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ABSTRACT: Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular
interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes,
leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can
lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally
efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force
fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a
standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmark MASTIFF
against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules.
MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus
showing promise as a basis for “next-generation” force field development.

1. INTRODUCTION

Classical molecular simulation is a standard tool for interpreting
and predicting the chemistry of an incredible host of systems
ranging from simple liquids to complex materials and
biomolecules. Such simulations always require, as input, a
mathematical description of the system’s potential energy
surface (PES). In principle, the PES for most chemical systems
can accurately be determined from one of several high-level
electronic structure methods;1−3 nevertheless, these calcula-
tions are currently too expensive to use in simulations of large
systems and/or long time scales.4 Consequently, most routine
molecular simulations are performed with the aid of force fields:
computationally inexpensive, parametrized mathematical ex-
pressions that approximate the exact PES. Because the accuracy
and predictive capabilities of molecular simulations are directly
tied to the underlying force field, a central challenge is the
development of highly accurate force fields. In contrast to the
development of empirical force fields, where the typical
emphasis is on generation of ef fective potentials yielding bulk

properties, for ab initio force fields, this accuracy is principally
defined by a force field’s fidelity to the underlying exact PES.
As of now, several common shortcomings inhibit the

accuracy and predictive capabilities of standard ab initio force
fields, and these limitations must be systematically addressed in
order to generate improved, “next-generation” force fields.5

One important shortcoming, and the focus of this work, is the
so-called “sum-of-spheres”, or “isotropic atom−atom” approx-
imation,6 in which it is presumed that the nonbonding
interactions between molecules can be treated as a super-
position of interactions between spherically symmetric atoms.
(Note that this sum-of-spheres approximation is distinct from
the commonly used pairwise additive approximation employed
in force fields lacking explicit polarization;5 challenges
associated with this latter approximation are reviewed else-
where.7−14) The sum-of-spheres approximation thus assumes
that the pair potential, E2

ij, between two atoms-in-molecules i
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and j (which is formally dependent on both their interatomic
distance (rij) and relative orientation (Ωij) can be modeled as

Ω ≈ ≡E r f r V r( , ) ( ) ( )ij
ij ij ij ij2 2 (1)

where f(rij) is an arbitrary, distance-dependent function that
defines the pairwise interaction. Here and throughout, we use E
to denote an exact PES, and we use V to denote the
corresponding model/force field energy. With some exceptions
(vida infra), nearly all standard intermolecular force fields
ranging from the popular “Lennard-Jones plus point charges”
model to more-complex and/or polarizable functional
forms15explicitly make use of the isotropic atom−atom
approximation.
Its popularity notwithstanding, there is good experimental

and theoretical evidence to suggest that the sum-of-spheres
approximation does not hold in practice.6,16,17 Importantly, and
as we argue in Section 5, force fields that account for
anisotropic long-range (multipolar) electrostatics, but otherwise
employ the sum-of-spheres approximation, are an improved but
still incomplete model for describing the atomic-level anisotropy
of intermolecular interactions. Experimentally, it has long been
known that atom-in-molecule charge densities, as determined
from X-ray diffraction, can exhibit significant nonspherical
features, such as with lone pair or π-electron densities.18

Furthermore, statistical analyses of the Cambridge Structural
Database have shown that the van der Waals radii of atoms-in-
molecules (as measured from interatomic closest contact
distances) are not isotropically distributed, but, instead, show
strong orientation dependencies, particularly for halogens and
other heteroatoms.19−24 These experimental studies are
corroborated by a significant body of theoretical research on
both the anisotropy of the atomic van der Waals radii, as well as
the nonspherical features of the atomic charge densities
themselves,23,25−29 overall suggesting that the sum-of-spheres
approximation is an insufficiently flexible model for the subset
of intermolecular interactions that arise from atomically
nonspherical charge densities. The breakdown of the sum-of-
spheres approximation may be particularly problematic for ab
initio force field development, since any anisotropy cannot
easily be accounted for in an average manner via empirical
parametrization, and may help explain known difficulties in
generating accurate atom−atom force fields for such important
chemical interactions as hydrogen bonding,30 π-interac-
tions,31−33 and σ-bonding34−36 (see ref 37 and references
therein).
Motivated by these observations, a small but important body

of work has been devoted to addressing the limitations of the
isotropic atom−atom model in the context of “next-generation”
force field development. As will be discussed in detail below
(see Section 2), the general conclusion from these studies is
that many components of intermolecular interactions (specif-
ically electrostatics, exchange-repulsion, induction, and dis-
persion) can be more accurately modeled by functional forms
that go beyond the sum-of-spheres approximation.17,38,39 While
few intermolecular potentials (and virtually no standard force
fields amenable to routine molecular simulation) explicitly
account for atomic-level anisotropy for all aspects of
intermolecular interactions, several recent standard force fields
have incorporated atomic-level anisotropy into their description
of long-range electrostatics.37 Some of these potentials (notably
AMOEBA39−41 and some water potentials30,37) are already
employed in large-scale molecular simulation, often with very

encouraging success.37 Furthermore, others have shown that
anisotropic potentials (some of which additionally model the
anisotropy of exchange-repulsion and/or dispersion) lead to
significant improvements in predicting molecular crystal
structures.13,37,42−46 These and other results strongly suggest
that a complete incorporation of atomic anisotropy will lead to
increasingly accurate and predictive molecular simulations in a
wider variety of chemical interactions.38

Given the importance of atomic-level anisotropy in defining
intermolecular interactions, and the critical role that computa-
tionally affordable standard force fields play in enabling
molecular simulation, our present goal is to develop a general
methodology for standard force field development that (i) can
comprehensively account for atomic-level anisotropy in all
components of intermolecular interactions and (ii) can be
routinely employed in large-scale molecular simulation.
Furthermore, our aim is to develop a first-principles-based
model that is as accurate and transferable as possible, all while
maintaining a simple, computationally tractable functional form
that allows for robust parametrization and avoids overfitting/
underfitting. Thus, building on prior work (both from our own
group12,15,47,48 and from other research groups17), here we
present a general ansatz for anisotropic force field development
that, at minimal computational overhead, and only where
necessary, incorporates atomic-level anisotropy into all aspects
of intermolecular interactions (electrostatics, exchange, in-
duction, and dispersion), not only in the asymptotic limit of
large intermolecular separations, but also in the region of non-
negligible electron density overlap. After motivating and
establishing the functional forms used in our anisotropic
force fields, we next demonstrate, using a large library of dimer
interactions between organic molecules, the accuracy and
transferability of these new force fields, with respect to the
reproduction of high-quality ab initio potential energy surfaces.
Lastly, and using CO2 as a case study, we offer an example as to
how these new, “atomically anisotropic” models for dimer
interactions can be used to enable highly accurate simulations
of bulk properties. The theory and results presented in this
manuscript should be of general utility in improving the
accuracy of (specifically ab initio generated) force fields,
including those amenable to large-scale molecular dynamics
simulations.

2. BACKGROUND
Before presenting our development methodology for atomically
anisotropic potentials, we provide an overview of prior
approaches that go beyond the sum-of-spheres approximation.
Throughout this discussion, we employ the fairly standard49

decomposition of interaction energies into physically mean-
ingful components of electrostatics, exchange-repulsion, in-
duction (which includes both polarization and charge-transfer),
and dispersion. Many studies on atomically anisotropic force
field development have focused on incorporating anisotropy on
a component-by-component basis, and, for the sake of clarity,
we discuss anisotropy for each energy component individually.
As in prior work,47 we find it useful to separate the so-called
“long-range”/asymptotic effects (multipolar electrostatics,
polarization, and dispersion) from those “short-range” effects
that arise only at smaller intermolecular separations due to the
non-negligible overlap of monomer electron densities (e.g.,
charge penetration and exchange-repulsion).

