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Abstract 
 
In this paper we take up the analysis of production functions / frontiers removing the 
assumptions of known functional form for the productivity equation, given the 

heterogeneity of productivity and the endogeneity of inputs at firm level. The assumption 
of exogenous regressors is removed through taking account of the first order conditions 
of profit maximization. We introduce latent dynamic stochastic productivity in our 
framework and perform Bayesian analysis using a Sequential Monte Carlo / Particle-
Filtering approach. We investigate the performance of the new approach relative to 
alternative methods in the literature, in a substantive application to Indian non-financial 
firms, and find that total factor productivity (TFP) growth has remained stagnant at firm 
level in India despite rapid growth at the aggregate level, with technical efficiency or 
catching-up effect driving TFP growth in the recent years rather than technological 
progress or frontier shift. 
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1. Introduction 

Several challenges have been noted in the literature in measuring total factor productivity 
at firm level, although it is well known that increasing productivity is one of the ways to 
achieve sustainable improvement in living standards.  The unobservable productivity 
shocks can be correlated with the standard inputs making the input levels endogenous. 
When talking about “endogeneity”, there are three sources. To be precise, the first source 
is from intuition, i.e., decisions about k and l depend on the overall productivity. The 
second source is the measurement errors in the right-hand-side variables. The third source 
is from the profit maximization, i.e., the firms choose inputs and output simultaneously to 
maximize profit. 

Olley and Pakes [OP] (1996) use investment as a proxy for such unobservable shocks, 

while Levinsohn and Petrin [LP] (2003) use intermediate inputs as a better proxy that 

may respond more smoothly to unobserved productivity shocks. Both approaches which 

are widely used in the empirical firm-level productivity literature have been subject to 

criticism. This paper presents a new estimation method of firm-level productivity to deal 

with the endogeneity problem, which is pervasive in production function estimation, by 

relaxing functional form assumptions typically made in practice. 

The measurement of TFP is always problematic. Neither OP nor LP are devoid of 

problems (see Gandhi, Navarro, and Rivers[GNR] (2017), Ackerberg, Caves and Fraser 

[ACF] (2015), and Doralzeski and Jaumendreu (2013)). Most prominently, GNR (2017) 

show that, besides perfect dependence problem pointed out by ACF (2015), both the OP 

and LP estimators suffer from the lack of relevant IVs for the endogenous static inputs in 

the model. Ackerberg, Caves and Frazer (2006) have shown that the OP and LP 

approaches to estimating TFP have a problem of collinearity if labor and intermediate 

inputs are a function of TFP just like investment. Although they suggest an alternative 

approach to tackling the endogeneity of the inputs, the estimated TFP via a parametric 

approach will always be subject to collinearity in the inputs. Ferrara and Vidoli (2017) 

and GNR (2017) therefore proposed a semiparametric/nonparametric treatment of the 

production function. There could also be non-linearity due to capital-labour substitution 

in the sense that when labour input is very high and costly, capital could be substituted to 

replace labour, making the relationship endogenous and non-linear. This raises questions 
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about whether the functional form should be parametric or should the entire distribution 

be taken into account for each variable in computing TFP in a semi-parametric sense. 

Such endogeneity problems can be dealt with by modeling the joint distribution of 

regressors and the error term without the use of instruments. 

Flexible functional forms are useful in many fields of applied economics and finance 

(e.g., Lee (1983), Heckman and Honore (1989), Trivedi and Zimmer (2006), Park and 

Gupta (2012), Tzeremes (2015), Sun et al. (2015), Matousek and Tzeremes (2016), and 

Kevork et al. (2017)). Amsler, Prokhorov and Schmidt (2014, 2016) recently modeled 

time dependence in stochastic frontier panel data models to address the endogeneity 

problem (also see Tran and Tsionas, 2013; 2016). Their approach is different from the 

one proposed in this paper in the sense that they use a reduced form equation to construct 

the joint density of the errors, while we use a flexible functional approach with latent 

prices and persistent measurement error in the data, to directly model the correlation 

between the endogenous regressors and the errors, which neither the reduced form nor the 

instruments are needed to obtain consistent estimates of the model parameters. 

In a substantive extension of the model, we introduce latent dynamic stochastic 

productivity shocks a la Olley and Pakes (1996) and Levinsohn and Petrin (2003) in our 

framework. This is essential as it is typically ignored in applied studies (see a survey in 

Fethi and Pasiouras, 2010; and Fukuyama and Matousek, 2017). Bayesian analysis is 

performed using a Sequential Monte Carlo / Particle-Filtering approach. In this paper, 

using nonparametric approach and firm-level data from India to address the endogeneity 

of regressors in a production function, our results reveal that a flexible functional form 

approach best describes our data in estimating productivity. Our results are indicative of 

the inappropriateness of deriving TFP estimates in the presence of endogenous 

regressors. In fact, differentiating firms by size reveals that the TFP estimates are much 

smaller for medium and large firms and even negative for these firms, whereas smaller 

firms tend to display higher productivity. From our econometric analysis, it is revealed 

that TFP growth has remained stagnant at firm level in India, with technical efficiency or 

catching-up effect driving TFP growth in the recent years rather than technological 

progress or frontier shift. Lower firm productivity gains using our methodology suggest 
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that the high firm growth in the last decade can be traced to higher capital accumulation 

and higher skilled workers rather than firm spending on innovation. 

The remainder of the paper is organized as follows.  In Section 2, we provide a 

summary of the existing methodologies to estimate productivity, and in section 3, we 

propose the methodology that extends the traditional stochastic frontier model, using a 

flexible functional form approach. In section 4, the Bayesian approach is discussed, along 

with the empirical application in Section 5. Conclusions and further discussion are given 

in Section 6. 

 

2. Preliminaries 

In this section we review previous contributions to the estimation of production functions 

and productivity. The basic model in logs is it k it l it it ity k l v       where , ,it it ity k l  are 

the logs of output, capital and labor, itv  is a shock which is unobserved by the firm, and 

it  represents a shock potentially predictable or observable by the firm when making its 

decisions. This is often referred to as the productivity shock. As decisions about  ,it itk l  

depend on it , it is clear that inputs are correlated with the error term giving rise to an 

endogeneity problem. It is commonly assumed that the conditional distribution of the 

productivity shock has a Markovian structure so that , 1( | ) ( | )it it it i tp p     where it  

is an information set. 

