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directly from the Poincaré algebra in higher dimensions. Applying the same construction to

gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic

action for the special Galileon theory. Since the nonlinear sigma model and special Galileon

are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their

double copy relationship is automatic.

Keywords: Effective Field Theories, Sigma Models, Scattering Amplitudes, Space-Time

Symmetries

ArXiv ePrint: 1709.04932

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2018)129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/195279209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:clifford.cheung@caltech.edu
mailto:grant.remmen@berkeley.edu
mailto:chshen@physics.ucla.edu
mailto:cwen@caltech.edu
https://arxiv.org/abs/1709.04932
https://doi.org/10.1007/JHEP04(2018)129


J
H
E
P
0
4
(
2
0
1
8
)
1
2
9

Contents

1 Introduction 1

2 Amplitudes preamble 2

2.1 Unifying relations for amplitudes 3

2.2 Transmutation as special kinematics 4

3 From gluons to pions 5

3.1 Dimensional reduction to the nonlinear sigma model 5

3.2 Color-ordered formulation 8

3.3 Kinematic algebra as Poincaré algebra 9
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1 Introduction

Recent work [1] has demonstrated how gravity encodes a unified description of Yang-Mills

(YM) theory, the nonlinear sigma model (NLSM), Born-Infeld (BI) theory, and the special

Galileon (SG) theory [2–4], as originally anticipated in the context of the Cachazo-He-

Yuan formalism [3, 5, 6]. In particular, the tree-level S-matrices of these theories can be

“transmuted” from that of gravity via simple operators that act as differentials on the

space of kinematic invariants.

In this paper, we argue that the amplitudes construction derived in ref. [1] is equiv-

alent to a peculiar version of dimensional reduction and can be implemented at the level

of the action. Physically, our construction recasts pions as gluons in a special kinematic

configuration in higher dimensions, thus reformulating the NLSM in d dimensions as a

particular dimensional reduction of YM theory in 2d + 1 dimensions. The resulting de-

scription coincides precisely with one recently proposed in ref. [7], where the NLSM action

is comprised purely of cubic interactions exhibiting an explicit symmetry that maintains

color-kinematics duality [8].

Furthermore, by applying our dimensional reduction to gravity in 2d+1 dimensions, we

obtain a new action for BI theory in d dimensions. In this representation, the interaction

vertices truncate at quartic order. Applying this operation again to BI then yields the

cubic double copy action for SG proposed in ref. [7], which is term-by-term the square of

the NLSM action previously mentioned.

– 1 –
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As our dimensional reduction effectively projects out all quartic interactions in the

NLSM, pion scattering originates entirely from the cubic topologies of gluon scattering.

This effect offers some insight into the physical origins of double copy relations [8–10].

Since the cubic sector of gravity is trivially the square of that of YM theory, the double

copy relationship is inherited by the SG and NLSM. This is reminiscent of the manifestation

of the double copy in self-dual YM and gravity [11], but applicable in general spacetime

dimension. Remarkably, by deriving the NLSM action in ref. [7] directly from YM theory,

we learn that the associated kinematic algebra is actually a direct descendant of the higher-

dimensional Poincaré algebra.

While these new actions manifest the hidden relations first found in tree-level ampli-

tudes, they display some unconventional traits that differentiate them from the standard

action formulations of the quantum field theories we consider. In particular, these actions

are typically taken to be functions of a single physical field, so properties like Bose symme-

try and S-matrix unitarity are obvious. However, as discovered in ref. [7], the new NLSM

action that makes the double copy relationship explicit involves more than one type of field:

there are additional auxiliary fields present that obscure the underlying Bose symmetry and

S-matrix unitarity (e.g., tree-level factorization). The usual NLSM tree amplitudes are re-

produced as a specific choice of external states in this new formulation. The auxiliary fields

in our actions — and amplitudes going beyond this prescribed choice of external states —

do not have any clear physical significance. Accordingly, the action representations we

derive in this paper are physical in the sense that they reproduce the correct tree-level

scattering amplitudes when our prescribed choices of external states are made.

The construction of alternative tree-level representations of quantum field theories

with auxiliary states has helped in understanding the double copy and simplifying the

perturbation theory [7, 12]. As in the case of the double copy itself, the question of

whether this construction extends to loop order is nontrivial and will likely involve the

introduction of ghost fields, so we leave this question for future work. When restricted to

the external states that are relevant to pion scattering, ref. [1] proved that both properties

are present at the level of amplitudes using on-shell recursion relations [13–15], though a

more direct physical understanding is still missing. In the present paper, we design the

special type of dimensional reduction precisely to realize the transmutation in ref. [1], so

permutation invariance and unitarity follow from the proof therein.

The remainder of this paper is organized as follows. In section 2, we summarize the

results of ref. [1], which defined a set of unifying relations connecting scattering amplitudes

across a spectrum of theories. We then discuss the action-level representation of this

operation for the NLSM in section 3, followed by its implications for color-kinematics

duality. Finally, we apply this construction to the gravity action to derive BI theory and

the SG in section 4 and conclude in section 5.