2.1. Prior Models for Long-Range Interactions. The
importance of atomic-level anisotropy in long-range inter-
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actions, particularly as it pertains to electrostatics, is quite well-
known. Several groups have found that using atomic multipoles
(rather than simple point charges) greatly improves both the
electrostatic potential26,50 and the resulting electrostatic
interaction energies.10,37,39,41,51−54 Although not without addi-
tional computational cost, atomic multipoles are now routinely
employed in many popular force fields.30,39,41 As an alternate
and often more computationally affordable approach, others
have used off-atom point charges to effectively account for
anisotropic charge densities.35,55−57 Consistent with chemical
intuition, improvements from the use of atomic multipoles/off-
site charges are typically most significant when describing the
electric fields generated by heteroatoms and carbons in multiple
bonding environments.58,59

The induction and dispersion energies have also been shown
to exhibit anisotropies that go beyond the sum-of-spheres
model. For instance, it has been suggested that anisotropic
polarizabilities (which affect both polarization and dispersion)
are required to avoid an artificial overstabilization of base
stacking energies in biomolecules.32 In order to more accurately
treat polarization, several molecular mechanics potentials have
made use of either off-site60 or explicitly anisotropic polar-
izabilities.56,61 Similarly, the importance of anisotropic dis-
persion interactions has also been established,12,62−65 partic-
ularly for π-stacking interactions,5,32 and select potentials have
incorporated directional dependence into the functional form
for dispersion by expanding the dispersion coefficients in terms
of S ̅-functions (see Appendix A) or, more approximately,
spherical harmonics.45,62,64,66,67

2.2. Prior Models for Short-Range Interactions. At
closer intermolecular separations, where overlapping electron
densities between monomers leads to exchange-repulsion and
charge-penetration effects, anisotropy can also be important.
Exchange-repulsion has known orientation dependencies which
can play a quantitative role in halogen bonding34,68 and other
chemical interactions, and many authors have developed
models for describing the anisotropy of exchange-repulsion.
Some potentials (albeit not those amenable to large-scale
molecular simulation) employ numerically computed overlap
integrals in conjunction with the density-overlap model
popularized by Wheatley and Price69−73 to quantify anisotropic
exchange-repulsion, charge transfer, and/or charge penetration
interactions.51,53,54,74−76 Taking a more analytical approach,
many other potentials have extended the Born−Mayer
functional form77 to allow for orientation-dependent prefac-
tors,6,12,13,17,43,45,76,78,79 and model short-range effects using an
anisotropic functional form originally proposed by Stone and
Price:6

α ρ= − − ΩV G Rexp[ ( ( ))]ij ij ij ij ij
exch

(2)

Here, G is not a parameter, but rather an energy unit,16 Ωij
describes a relative orientation, and α and ρ represent,
respectively, the hardness and shape of the pair potential. In
principle, one might also allow α to have orientation
dependence; however, this seems unnecessary in practice.16

Similar to treatments of anisotropic electrostatics, the
orientation dependence of ρij is typically expressed in terms
of spherical harmonics and/or S ̅-functions.16
Finally, we note that, aside from exchange-repulsion, we are

aware of relatively little research on the development of simple
analytical expressions for the anisotropy of other overlap effects,

such as electrostatic/inductive charge penetration, charge-
transfer, or short-range dispersion.

3. THEORY AND MOTIVATION

Building on this prior work, we now outline a methodology
whereby atomic-level anisotropy can be incorporated into
standard force fields amenable to large-scale molecular
simulation. In particular, we present a general methodology
that optimally incorporates atomically anisotropic effects,
subject to the following goals:

(1) Chemical accuracy with respect to ab initio bench-
marks: For systems that can be directly parametrized
against high-quality ab initio PES, the force field should
exhibit chemical accuracy (average errors smaller than 1
kJ mol−1) with respect to the ab initio benchmark;
furthermore, any errors in the force field should be
random rather than systematic.

(2) Transferability across chemical environments: Given
force fields for two different pure systems, we should be
able to accurately calculate (via simple combination rules
and without additional parametrization) the PES of any
system that is a mixture of the pure systems.

(3) Simplicity: The force field should be restricted to
functional forms that are already compatible with, or
could be easily implemented in, existing molecular
simulation packages.

(4) Computational tractability: The force field should
impose minimal additional computational expense
relative to existing polarizable multipolar force fields.41

Given these goals, we now outline a detailed methodology
for incorporating atomic-level anisotropy into each component
(electrostatic, exchange-repulsion, induction, and dispersion) of
intermolecular interactions.

3.1. Anisotropic Models for Short-Range Interactions.
3.1.1. Exchange-Repulsion. We begin by considering the
exchange-repulsion (Eij

exch) that arises from the overlap of
electron densities from two nonspherical atoms-in-molecules, i
and j. Here and throughout, we closely follow the notation and
theory used by Stone.16 Without any loss of generality, we can
express the exchange-repulsion between these two atoms as a
function of their interatomic distance (rij) and relative
orientation (Ωij). Furthermore, we can describe this relative
orientation by assigning local coordinate axes to each i and j,
such that the exchange energy is given by

θ ϕ θ ϕΩ ≡E r E r( , ) ( , , , , )ij ij ij ij ij i i j j
exch exch

(3)

where θi and ϕi are the polar coordinates, expressed in the local
coordinate system of atom i, that describe the position of atom
j. Correspondingly, θj and ϕj define the position of i in terms of
the local coordinate system of j. In principle, the choice of these
local coordinate frames is arbitrary. However, for the models
introduced below, parametrization can be dramatically
simplified by exploiting the local symmetry of an atom in its
molecular environment and aligning the local coordinate frame
with the principal axis of this local symmetry.16 Some examples
of these local axes are shown in Figure 1.
Next, we make an ansatz that eq 3 is separable into radial-

and angular-dependent contributions,
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θ φ θ φ θ φ θ φ

θ φ θ φ

≈

=

E r V r

f r g

( , , , , ) ( , , , , )

( ) ( , , , )

ij ij i i j j ij ij i i j j

ij i i j j

exch exch

(4)

thus subdividing the problem of finding a general functional
form for Eij

exch into two more tractable tasks. First, we must find
an ideal sum-of-spheres model to describe the radial (isotropic)
dependence of the force field, and second, we must find a way
to model the orientation dependence as a multiplicative
prefactor to f(rij).
Given that the only requirement for f(rij) is that it be

isotropic, how should a suitable model for f(rij) be chosen?
Indeed, all standard isotropic force fields are of this general
form, and thus might serve as a suitable starting point for
anisotropic force field development. For reasons discussed
below, in this work, we employ a simple and accurate model47

for f(rij) that can be derived from first-principles. In particular,
we employ the overlap model12,43,69,71−73,80,81 to approximate
Eij
exch as proportional to the overlap between spherically

symmetric atom-in-molecule (AIM) electron densities, each
with density

ρ = −r D( ) expi i
B ri (5)

where Di and Bi are both atom type-specific constants that can
be parametrized from molecular electron densities and that
represent, respectively, the shape and hardness of the AIM
density. Using this approximation to the overlap model, the
exchange energy between two atoms is then modeled by

≈ ∝

≈ + + −

ρ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

E V S

A
B r

B r B r
( )

3
1 exp( )

ij ij
ij

ij
ij ij

ij ij ij ij

exch exch

exch
2

(6)

with combining rules

≡

≡

A A A

B B B

ij i j

ij i j

exch exch exch

(7)

and where Sρ
ij is the electron density overlap between atoms and

Aij is a fitted proportionality constant.
Here, and throughout, we use eq 6, referenced as the Slater-

ISA formalism,47 as our model for f(rij). This choice is primarily
justified by the accuracy of the Slater-ISA formalism, compared
to other sum-of-spheres models for repulsion.47 Furthermore,
and especially for simple test cases where one might expect the
sum-of-spheres approximation to hold (e.g., argon, methane, or
ethane), we have shown that the Slater-ISA FF correctly models
intermolecular potential energy surfaces for a sizable library of

intermolecular interactions over the asymptotic, attractive, and
repulsive regions of the PES.47

There is also solid theoretical motivation to utilize Slater-ISA
as a model for f(rij). Specifically, the AIM densities used to
parametrize Slater-ISA FF are partitioned using an iterated
stockholder atoms (ISA) procedure, and the resulting density
profiles are guaranteed to be maximally spherical.48,82,83 This
condition of “maximum sphericity” has two consequences.
First, it suggests that Slater-ISA FF should be an optimal, or
nearly optimal, isotropic atom−atom model. In other words,
the resulting model for f(rij) should completely account for the
radial dependence of the potential, and, consequently, g(θi, ϕi,
θj, ϕj) will truly represent the orientation dependence, rather
than simply overfitting residual errors from the radial functional
form, in turn, retaining high transferability. Second, and
relatedly, having maximally spherical ISA densities suggests
that anisotropic effects should be a minimal perturbation to the
PES. This means that, to a first-order approximation, g(θi, ϕi, θj,
ϕj) is simply equal to 1. Furthermore, the nonspherical
components of the ISA densities should provide us with
guidance as to which atom types might require anisotropic
treatment.
With the functional form for f(rij) determined, we now

describe our model for g(θi, ϕi, θj, ϕj). As motivated in
Appendix A, and under the ansatz of radial and angular
separability, an approximate, transferable, and orientation-
dependent expression for Ai

exch can be obtained by expanding
Ai
exch in a basis of renormalized spherical harmonics,

