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Spatial Heterogeneity in Bayesian Disease Mapping

Peter Congdon, School of Geography, Queen Mary University of London

Abstract Disease mapping applications generally assume homogeneous regression effects and use
random intercepts to account for residual spatial dependence. However, there may be local varia-tion
in the association between disease and area risk factors. We consider implications for model fit,
estimated regression coefficients, and substantive inferences of allowing spatial variability in impacts
of area risk factors. An application to suicide in 6791 English small areas shows that aver-age
regression coefficients and substantive inferences (e.g. about relative risk) may be considerably

affected by allowing spatially varying predictor effects, while fit is improved.

Key words Bayesian. Relative Risk. Spatial Heterogeneity. Suicide. Deprivation. Fragmen-

tation.
Introduction

Many area disease studies consider official mortality statistics for administrative areas (e.g. US
counties, English wards). Assume a region subdivided into n small areas. Let Y; denote observed
deaths in such areas, and F; denote expected deaths obtained by applying national rates to small area
populations. For relatively rare diseases, maximum likelihood estimates of relative risk, namely
standard mortality ratios Y;/E; are unstable (Haining, 2001), with extreme ratios associated with
areas with the smallest populations. By contrast, disease mapping methods, usually using Bayesian

inference, seek to borrow strength across areas to produce stable risk estimates.

A common analytical framework for rare diseases over small areas adopts the Besag et al (1991)
model, whereby disease counts Y; (i = 1, ..., n) are taken as Poisson with means u; = F;\;, where \;

denote relative disease risks. These are centred around a global relative risk of 1 when
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Zz;lYi = Z?zlEi. Let X; denote known predictors of disease risk, such as area deprivation. Pre-
sentations of disease mapping regression (e.g. Schrodle and Held, 2011; Mollié, 1996; Clayton et
al, 1993) typically assume a homogenous effect of such predictors, and use varying intercepts to
represent and account for spatial dependence in the outcome, and hence to borrow strength in
estimation. Such models incorporate spatially dependent effects, as, for example, under conditional

autoregressive schemes (e.g. Besag et al, 1991; Leroux et al, 1999).

An alternative to spatial homogeneity (also known as spatial stationarity) for predictor effects is to
allow spatially varying impacts. A classical technique allowing varying coefficients is geographically
weighted regression (e.g. Mou et al, 2017). Analogous models using random effects Bayesian ap-
proaches have been proposed (e.g. Assuncgao, 2003), but their full implications for inferences from
disease mapping studies are not widely studied - though see Feng et al (2016). However spatial
dependence in residuals may be due to spatial nonstationarity (Fotheringham, 2009), with implica-
tion that if allowing spatially varying regression impacts removes spatial residual dependence, then

additional spatially structured random intercepts may be unnecessary.

In this case study, we consider suicide counts in 6791 middle level super output areas (MSOAs) in
England. Suicides are for the 5 year period, 2011-15, and available as gender -specific totals within
each MSOA; there are 23460 suicides overall, 17897 male and 5563 female. We consider the impact
on suicide variations of three area level predictors: socioeconomic deprivation, social fragmentation

and rurality.

Analysis uses Bayesian inference via Integrated Nested Laplace Approximation (INLA), a com-
putationally efficient alternative to Markov Chain Monte Carlo, and implemented in the R package
R-INLA (Bivand et al, 2015). We compare models with homogeneous regressor effects and vary-
ing intercepts (“global models”) with models allowing spatially varying predictor effects (“local
models”). This comparison shows that fit improves under local models, while residual spatial

dependence is removed. Central predictor effects are different between the models, and there is



significant variability in one or more predictors under local models. Implications for relative risk

estimates, and for local variations in risk within subregions, are discussed.

Subsequent sections discuss specifications of the two classes of model, the definition and epidemio-

logical role of the predictors, and the case study implementation and findings.

Model Specification

A commonly adopted formulation for disease mapping involves the convolution model (Besag et al,
1991), which leads to spatially varying intercepts. This involves, at a minimum, a spatially config-
ured effect s;, and an unstructured or iid term wu;, normally distributed with mean 0 and variance
o2. Let L; denote the locality surrounding area i, meaning the set of d; small areas adjacent to it.
Let N(m, V) denote a normal density with mean m and variance V. Then the spatial effects follow

a conditional autoregressive (or CAR) scheme,

si ~ N(Si,02/d;), (1)

where .S; is the average of the spatial effects in locality L;. For identifiability purposes, spatial effects
are centred to have mean 0. Then with 3y denoting an intercept, relative risks can be modelled as

a log-link regression with varying intercepts:

Assume there are ecological (area-level) predictors X; relevant to the disease. Under a “global” or

stationary model, predictors have a spatially homogeneous impact, namely

log(A\;) = Bo + X8 + si + i, (3)



with random intercepts intended to eliminate residual spatial dependence.