2 Amplitudes preamble

In this section, we review the mechanics of transmutation at the level of scatter-

ing amplitudes [1] and show how it is equivalent to a certain implementation of

dimensional reduction.
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2.1 Unifying relations for amplitudes

Consider a tree-level color-ordered scattering amplitude in YM theory. As proven in ref. [1],

gluons can be transmuted into pions via a simple differential operation,

∂

∂(e1en)

n−1∏
i=2

∑
j 6=i

pipj
∂

∂(pjei)

A(g1, · · · , gn) = A(π1, · · · , πn), (2.1)

where pipj , piej , and eiej are Lorentz invariant products of the momenta and polarization

vectors and the YM color structure on the left-hand side is mapped to the NLSM flavor

structure on the right-hand side. As required by little group covariance, the transmutation

operator effectively strips off all polarization vectors in order to generate an amplitude of

scalars. The very same transmutation operator also converts tree-level amplitudes of BI

photons into those of SG scalars,

∂

∂(e1en)

n−1∏
i=2

∑
j 6=i

pipj
∂

∂(pjei)

A(γ1, · · · , γn) = A(φ1, · · · , φn). (2.2)

Crucially, eqs. (2.1) and (2.2) apply to amplitudes in any representation, provided they

are written as a function of kinematic invariants in general spacetime dimension. This is

possible because the transmutation operators are precisely engineered to be invariant under

reshuffling of terms via total momentum conservation and on-shell conditions [1].

Note that the right-hand sides of eqs. (2.1) and (2.2) are manifestly cyclic and per-

mutation invariant, respectively, while the left-hand sides are not. This feature is generic:

while transmutation selects two special legs, chosen here to be 1 and n, the final answer is

independent of this choice. As we will see, the absence of manifest cyclic and permutation

invariance will persist at the action level.

In ref. [1] it was shown how transmutation also applies to gravity — or more precisely,

the low-energy effective field theory of the closed string, which describes gravity coupled to

a dilaton and two-form gauge field. Throughout, we will for brevity refer to this multiplet

of states collectively as the “extended graviton.”1 The extended graviton amplitudes are

a function of non-symmetric tensor polarizations, eµν = eµeν , and are the natural output

of various “gravity = gauge2” relations arising from the BCJ [8] and KLT [17] construc-

tions. Transmuting the extended graviton amplitude yields the scattering amplitude of

BI photons,

∂

∂(e1en)

n−1∏
i=2

∑
j 6=i

pipj
∂

∂(pjei)

A(H1, · · · ,Hn) = A(γ1, · · · , γn). (2.3)

Here the transmutation operator only strips off the barred polarizations, so the resulting

expression is still a function of the unbarred polarizations labeling the external BI photons.

Combined with eq. (2.2), eq. (2.3) shows that applying the transmutation twice to an

extended graviton amplitude leads to that of SG.

1The theory of gravity coupled to a dilaton and a two-form gauge field has several aliases, including

“N = 0 supergravity” and the theory of the “fat graviton” [16].

– 3 –



J
H
E
P
0
4
(
2
0
1
8
)
1
2
9

2.2 Transmutation as special kinematics

The transmutation procedure outlined above is actually equivalent to a certain variation of

dimensional reduction. To understand why, we first examine the case of pions transmuted

from gluons, as described in eq. (2.1). With the benefit of hindsight, let us define a theory of

(2d + 1)-dimensional gluons dimensionally reduced to a d-dimensional subspace on which

the external momenta have support. The (2d + 1)-dimensional momentum vector for a

massless gluon is

PMi = (pµi , 0, 0), (2.4)

expressed in block form where the first and third entries are d-dimensional and the middle

entry is one-dimensional. Throughout, we use calligraphic indices to label the full (2d+1)-

dimensional space and, Greek indices to label both sets of d-dimensional spaces. It is

important to point out that this latter choice of indices is simply a convenient abuse of

notation; we do not identify the two d-dimensional spaces.

By inspection, we see that eq. (2.1) is equivalent to the following choice of external

polarizations,

EM1 = EMn = (0, 1, 0) and EMi = (pµi , 0, i p
µ
i ) for i 6= 1, n. (2.5)

This is merely a choice of polarization and the two d-dimensional spaces remain independent

spacetime directions. In order to verify this claim it suffices to compute the kinematic

invariants corresponding to eqs. (2.4) and (2.5). For example, the invariants built purely

from momenta are

PiPj = pipj . (2.6)

Meanwhile, since the polarizations of legs 1 and n are orthogonal to all other legs, we

find that

E1En = 1, (2.7)

while EiEj = 0 for all other combinations due to crucial factors of the imaginary number i

in eq. (2.5). Finally, the invariants constructed from polarizations and momenta are

PiEj = pipj for j /∈ {1, n}, (2.8)

with PiE1 = PiEn = 0. Hence, this choice of external kinematics implements precisely the

differential operator in eq. (2.1). To obtain this result, it was important that the gluon

amplitude is linear in each of the polarization vectors.

The choice of kinematics in eqs. (2.4) and (2.5) describes a dimensional reduction from

2d+1 dimensions down to d dimensions. Physically, legs 1 and n are polarized in their own

exclusive extra dimension, while legs 2 through n− 1 describe polarizations residing in the

d-dimensional subspaces that are proportional to the physical d-dimensional momentum.

In subsequent sections, we translate this special kinematic configuration into an operation

at the level of the action.

– 4 –
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3 From gluons to pions

Let us now apply the dimensional reduction described in the previous section to derive the

NLSM from YM theory. For YM theory in 2d+ 1 dimensions, the Lagrangian is

LYM = −1

4
Tr
(
FMNFMN

)
+ LGF with FMN = ∂MAN − ∂NAM − i

√
2 [AM,AN ] ,

(3.1)

in units where the gauge coupling g = 2 and the gluon fields AM = AaMT a are adjoint-

valued under a normalization convention where

Tr
(
T aT b

)
= δab and [T a, T b] = i

√
2 fabcT c. (3.2)

For simplicity we implement Feyman gauge by choosing

LGF = −1

2
Tr
(
∂MAM∂NAN

)
, (3.3)

so the full action is equal to

LYM = Tr

(
−1

2
∂MAN∂MAN + i

√
2 ∂MAN [AM,AN ] +

1

2
[AM,AN ][AM,AN ]

)
.