θ ϕ π θ ϕ=
+

C
l

Y( , )
4

2 1
( , )lm lm

(8)

thus yielding

∑
θ ϕ ξ θ ϕ

ξ θ ϕ θ ϕ

= +

≡
>

A A

a C

( , ) (1 ( , ))

( , ) ( , )

i i i i i i i

i i i
l k

i lk lk i i

exch
,iso
exch exch

exch

0,
,
exch

(9)

for Ai
exch and, subsequently,

= Ω + + −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥V A

B r
B r B r( )

( )

3
1 exp( )ij ij ij

ij ij
ij ij ij ij

exch exch
2

(10)

with

θ ϕ θ ϕΩ =A A A( ) ( , ) ( , )ij ij i i i j j j
exch exch exch

(11)

for the exchange-repulsion potential. Note that, with the
exception of the now orientation-dependent Ai

exch, the atomi-
cally anisotropic model in eq 10 is identical to our previously
defined isotropic model (eq 6).
The ai,lk

exch are free parameters that must be fit to ab initio data.
Still, we and other researchers have found the expansion in eq 9
to be very quickly convergent,6,12,13,17,43,45,76,78,79 especially
given a proper choice of local coordinate system that eliminates
many expansion terms via symmetry. In practice, only
symmetry-allowed terms up to l = 2 seem to be required for
heteroatoms, carbons in multiple bonding environments, and
select hydrogens (see equations in Section 5). Most other atom
types require no anisotropic parameters whatsoever, and
isotropic atom types can be easily modeled within this
formalism simply by setting ξi(θi, ϕi) = 0.

3.1.2. Other Short-Range Effects. As in prior work,47 we
have found that other short-range effects, including charge

Figure 1. Local axis system, shown for select atoms in molecules.
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penetration and short-range induction, can be modeled as being
proportional to exchange-repulsion. We take the same approach
here, and the functional form for these two short-range effects
is given by eq 10, with “exch” superscripts replaced by the
appropriate short-range energy term (see Section 4).
At shorter intermolecular separations, we must also damp

some of the functional forms developed for long-range
interactions (vida infra), to account for charge penetration
effects and avoid unphysical divergences. For induction, we use
the same isotropic damping function as in the AMOEBA force
field.41 To model the dispersion energies at short-range, we
damp each of the individual Cn dispersion coefficients (see
Section 3.2.3 and eq 18) with the Tang−Toennies84,85 damping
function,

∑= −
!

−

=

f x
n x

k
( ) 1 e

( )
n

x

k

k

0 (12)

where

= −x
r

V r
d

d
[ln ]

ij
ij ij
exch

By substituting our expression for Vij
exch from eq 10, we obtain

= −
+

+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x B r

B r B

B r B r
r

2 3

3 3ij ij
ij ij ij

ij ij ij ij
ij

2

2 2
(13)

for our anisotropic model, which is identical to the expression
derived for isotropic systems in prior work.47

3.2. Anisotropic Models for Long-Range Interactions.
3.2.1. Electrostatics. In the present work, we describe the
asymptotic electrostatics via a distributed multipole expan-
sion,12,16

∑=V Q T Qij
tu

t
i

tu
ij

u
jmultipole

(14)

with multipolar interaction tensor T and parametrized
moments Q for all multipole moments tu up to rank 2.
However, for increased computational efficiency, off-site point
charge models could also be utilized.37

3.2.2. Induction. Just as with electrostatics, long-range
induction should properly be described by a distributed
multipole expansion of interacting atomic polarizabilities.12,45

Indeed, it has been shown that inclusion of higher-order and/or
anisotropic polarizabilities greatly reduces errors in the two-
body induction potential, relative to commonly used isotropic
dipole polarizability models.15,41,86−88 Because the model for
the two-body induction also determines the many-body
polarization energy, the proper treatment of induced multipoles
becomes especially important in condensed-phase simula-
tion.15,16,41

Because of the increased computational cost of these higher-
order and anisotropic polarizability models, and because such
functional forms are not (yet) implemented in OpenMM (the
molecular simulation package used in this work), we currently
neglect both higher-order and anisotropic contributions to the
long-range induction. As we shall show, however, errors in the
induction potential limit the overall accuracy of our force fields
for extremely polar molecules (notably water), and future work
will likely require improved models for long-range induction.
3.2.3. Dispersion. Past research16 has motivated an

anisotropic atom−atom model for dispersion of the form

∑= −
Ω

=

V
C

r

( )
ij

n

ij n ij

ij
n

disp

6

,

(15)

Note that, in this equation, both odd and even powers of r are
allowed in the dispersion expansion, where all coefficients
associated with odd powers are nonzero only for anisotropic
charge distributions. In order to make this model both
computationally efficient and maximally compatible with our
previous isotropic model for dispersion, we choose (as an
ansatz) to model the dispersion anisotropy as an orientation-
dependent prefactor that affects all isotropic C6−C12 dispersion
coefficients equally:

∑= −
=

V A A
C

rij i j
n

ij n

ij
n

disp disp disp

3

6
,2
2

(16)

with

ξ θ ϕ= +A 1 ( , )i i i i
disp disp

(17)

and ξi
disp(θi, ϕi) as in eq 9. Once again, eq 16 reduces to the

isotropic case by setting ξi
disp(θi, ϕi) = 0. We note that, although

the functional form in eq 16 bears many similarities to eq 15,
(unphysically) no odd powers of r occur in our proposed
model for dispersion. Furthermore, the model utilizes the same
anisotropic expansion for each dispersion coefficient. None-
theless, in Section 5, we will show that this simple model yields
significant accuracy gains in the dispersion energy with only
minimal additional parametrization and expense.

4. TECHNICAL DETAILS
4.1. The 91 Dimer Test Set. Our benchmarking

procedures are the same as in prior work,47 and we briefly
summarize the relevant technical details. A full discussion of
results and example calculations are presented in Section 5.
We have previously developed a large library of benchmark

interaction energies involving the following 13 atomic and small
organic species: acetone, argon, ammonia, carbon dioxide,
chloromethane, dimethyl ether, ethane, ethanol, ethene,
methane, methanol, methyl amine, and water. (As in prior
work, these molecules were chosen to be broadly representative
of various functional groups in organic chemistry; studies on
larger and/or flexible molecules are outside of the scope of this
work, but will be the subject of future work.) Using these 13
monomers, we have generated a library of dimer interaction
energies for each of the 91 possible unique dimer combinations
(13 homomonomeric, 78 heteromonomeric). For each of these
dimer combinations, interaction energies were computed at a
DFT-SAPT89−97 level of theory for 1000 quasi-randomly
chosen dimer configurations, representing 91 000 benchmark
interaction energies in total. As described below, parameters for
a given force field methodology are then fit on a component-
by-component basis to reproduce the benchmark DFT-SAPT
energies.