In Olley and Pakes (OP), the endogeneity problem for capital is solved using a 
deterministic rule for capital accumulation. It is solved using the timing assumption about 
investment decisions in the face of adjustment costs in capital. This rule takes the form: 

 , 1,it i t itk k i   where iti  is related to investment. In original units, this may take the 

form:  

 , 1(1 ) ,it i t itK K I                                                          (1) 

where itI  represents investment. As in Pakes (1994) and Ericson & Pakes (1995), OP 

make the assumption that  ,it t it iti g k  and strictly increasing in the productivity shock. 

In turn this function can be inverted to yield:  ( 1) ,it t it itg i k  . Therefore, we can write 

the production function as: 
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   ( 1) , ,it k it l it t it it it l it it it ity k l g i k v l i k v         .                         (2) 

Clearly, function  ,i k  can be treated non-parametrically and one can obtain an 

estimate of this function along with an estimate of l . In a second stage, OP estimate 

productivity shock using GMM. 

A problem with OP is that investment is often zero and, therefore, the monotonicity 
assumption cannot be invoked.  Levinsohn and Petrin (LP) use instead a variable input 

like intermediate inputs or raw-materials (denoted by itm ) to express the production 

function as:  it k it l it m it it ity k l m v        . Given the input demand function 

 ,it t it itm g k , under monotonicity this function can be inverted to yield: 

 ( 1) ,it t it itg m k  . In turn, the production function takes the form:  

 ( 1) ,it k it l it m it t it it ity k l m g m k v        .                                  (3) 

This equation can be used to obtain an estimate of l  but not of k  and m . LP use the 

same orthogonality condition as in OP to obtain estimates of these parameters. 

OP and LP rely crucially on several rules. The first one is monotonicity result that 
follows from neoclassical assumptions about the production technology. The second is 

that there are no measurement errors so that the only latent variable is indeed it . 

Thirdly, itk  must be a quasi-fixed input otherwise the orthogonality conditions will no 

longer hold. Fourth, timing assumptions are important: If itm  was chosen before it  was 

observed, then it cannot be used to invert and obtain a functional form for it . Even in 

the face of all of this, the models remain under-identified as shown in GNR (2017). 
Ackerberg, Caves and Fraser [ACF] (2015) point out that collinearity problems arise even 

in the first stage and identification of l  would be doubtful when, for example, itl  was 

chosen before it  was observed. ACF suggest alternative estimation techniques using the 

basic ideas of OP and LP. 

Gandhi et al. (2017) propose using information from the first-order conditions with 
respect to variable inputs and prove an important non-parametric identification theorem 
for the production function. Even when prices are missing, we can estimate the model.2 
                                                            
2 In fact, the idea goes back to Altug and Miller (1998), where they assume that unobserved wages are 

noisy relations of marginal products. From there to assuming that all prices are unobserved –or can be 

related to noisy versions of both optimality first‐order conditions and observed benchmarks (if they are 

available), the path is not too long. 



6 

 

First, assume , 1( )it i th   . When  material input is variable, one can write: 

 ( 1)
, 1 , 1 , 1 , 1, ,i t i t i t i tg k l m 
       so that the production function becomes:  

 

 ( 1)
, 1 , 1 , 1( , , ) ( , , )it it it it i t i t i t ity f k l m h g k l m v
     .                              (4) 

 
The first order condition with respect to materials is: 
 

 , ,
,itit it it

t t
it

F K L M
P e

M
 





                                              (5) 

where t is the price of materials and tP  denotes output price. These prices are common 

for all firms under the assumption of perfect competition. The demand for the 
intermediate input can be written as    , , , , , , ,it it it it mt t t it it itm k l w P k l     . As 

Gandhi et al. (2013) mention, they make “this implicit relationship an explicit one by 
transforming the first order condition to identify the intermediate inputs elasticity and the 
ex-post shock non-parametrically, which fills the void left by the lack of an exclusion 
restriction”. 
 
In this paper, we also make use of the first order conditions implied by profit 
maximization but in a different way. The first order conditions are explicitly incorporated 
into a system involving the production function and the unobserved productivity shock. 
However, we face three problems. First, and most importantly, not all prices are available 
so the completion of the system depends on the fact that not all relative prices are 
observed. Second, we wish to take the GNR criticism seriously in that we do not intend to 

have it  as the only unobservable. Most importantly, the measurement errors in inputs 

have been shown in Kim et al. (2016). Therefore, we allow for measurement errors in the 
inputs. Third, we wish to opt for a flexible or semi-parametric functional form for h in 

 , 1it i th   . Although the literature has focused on this, we address this in a more 

systematic manner in a Bayesian setting along with an empirical application. GNR also 
use price information to estimate their model which can be traced back to Marschak and 
Andrews (1944). However, prices are used differently here. GNR use a proxy equation to 
invert and obtain productivity (and use first order condition with respect to intermediate 
inputs only), whereas we use all first-order conditions directly to complete the system of 
production function along with endogenous inputs. GNR use a non-parametric framework 
whereas we use a flexible semi-parametric neural network formulation (that can 
approximate to arbitrary degree of accuracy for any given functional form). In summary, 
GNR use only one first order condition while we use all of them. 

 



7 

 

3. The model 

a. Economics and econometrics of the new model 

Suppose the production function is ( )Y F X e  where Y   is output, KX    is a 1K   

vector of inputs and   represents productivity. Suppose KW   denotes input relative 

prices. Under the assumption that the firm maximizes profits the optimization problem is 

1, 0
max :  ( ) .

K

K

k kkX Y
F X e W X

  



 This suggests that firms maximize static profits in all 

inputs (i.e., all inputs are flexible) as in OP & LP, along with the auto-regressive-ness of 
omega. 

The first-order conditions of this problem are the following: 

 

( )
, 1,..., ,

( ) .

k
k

F X
e W k K

X

Y F X e






 





                                                  (6) 

Multiplying both sides of the first set of conditions by kX  we obtain: 

 

( )
, 1,..., ,

( ) .

k k k
k

F X
X e W X k K

X

Y F X e






 





                                           (7) 

We can write these conditions in alternative form as follows: 

 

ln ( )
( ) , 1,..., ,

ln

ln ln ( ) .

k k
k

F X
F X e W X k K

X

Y F X






 



 
                                (8) 

Suppose lowercase letters denote logarithms so that lnx X , lny Y  and lnw W  . 

Moreover let ln ( ) ( )F X f x . The conditions above can be written as: 

 

( )
( ) ln , 1,..., ,

( ) .

k k
k

f x
f x w x k K

x

y f x






    



 
                                   (9) 

This is a system of 1K   equations in the 1K   endogenous variables, viz. X  and Y . 
For most purposes, a translog production function is adequate, while considering a non-
parametric treatment of F(.). The functional form is: 
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 1
21 1 1

( ; ) .
K K K

o k k kk k kk k k
f x x x x       

                                      (10) 

The derivatives are:  

 
1

( )
.