(3.4)

In what follows, we prove how the YM action reduces to the NLSM action in ref. [7] on

the dimensional reduction corresponding to eq. (2.5).

3.1 Dimensional reduction to the nonlinear sigma model

According to eq. (2.5), the gluon field AM is split into the component fields

AM = XM + YM + ZM, (3.5)

which without loss of generality can be parameterized by

XM =
1√
2

(Xµ, 0,−iXµ)

YM = (0, Y, 0)

ZM =
1√
2

(Zµ, 0,+iZµ),

(3.6)

where Xµ and Zµ are d-dimensional vectors and Y is a scalar. Since we still have the

same degrees of freedom, this is merely a change of basis. As previously mentioned, we are

not identifying the two d-dimensional spaces and will be consistently contracting indices

separately in the two factors. We assume a flat (2d + 1)-dimensional metric, which takes

the block form2

ηMN =

 ηµν 0 0

0 1 0

0 0 ηµν

 , (3.7)

2Note that both d-dimensional spacetime factors are separately in Lorentzian mostly-plus signature while

the single extra dimension is spatial.

– 5 –
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so the square of the gluon field is

AMAM = XµZ
µ + ZµX

µ + Y 2. (3.8)

By construction, XM and ZM have the form of polarizations of opposite helicity. As a

result, we obtain the useful identities

XMXM = ZMZM = 0

XMYM = ZMYM = 0
(3.9)

and similarly for all analogous expressions involving derivatives on fields. Finally, we note

that, in accordance with eq. (2.4), the fields are polarized in the full (2d+ 1)-dimensional

space but only carry momentum in the first d spacetime dimensions, so

∂M = (∂µ, 0, 0). (3.10)

Expanding the YM action in terms of Xµ, Y , and Zµ, we obtain

LYM = L(2)
YM + L(3)

YM + L(4)
YM, (3.11)

where the terms at each power in fields are

L(2)
YM = Tr

(
Xµ�Z

µ +
1

2
Y�Y

)
L(3)

YM = iTr

(
∂µXν [Zµ, Zν ] +Xµ [∂νZ

µ, Zν ] + Zµ [Y, ∂µY ]

)
+ {Xµ ↔ Zµ}

L(4)
YM = Tr

(
[Xµ, Z

ν ] [Zµ, Xν ] + [Xµ, Xν ] [Zµ, Zν ] + 2 [Xµ, Y ] [Zµ, Y ]

)
.

(3.12)

Remarkably, one can consistently drop the majority of terms in the action (3.12) because

they do not actually contribute to tree-level pion scattering. This truncation is possible as

a consequence of two important simplifications, which we now discuss.

Weight counting. First of all, let us determine which interaction vertices actually enter

into the tree-level Feynman diagrams for pion scattering. According to eq. (2.5), pion

scattering corresponds to higher-dimensional gluon scattering where legs 1 and n are Y

particles and all other states are longitudinally-polarized Zµ particles. In particular, the

latter states all have polarizations proportional to their respective momenta pµ. At the

level of the amplitude, we have

A(π1, π2, . . . , πn−1, πn) = A(Y1, Z2, . . . , Zn−1, Yn), (3.13)

which incidentally matches the prescription proposed in ref. [7].

As it turns out, since the external states are restricted to longitudinal Zµ states and a

pair of Y states, this severely limits which interactions can contribute to the amplitude. By

drawing tree-level Feynman diagrams explicitly, it becomes obvious that none of the quartic

interactions can appear. Since we are interested in the NLSM, it is desirable to further

simplify the action in order to make the color-kinematics duality manifest, as in ref. [7].

– 6 –
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To systematically enumerate which interactions in eq. (3.12) can appear in a tree-level

scattering amplitude for the NLSM according to the external states specified by eq. (3.13),

we define a “pseudo-helicity” for each external particle type,

h[Xµ] = −1, h[Y ] = 0, h[Zµ] = +1. (3.14)

In analogy with helicity in four dimensions, it is natural to define the holomorphic weight

of an operator, w = n− h, where n is the total number of particles in the operator and h

is the sum of all pseudo-helicities in the operator. At tree level, there is a simple addition

rule for the weights. This is because the weights satisfy w[A] = w[AL] + w[AR]− 2 for an

amplitude on its factorization channel, A ∼ ALAR. For an in-depth discussion of weight

counting in general, see ref. [18]. The weight of each component field is

w[Xµ] = +2, w[Y ] = +1, w[Zµ] = 0, (3.15)

so each term in the action in eq. (3.12) has weight

w
[
L(2)

YM

]
= +2, w

[
L(3)

YM

]
= +2, +4, w

[
L(4)

YM

]
= +4. (3.16)

We thus learn that every term in the Lagrangian has weight w ≥ +2. However, since the

pion scattering amplitude contains all Zµ states except for a pair of Y states, the target

amplitude has weight w = +2. This implies that pion amplitudes only receive contributions

from w = +2 interactions, so it is consistent to entirely drop all terms in the Lagrangian

with weight w > +2. The resulting truncated action is eq. (3.12) with all the quartic terms

and half the cubic terms dropped,

LNLSM = Tr

(
Xµ�Z

µ+
1

2
Y�Y +i

(
∂µXν [Zµ, Zν ]+Xµ [∂νZ

µ, Zν ]+Zµ [Y, ∂µY ]
))
. (3.17)

This action is similar but not yet equal to the NLSM action proposed in ref. [7].