4.2. Force Field Fitting. 4.2.1. Functional Forms. We will
present three types of force field fitting methodologies in this
work, termed Iso-Iso FF, Aniso-Iso FF, and Aniso-Aniso FF
(also referred to as a Multipolar, Anisotropic, Slater-Type
Intermolecular Force Field, MASTIFF). The nomenclature of
each name refers to, first, the isotropic/anisotropic treatment of
multipolar electrostatics and, second, the isotropic/anisotropic
treatment of dispersion and short-range effects. For MASTIFF,
dispersion and short-range anisotropies are only included on
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heteroatoms, atoms in multiple bonding environments, and
associated hydrogens (see the Supporting Information). Note
that Aniso-Iso FF is virtually identical to the Slater-ISA FF
model developed in our prior work, and that this partial
treatment of anisotropy (via multipolar electrostatic terms) is
very similar in spirit to the popular AMOEBA39,41 method-
ology.
All force fields in this work use the following general

functional form for two-body interactions:

∑= + + + +δV V V V V Vb

ij
ij ij ij ij ijFF

2 exch elst ind dispHF

(18)
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Bi, Ci, and Qi coefficients are all parameters of the force field
(see Section 4.2.3 for details), and T is the multipolar
interaction tensor given in Appendix A. For Iso-Iso FF (the
completely isotropic model), the summation in ∑tu Qt

iTtu
ij Qu

j is
truncated to only include point charges, whereas Aniso-Iso FF
and MASTIFF both use a multipole expansion up to
quadrupoles.
Both Iso-Iso FF and Aniso-Iso FF treat each Ai as a single

fitting parameter, with the exception that Ai
disp = 1. By contrast,

Ai is modeled in our fully anisotropic model, MASTIFF, as an
orientation-dependent function expressed as an expansion in
terms of spherical harmonics,

∑
θ ϕ ξ θ ϕ

ξ θ ϕ θ ϕ

= +

≡
>

A A

a C

( , ) (1 ( , ))

( , ) ( , )

i i i i i i i

i i i
l k

i lk lk i i

,iso

0,
,

(20)

where Ai,iso and ai,lk are fitted parameters. As with the previous
two force fields, Ai,iso

disp = 1 for MASTIFF. For isotropic atom
types in MASTIFF (listed in the Supporting Information), ξi(θi,
ϕi) = 0, such that the functional form for isotropic atom types is
identical between MASTIFF and Aniso-Iso FF, and only the

functional form for anisotropic atom types differ between force
fields. Note, however, that the numerical values for Ai,iso in
MASTIFF can differ from that of the Ai parameters used in the
other models.
As in ref 98, and for the purposes of force field fitting, the

polarization energy, Vpol = Vpol
(2) + Vpol

(3−∞), is calculated using
using a Drude oscillator model. As a difference from prior work,
here the Thole-damping function follows the same functional
form as in the AMOEBA model,39

ρ
π

= −a
au

3
4

exp( )3

(21)

where a = 0.39 is a damping parameter, and u = rij/(αiαj)
1/6 is

an effective damping distance that is dependent on calculated
atomic polarizabilities (vida infra) (αi). (The choice of damping
function was selected for later compatibility with the
OpenMM99 software package; see Section 4.3 for details.) As
described fully in ref 98, and for the purpose of logical
consistency with the corresponding SAPT energies (see Section
4.2.2), during force field fitting, Vpol is subdivided into second-
order (Vpol

(2)) and higher-order Vpol
(3−∞) contributions, and each

contribution to the Drude oscillator energy is then added to

either Vind or VδHF, respectively.
4.2.2. Benchmark Energies. Because DFT-SAPT provides a

physically meaningful energy decomposition into electrostatic,
exchange-repulsion, induction, and dispersion terms, parame-
ters for each term in eq 18 are directly fit to model the
corresponding DFT-SAPT energy (see ref 47 and references
therein for details on the DFT-SAPT terminology):
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ind ind
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ind exch
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(2)

disp exch
(2)

HF HF

(22)

Fitting parameters on a component-by-component basis
helps ensure parameter transferability and minimizes reliance
on error cancellation. Note that (i) no parameters are fit to
reproduce the total energy and (ii) because the DFT-SAPT
energy decomposition is only calculated to second-order, third-
and higher-order terms (mostly consisting of higher-order

induction) are estimated by Eδ
HF

.
4.2.3. Parameters Calculated from Monomer Properties.

Of the parameters listed in eq 19, most do not need to be fit to
the DFT-SAPT energies, but can instead be calculated directly
on the basis of monomer electron densities. In particular, all
multipolar coefficients Q, polarizabilities αi (involved in the
calculation of Vpol), dispersion coefficients C, and atom-in-
molecule exponents BISA, are calculated in a manner almost
identical to ref 47. Note that, for our atom-in-molecule
exponents, we tested the effects of treating BISA either as a hard
constraint or a soft constraint in the final force field fit. While
the general conclusions from this study are rather insensitive to
this choice of constraint methodology, we have found that the
overall force field quality is somewhat improved by relaxing the
BISA coefficients in the presence of a harmonic penalty function
(technical details of which can be found in the Supporting
Information of ref 47). The optimized B coefficients in this
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work are always within 5%−10% of the calculated BISA

coefficients, demonstrating the good accuracy of the BISA

calculations themselves.
4.2.4. Parameters Fit to Dimer Properties. In addition to

the soft-constrained B parameters, all other free parameters (A
and a parameters from eqs 18 and 20 are fit to reproduce DFT-
SAPT energies from the 91-dimer test set described above. For
each dimer pair, 4 or 5 separate optimizations (for exchange,
electrostatics, induction, δHF, and, for MASTIFF, dispersion)
were carried out to minimize a weighted least-squares error.
with the weighting function given by a Fermi−Dirac functional
form,

=
+−

| |( )
w

1

exp 1
i E

E5.0
i

min (23)

where Ei is the reference energy and Emin is an estimate of the
global minimum well depth (see ref 47 for details).
4.2.5. Local Axis Determination. Identically to AMOEBA

and other force fields that incorporate some degree of atomic-
level anisotropy,39,43,79 we use a z-then-x convention to
describe the relative orientation of atomic species. By design,
the z-axis is chosen to lie parallel to the principal symmetry axis
(or approximate local symmetry axis) of an atom in its
molecular environment, and the xz-plane is similarly chosen to
correspond to a secondary symmetry axis or plane. Based on
the assigned symmetry of the local reference frame, many terms
in the spherical expansion of eq 9 can then be set to zero,
minimizing the number of free parameters that need to be fit to
a given atom type. Representative local reference frames are
shown for a few atom types in Figure 1, and a complete listing
of anisotropic atom types (along with their respective local
reference frames and nonzero spherical harmonic expansion
terms) are given in the Supporting Information.
4.2.6. CCSD(T) Force Fields. DFT-SAPT is known to

systematically underestimate the interaction energies of hydro-
gen-bonding compounds, and can also exhibit small but
important errors for dispersion-dominated compounds.100

Consequently, for simulations involving CO2, CH3Cl, NH3,
and H2O, we tested the effect of refitting our SAPT-based force
fields to reproduce benchmark supermolecular, counterpoise-
corrected CCSD(T)-F12a/aVTZ calculations on the respective
dimers. All calculations were performed using the Molpro 2012
software.101 As with the DFT-SAPT-based force fields, all fits
were performed on a component-by-component basis to fit
(aside from the dispersion, discussed below) the corresponding
DFT-SAPT energies as calculated in prior work:47
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(24)

where δ(CC) ≡ Eint
CCSD(T)‑F12a − Eint

DFT‑SAPT. In the case of
dispersion, and so that the total benchmark energy
corresponded to the total CCSD(T)-f12a/aVTZ interaction
energy, the difference between coupled-cluster and SAPT
energies was added to the SAPT dispersion energy. (This
correction scheme was chosen to account for small differences

in electron correlation effects between coupled cluster and
DFT-SAPT.) The dispersion model Vdisp was then para-
metrized to reproduce the modified Edisp energy.
In fitting our CCSD(T)-f12a-based force fields, we some-

what relaxed the constraint that Adisp = 1 for all atom types, and
instead let 0.7 ≤ Adisp ≤ 1.3. This constraint relaxation led, in
some cases, to modest improvements in the fitted potential.

4.2.7. CO2 Three-Body Potential. For modeling bulk CO2,
we developed a three-body model to account for three-body
dispersion effects. This three-body model is based on the three-
body dispersion Axilrod−Teller−Muto (ATM)-type model
developed by Oakley and Wheatley.102 These authors fit the
ATM term with the constraint that the total molecular C9
coefficient be 1970 a.u. Based on our own calculations using a
CCSD/AVTZ level of theory,103 we have obtained an isotropic
molecular C9 coefficient of 2246 a.u.; consequently, a 1.13
universal scale factor was introduced to the Oakley potential, to
obtain dispersion energies that are consistent with this new
dispersion coefficient.

4.3. Simulation Protocols. 4.3.1. Polarization Models for
Simulations. Although we have used a Drude oscillator model
in the past and during force field development, at present,
Drude oscillators in the OpenMM99 software are not
compatible with use of higher-order multipoles. For this
reason, here, our molecular simulations use an induced dipole
model to describe polarization effects, with functional form
identical to that from the AMOEBA force field.39 Numerical
differences between the Drude oscillator and induced dipole
models were found to be negligible.