K

k kk kk
k

f x
x

x
   


 

                                                    (11) 

Therefore, the full system of equations arising from profit maximization is as follows: 

 
 

 
1

1
21 1 1

( ) ln 0, 1,..., ,

0.

K

k kk k k kk

K K K

o k k kk k kk k k

f x x w x k K

y x x x

  

   

 

   

      

    



  
                         (12) 

The endogenous variables are y  and Kx . These endogenous variables will, of 

course, depend on unobserved productivity  . As prices vary across firms, to keep the 

term (in ln) positive we use  2
1
2 1
ln

K

k kk kk
x   

 . 

Provided we have panel data, the system of equations can be written as: 

 
 

 
, , , ,1

1
, , , , 121 1 1

( ; ) ln , 1,..., ,

,

K

it k kk k it it k it k it it kk

K K K

it o k k it kk k it k it it it Kk k k

f x x w x v k K

y x x x v

   

   

 

    

      

    



  
                 (13) 

where 1, 1,,...,it it K itV v v 
     represents a vector error term, and ,o i  allows for individual 

effects.  The Jacobian of transformation from itV  to  ,it ity x  can be shown to be the 

absolute value of the determinant of the matrix:  kkG I   where ,
,

kk
kk k it

k it

G f
f

 
   ,  

,1

K

k k kk k itk
f x   
  . We denote this Jacobian by it itJ   .  

For unobserved productivity we assume3: 

  , 1; ,it i t ith                                                              (14) 

                                                            
3 It might be tempting to assume that ωit depends also on current or lagged inputs. However, it is made clear 
in OP and LP that input choices depend on productivity, not the other way round.  
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where  , 1| 0it i t    , h  is a functional form and   is a vector of parameters.  More 

specifically,  

 2~ (0, )it N   .  

Provided we specify this functional form and assume that all input relative prices are 
available, it is possible to estimate the system of equations in (13) by maximum 
likelihood (ML) or Bayesian techniques by taking into account the Jacobian of 
transformation. 

However, we face three problems. First, and most importantly, not all prices are 
available. Second, we wish to take the ACF criticism seriously in that we do not intend to 

have it  as the only unobservable. Third, we wish to opt for a flexible or semi-parametric 

functional form for h .  

Regarding the functional form for h  we think that a flexible semi-parametric functional 
form (as opposed to a full nonparametric specification) is enough for most practical 
purposes.  

The claim is due to the fact that neural networks can approximate arbitrarily well any 
functional form; a fact well-known in the literature. Full nonparametric specifications are 
subject to the curse of dimensionality as the number of explanatory variables increases. 
We use the term “flexible semiparametric functional form” to refer to an artificial neural 
network: Although clearly parametric, this family is quite flexible as it can approximate 
any functional form, see for example Hornik et al. (1989). Besides, in the productivity 
literature most papers use a Cobb-Douglas functional form and focus on other issues, like 
endogeneity. Here, we do focus on endogeneity but we use a much more flexible 
functional form. 

Evidence to that is provided by OP, LP and ACF when they use a polynomial for their 
inverse function which relates productivity shock to the observable variables. In this 
study we use a neural network which has well-known global approximation properties 
(Hornik et al., 1989). Therefore, we assume: 

    , 1 1
, 1

1
; .

1 exp

G

i t gg
G g i t

h   
  

 


                                    (15) 

In this neural network, there are G  nodes, and a logistic sigmoidal activation function is 

used. This sigmoid is given by: 
1

( ) ,
1 exp( )

z z
z

  
 

 . Here, 2G   is an unknown 

parameter vector. The exact value of G  will be chosen using the data. 
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We use the concept of marginal likelihood and Bayes factor to select the value of G. To 
summarize, for any value of G, there is a probability to observe the data, say P(Y;G) 

which results from the posterior: ( ; ) ( | ; )P Y G p Y G d   . This can be approximated for 

any value of G and in turn we can compute Bayes factors relative to, say, G=1 as follows: 
( ; )

, 2,3,...
( ; 1)g

P Y G g
BF g

P Y G


 


 The Bayes factor takes into account both model fit as well 

as model complexity arising from more parameters as G is increased. 

We next account for measurement error in the data which is, clearly, a major problem in 

all production and productivity studies. The actual data  ,it ity x  are unobserved. Instead 

we observe  ,o o
it ity x  which are related to the unobserved data as follows: 

 
,

,

,

,

o
it it y it

o
it it x it

y y

x x





 

 
                                                         (16) 

where , ,,it y it x it        represents measurement error. Of course, ,y it  cannot be 

distinguished from , 1it Kv   so, effectively, we have measurement error only in the inputs 

and we assume o
it ity y  without loss of generality. We do not assume that observed 

variables are random realizations centered on itx . Instead we assume persistence of 

measurement errors: 

  , , , 1 ,  ~ 0, ,x it x i t it it KN                                             (17) 

where   is a K K  matrix of unknown coefficients and   is a general covariance 
matrix. Both   and   are not necessarily diagonal.  

The problem of missing prices is more important. In our application we have the nominal 
price of labor but not the nominal or relative prices of capital and intermediate inputs. 
The price of output is unavailable. Therefore, it is best to treat all relative prices as 
unobserved. We assume the following structure: 

 , , 1,..., 1,k it ki ktw k K                                                    (18) 

where ,ki it  represent input-specific individual and time effects. Therefore, relative 

prices are not assumed to be constant over all firms, for a given time period. The last 

price, viz. ,K itw  is actually observed.  
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Our assumptions are as follows: 

  2
,~ , , 1,.., , 1,..., ,ki k kN k K i n                                        (19) 

  2
,~ , , 1,.., , 1,..., ,kt k kN k K t T                                        (20) 

These equations say that we have two components of input relative prices: one that is 
firm specific and another that is time specific. In this sense we assume that input relative 
prices can be separated into firm specific and time varying components. Finally, we 

assume  1~ 0,it Kv N   . Given our focus on non-financial manufacturing-based firms, 

the relative price across different manufacturing sectors can be assumed to remain non-
heterogeneous, suggesting a somewhat stable relative price with output. 