Transverse condition. To establish complete equivalence requires a second simplifica-

tion of the action that arises from certain transverse properties of the fields. First, we

rewrite eq. (3.17), up to total derivatives, as

LNLSM = Tr

(
Xµ�Z

µ +
1

2
Y�Y + i

(
Xµν [Zµ, Zν ] + Zµ [Y, ∂µY ]

))
+O(∂µZ

µ), (3.18)

where we have defined the field strength for the Xµ field,

Xµν = ∂µXν − ∂νXµ. (3.19)

The action in eq. (3.18) differs from that of ref. [7] by terms proportional to the longitudinal

component, ∂µZ
µ. As we now show, these terms are always projected out of tree-level pion

amplitudes and can be consistently dropped. To understand why, consider a factor of ∂µZ
µ

that appears in an interaction contributing to a Feynman diagram. If the Zµ field contracts

into an external state, then it vanishes by the on-shell conditions. On the other hand, if the

Zµ field is contracted with an internal propagator, then the off-diagonal structure of the

– 7 –
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kinetic term links this field to the Xµ field of some internal vertex. According to eq. (3.18),

all interaction vertices that involve Xµ are either a function of the field strength Xµν or

are proportional to ∂µZ
µ. In the former case, the field strength Xµν simply zeroes out

this longitudinal contribution. In the latter, the internal vertex is also proportional to the

longitudinal component ∂µZ
µ, so we can then apply the same logic from the beginning.

Thus, all factors of ∂µZ
µ ultimately terminate at an external leg or on an Xµν field strength.

Because these contributions vanish, all factors of ∂µZ
µ can be consistently dropped from

the action, thus establishing the equivalence of eq. (3.18) with the result of ref. [7], which

was originally derived from scattering amplitudes rather than dimensional reduction.

In terms of Feynman diagrams, the perturbation expansion for the action in eq. (3.18)

is drastically simpler than that of the conventional representation of the NLSM action,

LNLSM = −f
2
π

2
Tr
[
∂µU−1∂µU

]
, (3.20)

where U = exp(iπaT a/fπ) and fπ is the pion decay constant. The exponential form of

the nonlinear field generates an infinite tower of higher- and higher-order interactions that

contribute unnecessary complexity to the Feynman diagrammatic expansion, and obscures

the color-kinematics duality in NLSM [19–24]. In contrast, the NLSM representation in

eq. (3.18) is purely cubic and manifests the color-kinematics duality inherits from YM.

Note that the pion decay constant is absorbed into the normalization of the longitudinal

polarizations of the Zµ external states.

3.2 Color-ordered formulation

For future reference, we summarize here the color-ordered Feynman rules derived from the

NLSM action in eq. (3.18). Since we are in Feynman gauge, the propagators take the

simple form,

Y Y = − i

p2

Zµ X⌫ = − i

p2
ηµν ,

(3.21)

where the Xµ and Zµ fields are conjugate particles. The three-particle Feynman vertices are

Xµ
1

Z⇢
3

Z⌫
2

= 2i (pν1η
ρµ − pρ1η

µν)

Zµ
1

Y3

Y2

= −i (pµ2 − p
µ
3 ),

(3.22)

– 8 –
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which are far simpler to implement than Feynman rules in the conventional approach to

perturbation theory in the NLSM [25, 26]. Recall the NLSM amplitude is given by the

states chosen in eq. (3.13).

Note that the color-ordered formulation naturally arises from YM action in the Gervais-

Neveu gauge [27],

LYM = Tr

(
−1

2
∂MAN∂MAN − 2

√
2i ∂MANAMAN + AMANAMAN

)
, (3.23)

which is dimensionally reduced to

LNLSM = Tr

(
Xµ�Z

µ +
1

2
Y�Y + 2iXµνZ

µZν + 2i ZµY ∂µY

)
, (3.24)

up to terms that may be consistently dropped as a consequence of weight counting or the

transverse condition discussed previously.

For the sake of completeness, we also remind the readers that the tree-level pion ampli-

tudes are reproduced by the amplitudes in eq. (3.13). According to the special kinematics

in eq. (2.5), the d-dimensional polarizations for Z particles are chosen as the longitudinal

mode, εµZ = pµ. Note that the choice of longitudinal polarization does not contradict with

the transverse condition discussed earlier. The transverse condition applies to the irrel-

evance of interactions proportional to ∂µZ
µ which has nothing to do with the choice of

polarization εµZ .

3.3 Kinematic algebra as Poincaré algebra

As emphasized in ref. [7], the Feynman diagrams associated with the NLSM action in

eq. (3.17) automatically satisfy the Jacobi identities and are thus manifestly compliant with

color-kinematics duality. Remarkably, the Jacobi identities are enforced by a symmetry of

the NLSM action,

δX

Xµ

Y

Zµ

 =

 θXµνZ
ν

0

0


δY

Xµ

Y

Zµ

 =

 θY µY

−θY µZµ

0


δZ

Xµ

Y

Zµ

 =

 θνZ∂νXµ + ∂µθ
ν
ZXν

θνZ∂νY

θνZ∂νZµ − ∂νθZµZν

 ,

(3.25)

where θXµν = ∂µθXν − ∂νθXµ. In particular, the Noether current conservation equations

for these symmetries are literally equal to the Jacobi identities for kinematic numerators,

modulo terms that vanish under the transverse conditions discussed earlier.

As noted in ref. [7], the δZ transformations are simply Poincaré transformations acting

on the d-dimensional subspace. This is obvious if we identify θµZ = aµ + bµνxν , where a is

– 9 –
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a constant vector labeling translations and b is a constant antisymmetric matrix labeling

rotations and boosts.