4.3.2. Second Virial Calculations. Classical second virial
coefficients were calculated for NH3, H2O, CO2, and CH3Cl
using rigid monomer geometries and following the procedure
described in ref 98.

4.3.3. ΔHsub for CO2. For CO2, the molar enthalpy of
sublimation was determined according to

∫
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≈ − + +
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(25)

which assumes ideal gas behavior and PVg ≫ PVcrys. For the
crystal, an experimental measure of Cp was obtained from ref
104 and numerically integrated to obtain a value
ΔUel,crystal,0K→Tsub

= 6.70 kJ mol−1. Theoretical measures of
Evib,crystal ≈ 2.24−2.6 kJ mol−1 were obtained from ref 105 and
ref 106, respectively, and Uel,crystal,0K was determined from the
intermolecular force field using a unit cell geometry taken from
the experiment.107

4.3.4. Other CO2 Simulations. To determine the densities
and enthalpies of vaporization used in this work, simulations
were run in OpenMM using NPT and NVT ensembles,
respectively. Bulk CO2 was modeled using 780 rigid CO2
molecules and periodic boundary conditions. Electrostatic
interactions were described with the particle-mesh Ewald
(PME) method, three-body dispersion was treated using a 9
Å cutoff, and the remainder of the potential was computed
using a 14 Å cutoff and long-range energy/pressure corrections.
A Langevin integrator (with a friction coefficient of 2.0 ps−1)
and Monte Carlo barostat were utilized, when required, for
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temperature and pressure coupling. A cubic box with isotropic
coupling was used for NPT simulations, and a 0.5 fs time step
was used for all simulations. Under these conditions, and using
an unoptimized version of OpenMM (see Supporting
Information for details), simulations speeds were ∼2.5 ns/day
(for MASTIFF) or ∼3.1 ns/day (for Aniso-Iso FF). After an
equilibration period of at least 100 ps, simulation data was
collected for a minimum of 1 ns. Average densities were
obtained directly from the simulation, and the molar enthalpy
of vaporization for CO2 was determined from the following
formula:

Δ = −

= − + −

H H H

U U P V V( )

vap g liq

g liq g liq (26)

Note that, at the state points studied, the ideal gas
approximation is insufficiently accurate, and thus simulations
were run for both the gas and liquid phases at experimentally
determined densities and pressures.108

5. RESULTS AND DISCUSSION
5.1. Overview. We now benchmark our developed

anisotropic force field methodology against various sum-of-
spheres approximations. As is standard in ab initio force field
development, we will principally rely on the following metric
for force field quality: the accuracy with which a given force
field functional form can reproduce high-quality ab initio
benchmark energies. Furthermore, our choice of relevant
benchmark energies is guided by the many-body expansion
(MBE),12,109 whereby the energy of an arbitrary N-particle
system is expressed as a sum of n-body interaction potentials,

∑ ∑⃗ ⃗ ⃗ = ⃗ ⃗ + Δ ⃗ ⃗ ⃗ +
< < <

E r r r E r r E r r r( , , ..., ) ( , ) ( , , ) ...N N
i j

N

i j
i j k

N

i j k1 2 2 3

(28)

E2, the “pair potential”, is defined as the difference in
interaction energies between a molecular dimer and the
individual monomers themselves; ΔE3 corresponds to the
nonadditive contributions (energy note taken into account in

E2) to the interaction energies of trimers, and higher-order
terms in the expansion are defined analogously. Aside from
many-body polarization, for which the complete N-body effects
can readily be calculated,12,110 the MBE typically converges
rapidly, such that only E2 and occasionally ΔE3 terms are
required to completely and accurately describe EN.

12,16

(Notably, the combination of E2 and N-body polarization
often account for upward of 90%−95% of the total interaction
energy;16,111 as discussed in Section 5.5, any important
contributions from ΔE3 can be taken into account separately
and systematically using known methods.111,112) Thus, because
the accuracy and predictive power of an ab initio force field is
dependent substantially on the accuracy with which we can
describe E2, and because the functional forms introduced in
Section 3 directly affect only this pairwise-additive portion of
the intermolecular potential, we primarily concentrate our ef forts
on assessing force f ield quality, with respect to benchmark
calculations of dimer interaction energies.
In addition to the above comparisons to ab initio

benchmarks, a secondary goal of this work is to evaluate the
extent to which the force field methodologies presented here
can be used, not only to reproduce ab initio benchmarks, but
also to accurately simulate experimental properties. Especially
for ab initio force fields, accurate comparisons to the
experiment are dependent not only on the quality of the
two-body force field (as defined above), but also on the
accuracy of the benchmark electronic structure theory, the
treatment of many-body and/or quantum effects, etc. Thus, for
select systems, we also compare our force fields to experimental
second virial coefficients and bulk properties, with the goal of
offering preliminary insight into how our anisotropic force field
methodology might be utilized, in conjunction with accurate
electronic structure theory and a proper treatment of many-
body effects, to yield a complete N-body force field capable of
accurately simulating experimental properties across a wide
range of phase space.

5.2. Accuracy: Comparison with DFT-SAPT. We
compare between three models in this work (see Section 4
for detailed functional forms): Iso-Iso FF, which uses a
completely isotropic description of all energy components;

Figure 2. Characteristic RMSE (as described in the main text) for the Iso-Iso FF (purple), Aniso-Iso FF (orange), and MASTIFF (green) over the
91 dimer test set. The semitransparent bars represent total RMSE for each energy component, while the smaller solid bars represent “Attractive”
RMSE, in which repulsive points have been excluded. For each force field, two types of fits are displayed: dimer-specific (solid) and transferable
(hashed lines) (see Section 5.3 for details). Finally, note that, for Iso-Iso FF and Aniso-Iso FF, only the electrostatic and total energy RMSE values
differ.
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Aniso-Iso FF, which additionally accounts for multipolar
electrostatic anisotropy; and MASTIFF, which incorporates
anisotropy into all energy components of the intermolecular
potential. For each of the 91 dimer combinations described in
Section 4, and for each model, parameters were fit to reproduce
benchmark DFT-SAPT (PBE0/AC) energies calculated for
1000 different relative orientations of the constituent
monomers. From these “dimer-specific” fits, and as described
in our prior work,47 we then averaged the root-mean-square
error (RMSE) and mean signed error (||MSE||) values from
each of the 91 fits to produce so-called “characteristic RMSE/||
MSE||”, metrics representative of the errors associated with a
given force field methodology. Because the absolute magni-
tudes of the various energy components becomes large in the
repulsive portion of the potential, these characteristic errors are
dominated by repulsive configurations. As such, we have also
calculated “attractive RMSE/||MSE||” (aRMSE/a||MSE||), de-
fined as the characteristic errors for the subset of configurations
with total interaction energies Etot < 0. All computed
characteristic RMSE are shown in Figure 2, with ||MSE|| data
shown in the Supporting Information. Unless otherwise stated,
results in this section refer exclusively to the “Dimer-specific”
fits in Figure 2, with an explanation and full discussion of so-
called “Transferable” fits given in Section 5.3.
Based on the characteristic RMSE shown in Figure 2, both

Aniso-Iso FF and MASTIFF offer substantial improvements
over the completely isotropic model Iso-Iso FF. Though
unsurprising, given the well-studied importance of higher-order
electrostatic multipole moments, Aniso-Iso FF shows reduced
RMSE/aRMSE that are (depending on the exact error metric
used) roughly 30% smaller than Iso-Iso FF. Both RMSE and
aRMSE measures show similar gains in accuracy, indicating that
inclusion of higher-order multipoles (henceforth “multipolar
electrostatic anisotropy”) is important in both attractive and
repulsive regions of the potential. Crucially, the inclusion of
additional “short-range anisotropies” (anisotropic interactions
arising from overlap of monomer electron densities, namely
exchange-repulsion and electrostatic/inductive charge penetra-
tion) and long-range “dispersion anisotropy” yields a further
40% reduction in RMSE/aRMSE for MASTIFF, compared to
the Aniso-Iso FF. This latter result is highly important, as it

suggests that, for the generation of highly accurate ab initio
potentials, the combination of short-range and dispersion
anisotropies are comparable in importance to multipolar
electrostatic anisotropy. Indeed, this substantial increase in
force field accuracy, arising from a comprehensive treatment of
anisotropic effects, is one of the most important findings in the
present work. In summary, and encouragingly, the combination
of multipolar electrostatic, short-range, and dispersion aniso-
tropies result in an overall 60% reduction in RMSE/aRMSE,
when comparing Iso-Iso FF to MASTIFF.
Figure 2 also displays characteristic RMSE/aRMSE for each