3.2 Some notes on the new approach 

The new approach relies on the exploitation of all first order conditions from profit 

maximization in system (13). The productivity shock, it , appears in all equations of the 

system and is subject to the flexible specification in (14). Individual effects (accounting 
for heterogeneity in production) can be used in the translog production function in (13) 
that can be separately identified from the individual and time effects in the first order 
conditions. The assumption that all inputs are flexible can be removed easily by assuming 
that certain inputs (like capital and possibly labor) are chosen before observing the 
productivity shock). In this case, these inputs are quasi-fixed and their first order 
conditions can be removed from the system in (13). Relative prices will not be needed for 
such inputs so the number of individual and time effects is reduced. 

From the system in (13) it is also clear that the inputs and the productivity shock are 
correlated (giving rise to the classical endogeneity problem in production function 
estimation) as they are chosen conditionally on the productivity shock. Other than that, 
(14) allows for a rich semi-parametric specification of its law of motion. 

Finally, measurement errors can be identified through the nonlinearity implied by the 
system of production function and profit maximization first order conditions in (13). 

The assumption of a common translog technology (with individual effects to capture 
heterogeneity) may be valid for firms in the same sector, but otherwise it may be 
questionable. We will examine this assumption in section 5.2. 

3.3 Priors 

For the parameters   of the translog production function in (10) we assume: 
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  ( ) ,p                                                                 (21) 

where   is the set where the monotonicity conditions are satisfied, viz. the first 

derivatives in (11) are positive at all unobserved data points itx  whose observed 

counterpart is ox , and  denotes the indicator function. For the parameters   in the 
productivity equation (15) we assume: 

  2~ , ,GN V                                                            (22) 

where 0  and 3
210 GV I  . This prior is relatively diffuse. For matrix   in (17) we 

impose the prior notion that it is close to diagonal. Specifically, we have: 

 2 2,  ~ ( , ),  ~ (0, ), ,ij ii ijN N i j                                                      (23) 

where 20.5, 0.1   . The prior implies that the diagonal elements range from 0.3 to 

0.7 with prior probability 95%. 

 For   we use a Wishart prior of the form: 

  ( 1) 11
2( ) | | exp ,np A                                                          (24) 

where  1n   and 310A I . For parameters 2
,,k k   and 2

,,k k   in (19) and (20) we 

assume: 

 2 2
2

,

~ ( , ),  ~ ( ),k
k

q
N n

 


   


                                         (25) 

 2 2
2

,

~ ( , ),  ~ ( ),k
k

q
N n

 


   


                                          (26) 

where 0  , 310q q 
  , 1n n   . The prior for 2

  has the same form. Our prior 

for   is the same as the prior for  . For practical purposes, these priors are diffuse 
priors. To impose the monotonicity restrictions in set   we use rejection sampling after 
imposing monotonicity at the means of the data.  

4. Bayesian analysis 

We collect all parameters in the vector d     where d denotes the dimensionality of 

the parameter vector. We denote { , 1,..., , 1,..., }it i n t T     and 



13 

 

{ , 1,..., }, 1,...,i it t T i n    . The collection of relative prices is 

{ , 1,..., , 1,..., }itw w i n t T   . Suppose we write the system in (13) compactly as follows: 

  ; , ,it it it itw V  x ,                                                 (27)  

where  ,it it itx y x . Therefore, we can write the augmented posterior distribution as 

follows: 

 

    
 

2

/2 11
2 1 1

/2 11
, 1 , 1 , 1 , 12 1 11 1

1
2 1 1

( , , , | ) exp ; , , ; , ,

( ) exp [( ) ( )] [( ) ( )]

exp [

n TnT

it it it it it iti t

n T n TnT o o o o
it it it i t i t it it i t i ti ti t

n TnT
iti t

p w x w w

J x x x x x x x x


 

     



 

 
 

 
     


 

    

          



 

  
 

x x  

 2, 1( ; )] ( ),i th p   

 (28) 

 where { }itx x  is the collection of latent input data, and ( )p   denotes the joint prior on 

the “structural” parameters. Moreover, ,k it ki ktw    . In the model we have three sets of 

latent variables, viz. productivity shocks  , unobserved input data x  whose empirical 

counterpart is ox , and unobserved relative input prices, w . 

We write the posterior, in terms of the latent productivity shocks, it , as: 

 , 11 1
({ } | , ) ( | , ) ( ; , , ).

n T

it it i t iti t
p p p       

                                   (29) 

To update the dynamic latent variables ,  we use Sequential Monte Carlo or Particle 
Filtering as developed in Creal and Tsay (2015). The same applies to other dynamic 

latent variables in the model, like 
it
x . We describe the algorithm here briefly. Suppose 

we have (1)
,1:i T  from the previous iteration. For 1,...,t T  we proceed as follows: 

 For 2,...,s S  draw a proposal ( ) ( )
, 1~ ( | ,.).s s

it it i tq      

 For 1,...,s S  compute the weights 
( ) ( ) ( )

, 1( )
( ) ( )

, 1

( | , ) ( ; , )

( | ,.)

s s s
it i t its

t s s
it i t

p p
p

q

    
 








, where 

( )( ; , )s
itp     denotes the part of the posterior that excludes the prior part for it  

as in (29).  
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 Normalize the weights: 
( )

( )

( )

1

ˆ , 1,..., .
s

s t
t S s

ts

p
p s S

p 


 


  

 Conditionally resample the weights  ( )

1

Ss
it s




 with probabilities ( )
1ˆ{ }s S

t sp  .  

As Creal and Tsay (2015, p. 339) mention, this “is a standard Gibbs sampler but defined 

on an extended probability space that includes all the random variables that are 

generated by a particle filter. Implementation of the PG sampler is different than a 

standard particle filter due to the ‘conditional’ resampling algorithm used in the last 

step. Specifically, in order for draws from the particle filter to be a valid Markov 

transition kernel on the extended probability space”. Moreover, we use a backwards step 

proposed by Whiteley (2010) and Godsill et al. (2004) which improves dramatically in 

terms of performance. Specifically, given the normalized weights and particles 

( ) ( )ˆ{ , }s s
t itp   for 1,...,t T  we draw, from this discrete distribution, a path of latent 

variables *
,1:{ }i T . 

 For t T  we draw a particle * ( )s
iT iT   with probability ( )ˆ s

Tp  . 

 For 1,....,1t T   we run: 

 Compute backward weights ( ) ( ) * ( )
| , 1ˆ ( | , ), 1,...,s s s

t T t i t itp p s S    . 

 Renormalize the weights: 
( )
|( )

| ( )
|1

ˆ , 1,...,
s

t Ts
t T S s

t Ts

p
p s S

p 


 


. 

 Draw a particle * ( )s
it it   with probability  ( )

|ˆ s
t Tp . 