But what of the remaining symmetries, δX and δY ? By recasting the NLSM as a

dimensional reduction of YM, we learn that these symmetries have a geometric origin —

namely, Lorentz boosts in higher dimensions! Concretely, consider a matrix parameterizing

a Lorentz transformation acting on the extra-dimensional space,

ΛMN =

 0 0 0

0 0 i
√

2θY ν
0 −i
√

2θY µ −2θXµν

 . (3.26)

These transformations act rigidly on the indices of fields and do not involve derivatives

because there are no momenta flowing in the extra dimensions. The extra-dimensional

Lorentz transformation shifts the gluon field by AM → AM+ δ̃AM, which in terms of the

component fields is

δ̃X

Xµ

Y

Zµ

 =

−θXµν(Xν − Zν)

0

θXµν(Xν − Zν)


δ̃Y

Xµ

Y

Zµ

 =

 θY µY

θY µ(Xµ − Zµ)

−θY µY

 .

(3.27)

At present, these symmetries still differ from eq. (3.25). However, as discussed earlier, the

NLSM is defined by a truncated version of the YM action. As a result of the truncation,

a symmetry in YM is not guaranteed to be a symmetry of the NLSM.

Nevertheless, a close descendant of the extra-dimensional Lorentz symmetry is still

preserved under weight truncation. To see why, recall that the original YM action can

be partitioned into two weight sectors, LYM = L(w=2)
YM + L(w=4)

YM . The transformations in

eq. (3.27) shift the weights of the component fields by

w
[
δ̃X

]
= 0, ±2 and w

[
δ̃Y

]
= ±1, (3.28)

so extra-dimensional Lorentz transformations mix terms of different weight. In order to

determine the component of the Lorentz transformation that leaves L(w=2)
YM invariant, we

simply drop all transformations that are an invariance only with the help of L(w=4)
YM . These

transformations can never be symmetries of the truncated action. On the other hand, for

transformations that shift the weights strictly negatively, it is impossible for any variation

of L(w=4)
YM to ever cancel a variation in L(w=2)

YM because these terms are already separated

in weight. Thus, for a negative shift in weight, L(w=2)
YM will be itself invariant. Truncating

the symmetry transformation in eq. (3.27) down to terms that shift the weight by −1

and −2, we obtain the color-kinematics symmetry of the NLSM shown in eq. (3.25). In

summary, color-kinematics duality in the NLSM arises from a higher-dimensional spacetime

symmetry of YM theory.
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4 From gravitons to photons and galileons

The construction described above can be applied straightforwardly to gravity. However, as

discussed in ref. [1], the natural theory to which to apply transmutation is the low-energy

effective theory of the closed string. The action, SG =
´

dDxLG, describes a metric gMN
coupled to an antisymmetric two-form BMN and a dilaton φ, with interactions given by

LG =
√
−g
[

2

κ2
R− 1

2(D − 2)
∂Mφ∂

Mφ− 1

6
e−2κφ/(D−2)∂[MBNR]∂

[MBNR]

]
+LGF, (4.1)

where κ2 = 32πG. In the conventional picture, one expands the graviton in perturbations,

gMN = ηMN + κhMN , (4.2)

treating hMN , BMN , and φ as distinct fields. For our purposes, however, it will be con-

venient to repackage the degrees of freedom into a single extended graviton field described

by a general tensor HMN . An action of this form was derived in ref. [12] in the context

of pure gravity, but in fact also reproduces all extended graviton amplitudes as well. Un-

fortunately, the associated propagator deviates from the simple 1/p2 Feynman propagator

form, so we will not consider the action of ref. [12] further here.

An action-level version of transmutation requires an extended graviton action expressed

in terms ofHMN with a simple propagator going as 1/p2. To derive such an action, we build

a general ansatz for an effective field theory of the extended graviton HMN and constrain its

coefficients to match known tree-level amplitudes constructed from the KLT relations [17].

Among the family of resulting actions, we choose the remaining free coefficients to simplify

our results by reducing the number of terms in the Lagrangian. In natural units where

κ = 1, our resulting extended graviton action is

LG = L(2)
G + L(3)

G + L(4)
G + · · · , (4.3)

where the terms at each order are

L(2)
G =

1

2
HMN�H

MN

L(3)
G =

1

2
HMN∂MHRS∂NH

RS +
1

2
HMN∂NHMR∂SH

SR −HMN∂SHMR∂NH
SR

L(4)
G =

1

32
HMNH

MN∂THRS∂
THRS − 1

16
HMNH

MN∂THRS∂
RHT S

+
1

4
HMNHRN∂

RHT S∂THMS +
1

8
HMNHRS∂THRN∂

THMS

− 1

4
HMNHRS∂RHT N∂

THMS −
1

8
HMNHRS∂NHMT ∂

SHRT

− 1

8
HMNHMR∂NHST ∂

RHST − 1

8
HMNHRN∂MHST ∂

RHST

+
1

4
HMNHRS∂NH

RT ∂SHMT .

(4.4)

As we will explain, terms of higher order will be not be needed for our analysis.

– 11 –



J
H
E
P
0
4
(
2
0
1
8
)
1
2
9

4.1 Dimensional reduction to Born-Infeld theory

Next, let us implement the procedure described in the above sections to derive the BI

action from the extended graviton action in eqs. (4.3) and (4.4). We take the unbarred

and barred indices in the extended graviton action to run over d dimensions and 2d + 1

dimensions, respectively, so the extended graviton field is a d× (2d+ 1) matrix,

HµN = XµN + YµN + ZµN , (4.5)

where each component field is given by

XµN =
1√
2

(Xµν̄ , 0,−iXµν̄)

YµN = (0, Yµ, 0)

ZµN =
1√
2

(Zµν̄ , 0,+iZµν̄).