component of the force field, allowing us to account for the
influence of anisotropy on a term-by-term basis. Immediately,
one can see that (aside from induction, discussed below) an
inclusion of atomic-level anisotropy greatly improves the
description of each energy component. Unless otherwise stated,
here, we report results for aRMSE and dimer-specific fits,
although similar values are obtained for overall RMSE and for
transferable fits. Compared to Iso-Iso FF, exchange errors in
MASTIFF are reduced by 47%. Electrostatic errors are reduced
by an even larger 60%. By evaluating the ratio of electrostatic
errors between different models, we find that aRMSE(Aniso-
Iso)/aRMSE(Iso-Iso) = 0.64 and aRMSE(MASTIFF)/aRMSE-
(Aniso-Iso) = 0.62, suggesting that both higher-order multi-
poles and anisotropic charge penetration terms are necessary to
obtain an accurate description of the DFT-SAPT electrostatic
energy. Finally, via an inclusion of dispersion anisotropy,
aRMSE for dispersion are reduced by a significant 65%.
Although the trends for exchange, electrostatics, and

dispersion universally suggest the importance of including
atomic-level anisotropy, trends for terms describing the physics
of polarization and charge-transfer (represented in DFT-SAPT
by induction and δHF) are less encouraging. On the one hand,
including higher-order multipoles substantially lowers RMSE
for induction, with aRMSE(Aniso-Iso)/aRMSE(Iso-Iso) = 0.70.
Because both Iso-Iso FF and Aniso-Iso FF use isotropic
polarizabilities, and because the induction energy is fundamen-
tally dependent only on the polarizabilities and the static
electric field, this result is clearly due to an improved treatment
of the static electric field via anisotropy of the multipolar
electrostatics. Once again, this suggests that an anisotropic

Table 1. “Improvement Ratios” for Each Homomonomeric Species in the 91 Dimer Test Seta

aFor each dimer and energy component, the improvement ratio is calculated as the ratio of aRMSE between Iso-Iso FF and MASTIFF; values
greater than 1 indicate decreased errors in the anisotropic model. Entries have been ordered according to the improvement ratio for the total energy.
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treatment of long-range electrostatics is crucial for accurate
force field development. On the other hand, our functional
form for anisotropic short-range induction (eqs 18 and 20)
yields no improvement in the induction RMSE, with aRMSE-
(MASTIFF)/aRMSE(Aniso-Iso) = 0.97. This observed lack of
improvement is likely due to a combination of factors. First,
and perhaps most importantly, we have chosen in this work to
use isotropically averaged dipole polarizabilities, but as with
electrostatics, anisotropy and higher-order terms have been
shown to be important in the multipole expansion of atomic
polarizabilities.12,45,56,86,113 Second, and although probably a
smaller source of error, it is also unclear how to optimally
model the distance dependence of the induction energy at short
intermolecular separations, where penetration and charge-
transfer effects become important and the long-range polar-
ization terms must be damped.47,114−116 Given that the more
elaborate short-range form of the MASTIFF induction model
does not result in a tangible improvement, it is quite possible
that alternative formulations are required for an accurate
treatment of highly anisotropic induction.
To further analyze the effects of anisotropy on a molecule-

by-molecule basis, we have calculated “improvement ratios”,
defined as aRMSE(Iso-Iso)/aRMSE(MASTIFF), for each
energy component and for each homomonomeric species in
the test set, results for which are shown in Table 1.
(Improvement ratios for heteromonomeric species are given
in the Supporting Information.) The most striking observation
from the data presented in Table 1 is that the improvement
ratios vary considerably with molecule. For example, with
water, the aRMSE is improved by an order of magnitude when
anisotropy is included. On the other hand, no improvement is
seen for hydrocarbons such as ethane and methane (also see
the Supporting Information). Consequently, anisotropy in the
short-range expansions may be necessary for only some atoms
types (see Section 6). Consistent with chemical intuition, we
have found anisotropy to be particularly important for
heteroatoms, π-bonded atoms, and all hydrogens bonded to
anisotropic heavy atoms. Appealingly, this distinction between
anisotropic and isotropic atom types simplifies force field
parametrization and can enable more efficient molecular
simulation (via a more cost-effective treatment of multipolar
electrostatics) without sacrificing force field accuracy. Note that
the current empirically determined definitions of anisotropic
atom types match both chemical intuition and the more
quantitative measures of atomic anisotropy proposed by other
groups.25,26

Generally, the ordering of improvement ratios for exchange,
electrostatics, dispersion, and the total energies (but not
induction, see above) are reasonably correlated. Physically
speaking, all atomically anisotropic interactions arise from the
same source (atomically anisotropic electron densities), and so
the observed correlation is perhaps to be expected. Never-
theless, there are some exceptions to this trend. For ethene,
relatively modest improvement ratios (roughly 1.4) are seen for
exchange and electrostatics, whereas dispersion shows a much
greater improvement ratio of 7.6. Since ethene homomono-
meric interactions are dispersion-dominated, the improvement
ratio for the total energy then roughly corresponds to that of
dispersion. For acetone, there is strong correlation between the
improvement ratios for exchange, electrostatics, and dispersion,
which might lead one to suspect that the total energy
improvement ratio would also be ∼1.5−2.0. Nevertheless, for
this molecule, the isotropic model benefits from error

cancellation between energy components, and the total energy
aRMSE values between isotropic and anisotropic models are
rather similar.
Crucially, our results show that multipolar electrostatics is

certainly not the exclusive, nor even always the dominant, source of
atomic anisotropy. Indeed, for molecules such as ethene,
multipolar anisotropy in the electrostatic model is relatively
unimportant, whereas dispersion anisotropy is essential for
accurately modeling the π interactions. Thus, generally,
multipolar electrostatic, dispersion, and/or short-range aniso-
tropies all must be taken into account in order to obtain
accurate intermolecular models.

5.3. Transferability: Comparison to DFT-SAPT. From
the above results, it is clear that, when explicitly parametrized,
inclusion of anisotropy can greatly enhance the accuracy of an
intermolecular potential. Nevertheless, for standard force field
development, force field parameters must be transferable in
order to be useful in the accurate prediction of intermolecular
interactions in new chemical and/or physical environments.
Indeed, in comparing simpler models to ones that introduce
additional complexity, there is an ever-present danger that any
accuracy gains from the more-complex functional form are
simply due to overfitting or error cancellation,117 ultimately
resulting in a model with poor predictive ability and limited
transferability.
We have previously shown how, with models similar to Iso-

Iso FF15,98 or Aniso-Iso FF,47 it is possible to generate
transferable potentials with applicability to a broad range of
chemical and physical environments.15 This transferability has
been attributed to a combination of the physically meaningful
energy decomposition of DFT-SAPT, parametrization on a
component-by-component basis (rather than to the total
energy), and the use of physically motivated functional forms
and parameters.15,47,98 MASTIFF largely shares this philosophy
of force field development, and so we might also expect it to be
transferable to heteromonomeric dimers. Indeed, the long-
range multipolar electrostatic model is rigorously transferable,
as are the isotropic long-range induction and dispersion
coefficients used in the force field.12,16 However, the overall
transferability of MASTIFF cannot be taken for granted,
because of the specific way in which we have incorporated non-
electrostatic anisotropic effects. First, we have relied on several
separability ansatzes (eqs 4 and 7), and second, in doing so, we
have implicitly neglected potentially important interaction
functions that are dependent on the relative orientation
between monomers (see Appendix A). Both of these
assumptions may affect the transferability of the resulting
force field.
To assess the transferability of the MASTIFF model, we

analyze the extent to which parameters developed for the
homomonomeric systems can be used, without modification, to
describe the interactions of the mixed dimers. Such an out-of-
sample prediction, which is easily accomplished with our 91-
dimer test set, is a direct measure of the extent to which our
pair potentials can be applied to new chemical environments.
For these transferable fits, parameters were fit to the 13
homomonomeric systems, and the combination rules shown in
eq 18 were used to generate force fields for the remaining
heteromonomeric systems. Thus, with these transferable fits,
we have essentially generated 78 000 predictions from fits to
13 000 data points. RMSE and aRMSE values for these fits are
shown in Figure 2, and we treat relative differences between
these quantities for the “dimer-specific” and “transferable” fits
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as a measure of the extent of transferability for each force field
methodology.
Remarkably, all three force fieldsIso-Iso, Aniso-Iso, and