 

Then the draw *
,1: ,1:{ }i T i T   is a draw from the full posterior conditional of the latent 

productivity growth variables. Chopin and Singh (2013) prove that the particle sample is 

uniformly ergodic and that backwards sampling strictly improves in terms of asymptotic 

efficiency. As in Creal and Tsay (2015) we have found that S=100 particles were 

adequate. The results were robust to taking S=500 and S=5,000. 

We apply the same Particle Filtering technique to generate draws from the posterior 

conditional distribution of itx  which are also dynamic latent variables by construction. 



15 

 

To generate draws from the posterior conditional distribution of   we use a Metropolis-

Hastings update. Given the current draw, ( )s , a candidate draw is generated from 

* ~ ( )q  . The next draw is ( 1) *s    with probability 

* *

( ) ( )

( | ,.) / ( )
min 1,  

( | ,.) / ( )s s

p q

p q

 
 

 
 
 




, else we set   ( 1) ( )s s   . The proposal distribution, 

( )q  , is a multivariate Student-t with five degrees of freedom, with location  parameter 

the least squares estimate from the translog production function and scale matrix hV , 

where V  is the least squares covariance matrix and h  is a positive constant which is 

adjusted during the burn-in phase to generate an acceptance rate close to 25% (the final 

acceptance rate was 27.5%).  The remaining parameters are updated using their 

conditional posterior distributions using a Gibbs sampling step (all details are available 

on request). 

 

We run our MCMC scheme using 60,000 iterations the first 10,000 of which are omitted 

to mitigate possible start up effects. The MCMC sampler, which was started from 100 

random initial conditions and convergence, was assessed using Geweke’s (1992) 

diagnostic. 

  

5. Empirical results 

a. The Dataset 

The measurement of TFP has always been an area of active research. Any output effects 

that are not driven by capital, labour, and intermediate inputs, are generally accepted as a 

measure of technical efficiency, which is seen as the real driver of long-term growth and 

a forward-looking firm performance indicator. In that sense, TFP is a better measure of 

firm performance compared to profitability (return on assets) which is more of a 

backward-looking performance indicator that can change in line with the business cycles.  

We compare our productivity estimates obtained from a non-linear semi-parametric 

approach compared to the standard linear parametric TFP estimates normally used in the 

literature, using firm level data from India. 
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For the key production function variables, we use a firm-level annual dataset from India 

called Prowess, provided by the Centre for Monitoring Indian Economy (CMIE) over the 

time period 1989 to 2014, covering 5,680 (out of a total of 26,000) non-financial 

companies in India. The following variables are used, namely total sales, labour, capital 

(fixed assets), wages and salaries; intermediate inputs include expenditure on raw-

materials, and energy and fuel consumption. 

Data on employment is either underreported or not reported by firms, which give rise to 

further measurement problems, whereas wages and salaries are always reported more 

correctly and hence it is immaterial to know how many people are employed since there 

is significant variability in their skills and accordingly some workers are more productive 

than others and therefore get paid more. Besides, many firms tend to use contract workers 

(due to labour market rigidities) who do not get counted in the employment number 

(neither in the firm they work nor by the agent who sends these workers), but will be part 

of the reported total wage bill of a firm, which will better reflect the importance of labour 

input than just the under-reported number of employees that can inflate the TFP estimate. 

Moreover, in the TFP estimates, if all the variables involved are available in monetary 

terms, it will be immaterial whether one deflates or not, as both sides of the equation will 

be scaled downwards through deflating. 

5.2 General Results 

In this sub-section, we report the empirical results. As TFP is a residual measure 

encompassing the effect of technical progress, by observing the distribution of TFP 

within the production frontier approach we can distinguish between different categories 

of firms across the distribution in terms of their productivity and efficiency. As discussed 

earlier, different approaches have been proposed in the literature in order to derive TFP 

(including growth accounting, OP, LP, and SFA). A flourishing literature has examined 

various aspects of firm-level productivity measurement (see for example, Ackerberg et 

al., 2015; Bournakis and Mallick, 2018). Although the focus of the application in this 

paper is limited to the case of India, our methodology can be of much broader 

applicability. 
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Slower growth in this productivity is more of a global phenomenon. Also firm 

productivity in India remains significantly heterogeneous, despite over two decades of 

policy reforms including industrial and trade reforms (see Haidar, 2012; and Mallick and 

Yang, 2013). Lack of firm-level innovation can be the key underlying factor for any 

productivity puzzle in manufacturing industry. While Olley and Pakes (1996) use the 

investment decision to proxy for unobserved productivity, Levinsohn and Petrin (2003) 

make use of intermediate inputs as a proxy. This may have to do with how do we 

measure gains from productivity. In this context, the correct estimation of TFP becomes 

crucial.  

We are using two benchmarks to compare our results. First, a translog production 

function is used without productivity; and second, we add a time trend, its square and 

interactions with all other inputs in the same production function. Third, our 

nonparametric model with a linear autoregressive process for Δ
it
w . Comparisons with the 

first model will help us understand the importance of unknown functional form, 

endogenous regressors and unobserved latent dynamic semi-parametric productivity. 

Comparisons with this Benchmark help us understand the importance of semi-parametric 

productivity per se.  

Firm-specific TFP 

In (15) it is assumed that the parameter vector   is common to all firms. Although this is 
reasonable as a point of departure or a working hypothesis, it is worth testing the 
assumption. Specifically, we assume an alternative model: 

    , 1 ,1
, , 1

1
; ,

1 exp

G

i t i i gg
i G g i t

h   
  

 


                                    (40) 

where   2~ , ,i GN      2~ (0,10 )N  and    follows a Wishart prior with parameters as 

stated previously  in other  instances. Draws from the posterior conditional distributions of  i s 

are  realized  using  an  independence  Metropolis  algorithm  whose  proposal  distribution  is  a 

multivariate Student‐t distribution with five degrees of freedom and location – scale parameters 

determined by the mode and Hessian of the log posterior conditional distributions. Some useful 

Bayes factors are reported in Table 1. We normalize the Bayes factor for G=1 to be equal to 



18 

 

1.000 and divide all other Bayes factors by its actual value. In this way we have relative 
Bayes factors which can be used easily for model comparison. 

Table 1. Bayes factors for model with firm-specific productivity 

model Bayes factor 

1G    1.000 

2G   3.455 

3G   0.817 

4G   0.444 

5G   0.313 

6G   0.101 

against 2 1GO    

when 2G    

1.473 

The evidence against 2 1GO    is rather weak (the Bayes factor in favor of the 

hypothesis is only 1.473) so, in the light of the data, it may well be the case that the 
productivity equation has firm-specific coefficients  . The optimal number of terms in 
the neural network equation in this case is G=2, which is less than the number of terms 
with fixed coefficients. 