However, spatial dependence and spatial heterogeneity (i.e. spatial non-stationarity) are often
interrelated (Anselin, 2010). One possible form of spatial heterogeneity is in predictor impacts.
Consider a simple linear regression y; ~ N(ju;,0?) for an area outcome, and with one predictor
(Fotheringham, 2009). Suppose a global model u; = By + X;51, is assumed, but that the true

model is

i = Po + XiBu, 4)

where (1; are varying slopes. Assume the global regression coefficient is estimated as 57 .

Then for areas where 51; > B7 , y; is typically underestimated under a global model, and the
residual is positive. For locations where £1; < 87 , the residual is typically negative, since y; is
overestimated. If the (81; show spatial dependence, then residuals from the global model will also

show spatial dependence.

More generally if non-stationarity in regression effects is a major source of spatial dependence
in residuals, such dependence may be eliminated by a local model allowing non-stationary impacts
of X;. A model allowing for local variation in regression effects is also potentially more adaptive to
local variations in risk and their association with local risk factor patterns: links between disease

and risk factors may be stronger in some sub-regions.

Area Socioeconomic Influences on Suicide

The above discussion assumes that area level predictors of disease risk are available. Many studies
report that area poverty and deprivation increase suicide risks (e.g. Gunnell et al, 1995). Area
deprivation is to some extent simply an aggregate measure of individual suicide risk factors such as

unemployment and low income, so acting as a compositional factor (Collins et al, 2017). However,



it may also partly reflect contextual risks, or place effects per se. This is supported by studies
of mental illness reporting significant associations with area-level socio-economic status, beyond
individual-level factors (e.g. Silver et al, 2002; Matheson et al, 2006). Here we use the UK govern-

ment’s Index of Multiple Deprivation (or IMD) as a measure of area SES.

A number of studies have considered impacts on suicide outcomes of indices of social fragmen-
tation, meaning relatively low levels of community integration linked to high numbers of non-family
households, and high residential turnover. Thus Congdon (1996) proposed a social fragmentation
index based on residential turnover, one person households, renting from private sector landlords

(excluding social renting), and non-married adults.

Social fragmentation is to some degree a compositional measure of individual suicide risk factors
such as living alone (Holt-Lunstad et al, 2015), recent residential relocation, and being unmarried.
However, it may also partly reflect contextual risks, such as negative effects of high neighborhood
transience on population mental health, after control for individual risk factors (Matheson et al,
2006). Here a fragmentation score is obtained from principal component analysis of the four vari-
ables of Congdon (1996), but updated to the 2011 Census. Social fragmentation so defined tends
to be higher in central city areas, but also in particular types of town (coastal resorts, university

towns) with relatively high population turnover.

Findings on urbanicity or rurality in relation to suicide are inconsistent, though many confounding
factors could contribute to these findings. Thus Gartner et al (2008) report that “mortality rates
from suicide for males in England were 10 per cent lower in rural areas before adjustment for de-
privation, but 11 per cent higher [...] after adjustment”; see also Saunderson et al (1998). Various
features of rural economic life and healthcare may affect suicide, such as sole entrepreneurship,

easier access to suicide methods, and lesser access to mental health services.

In the analysis below a rurality score is based on the 2011 rural/urban classification (RUC2011)



of UK small areas (Bibby and Brinley, 2013). Specifically a ridit score (e.g. Ernstsen et al, 2012)
is obtained from MSOA frequencies in eight ordered urban-rural categories (from Urban Major
Conurbation at one extreme to Rural Village and Dispersed in a Sparse Setting at the other). Ridit

scores are assigned to ordered categories following a procedure developed by Bross (1958).
Case Study Implementation

Suicide deaths Y; are available by gender, with expected deaths F; obtained by multiplying MSOA
n n

populations by England wide age specific suicide death rates, with ). | Y; = Y. | F;. Let X; =

(X714, X4, X3;) denote the predictors; respectively deprivation, social fragmentation and rurality.