(4.6)

These definitions enforce a similar nilpotency condition as before,

XµRX
R
ν = ZµRZ

R
ν = 0

XµRY
R
ν = ZµRY

R
ν = 0,

(4.7)

and likewise for terms involving derivatives. We also note that the derivatives only have

support on the d-dimensional subspace, so

∂M = (∂µ, 0, 0) and ∂M = (∂µ̄, 0, 0). (4.8)

Plugging into the extended graviton action in eq. (4.4), we obtain a new action for the

BI theory,

LBI = L(2)
BI + L(3)

BI + L(4)
BI , (4.9)

where the terms at each power are given by

L(2)
BI = Xµν̄�Z

µν̄ +
1

2
Y µ�Yµ

L(3)
BI =

1

2
√

2
Zµν̄∂µYρ∂ν̄Y

ρ +
1

2
√

2
Zµν̄∂ν̄Yµ∂ρY

ρ − 1√
2
Zµν̄∂ρYµ∂ν̄Y

ρ

+ {YµYν → Xµρ̄Z
ρ̄
ν + Zµρ̄X

ρ̄
ν }+O(∂ν̄Z

µν̄)

L(4)
BI =− 1

16
Zµν̄Z ρ̄

µ ∂ν̄Yσ∂ρ̄Y
σ − 1

16
Zµν̄Zρσ̄∂ν̄Yµ∂σ̄Yρ +

1

8
Zµν̄Zρσ̄∂ν̄Yρ∂σ̄Yµ

+ {YµYν → Xµρ̄Z
ρ̄
ν + Zµρ̄X

ρ̄
ν }+O(∂ν̄Z

µν̄).

(4.10)

Here we have dropped all interactions at quintic order and higher because they can be

truncated by a weight counting argument that will be discussed shortly. Moreover, we

have separated off terms proportional to ∂ν̄Z
µν̄ because they can be discarded due to an

analogue of the transverse conditions discussed earlier.
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Weight counting. Our earlier weight counting arguments are straightforwardly gener-

alized to the case of gravity. Since the dimensional reduction is only applied to the barred

indices, the weights are defined in the same way as in eq. (3.15). Following eq. (2.3), the

tree-level BI amplitude is

A(γ1, γ2, . . . , γn−1, γn) = A(Y1, Z2, . . . , Zn−1, Yn), (4.11)

corresponding to a pair of Yµ fields interacting with the Zµν̄ states that are longitudinally

polarized on the barred index. Concretely, the Yµ particles have the same polarization

vectors eµ of the corresponding BI photons and the Zµν̄ particles have polarization tensors

proportional to eµpν̄ . Note that these external states are simply the tensor product of BI

photon polarizations eµ with the Y and Zν̄ external states for the NLSM in eq. (3.13). Since

the BI amplitude has uniform weight w = +2, we can truncate the action by dropping all

terms with weight w > +2.

The extended gravity interactions take the schematic form

L(3)
G ∼ H3∂∂̄ and L(4)

G ∼ H4∂∂ +H4∂̄∂̄, (4.12)

where we ignore all index structure except the barred or unbarred nature of the derivatives.

Let us consider the possible index structures and their weights in turn. Since the barred

derivative only lives in the first d dimensions, we find that

HMR∂
R ∼ XMµ̄∂

µ̄ + ZMµ̄∂
µ̄. (4.13)

This implies that the extended graviton field contracting with the derivative has weight

w
[
HMR∂

R
]

= 0,+2. (4.14)

On the other hand, the nilpotency of XM and ZM implies that

HMRH
NR ∼ Xµρ̄Z

νρ̄ + Zµρ̄X
νρ̄ + YµY

ν , (4.15)

which in turn fixes the weight

w
[
HMRH

NR
]

= +2. (4.16)

From eqs. (4.14) and (4.16), we conclude that the weights for cubic and quartic order are

w
[
L(3)

G

]
≥ +2 and w

[
L(4)

G

]
≥ +2. (4.17)

Because extended gravity is a two-derivative theory, all higher-order interaction terms

share the same derivative structures as eq. (4.12) except with more powers of the extended

graviton. Since w
[
HMRHNR

]
> 0, terms at quintic order and higher have w > +2 and

can thus be dropped.
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Transverse conditions. As before, we can exploit the transverse properties of the fields

to eliminate even more terms. Up to total derivatives, the action in eq. (4.10) is equal to

L(3)
BI =

1

2
√

2
Zµν̄∂µYρ∂ν̄Y

ρ +
1

2
√

2
Zµν̄∂ν̄Yµ∂ρY

ρ − 1√
2
Zµν̄∂ρYµ∂ν̄Y

ρ

+
1

2
√

2
Zµν̄∂µZ

ρσ̄Xρν̄σ̄ −
1

2
√

2
Zµν̄∂ρZ σ̄

µ Xρν̄σ̄ −
1

2
√

2
Zµν̄Zρσ̄∂µXρν̄σ̄ +O(∂ν̄Z

µν̄)

L(4)
BI = − 1

16
Zµν̄Z ρ̄

µ ∂ν̄Yσ∂ρ̄Y
σ − 1

16
Zµν̄Zρσ̄∂ν̄Yµ∂σ̄Yρ +

1

8
Zµν̄Zρσ̄∂ν̄Yρ∂σ̄Yµ

+
1

8
Zµν̄Zµᾱ∂ν̄Zρσ̄X

ρσ̄ᾱ +
1

8
Zµν̄Zρσ̄∂σ̄Z

ᾱ
µ Xρν̄ᾱ +O(∂ν̄Z

µν̄),

(4.18)

where we have defined the right-index field strength for Xµν̄ ,

Xµν̄ρ̄ = ∂ν̄Xµρ̄ − ∂ρ̄Xµν̄ . (4.19)