We distinguish between different components of TFP namely input elasticities for each of 

the inputs (capital, labour and intermediate inputs) (Figure 1), returns to scale (Figure 2), 

technical inefficiency (Figure 3) and efficiency improvements or technical change 

(Figure 4). Our model captures higher ‘returns to scale’ estimates than from the 

traditional production functions that are commonly used in the literature. 

In Figure 1 we report sampling distributions of posterior mean elasticities with respect to 

inputs, capital, labor and intermediate materials. These are sample distributions of the 

posterior means. All these values are positive suggesting that the monotonicity 

restrictions are satisfied at all (unobserved) data points. Further evidence is reported in 

Figure 2 where we provide sampling distributions of posterior mean returns to scale. We 

also report returns to scale from two other models, viz. a simple translog model without 
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inefficiency and productivity and a translog model with trend. In the model presented in 

this study, returns to scale average near unity and extend from about 0.7 to 1.3. The 

simple translog models produce very different estimates. 

Figure 1. Sampling distributions of posterior means of input elasticities 
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Figure 2. Sampling distributions of posterior means of returns to scale 
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Figure 3. Sampling distributions of posterior means of technical inefficiency 
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Figure 4. Sampling distributions of posterior means of productivity growth 

  

 

a. Evidence on technical inefficiency 

We can modify the system in (13) to allow for technical inefficiency in production. 
Specifically, we can modify (13) as follows: 

 
 

, , , ,1

1
, 121 1 1

( ; ) ln , 1,..., ,

,

K

it k kk k it it it k it k it it kk

K K K

it o k k kk k k it it it Kk k k

f x x u w x v k K

y x x x u v

   

   

 

    

       

     



  




     (30) 
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where 0itu   represents technical inefficiency. This corresponds to a production function 

of the form ( , , ) uY F K L M e   in original units. According to much of the previous 

literature, technical inefficiency is assumed known to the producer and, therefore, it 
enters into each of the first order conditions.4 Our modeling of technical inefficiency 
follows the seminal study of Cornwell, Schmidt and Sickles [CSS] (1990) and we 
parametrize it as: 

 2
1 2 3it i i iu t t      .                                                  (31) 

To impose the non-negativity constraint, we use the final estimate:  

 
,

minit it iti t
u u u   .                                                     (32) 

For the coefficients  1 2 3, ,i i i i      we assume a random coefficient structure of the 

form: 

  ~ , , 1,..., ,i N i n                                                         (33) 

where  is a 3 3  covariance matrix. The formulation is novel due to the random 

coefficient specification as an anonymous referee pointed out. 

Sampling distributions of posterior mean technical inefficiencies are reported in Figure 3. 
The sampling distribution from the model is clearly multimodal and averages 0.12 with 
estimates from the translog and the translog-trend models being, again, quite different. 

b. Productivity growth 

Productivity growth results are reported in Figure 4. According to our model, 
productivity growth averages near zero. According, however, to OP and LP5, the 
estimates are concentrated around positive values with an average of 2% and 1% 
respectively, and extending from near zero to 4-5%. 

In Figure 4, the estimated TFP from the semi-parametric method proposed in this study is 
compared with OP and LP methods as the benchmarks. It is clear that the obtained 
estimates of TFP growth are marginally different between the two benchmark methods. 

                                                            
4 This can be seen if we replace ω by ω-u in the formulation of the original model. 

5 These models have been estimated using GMM using respective control functions suggested by the two 
different models. For LP we generate investment as Iit=Ki,t+1-(1-δ)Kit. We assume a rate of depreciation δ 
equal to 4%. 
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While our semi-parametric method reveals lower productivity growth as shown in the 
distribution plot, the benchmark semi-parametric OP and LP methods overestimate 
productivity. Overall, when the LP suggests a TFP growth of around 1%, the semi-
parametric method reveals little productivity growth in India in the recent decades, 
suggesting that firm growth has not been driven by technological innovation. 

The posterior means of the functional form ()h   relating it  and , 1i t   are reported in 

Figure 5 for the optimal value of G=2 and also for G=1 and G=4. The Bayes factors 
corresponding to different values of G (relative to G=1) are reported in Table 1. In Figure 
6 we provide results related to sensitivity analysis with respect to the prior. We use 500 
different priors with parameters randomly drawn using the baseline specification. For 

sensitivity analysis we examine the posterior means of it , technical inefficiency and 

returns to scale (RTS).6 As we can see, the posterior means are highly robust relative to 
the prior specification. 

Another question related to the individual and time effects that have been used to model 
relative input prices in the model, see equations (19) and (20). Bayes factors for 
alternative specifications7 are reported in Table 2. 

                                                            
6 Given the baseline specification the parameters of the prior are changed in a random manner to produce a 
new prior. Specifically, given any parameter p whose prior involves a parameter a, we change a to aU 
where U is a uniform random number between 0.1 and 10 if the parameter is positive and a+Z where Z is a 
normal random variable with mean zero and standard deviation 10. 

7 All these Bayes factors are computed using the Verdinelli and Wasserman (1995) approach. For a 
possibly vector parameter δ, this approach evaluates the hypothesis H: δ=δο using the Savage-Dickey ratio 
for the Bayes factor, viz.: BF=p(δo|Y)/p(δo) where the expressions in the numerator and dominator are, 
respectively, the posterior and prior of δ evaluated at δo. The prior p(δ) should be proper. 



23 

 

 

Table 2. Bayes factors for alternative specifications of input relative prices 

specification Bayes factor 

a) , 1,...,ki k k K     3.12 10-7

b) 0, 1,...,ki k K    4.29 10-5

c) , 1,...,kt k k K    5.14 10-4

d) 0, 1,...,kt k K    8.71 10-5

e) 0ki kt     3.12 10-9

f) ki kt kc    2.44 10-3

 

In specification (a), we assume individual effects are the same across firms. In 
specification (b) we examine whether they are actually zero. In specification (c) we 
examine whether time effects do not vary across time and in specification (d) whether 
they are actually zero. In specification (e) we examine whether both individual and time 
effects can be omitted and in (f) whether they can be omitted and an input-specific 
constant be used in their place. All Bayes factors are relative to the full model. All these 
hypotheses can be rejected in favor of the baseline model. 
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Figure 5. Posterior mean estimates of relation between Δωit and Δωi,t-1 

 

Figure 6. Posterior mean sensitivity analysis with respect to prior 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60

70

80

90

% deviation from baseline prior

de
ns

ity

Sensitivity analysis for posterior mean

 

 

of it

of u
it

of RTS

 



25 

 

Another question relates to whether we have, indeed, important measurement error in the 

model. The hypothesis, is, therefore, : K KH O    where K KO   is a zero matrix.8 We 

report the results across all 500 priors in Figure 7. Clearly, the hypothesis does not 
receive much support in the light of the data, unless we are willing to assume that there 
are no time effects (a hypothesis that has been previously rejected). 