For each of three analyses (overall, male, and females) we compare four models.

Model 1 is a global model assuming the same predictor effects across all MSOAs, together with

varying intercepts. Thus for latent relative risks A;,

log(A\;) = Bo + X1:61 + X2i B2 + X3:83 + s; + wy, (5)

with spatial and iid effects, s; and u;respectively, defined as above. Among non-stationary models,
the simplest assumes varying slopes, without varying intercepts. This is denoted model 2, or the

local model, with

log(Ai) = Bo + X1iB1i + X2i B2 + X303, (6)

where (1;, B2;, and f33; each follow the autoregressive scheme (1). The data are relatively sparse (the
average overall suicide count per MSOA is 3.5) so may not support complex models with additional
random effects. Accordingly, we compare model 2 with two more complex models: model 2’, with

varying slopes and spatial intercepts, and model 2”7, containing varying predictor effects, and both



spatial and iid intercepts. Thus model 2”7 is

log(X\;) = Bo + X1:B81: + X2iBai + X3ifsi + i + ws. (7)

In practice, R-INLA estimates varying slopes as the sum of a fixed effect and a spatial random
effect, for example (31; = B1 +w1; where wy; is a zero mean CAR scheme. The X; are scaled to the
interval [0, 1], so that the relative importance of predictors as risk factors can be directly assessed

from the regression coeflicients.

It is important to assess how far each model eliminates residual spatial dependence. With 1,

denoting posterior mean of p;, Poisson residuals are defined as

ri = (Yi = 70) /75", (8)

and one may assess significant residual dependence using an index such as Moran’s 1. Specifically
the moran.mc procedure in R uses a Monte Carlo permutation test for Moran’s I statistic, with 1000
permutations being used. Significant correlation will show in extreme p-values, namely values close
to zero when positive residual correlation remains, and p-values close to 1 for significant negative
residual correlation. Moran I calculations use a binary adjacency spatial interaction matrix for the

6791 areas.

Model fit is assessed by using the Deviance Information Criterion (DIC) (Spiegelhalter et al, 2002),
and the Watanabe-Akaike information criterion (WAIC) (Watanabe, 2010). Both measures incor-
porate a complexity penalty as well as simply measuring fit, and so are analogous to classical fit
measures such as the Akaike Information Criterion (AIC). Smaller values of the DIC and WAIC

suggest a model which is both better fitting and more parsimonious in terms of parameters.



Case Study Results

Table 1 summarises model fit across the outcomes, and levels of residual spatial dependence. The
largest gains in model fit (in terms of reduced WAIC and DIC) are obtained in going from the global
model 1 to the simplest local model, the varying slopes model 2. Any additional improvements in
fit are slight: for overall suicides, the reduction in WAIC in going from model 2 to model 2’ is
only 3, and for males the corresponding reduction is only 4. There is no gain in fit in moving from
model 2’ to model 2”. For females, the DIC and WAIC are lowest for model 2, though changes in
fit measures between models are small; for females, fit deteriorates slightly in moving from model

2 to more complex variants.

Additionally under the global models for overall and male suicides, there is still evidence of some
residual spatial dependence, in fact negative correlation, so that the p-value is close to 1. For overall

sucides, the more complex models 2’ and 2” also show residual spatial dependence.

So on grounds of both fit and eliminating residual dependence, the simplest local model, model
2, is the best choice for overall and female suicides. For conceptual simplicity and comparability,
Tables 2 to 4 compare outcome specific regression coefficients under the varying intercepts model 1

and varying slopes model 2.

It can be seen that deprivation is the leading risk factor for overall suicide, and for male sui-
cides (which account for 76% of overall suicides). For males, the relative suicide risk under model
2 is 2.58, when comparing the most and least deprived communities and holding other influences
constant. By contrast, for females, social fragmentation is the leading suicide risk factor, with
a relative risk of 3.26 when comparing the most and least fragmented communities. Rurality is
a weaker but still significantly positive risk factor for all outcomes. Regarding central predictor

effects under model 2, as compared to homogeneous effects under model 1, impacts of deprivation



are reduced for all outcomes, but especially female suicide.

For male suicides, social fragmentation effects show the most variability under model 2 (as shown by
the estimated random effect standard deviations on the right side of Table 3). However, for female
suicides, the impact of deprivation is the most variable. For overall suicides, both fragmentation
and deprivation show variable impacts, but fragmentation shows greater variability. Thus Figures

1 and 2 represent the varying effects of fragmentation and deprivation on overall suicide.