Crucially, the field Xµν̄ only appears in the action through its field strength Xµν̄ρ̄ or in

terms proportional to ∂ν̄Z
µν̄ . This allows us to apply an argument similar to that in

section 3. In particular, any factor of ∂ν̄Z
µν̄ that contributes to a Feynman diagram will

ultimately be projected to zero on an external leg or attached to an internal vertex. Since all

internal vertices involving Xµν̄ depend only on the field strength Xµν̄ρ̄ or are proportional

to ∂ν̄Z
µν̄ , these longitudinal contributions are always eventually zeroed out. The resulting

BI action in eq. (4.18) also agrees with an action-level double copy construction combining

YM theory and the NLSM [28].

Let us contrast the quartic representation of BI action in eq. (4.18) with the canonical

representation of BI action arising from brane-localized gauge fields,

LBI = −T
√
−det(ηµν + 2πα′Fµν), (4.20)

where the determinant structure induces an infinite tower of interactions. As before, all of

the dimensionful coupling constants in our new BI action are absorbed into the normal-

ization of the longitudinal polarizations. Similar to the NLSM, our formulation does not

manifest permutation invariance and unitarity, though these are still present in scattering

amplitudes, as proved in ref. [1]. However, thanks to its finite interactions, it is tremen-

dously simpler to calculate amplitudes in this action. In ref. [29], a simplification of the

BI action was constructed using auxiliary fields and a setup specific to certain spacetime

dimensions. In contrast, our formulation is valid in arbitrary spacetime dimension and the

construction follows directly from our analogous treatment of the NLSM; it may therefore

also offer some insight for the double copy structure of BI theory.

4.2 Dimensional reduction to the special galileon theory

Last but not least, we apply action-level transmutation again to BI theory to obtain an

action for the SG theory. This is equivalent to a double dimensional reduction of the

extended graviton action, taking the unbarred and barred indices of the extended graviton

– 14 –
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to both run over 2d+1 dimensions. We then decompose the extended graviton field HMM
into a (2d+ 1)× (2d+ 1) matrix,

HMM = XMM + YMM + ZMM, (4.21)

where each contribution is

XMM =
1

2

 Xµµ̄ 0 −iXµµ̄

0 0 0

−iXµµ̄ 0 −Xµµ̄


YMM =

 0 0 0

0 Y 0

0 0 0


ZMM =

1

2

 Zµµ̄ 0 +iZµµ̄
0 0 0

+iZµµ̄ 0 −Zµµ̄

 .

(4.22)

The components not shown all enter in pairs in the action so they can be consistently

dropped from the action provided we are interested in tree-level amplitudes only involving

the states represented above. These definitions again imply a nilpotency condition,

XMRX
R
N = ZMRZ

R
N = XRMX

R
N = ZRMZ

R
N = 0

XMRY
R
N = ZMRY

R
N = XRMY

R
N = ZRMY

R
N = 0,

(4.23)

and likewise for structures with additional derivatives. Using the weight-counting argu-

ments provided at the end of this section, we can expand the extended gravity action in

components and truncate, yielding the action for the SG,

LSG = L(2)
SG + L(3)

SG, (4.24)

where each term is given by

L(2)
SG = Xµµ̄�Z

µµ̄ +
1

2
Y�Y

L(3)
SG = − 1

2
Zµµ̄∂µ̄Z

νν̄∂νXµν̄ +
1

4
Zµµ̄∂µY ∂µ̄Y + {Y Y → Xµµ̄Z

µµ̄ + Zµµ̄X
µµ̄}

+O(∂µZ
µµ̄) +O(∂µ̄Z

µµ̄).

(4.25)

As we will show, all possible quartic interactions in the extended graviton action can

be consistently dropped due to the weight counting argument presented in the subsequent

discussion. Moreover, all quintic and higher-order interactions can also be dropped because

the SG action is equivalent to a transmutation of BI action, which itself originates from

the extended graviton action truncated to quartic order.
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Weight counting. From eqs. (2.2) and (2.3), we see that the SG amplitude is given by

A(φ1, φ2, . . . , φn−1, φn) = A(Y1, Z2, . . . , Zn−1, Yn), (4.26)

corresponding to a pair of Y states with all other external states given by Zµµ̄ particles

whose polarizations are longitudinal and thus proportional to pµpµ̄. Note that these exter-

nal states are the “square” of the Y and Zµ external states for the NLSM in eq. (3.13).

Since dimensional reduction is applied to both barred and unbarred indices, it is natural

to promote the weight into a two-component vector, (w, w̄) = (n− h, n− h̄), where h and

h̄ correspond to the pseudo-helicity for the unbarred and barred indices. For each state,

we have

w[Xµµ̄] = w̄[Xµµ̄] = +2, w[Y ] = w̄[Y ] = +1, w[Zµµ̄] = w̄[Zµµ̄] = 0. (4.27)

For an amplitude on its factorization channel, A ∼ ALAR, their weights are related by

w[A] = w[AL] + w[AR] − 2 and w̄[A] = w̄[AL] + w̄[AR] − 2, so we conclude that the tree-

level SG amplitude has weight (w, w̄) = (+2,+2). From the schematic form in eq. (4.12),

the unbarred indices in H4∂̄∂̄ have the same tensor structure as the quartic interactions in

YM. As we learned in the NLSM, these interactions have w = +4, which can be truncated,

and similarly for H4∂∂. Combining with the weight counting arguments in BI, we see that

the quartic and higher interactions of the extended graviton action dimensionally reduce

to terms with either w > +2 or w̄ > +2, so they can be consistently dropped.