It is perhaps instructive to look at measurement error more closely. The estimated Φ 
matrix (estimates are posterior means) and posterior standard deviations are shown in 
Table 3. The eigenvalues at the posterior means are 0.4709 and 0.9516±0.163i suggesting 
that Φ corresponds to a stationary vector autoregressive process and there is substantial 
persistence in measurement errors. 

Table 3. Posterior mean estimates of Φ and posterior standard deviations 

 Labor  Capital  Intermediate inputs 

Labor  0.772 

(0.034) 

-0.120 

(0.037) 

0.221 

(0.015) 

Capital -0.225 

(0.044) 

0.813 

(0.052) 

-0.032 

(0.013) 

Intermediate inputs 0.152 

(0.041) 

0.331 

(0.044) 

0.789 

(0.022) 

 

The posterior density of maximum mod eigenvalue of Φ is reported in Figure 8. From the 
results it turns out that there is substantial persistence in measurement errors. Notice that 
the results in Table 3 do not have a structural or direct interpretation as they refer to a 
vector autoregressive model and attention should be focused on the eigenvalues of Φ, as 
we do here. 

 

 

                                                            
8 Bayes factors are computed using the Verdinelli and Wasserman (1995) approach. 
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 Figure 7. Log Bayes factors for Ω=Οkxk for different priors 
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Figure 8. Posterior density of maximum mod eigenvalue of Φ 
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Apart from formal rejection of H   based on Bayes factors, we wish to address the 
question of whether the presence of measurement error makes material economic 
difference in terms of returns to scale, technical inefficiency and productivity. The 
question is addressed in Figure 9. Clearly, ignoring measurement error yields drastically 
different estimates. For example, productivity is systematically higher and returns to scale 
are concentrated heavily around 0.70. 

In Figure 10 we present productivity growth (averaged across industries) for the basic 
model (with 95% error bars) and also for Oley-Pakes and Levinsohn-Petrin. Clearly, we 
get different estimates. In Figure 10, we show the productivity growth over time, using 
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the functional relationship between 
it
w  and 

, 1i t
w -

. Although there is evidence of catching 

up since 2008, the efficiency improvement seems to have been over-estimated by the 
conventional methods, which remains negligible with the approach undertaken in this 
study (see Figure 10). 

Figure 9. Effect of measurement error 

 

Figure 10. Productivity growth, Δωit, over time 
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c. The question of a common translog production function and 
misspecification tests 

Although a translog production function with individual effects is a fairly general 
representation of the technology, one may be right in raising the question of whether it is 
valid when firms from different sectors are pooled together. Let us write the translog 
production function in (13) as follows: 

,1 ,it oi it i it it ity z v u                                                 (34) 

where ,1it itv v  and we allow for possibly firm-specific coefficients. The translog 

coefficients do not admit a structural interpretation; the translog is simply a second-order 
approximation to an arbitrary production function. The issue we wish to address is 

whether the hypothesis : , 1,...,iH i n   . There are two ways to address this problem. 

First, we assume that: 

  ~ , , 1,...,i N V i n   ,                                               (35) 

where ,V  represent the prior mean and prior covariance matrix of the translog 

coefficients. Then, H   is equivalent to evaluating the hypothesis :H V O  . The Bayes 

factor in favor of the hypothesis, using the Verdinelli and Wasserman (1995) approach, is 
17.21 using our baseline prior. MCMC needs only minor modifications to apply under 
this random-coefficient structure. 

Another way to look at the problem is from the standpoint of model misspecification 
which addresses the more general issue of whether the translog induces misspecification. 

Following Ramsey’s approach consider the model ,1it oi it it it ity z v u       . At each 

MCMC iteration define  ( ) ( ) ( ) ( ) ( )ˆ , 1,...,s s s s s
it it oi it it itV y z u s S        , and 

( ) ( ) ( ) ( ) ( )ˆ s s s s s
it oi it it ity z u      . We fit the model: 

  ( ) ( ) ( )

2
ˆ ˆ , 1,..., .

jJs s s
it j itj

V y s S


                                                (36) 

We choose J=4. Then the problem of misspecification boils down to testing whether the 

j   coefficients are zero. We save the adjusted coefficient of determination ( 2R ) from 

these least squares regressions, say 2,( )sR  and we present their posterior distribution in 

Figure 11. From the posterior distribution of 2R  we do not obtain enough evidence in 
favor of misspecification. For the OP and LP specifications we can follow the same 
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approach after using GMM. The 2R  was 0.314 and 0.303 for OP and LP, respectively. 
This, of course, indicates some form of misspecification.  

Figure 11. Posterior distribution of adjusted R2 for misspecification of translog 
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In the same spirit, we can examine residuals from the first order conditions in (13). 
Define: 

 ( ) ( ) ( ) ( ) ( ) ( )
, , , ,1

ˆ ( ; ) ln , 1,..., .
Ks s s s s s

it k it k kk k it it k it k itk
v f x x w x k K    

                  (37) 

We determine, again, 2,( )sR for each of these residuals when they are regressed on powers 

of ( )ˆ s
ity . The posterior densities are reported in Figure 12. Again, we obtain no evidence 

of misspecification. 

For the productivity equation we examine possible misspecifications by using the 

residuals  ( ) ( ) ( )
, 1ˆ ;s s s

it it i tr h     which are available for each MCMC iteration. We use 

two tests for misspecification. The first is based on the 2R  from the model: 

  ( ) ( )

2
ˆ ,

jJs s
it j itj

r y


                                                       (38) 

where ( ) ( ) ( ) ( )s s s s
it oi it ity z u    . The second is based on the model: 

    ( ) ( )
,1 ,2 , 12 1

.
jjJ Js s

j it j i tj j
y  



  
                                     (39) 

In the second model, we examine whether productivity depends on powers of the fitted 
values of output as well as on powers of lagged productivity. We choose, again, 
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4P P   and the results are presented in Figure 13. There is no evidence that the 

productivity equation is mis-specified. However, if we use G=2 then the 2R  rises sharply 
to about 0.70 which implies that a “correct” selection of the value of G is essential. 