While there is significant variability in SFI impacts on two suicide outcomes, this is overwhelmingly
a positive risk factor on suicide in the sense that higher SFI is associated with higher suicide risk.
For local SFI impacts on overall suicides, in 4750 (of 6791) areas there is a 90% chance or more of a
positive effect, but no areas with a 90% chance or more that the SFI effect is negative. Regarding
local SFI impacts on female suicide, in all 6791 MSOAs there is an over 90% chance of a positive
effect. For male suicides, the SFI effect is significantly positive in 3080 areas, though for a few areas

(under 10) the effect is significantly negative.

Comparison of Predictions

Detecting markedly elevated or reduced risk is a primary goal in disease mapping, and often a

criterion for model effectiveness.

As one approach to comparing predictions and detecting extreme risk, we focus on overall sui-
cides, and compare relative risk estimates between global and local models for those MSOAs where
predictions contrast most. The ten MSOAs where the local model 2 predicts distinctly higher rel-
ative risks are listed first. We include SMRs as a risk indicator, but because of their drawbacks
as relative risk estimates, supplement them by probability estimates that relative risks exceed 1.
These are based on Poisson random simulations, using only the observed Y; and E; (see Appendix 1).

These estimates take account of varying MSOA populations, and higher E; in some areas, whereas



an SMR of, say, 2, does not distinguish between the scenarios (Y =10, E =5) and (Y =4, F = 2).

It can be seen that risk tends to be underpredicted under the global model 1 for the first ten
areas in Table 5. In these areas, high suicide risks are associated with high scores on deprivation
or fragmentation, and with above average IMD and SFI coefficients (compared to the coefficient
averages in Table 2). Such high coefficients are acting adaptively to explain locally high suicide risk

under model 2.

By contrast, the last ten rows of Table 5 are for ten MSOAs where the global model 1 produces
distinctly higher relative risk estimates as compared to model 2. These tend to be MSOAs where
actual deaths Y; are less than expected counts F;, and there is a low data-based probability that
relative risk exceeds 1. However, for all these MSOAs, the global model produces relative risk

estimates in excess of 1.

A more generic impression of how predictions compare between models is based on forming groups
of MSOAs with distinct risk levels, as assessed from probability estimates of excess relative risk
(Appendix 1) and the population size of MSOAs (as reflected in expected suicides). The excess risk
probabilities more clearly identify elevated than depressed risk. Considering overall suicides, there
are 148 MSOAs with excess risk probabilities over 0.99, and 449 with probabilities over 0.95. By
contrast, there are only 36 areas with probabilities under 0.01, while 199 are under 0.025, and 420
under 0.05.

Therefore we define area categories according to excess risk probabilities over 0.99, over 0.95, under
0.05 and under 0.025, and expected suicides (over 5, 3-5, and under 3). Thus see the upper section
of Table 6, with the last column showing the number of MSOAs in the category, and also including
intermediate risk areas. Table 6 shows the average relative risks under models 1, 2, 2’, and 2”
(columns 2 to 5) as well as the standard mortality ratio in that category (total deaths divided by

total expected).
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Thus for areas with elevated risk, the varying slopes model 2 identifies such risk better than the
varying intercepts model 1. This advantage is most pronounced for larger areas (E>5) where the
simulation probabilities exceed 0.99. Model 2 also has an advantage over model 1 for low risk areas
with larger populations (E>5). Additionally, throughout all comparisons, there is no advantage in
predicting risk for models 2’ and 2”7 against the less complex model 2. For intermediate risk areas,

the models make similar predictions.

These themes continue in the lower part of Table 6 which compares predictions between the nine
English regions. Thus different models tend to be broadly similar in their predictive success within
some regions as against others. For example, all models are relatively successful in predicting high
risk in the North West, South West and North East regions. By contrast, the high risk in 20 London
MSOAs is not well predicted by any model, suggesting that an expanded model might be needed
to capture distinct regional effects. However, the advantage of model 2 over model 1 in predicting

higher risk still pertains for most regions, most markedly for the East of England.

To illustrate how varying intercepts and varying slopes model compare for data following a known
model form, we also conduct a simulation for one English region, the North West. Details are
set out in Online Resource O1, but replicate the above discussed features: better fit and better

prediction for higher risk areas under the varying slopes model 2.

