automatic full LV coverage

assessment, we compare it to the inter-observer full LV
coverage detection rate obtained by expert readers. The inter-
observer agreement [52] of human experts is evaluated by
reassessing a subset of 200 random CMR datasets. The quality
distribution levels in this randomly selected subset are com-
pared to original data using Pearson’s χ2 goodness-of-fit test
to confirm that it represents the original data distribution (p >
0.05). The reassessed samples demonstrate strong agreement
with original qualities (Cohen’s κ = 0.76, p< 0.05).

To show how our results can be compared to the expected
human detection error rates, we present the error rates between
an expert cardiologist (VQ1) and another cardiac image expert
(VQ2) for 200 re assessed samples. The confusion matrix
of VQ1 versus VQ2 is presented in Table V. Use of the
confusion matrix reveals 7 among the 200 re assessed samples
with inconsistent quality assessment between VQ1 and VQ2.
These findings show that the expert cardiologist’s visual results
conflict with the cardiac image expert’s visual assessment
only 3% of the time. As shown in Table II epoch = 40,
our automatic algorithm’s error rate is just below 5%, which
shows excellent agreement with human expert assessments
(two percentage points). Some examples of MBS/MAS test
images are shown in Fig. 5 (panels a and b correspondingly).
We have intentionally chosen to show seven inter-observer
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT LEARNING MODELS WITH LEARNED AND HAND-CRAFTED VISUAL REPRESENTATIONS.

Method Features
Precision (%) Sensitivity (%)

MAS MBS MBS ∨MAS MAS MBS MBS ∨MAS

FD3D CNN

Learned

91.81 ±0.21 90.73 ±0.28 91.12 ±0.24 90.92 ±0.26 90.25 ±0.28 90.15 ±0.22
3D CNN 89.12 ±0.36 89.32 ±0.34 89.20 ±0.31 89.42 ±0.31 89.47 ±0.30 89.25 ±0.29
2D CNN 81.61 ±0.56 74.10 ±0.58 79.42 ±0.62 88.73 ±0.49 88.75 ±0.51 88.01 ±0.56

Lu et al. [51] Hand-crafted 37.60 ±1.22 45.68 ±1.36 56.92 ±1.71 67.43 ±0.92 74.56 ±1.32 63.25 ±1.79

TABLE V
CONFUSION MATRIX OF THE EXPERT CARDIOLOGIST (VQ1) AND

CARDIAC IMAGE EXPERT’S VISUAL (VQ2) RESULTS. GREY NUMBERS
INDICATE NUMBER AND RATIO OF CORRECT ESTIMATES.

VQ2

MBS MAS MBS ∨MAS
Correct

MBS 67 0 3 0.96

MAS 0 65 2 0.97V
Q

1

MBS ∨MAS 1 1 61 0.97

agreement examples, plus two disagreement examples on each
panel.

C. Cross-database Performance: Sunnybrook Cardiac Dataset

We evaluate the generalization of the performance of our
full LV coverage detection system on an independent database.
We assess the sensitivity of our system to moderate changes in
imaging conditions, scanner vendors, image resolution, etc. To
this effect, we use Data Science Bowl Cardiac Challenge Data
(Kaggle or Sunnybrook Cardiac dataset) [53]. This dataset
comprises 1,120 cardiac MRI volumes. Cine steady state free
precession (SSFP) MR short-axis (SAX) images are obtained
with a 1.5T GE Signa CV/i MRI System (General Electric,
Milwaukee, WI). All images are obtained during 10-15 second
breath-holds with a temporal resolution of 20 cardiac phases
over the heart cycle (scanned from the ED phase). Six to
twelve SAX images are obtained from the atrioventricular ring
to the apex (resolution 1.25×1.25×8mm3, thickness = 8mm).
Gold-standard full LV coverage is obtained by an experienced
reader and checked visually by inspecting slices from base to
apex. Original volumes are used for full LV coverage detection
and triplets of top and bottom slices are used, respectively,
as negative examples for MBS and MAS. Positive examples
of MBS/MAS are obtained from triples of mid-slices. This
dataset is used as a test set for the FD3D CNN that was pre-
trained with 800,000 volumes from the UK Biobank. Values
for error, precision and sensitivity under various conditions are
shown in Table VI.