MASTIFFperform similarly for the dimer-specific and
transferable fits, both for the individual interaction energy
components and for the total interaction energy. The degree of
transferability of the MASTIFF model is very encouraging, and
it indicates that the manner in which we have chosen to include
the anisotropy is meaningful and does not lead to overfitting,
but rather increases the accuracy of the intermolecular
potentials for both in-sample and out-of-sample systems.
5.4. Accuracy: Second Virials. Having compared our

various force fields methodologies against DFT-SAPT, we now
turn our focus to our secondary goal in this work, that of
evaluating the extent to which our anisotropic force field
methodology can be used to more accurately simulate
experimental properties. To this end, we begin by benchmark-
ing our force fields against experimental second virial
coefficients, which offer a direct experimental measure of the
pair potential (E2) without the complication of many-body
effects (which will be discussed in Section 5.5). Notably,

comparisons to experimental second virial coefficients are
dependent not only on the quality of a force field (as measured
in Section 5.2), but also on the accuracy of the benchmark
electronic structure theory used to fit the force field.
Consequently, and to evaluate possible inaccuracies in our
DFT-SAPT/aVTZ+m47 benchmark energies, we have also
parametrized models with respect to CCSD(T)-F12a/aug-cc-
pVTZ+m, a level of theory which serves as a computationally
affordable yet accurate prediction of the CCSD(T)/CBS
limit.118,119 We refer to these coupled cluster-based models
with a -CC suffix, e.g., MASTIFF-CC; details of the refitting
procedure (which minimally effect the dispersion model) can
be found earlier in Section 4. Thus, aside from quantum effects
(which are negligible for CO2

120 and well-benchmarked for
H2O

121), our second virial predictions should offer a fairly
direct comparison between different models, levels of electronic
structure theory, and experiment.
Using both our original and -CC potentials, we have

calculated second virial coefficients for each Iso-Iso-CC FF,
Aniso-Iso-CC FF, MASTIFF, and MASTIFF-CC, and for the

Figure 3. (Top) Force field fits for the water dimer using the Iso-Iso-CC FF (purple), Aniso-Iso-CC FF (orange), and MASTIFF-CC (green)
methodologies. The y = x line indicates perfect agreement between reference CCSD(T)-F12a energies and each force field, while shaded gray areas
represent points within ±1 kJ mol−1 agreement of the benchmark. RMSE and aRMSE are as described in the main text. (Bottom) Classical second
virials for water, with experimental data (black line) taken from ref 122. Note that some data points from Iso-Iso FF extend below the plot area.
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following systems: H2O (Figure 3), NH3 (Figure 4), CH3Cl
(Figure 5), and CO2 (Figure 6).
Immediately, we observe that the effect of the coupled cluster

(-CC) correction is minimal (compared to differences in force
field methodologies) for most systems, with the exception of
CO2, where DFT-SAPT exhibits modest deficiencies with
respect to CCSD(T)-f12a (see the Supporting Information and
ref 119). Furthermore, we find that that the MASTIFF (and
especially MASTIFF-CC) methodologies predict virial coef-
ficients that closely correspond to experimental data. Generally,
the Iso-Iso-CC FF predictions are much worse than their
MASTIFF-CC or Aniso-Iso-CC FF counterparts, suggesting
that an accurate treatment of long-range electrostatics is
essential to obtain accurate virial coefficients. Finally, although
Aniso-Iso FF-CC gives equally good predictions for some
systems (notably CH3Cl), compared to the MASTIFF-CC
method, virial coefficients for other systems (especially H2O)
are less accurate, suggesting that dispersion and short-range
anisotropies are also important in many systems for the
accurate prediction of virial coefficients.
Generally, and given the range of systems tested (CO2 dimer

interactions are dispersion-dominated, while CH3Cl, NH3, and
H2O have relatively larger electrostatic and polarization
contributions), these second virial calculations suggest that,

when fit to gold-standard electronic structure theories, our
anisotropic force field methodology offers an improved strategy
for developing quantitatively accurate pair potentials.

5.5. Accuracy: Condensed-Phase Properties of CO2. A
major goal for standard force fields is that they be capable of
accurately simulating bulk properties. To this end, we require
not only an accurate pair potential, but also (in many cases) a
proper treatment of polarization and other many-body effects.
To provide a first example of how the MASTIFF methodology
might be used as the pair potential in a complete, many-body
force field useful for condensed-phase simulation, here we have
developed and tested a force field for CO2, which includes both
pairwise additive and many-body effects. Based on its accuracy
in predicting second virial coefficients, we use the MASTIFF-
CC potential from Section 5.4 to describe both the pairwise
potential and the many-body induction. Yet, non-inductive
many-body effects have been shown to be important for
CO2,

102,112,125,126 and so we have additionally developed and
tested a model for three-body dispersion based on the three-
body dispersion potential developed by Oakley and Wheatley
(see Section 4). Three-body exchange effects are not taken into
account in our model; however, prior work shows they are very
small under the conditions studied here.112 Using the various
CO2 models described above, we have run bulk simulations for

Figure 4. Force field fits and classical second virials for ammonia, as in Figure 3, but with experimental data taken from ref 123.
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a rigid model of CO2 over a variety of vapor, liquid,
supercritical, and solid phase points. Density predictions for
the vapor, liquid, and supercritical phases of CO2 are shown in
Table 2 and in the Supporting Information (Tables S3 and S4),
and enthalpies of sublimation and vaporization are shown in
Table 3 and Table S5. Simulations with a flexible CO2 model
yielded similar results, which are also given in the Supporting
Information.
As anticipated from prior work,127 complete neglect of three-

body dispersion (Table S3) leads to an overestimation of the
density at all phase points studied, particularly in the denser
liquid phases. Although not surprising, this result underscores
the importance of including many-body effects (at least for
CO2) when developing highly accurate ab initio force
fields.111,112 Upon including three-body dispersion effects,
however, MASTIFF-CC succeeds in reproducing all studied
experimental properties to within a few percent (see Tables 2
and 3). (As shown in Table S4, Aniso-Iso-CC FF reproduces
some, but not all, experimental properties to within this level of
accuracy, and Iso-Iso-CC FF generally has poor quantitative
agreement with the experiment.) Importantly, MASTIFF-CC
can correctly predict the CO2 sublimation enthalpy, a quantity
that is critically dependent on the lattice energy of the solid

phase. Unlike with liquid or supercritical CO2, where many
dimer configurations are sampled, the solid consists of only four
symmetry-unique configurations. Consequently, whereas an
isotropic potential might yield good property predictions for
the liquid phase via averaging and/or error cancellation, it
would not be expected to correctly predict the solid phase,
where beneficial error cancellation is unlikely. Indeed, most
theories (including Aniso-Iso-CC FF, Iso-Iso-CC FF, our
previously developed SYM-3B model,112 nearly all popular
empirically developed CO2 models,

128 AMOEBA,106 and many
electronic structure theories106) struggle to correctly predict the
solid-phase properties of CO2. For this reason, the enthalpy of
sublimation is considered an extremely stringent test of force
field quality,128 and the fact that MASTIFF-CC can accurately
reproduce this quantity is evidence for both the excellent
quality of the many-body MASTIFF-CC potential (specifically)
and of the importance of atomic-level anisotropy (generally).
Overall, our CO2 results are a preliminary indication that,
provided we correctly account for many-body effects and
benchmark against a gold-standard electronic structure theory,
our newly developed anisotropic methodology may successfully
be used as the basis for accurate, “next-generation” force fields

Figure 5. Force field fits and classical second virials for chloromethane, as in Figure 3, but with experimental data from the experimental equation of
state (EOS) given in ref 124.
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amenable to the molecular simulation of bulk properties in a
variety of phases.
Despite the success of our MASTIFF-CC model for CO2, it

is also worthwhile to address and understand its minor
shortcomings. In particular, we have studied representative
two- and three-body energies taken from a snapshot of the
liquid at 273.15 K and 100 bar (see Figure S5 in the Supporting
Information). When benchmarked against the accurate PES
developed by Hellmann,125 the crude three-body potential
utilized above is found to be systematically in error. Although
some of this error may be due to inaccuracies in the benchmark
potential itself, as compared to coupled-cluster,125 most of this
error is likely due to inaccuracies in our model for many-body
CO2 interactions. The atomically isotropic treatment of three-
body dispersion, neglecting higher-order dispersion terms, and
neglecting explicit three-body exchange, may all contribute to
this error, and an improved model for many-body CO2
interactions will be the subject of future research. Indeed, it
is well-known that the density can be extremely sensitive to the
treatment of many-body effects,126 and it is highly probable that
an improved many-body model would reduce the already small
errors observed in our MASTIFF-CC predictions. Regardless
(and despite some small residual errors arising from the
simplified treatment of many-body effects), it appears that the

Figure 6. Force field fits and classical second virials for CO2, as in Figure 3, but with experimental data taken from ref 108.