Suicide Variation within Local Authorities

The 6791 MSOAs are nested within larger administrative units, namely 326 local authorities. To
illustrate locally varying SFI impacts within a subregion, consider Tendring local authority in NE
Essex, which includes coastal resort areas. As mentioned above, coastal resort towns may have high
residential turnover, and high levels of private renting, leading to high fragmentation scores. They

can also be relatively deprived. High suicide risks in such towns are exemplified by authority-wide
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SMRs (for overall suicides) of 1.57 (Tendring), 1.51 (Blackpool), 1.53 (Hastings), 1.48 (Scarbor-
ough), 1.43 (Great Yarmouth), 1.37 (Brighton and Hove) and 1.32 (Eastbourne). These authorities

are all within the 25 local authorities with the highest suicide SMRs.

Within Tendring, there are wide contrasts in suicide risks, with observed counts Y; considerably
exceeding expected counts E; in some MSOAs, with the reverse true in other areas (see Table 7).

In six areas there is an over 90% chance that relative risk exceeds 1, based simply on the data.

As to risk-predictor associations, there is a positive correlation (0.90) between fragmentation and
suicide SMRs within Tendring, and a positive correlation (0.86) between deprivation and suicide
also. So both deprivation and fragmentation coefficients are above average, as the two risk factors
have a clear role in explaining suicide contrasts within the subregion. Figure 3 shows the vary-
ing SFT coefficients in this local authority. The Figure highlights three adjacent coastal MSOAs

(Tendring 012, 014 and 016) with SFI coefficients in the highest category and also high suicide risks.

Another example is a relatively deprived, post-industrial, local authority in northern England,
namely Middlesbrough, with an authority-wide suicide SMR of 1.58. Here deprivation coefficients
are above average (penultimate column, Table 8). These coefficients reflect associations between
suicide and risk factors: high risk MSOAs tend to be highly deprived, while low risk MSOAs have
low deprivation levels. The same applies to social fragmentation, where coefficients are above aver-
age, and high (low) risk tends to be associated with high (low) fragmentation. Areas with elevated
risk, and high levels of both deprivation and fragmentation, are exemplified by Middlesbrough 001
and 003. Areas with low risk, and low levels of both deprivation and fragmentation, are exemplified

by Middlesbrough 012 and 017.

Conclusions
The primary intention of the preceding analysis has been to evaluate models for a relatively rare

mortality outcome, allowing for spatially varying predictor effects. This approach is compared to
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a varying intercepts model within the broader framework of Bayesian disease mapping. Disease
mapping applications tend to assume homogeneous effects of area risk factors on disease, and use
random intercepts to account for residual spatial dependence, as in suicide studies (Qi et al, 2014;
Yoon et al, 2015). Area suicide studies may also omit area risk factors altogether, and use a varying

intercepts model (Cheung et al, 2012).

However, as demonstrated in the current application, additional substantive perspectives may be
gained through exploring local variability in risk factor effects, and in some circumstances, there
may be little gain in fit through using varying intercepts in combination with varying predictor
effects. The latter applies for suicide across England small areas, where models with varying slopes
only provide comparable fit to more complex models. However, this finding may be specific to this
particularly outcome, and the analysis does not establish a generic tendency for varying slopes to

dispense with the need for random intercepts.

Varying regression effects are here implemented using a Bayesian random effects approach, and
analysis of locally varying regression is facilitated by software such as R-INLA. This avoids the

computational burden involved in Monte Carlo Markov Chain analysis.

Geographically weighted regression (GWR) has the same focus on spatial heterogeneity, but does
not use a random effects approach, but instead a series of separate weighted regressions. GWR has
been widely used, with health applications included. Since readers of the journal may well be more
familiar with this approach, a supplementary analysis using GWR (applied to overall suicides) is
reported on in Online Resource O2. This shows some findings common with the borrowing strength

Bayesian approach, but not a strong correlation between area regression coeflicients.

Such contrasts are likely given the rather different methods used in the two approaches (Waller
et al,2007), and may be more apparent for a rare disease outcome. Borrowing strength operates via

the assumed prior distribution of random effect across all areas, and this is especially important
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for rarer outcomes. The borrowing strength approach has, however, primarily been used in mod-
elling intercept variation. Studies of spatial heterogeneity in disease mapping, and in particular the
potential for spatially varying coefficients on risk factors, are far fewer, and the present paper is

intended to demonstrate how this form of analysis may be approached and its potential benefits.
Appendix 1

To indicate disease risk using simply the observed data, one may simulate death counts }A}it (for
simulations ¢ = 1,...,T") based on the expected deaths E;, and compare these with actual deaths
Y;. If for most simulations, one has Y; > )N’“ then this indicates high relative risk in area i. The

n n
relative risk interpretation holds when ). Y; =5, | E; .