D. Missing Slice Rate per Visual Quality Score

To gain insight into the relation between missing slice
rates and visual quality scores achieved by experts [7], a
third experiment is conducted. The system is trained on 3,380
random volumes from a total of 5,065. The testing set, as
earlier indicated, has 1,685 CMR volumes distributed among

TABLE VI
CROSS-DATASET PERFORMANCE: KAGGLE DATASET.

Error (%) Precision (%) Sensitivity (%)

MAS 6.43 86.51 88.74
MBS 7.02 84.03 85.69

MBS ∨MAS 6.64 85.74 87.01

the quality scores (from 1 to 3: 981, 527 and 177). Table
VII gives the percentages of the full LV coverage class for
each quality score. CMR data with a quality score of 3 highly
correlates with MBS, as missing basal slices highly affect
accurate quantitative analysis in CMR.

TABLE VII
MISSING SLICE RATE PER VISUAL QUALITY SCORE.

Quality Score MAS (%) MBS (%) MBS ∨MAS (%)

1 1.7 0.6 97.7
2 74.7 24.0 1.3
3 18.0 80.4 1.6

E. Clinical Impact

To assess the impact of incomplete LV coverage in real
applications, such as measurement of cardiac function based
on blood volumes, we design an experiment where incomplete
coverage is simulated and volume differences between full
and incomplete coverage are measured. We also compute two
commonly used indexes of the cardiac function derived from
such volumes viz. stroke volume (SV) and ejection fraction
(EF), and similarly report the differences between the full
and incomplete coverages. For this experiment, we take 4,737
subjects for which manual annotations are available (both car-
diac phase labels and full coverage labels), and systematically
remove the basal and apical slices to generate incomplete MBS
and MAS volumes. Then, we compute blood pool volumes at
the ED and ES phases, and from these, we obtain SV and
EF. Finally, the average volumes and indexes are computed
across the sample, comparing full coverage and MBS/MAS.
Table VIII shows that the largest effect of incomplete coverage
is caused by MBS, where the missing slice reduces ED and
ES volumes by an average of 12% and 20%, respectively. In
turn, these differences cause a decrease in the computed SV
by 6.7% and an increase in the EF by 3.9%. The absence of
the apical slice has a smaller yet non-negligible impact on the
volumes and derived indexes.
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TABLE VIII
EFFECT OF INCOMPLETE CARDIAC COVERAGE (MBS/MAS) ON THE
END-DIASTOLIC, END-SYSTOLIC, STROKE VOLUMES AND EJECTION

FRACTION. VALUES ARE SHOWN AS MEAN ± STANDARD DEVIATIONS.

Full MBS Effect(%) MAS Effect(%)

LVEDV(ml) 155.8±35.6 136.1±33.4 -12.6% 151.5±35.1 -2.7%
LVESV(ml) 66.8±21.2 53.0±19.0 -20.0% 64.3±20.9 -3.7%
LVSV(ml) 89.1±19.8 83.1±19.7 -6.7% 87.1±19.6 -2.2%
LVEF(%) 57.1±0.06 61.0±0.06 +3.9% 57.5±0.06 +0.4%

F. Implementation Considerations

The experiments reported here are conducted using the
ConvNet library [54] on an Intel Xeon E5-1620 v3 @3.50GHz
machine running Windows 10 with 32GB RAM and Nvidia
Quadro K620 GPU. The networks are optimized using the gra-
dient descent method [42] with the fllowing hyper-parameters:
learning rate = 0.01, momentum = 0.9, drop-out rate = 0.1.
Trainable weights are randomly initialized from a Gaussian
distribution (µ = 0, σ = 0.01) and updated with stan-
dard back-propagation. Models converge in about 6 hours
when training is performed with 800,000 volumes with size
120×120×3. Testing is rapid and can process each volume in
3 seconds.

V. DISCUSSION

Automatic identification of CMR volumes with incomplete
LV coverage is important in high-throughput image analy-
sis of population imaging. The acquisition of thousands of
suboptimal CMR images for later image analysis can be
avoided if such quality assessment is performed online and
a system provides immediate feedback to technical staff when
new images are acquired. Incomplete LV coverage influences
the accuracy of anatomical and functional LV parameters
of clinical interest. Manual annotation of LV coverage is
laborious, time-consuming and error prone in current clinical
routines. To automate this labour-intensive task, we propose
an efficient and robust two-stage framework for the automatic
detection of missing slices at the LV base and apex. In the first
stage, we train a FD3D CNN that computes the corresponding
intensity representation with high accuracy. It can qualify
CMR volumes based on two representations, and can assist
radiologists by automatically labelling the potentially incom-
plete volumes to mark them for closer inspection. The second
stage robustly discriminates two quality categories (MBS and
MAS), based only on the intensity representation classifiers,
which are then used to recognize new cardiac volumes with no
further training. Specifically, to use the spatial information in
volumetric data, we use 3D CNN with shared 3D convolution
kernels. Meanwhile, a Fisher discriminant layer leads to small
within-class scatter and large between-class scatter of feature
vectors in that layer. Extensive experimental results illustrate
the effectiveness and efficiency of our method: its performance
is superior to that of other methods with obvious advantages.