Table 2. Select Densities for CO2 across a Range of
Experimental Conditionsa

phase
temp, T
(K)

pressure, P
(bar)

density
(g/mL) exp

%
error

gas 300 50 0.131 0.128 2.34
supercritical 320 140 0.728 0.703 3.56
liquid 300 100 0.825 0.802 2.87
liquid 273.15 100 1.000 0.974 2.67

aExperimental data taken from the EOS of ref 108. Entries ordered by
increasing experimental density.

Table 3. Enthalpies of Vaporization/Sublimation for CO2 at
Several Temperaturesa

ΔH (kJ mol−1)

phases temp, T (K) obs exp % error

s → g 194.76 25.0 ± 0.15 25.2 −0.8
l → g 288 7.92 7.80 −1.4

aExperimental data taken from the EOS of ref 108. The uncertainty in
the enthalpy of sublimation is due to ambiguity in the theoretical zero-
point energy for CO2 (see Section 4).
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MASTIFF-CC methodology yields an extremely accurate two-
body force field for CO2, with broad applicability across a range
of experimentally important phases.

6. CONCLUSIONS AND FUTURE WORK

We have developed a comprehensive methodology for
modeling atomic-level anisotropy in standard intermolecular
force fields. Via a simple extension to standard isotropic force
fields,47 we have demonstrated how a computationally efficient
treatment of atomic-level anisotropy can lead to significant
improvements in models for intermolecular interactions.
Critically, and in contrast to popular assumption, an accurate
treatment of multipolar electrostatics does not, by itself, account
for all energetically important effects of atomic-level anisotropy.
Rather, our results indicate that the combined anisotropy of
dispersion, exchange, and charge penetration is of comparable
importance to long-range multipolar electrostatics, and must be
comprehensively taken into account in order to obtain
intermolecular force fields of the highest quality. In agreement
with the more quantitative metrics proposed by others,25,26 we
have found a comprehensive model of atomic-level anisotropy
to be particularly important for obtaining sub-kJ mol−1 accuracy
when describing molecules with heteroatoms (particularly ones
with exposed lone pairs), carbons in multiple bonding
environments, and hydrogens bound to anisotropic heavy
atoms. As such, our “MASTIFF” methodology show great
promise with respect to both high-quality electronic structure
benchmark energies and experimental property predictions, all
while maintaining high transferability and ease of implementa-
tion in existing software packages for use in condensed-phase
simulation.99

Nonetheless, several aspects of our current force field
methodology require further improvement and/or study before
our anisotropic MASTIFF approach can be used to develop
standard force fields for arbitrary organic and/or biological
systems. As an example, future work will be required to
investigate how well the MASTIFF methodology can be
applied to studies of large and/or nonrigid systems, although
similar isotropic models have previously been shown to
transferably combine with intramolecular potentials in order
to describe molecular flexibility.98 In addition, an improved
description of induction effects will become essential for
accurate bulk simulations of highly polarizable molecules, such
as water. We are currently working to develop improved
models that can describe both long-range anisotropic polar-
ization and short-range polarization damping, as these aspects
of the force field critically affect both the two- and many-body
induction energies and can account for a sizable fraction of the
total interaction energy in condensed phases. We anticipate that
improved models for molecular flexibility and induction will, in
combination with an accurate description of non-inductive
many-body effects, yield a general approach to force field
development that accurately models arbitrary N-body inter-
molecular interactions, in turn, enabling highly accurate, “next-
generation” force field development capable of simulating a
wide array of phases and chemical environments.

■ APPENDIX A: S ̅-FUNCTIONS AND THE
MOTIVATION FOR G(θI, ϕI, θJ, ϕJ)

As shown elsewhere,66,67 an exact model (under the ansatz of
radial and angular separability) for g(θi, ϕi, θj, ϕj) is given by
Stone’s S ̅-functions, which form a complete basis set for

describing any scalar function, which is dependent on the
relative orientation between molecules. These S ̅-functions are
given (following Stone’s notation16) by the formula

∑
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The general form of these S ̅-functions can be quite
complicated, involving both the Wigner D rotation matrices
and Wigner 3j-symbols (quantities in parentheses) as well as
the degree (l1, l2, and j) and order (m1, m2, and m for the global
coordinate system, k1 and k2 for the various local coordinate
systems) of the spherical harmonic tensors. Here, subscripts
reference either molecule 1 or molecule 2, and subscriptless
quantities refer to the dimer as a whole.
In order to obtain a functional form for the exchange-

repulsion that is amenable to simple combination rules (a
necessary prerequisite for transferable potentials), we must
somehow be able to separate g(θi, ϕi, θj, ϕj) into monomer
contributions. Unfortunately, many of the S ̅-functions are
dependent on the relative orientation of the dimer itself, and
thus must be excluded in the development of transferable
potentials. Thus, as a second ansatz (empirically validated by us
in Section 5 and by others129), we neglect all contributions
from S ̅-functions that are dependent on both local coordinate
systems. This leaves us with two sets of S ̅-functions, namely,

θ ϕ̅ =S C ( , )l l
k

lk i i0
0

(A-2)

and

θ ϕ̅ =S C ( , )ll
k

lk j j0
0

(A-3)

which are simply the renormalized spherical harmonics (eq 8)
expressed in each of the two local coordinate systems.
Given our truncated expressions for the S ̅-functions, we now

need only extend our functional form for f(rij) to incorporate
these anisotropic contributions. We choose, in a manner
analogous to the literature precedent,6,12,13,17,43,45,76,78,79 to
expand the Ai

exch and Aj
exch parameters of eq 7, in terms of a

truncated expansion of S ̅-functions. (In principle, we could also
account for anisotropy in the Bij parameters of our model for
f(rij). However, previous literature suggests that, in practice, this
“hardness” parameter can often be treated as constant, and we
also neglect its possible anisotropy in this work.) Consequently,
all short-range anisotropies are modeled in this work by the
expressions given in eqs 9 and 10.
In addition to describing exchange-repulsion, S ̅-functions can

also be used to accurately describe the orientation dependence
of long-range electrostatic, induction, and dispersion energies.
(See refs12 and 16 for complete details.) The electrostatic
interaction tensor from eq 14 can be expressed, in terms of S ̅-
functions, as16
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where both the tu or l1, k1, l2, k2 notations label the angular
momentum of the multipole components. The long-range
induction energy is also explicitly dependent on the electro-
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static interaction tensor (and, hence, is implicitly dependent on
the S ̅-functions),16

∑ ∑= Δ
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V Q T Q
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2 I I J

t
i

tu
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u
jind

(A-5)

with ΔQ and Q defining the induced and permanent
multipoles, respectively, and I and J representing individual
molecules. Lastly, the orientation dependence of the long-range
dispersion is accruately described by the formula12
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where the primes describe the response of the local
polarizability (αii′) at site i′ to a perturbation at i, and the
integration is carried out over all imaginary frequencies iν.
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■ NOTE ADDED IN PROOF
While in proof, the authors became aware of the QMPFF130,131

family of atomically-anisotropic, general-purpose force fields.
Importantly, QMPFF2132 incorporates anisotropy into the
description of long-range induction, and models anisotropic
electrostatic and exchange interactions via multiple independ-
ent shifting spherical clouds per site. The more recent
QMPFF3133 and ARROW force fields134 build on QMPFF2
by instead describing the anisotropy of electrostatics and
exchange via a multipole expansion, somewhat similar in spirit
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to the present work. The QMPFF2, QMPFF3, and ARROW
force fields have all been employed in MD simulations of
condensed phases, with promising results for both small
molecules and proteins compared to traditional non-polarizable
force fields.132,134−136
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