Let I(A) = 1 or 0 according as condition A holds. Following Marshall and Spiegelhalter (2007),
and allowing for equality of simulated and actual counts, we find probability estimates that relative
risks exceed 1, based simply on the data, as R;/T where

R; = ;?I(Yi > ﬁt)+0-5tZ?I(Yi =Yi).
The relevant R code for 7' = 1000 is

Ysim=exc=matrix(,1000,6791)

for (t in 1:1000) {Ysim[t,|=rpois(6791,E)

exc[t,] = ifelse(Y>Ysiml[t,],1,0)+ ifelse(Y==Ysim][t,],0.5,0)}

pr.exc=apply(exc,2,mean)

where pr.exc are the probability estimates.
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DIC
WAIC

Table 1 Comparison of Model Variants

Moran.| statistic for residuals

p-value for Moran |

DIC
WAIC

Moran.| statistic for residuals

p-value for Moran |

DIC
WAIC

Moran.| statistic for residuals

p-value for Moran |

Model 1

Mean

Standard deviation
2.5% Quantile
97.5% Quantile

Model 2

Mean

Standard deviation
2.5% Quantile
97.5% Quantile

Relative Suicide Risks
(Comparing Max and
Min Predictor Values)

Table 2 Parameter Estimates, Overall Suicides, England MSOAs, 2011-15

Intercept

-0.498
0.032
-0.560
-0.436

Intercept

-0.473
0.031
-0.533
-0.413

Model 1

Model 2

Model 1

27384.2

27399.2
-0.025
0.998

Model 1
25277.2
25292.9
-0.017
0.993

Model 1

15963.4

15965.7
-0.010
0.910

Persons
Model 2  Model 2"
27358.4 27352.8
27363.0 27359.9
-0.010 -0.019
0.910 0.993
Males
Model 2  Model 2"
25265.2 25257.9
25270.3 25266.1
-0.003 -0.011
0.673 0.923
Females
Model 2  Model 2'
15957.9  15962.7
15961.4  15965.0
0.002 -0.011
0.390 0.922

Predictor Effects

Deprivation

0.930
0.050
0.831
1.029

Deprivation

0.849
0.055
0.741
0.956

2.54

2.34

Social
Fragment-
ation

0.648
0.065
0.519
0.776
Social

Fragment-
ation

0.685
0.076
0.537
0.833

1.91

1.98

Rurality

0.143
0.045
0.054
0.230

Rurality

0.142
0.038
0.067
0.216

1.15
1.15

Model 2"

27352.6

27359.4
-0.018
0.991

Model 2"

25258.3

25267.0
-0.010
0.891

Model 2"
15962.6
15964.9
-0.011
0.939

Random Effects Standard Deviations

Spatial
Random
Intercept

0.244
0.019
0.207
0.278
Random

Deprivation
Effects

0.205
0.079
0.070
0.369

IID random
intercept

0.011
0.006
0.004
0.025

Random SFI
Effects

0.692
0.067
0.576
0.842

Random
Rurality
Effects St
Devn

0.010
0.007
0.004
0.029



Table 3 Parameter Estimates, Male Suicides, England MSOAs, 2011-15

Predictor Effects Random Effects Standard Deviations
Social Spatial
Model 1 Deprivation Fragment- Rurality Random ”.D random
. intercept
Intercept ation Intercept
Mean -0.473 1.006 0.475 0.141 0.250 0.011
Standard deviation 0.035 0.057 0.074 0.050 0.022 0.007
2.5% Quantile -0.542 0.895 0.330 0.042 0.209 0.004
97.5% Quantile -0.404 1.117 0.620 0.239 0.296 0.030
Social Random Randc.)m
Model 2 Deprivation Fragment- Ruralit Deprivation Random SFI Rurality
P g. ¥ P Effects Effects St
ation Effects
Intercept Devn
Mean -0.442 0.948 0.480 0.135 0.011 0.753 0.010
Standard deviation 0.034 0.058 0.084 0.043 0.006 0.068 0.006
2.5% Quantile -0.509 0.834 0.315 0.051 0.004 0.630 0.004
97.5% Quantile -0.375 1.061 0.644 0.218 0.027 0.896 0.028
Relative Suicide Risks Model 1 2.74 1.61 1.15
(Comparing Max and
Min Predictor Values) Model 2 2.58 1.62 114