In any AIQA system for population imaging, accuracy and
robustness are key design criteria. These methods must work
without many false positives or false negatives, and must cope

with considerable variation in image quality. Most machine
learning methods can improve their recognition accuracy by
increasing the number of iterations. However, an increasing
number of iterations comes at a high computational cost. This
can be prohibitive with large databases or when retraining is
required as new data become available. In this study, we used
a very large dataset comprising more than 5,000 individually
annotated cardiac MRI scans of the same number of subjects,
which is 50-fold the 100 cases used in our previous study
[31]. However, when compared to natural image datasets [42],
our cardiac MRI dataset is still relatively small. We had
to design an efficient network taking full advantage of the
available data. Considering there were only a few labelled
images, there was no point in constructing a network with too
many sub-sampling layers; there would have been a higher
computational cost with more layers of feature abstraction.
Three-dimensional CNN have been among the most promising
solutions for object detection tasks. Thus far, most studies
have focused on image segmentation and registration, and
little effort has been devoted to AIQA. We propose a FD3D
CNN with an extra layer using a Fisher discriminant criterion,
which tackles the problem of detecting full LV coverage as an
important quality criterion. Our method can eliminate redun-
dant convolutional computations during forward propagation
and achieve a comparable result with a smaller number of
training samples and iterations. Specifically, our FD3D CNN
can achieve a high precision rate of nearly 92%/91% for
MBS/MAS detection with only 20 epochs, which is better than
traditional 3D CNN. Meanwhile, even with a small number of
training samples (4 × 10,000), our FD3D CNN can decrease
the error rate by approximately 29.1% compared to traditional
3D CNN approaches for MBS detection.

Our proposed automatic assessment framework for full
LV coverage has great potential to improve the robustness
of subsequent population image parsing. One can imagine
an approach whereby image analysis is adaptive to image
quality and where different models are used depending on
whether the volume under analysis is missing basal or apical
slices. In our architecture, we focus on learning intensity
representations and develop a FD3D CNN to describe those
that best discriminate the missing apical or basal slices. We
then use the computed representation classifiers to identify
the final image quality. The advantages of a representation-
based method for vision tasks are manifold: they can be
composed to create descriptions at various levels of specificity;
they are generalizable, as they can be learned once and then
applied to recognize new objects or categories with no further
training and are efficient, possibly requiring exponentially
fewer representations than explicitly naming each category. In
the future, we plan to investigate the possibility of detecting
full LV coverage for all slices, rather than just for basal/apical
slices, so we can directly predict visual quality scores. The
difficulty of detecting missing middle slices lies in the similar
shape of contiguous LV slices, which makes training the
representation classifier a non-trivial task. Another future work
is to extend deep-learning methods for multi-plane estimation,
that is, regressing one 3D volume to estimating missing slices
acquired from different positions. This is a limitation of
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our two-stage framework, which can only estimate the basal
and apical planes. One way to achieve 3D CNN for multi-
plane estimation would be to apply regression on each plane
separately and then combine all regression results into a single
estimation.

VI. CONCLUSION

In this study, we tackled the problem of detecting incom-
plete LV coverage in large population image databases. We
illustrated the concept by proposing a Fisher discriminative 3D
CNN tested on CMR data from the UK Biobank. Our FD3D
CNN was proposed by adding a new Fisher-discriminative
fully connected layer into the network, which achieved a sig-
nificant improvement in intensity representation. The learned
representation classifiers were computed for candidates of
corresponding quality categories. We also validated our model
by training with the UK Biobank dataset and cross-evaluating
with data from the Data Science Bowl Cardiac Challenge
dataset. The proposed model shows high consistency with
human perception and is superior to state-of-the-art methods,
showing its high potential. Our proposed FD3D CNN can also
be easily applied and boosts results for other detection and
segmentation tasks in medical image analysis.
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