Figure 12. Posterior distribution of adjusted R2 for misspecification of first order 
conditions 
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Figure 13. Misspecification tests (methods A and B) 
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In Figures 14 we report the sampling distributions of posterior means of productivity 
growth from the models with constant and firm-specific coefficients and, in Figure 15 we 

report the posterior means of functional forms ( ; )ith     with constant and firm-specific 

coefficients. There is no evidence that the sample distributions of it  or the average 

(posterior mean) functional form are very different in the two cases so, at first, the 
introduction of firm-specific productivity growth does not seem to matter much. Finally, 

for further corroboration, we report the ( ; )it ih    functions for 50 randomly selected 

firms in Figure 16. 

Figure 14. Sample distributions of productivity growth from models with constant 
and firm-specific α parameters 

 

Figure 15. Posterior means of function h (ωit; α) 
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Figure 16. Different posterior means of function h(ωit;α) for randomly selected firms 
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d. Distributional and further robustness issues 

Among the (possibly critical) assumptions of the model we list the following: 

i) The distribution of ( 1) 1K    vector itV  is multivariate normal. 

ii) The distribution of error term it  in the productivity  equation is normal. 

iii) Lagged productivity  , 1i t   and it  are orthogonal / independent. 

iv) Lagged productivity  , 1i t  and ,1it itv v  are independent. 

v)  ,it itv   do not depend on itx . 

It is possible to provide estimates of certain quantities for each MCMC draw, say  
( ) ( ) ( ) ( )

, 1, , ,s s s s
it it it i tV v     and use various techniques to evaluate whether these assumptions hold, 

at least approximately. To evaluate (iii) we use a vector autoregression (VAR) model of 
the form: 

 
( )

( ) ( ) ( )
,( ) 1

, 1

,
s

Lits s s
it l i t l its l

i t

A


  
 



 
   
  

   
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where ( )s
it is an error term and lA  is a 2 2  matrix of coefficients, 

,11 ,12

,21 ,22

    
, 1,..., .

    
l l

l
l l

a a
A l L

a a

 
  
 

 For each MCMC iteration (s) we determine L using the BIC 

and we record the p-value of the F-statistic for testing ,12 ,21: 0, 1,...,l lH a a l L   . A 

similar construction is used to evaluate (iv) and (v) –although in (v) the dimensionality of 
the VAR is somewhat larger as it involves 2K   variables for each MCMC iteration. 

Hypotheses (i) and (ii) are more cumbersome to evaluate as they require, for example, 
abandoning normality in favorite of, say, a mixture-of-normals and testing normality 
within a parametric framework. This complicates the MCMC procedure. Instead we 

evaluate (ii) as follows. Given draws ( )s
it  we use the “scores” ( ) 1 ( )( )s s

it ite     where Φ 

denotes the standard normal distribution function and  ( )s
it  denotes that ( )s

it  have been 

standardized to mean zero and unit standard deviation. If normality is acceptable the 

scores ( )s
ite  must be approximately uniformly distributed for each MCMC iteration. 

Similarly, to evaluate (i) we standardize ( )s
itV  to ( ) 1 ( ) ( ) ( )1

1
,

( )s s s s
it K it itnT

i t

V C v v
 

 
   

 
 , 

where ( ) ( )s sC C     and 1K  denotes the standard multivariate normal distribution 

function in 1K . Again, if normality is acceptable the scores ( )s
itv  must be approximately 

uniformly distributed, for each MCMC iteration. We summarize our evidence in Table 4. 
All uniformity tests use the Anderson-Darling statistic. 

Table 4. Assessing distributional and other robustness issues 

assumption description median p-value Percentage of 
MCMC draws 
where p<0.01 

(i) Vit is multivariate 
normal 

0.203 2.3% 

(ii) εit is normal 0.181 1.7% 

(iii) independent ωi,t-1 and εit 0.312 4.4% 

(iv) independent ωi,t-1 and vit 0.144 3.02% 

(v) (vit,εit) do not depend 
on xit 

0.330 2.5% 
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From the evidence in Table 4, it seems that none of the assumptions (i) – (v) is not 
justified in the light of the data. Particularly convincing is, of course, the last column 
which reports the percentage of MCMC draws where the p-value is less than 0.01. 

As technological progress displays heterogeneity at industry level (see Mallick and 
Sousa, 2017), firms at different quantiles of productivity improvements could converge 
differently as shown in Figure 17, where there is very clear evidence of multiple 
equilibria with multiple clusters of small and large firms at both ends of the distribution. 
While small firms can have the advantage of managerial efficiency, larger firms can have 
the advantages of economies of scale and better access to finance, thereby experiencing 
relatively higher productivity as in Figure 17. 

Figure 17: Bimodal distribution of productivity growth for small and large firms 

 

Also Figure 17 reveals that small firms at the top quintile perform better than the large 
firms at the bottom end of the distribution, because these small firms at the top-end can 
be in the growing industries or at a catching up stage. This also implies that there are 
inefficient firms at low ends of the size distribution which are making productivity 
growth stagnant, although large firms on average are more productive than small firms. 

6. Concluding remarks 

Given the methodological challenges in estimating total factor productivity at firm level, 

this paper adopts a new semi-parametric framework in estimating and decomposing TFP 

growth into technical efficiency change (or 'catching up'), and a technological progress 

(or 'frontier shift'). With a new model as a benchmark using Indian firm-level data, the 
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paper shows the superiority of our approach in capturing the temporal evolution of TFP 

growth. We show that the model can be estimated using SMC techniques, and a battery of 

specification tests can be provided. 

Using the new approach and firm-level data from India to address the endogeneity of 

regressors in a production function, our results reveal that the new approach best 

describes our data in estimating productivity. Our results are indicative of the 

inappropriateness of deriving TFP estimates in the presence of endogenous regressors and 

a linear functional form. In fact, differentiating firms by size reveals that the TFP 

estimates are much smaller for low-end medium and large firms and even negative for 

these firms, whereas top-end smaller firms tend to exhibit higher productivity. 

For most part of the sample, TFP growth has remained stagnant during the post-reform 

period in India with little significant differences observed across three different types of 

firms, although technical efficiency or catching-up effect appears to have driven TFP 

growth in the recent years. This suggests that lack of technological progress is indeed a 

cause of concern and therefore policy shift towards greater innovation should be 

prioritised in enhancing productivity. Applications of the same methodology to other 

countries and the resulting comparison with earlier studies can be pursued in future 

research. 
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