Table 4 Parameter Estimates, Female Suicides, England MSOAs, 2011-15

Predictor Effects Random Effects Standard Deviations
Social Spatial
Model 1 Deprivation Fragment- Rurality Random ”_D random
. intercept
Intercept ation Intercept
Mean -0.618 0.606 1.198 0.245 0.296 0.010
Standard deviation 0.059 0.099 0.123 0.079 0.040 0.006
2.5% Quantile -0.734 0.412 0.956 0.089 0.222 0.004
97.5% Quantile -0.502 0.801 1.437 0.398 0.379 0.028
Social Random Rand(?m
Model 2 Deprivation Fragment- Ruralit Deprivation Random Rurality
P g. ¥ P SFI Effects Effects St
ation Effects
Intercept Devn
Mean -0.561 0.457 1.183 0.238 0.821 0.010 0.011
Standard deviation 0.057 0.108 0.121 0.068 0.108 0.007 0.007
2.5% Quantile -0.672 0.245 0.944 0.103 0.623 0.004 0.004
97.5% Quantile -0.450 0.667 1.418 0.371 1.040 0.029 0.030
Relative Suicide Risks Model 1 1.83 3.31 1.28

(Comparing Max and
Min Predictor Values)  Model 2 1.58 3.26 1.27



Table 5 Comparison of Relative Risk Estimates. Local vs Global Model, Overall Suicides

. . Relative
REITWEtR'Sk Risk Simulated
stimates N
Estimate Pr(RR>1) — .
Gap l?;z:ialil;d (Data Observed  Expected De;()lrr\lzgt)lon Fra :noecrl\ilation IMD SFI
(Excess . ¥ based Deaths Deaths s Coefficient  Coefficient
Ratio R Score (SFI) Score
Model  Model of Local Poisson
1 2 over simulation)
Global)
Higher
Relative 3.12 4.20 1.07 4.81 1.00 14 291 0.80 0.54 1.00 1.86
Risk Under
LocalModel ;66 334 0.68 3.43 1.00 14 4.08 0.19 071 0.89 1.46
1.81 2.46 0.65 2.48 1.00 13 5.25 0.13 0.84 0.98 1.35
2.40 2.99 0.59 3.37 1.00 11 3.27 0.73 0.61 1.12 1.04
2.20 2.72 0.52 4.46 1.00 23 5.16 0.70 0.48 1.01 1.40
2.51 3.03 0.52 3.18 1.00 14 4.40 0.66 0.76 0.88 1.17
1.81 2.30 0.49 2.68 0.99 9 3.36 0.27 0.64 0.84 1.50
2.23 2.69 0.46 3.75 1.00 10 2.67 0.65 0.45 1.05 1.46
2.18 2.60 0.43 3.16 1.00 10 3.17 0.35 0.41 1.29 2.11
2.66 3.09 0.43 3.23 1.00 13 4.02 0.87 0.64 0.85 1.16
Higher 1.27 0.75 0.51 0.23 0.04 1 4.43 0.34 1.00 0.84 0.17
Relative : : e : : ’ . : ! e
Risk Under
Global 146  1.04 -0.42 0.00 0.01 0 3.26 0.66 0.74 0.81 -0.10
Model
1.16 0.81 -0.35 0.00 0.02 0 3.19 0.25 0.91 0.85 -0.02
1.85 1.50 -0.35 0.74 0.35 2 2.72 0.94 0.52 0.66 0.25
1.27 0.94 -0.33 0.26 0.06 1 3.90 0.18 0.93 0.97 0.18
1.29 0.96 -0.33 0.43 0.11 2 4.70 0.28 0.91 0.83 0.12
1.34 1.01 -0.33 0.80 0.38 3 3.77 0.58 0.71 0.83 -0.06
1.07 0.76 -0.31 0.19 0.02 1 5.24 0.25 0.86 0.70 -0.06
1.06 0.75 -0.31 0.30 0.10 1 331 0.31 0.87 0.63 -0.10