Transverse conditions. Next, let us consider the transverse properties of the fields in

the SG action.

Defining an analogue of the Riemann tensor as in ref. [7],

Xµνµ̄ν̄ = ∂µ∂µ̄Xνν̄ + ∂ν∂ν̄Xµµ̄ − ∂µ∂ν̄Xνµ̄ − ∂ν∂µ̄Xµν̄ = ∂µXνµ̄ν̄ − ∂νXµµ̄ν̄ , (4.28)

our final form for the SG action becomes

LSG = Xµµ̄�Z
µµ̄ +

1

2
Y�Y − 1

4

(
Xµνµ̄ν̄Z

µµ̄Zνν̄ + Zµν̄Y ∂µ∂ν̄Y
)

+O(∂µZ
µµ̄) +O(∂µ̄Z

µµ̄),

(4.29)

modulo total derivatives. Up to terms of the form O(∂µZ
µµ̄) and O(∂µ̄Z

µµ̄), the field Xµµ̄

appears in the action only in the form of Xµνµ̄ν̄ . By an argument exactly analogous to

the one given in section 4.1, these terms proportional to O(∂µZ
µµ̄) and O(∂µ̄Z

µµ̄) can be

dropped. As was shown in ref. [7], eq. (4.29) can also be obtained from eq. (3.17) via the

action-level double copy.

The cubic SG action in eq. (4.29) is substantially simpler than the canonical for-

mulation of the SG action, which describes a scalar invariant under an extended shift

symmetry [30],

φ→ φ+ a+ bµ + cµνx
µxν + cµν∂µφ∂νφ/Λ

6, (4.30)

where a, bµ, and cµν are a constant scalar, vector, and traceless symmetric tensor, respec-

tively. In four dimensions, the canonical form of the SG action is

LSG = −1

2
∂µφ∂

µφ+
1

12Λ6
∂µφ∂

µφ (�φ�φ− ∂ρ∂σφ∂ρ∂σφ) , (4.31)
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while in d dimensions there is a tower of even-point interactions at all valences less than or

equal to d+1. In contrast, the SG action in eq. (4.29) is purely cubic for general dimension.

4.3 Origin of the double copy

By inspection, the SG action in eq. (4.29) is obtained by squaring all of the terms in the

NLSM action in eq. (3.18). This is an action-level manifestation of the double copy [7].

Our prescription for dimensional reduction actually trivializes the origin of the double copy

structure, by the following argument. Our discussion of weight counting reveals that pion

scattering is encoded within the cubic sector of YM theory. However, the purely cubic

topologies of YM theory automatically satisfy kinematic Jacobi identities up to contact

terms coming from the quartic vertices. This is because one can always probe a maximal

factorization channel on which every propagator is on shell. In this limit, the only contri-

butions to amplitudes are the cubic diagrams, so these contributions necessarily satisfy the

kinematic Jacobi identities up to terms involving contact terms. However, since all quartic

terms are eliminated by the choice of external states corresponding to pion scattering, the

mismatch from the kinematic Jacobi identities is eliminated and the resulting cubic action

automatically satisfies them. We thus conclude that since the cubic sector of YM double

copies into the cubic sector of gravity and these coincide with the NLSM and the SG, the

actions that result from our dimensional reduction automatically manifest the double copy.

5 Conclusions

In this paper, we have proposed a variation of dimensional reduction that excises the NLSM

from YM theory as well as BI theory and the SG theory from the extended graviton action.

This operation is essentially an action-level incarnation of the transmutation operation on

scattering amplitudes derived in ref. [1]. These relations reveal the origin of the kinematic

algebra of the NLSM as the higher-dimensional Poincaré invariance of an underlying YM

theory. Remarkably, the NLSM and SG arise from purely cubic interactions in YM and

gravity, while BI arises from only the cubic and quartic interactions of gravity. Since the

cubic sector of YM theory automatically double copies into gravity, the same is trivially

true for the NLSM to the SG. Note that the theories obtained here — the NLSM, BI theory,

and the SG theory — precisely coincide with the exceptional theories studied in ref. [31]

argued to be the natural effective field theory analogues of YM theory and gravity.

Our results suggest a number of directions for future work. One avenue is to derive

action-level versions of the other transmutation operations presented in ref. [1]. For in-

stance, one expects an action-level operation that sends gravity to YM theory. While this

is naturally accomplished by Kaluza-Klein reduction, the simplicity of the S-matrix map-

ping suggests that something more minimal is possible. Such a realization may teach us

new structures of YM theory, such as color-kinematics duality.

Another direction deserving of further study is higher loop order in perturbation theory.

Since ref. [1] derived unifying relations for tree-level scattering amplitudes, the procedure

for dimensional reduction derived here is only guaranteed to reproduce amplitudes at tree

level. As is also the case for the double copy construction, matching at higher loop order
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will likely involve additional structure. It would also be interesting to study the loop-level

amplitudes computed from the actions presented here and to compare them with known

results in the NLSM, BI theory, and the SG theory.

Last but not least, pions are famously known to be related to gluons through the

Goldstone boson equivalence theorem. Although the (2d + 1)-dimensional transmutation

is proven in ref. [1] by modern S-matrix techniques, it would be illuminating to show the

connection to the Goldstone boson equivalence theorem. Such a relation would also offer

new insights into the nature of transmutation.
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