131 1.01 -0.31 0.75 0.30 4 5.33 0.24 0.92 0.96 0.21



Simulation Probability,

Relative Risk > 1
Over 0.99
Over 0.99
Over 0.99
Over 0.95
Over 0.95
Over 0.95
Under 0.05
Under 0.05
Under 0.05

Under 0.025

Under 0.025

Under 0.025
Between 0.05-0.5
Between 0.05-0.5
Between 0.05-0.5
Between 0.5-0.95
Between 0.5-0.95
Between 0.5-0.95

Simulation Probability,

Relative Risk > 1
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Over 0.95
Under 0.05
Under 0.05
Under 0.05
Under 0.05
Under 0.05
Under 0.05
Under 0.05
Under 0.05
Under 0.05

Table 6 Comparing Predictions between Models

6(A) by Level of Risk and MSOA Size
Average Relative Risk by Model

Expected Suicides

Over 5
Between 3 and 5
Under 3
Over 5
Between 3 and 5
Under 3
Over 5
Between 3and 5
Under 3
Over 5
Between 3 and 5
Under 3
Over 5
Between 3 and 5
Under 3
Over 5
Between 3 and 5
Under 3

Model
1
1.56
1.53
1.49
1.46
1.38
1.33
0.91
0.84
0.85
0.94
0.84
0.77
0.93
0.91
0.95
1.12
1.05
1.07

Model
2
1.79
1.60
1.55
1.59
1.42
1.35
0.88
0.85
0.87
0.90
0.85
0.84
0.91
0.92
0.95
1.11
1.04
1.05

Model
2
1.74
1.58
1.52
1.56
141
1.33
0.88
0.84
0.87
0.90
0.84
0.81
0.91
0.91
0.95
1.11
1.04
1.06

6(B) by Level of Risk and Region
Average Relative Risk by Model

Region

London

South East

East of England
South West

West Midlands
East Midlands
North West
Yorkshire/Humber
North East
London

South East

East of England
South West

West Midlands
East Midlands
North West
Yorkshire/Humber
North East

Model
1
0.92
1.36
1.41
1.48
1.12
1.24
1.50
1.35
1.52
0.77
0.82
0.77
0.94
0.85
0.86
0.93
0.93
1.01

Model
2
0.93
1.40
1.50
1.51
1.09
1.27
1.54
1.37
1.56
0.78
0.84
0.82
0.94
0.86
0.89
0.90
0.94
0.98

Model
2
0.93
1.40
1.51
1.49
1.10
1.27
1.51
1.35
1.54
0.77
0.83
0.79
0.94
0.86
0.88
0.92
0.94
1.00

Model
o
1.75
1.58
1.52
1.57
141
1.33
0.88
0.84
0.87
0.90
0.84
0.81
0.91
0.91
0.95
1.11
1.04
1.06

Model
o
0.93
1.40
1.51
1.50
1.10
1.27
1.52
1.35
1.54
0.77
0.83
0.79
0.94
0.86
0.88
0.92
0.94
1.00

SMR

2.54
2.80
3.17
2.18
2.38
2.58
0.15
0.07
0.00
0.11
0.00
0.00
0.66
0.61
0.59
1.31
1.34
1.41

SMR

2.23
2.39
2.37
2.41
241
2.31
2.43
2.50
2.50
0.07
0.06
0.04
0.07
0.04
0.03
0.04
0.02
0.07

Number
of Areas
10
99
39
24
281
144
12
253
155
10
187

106
2140
897
85
1842
852

Number
of Areas
20
59
36
63
42
39
89
59
42
101
49
57
28
52
33
42
42
16



Table 7 Suicide Risk Estimates, IMD and SFI Scores, and Local Model Regression Coefficients

MSOAs in Tendring Local Authority, Overall Suicide

. Simula‘F(?d Depriv- Social
Belatlve Probability Observed Expected ation Fragment- IMD S
MSOA Code  RiskLocal SMR  Pr(RR>1) (Data Deaths Deaths (IMD) ation (SFI) Fgeff- (Fgeff-
Model based Poisson icient icient
simulation) Score Score
Tendring 001 2.24 2.93 0.99 8 2.73 0.48 0.42 0.95 1.68
Tendring 002 1.34 1.31 0.72 4 3.05 0.32 0.24 0.93 1.54
Tendring 003 1.06 0.60 0.21 3 4.98 0.17 0.21 0.87 1.22
Tendring 004 0.99 0.77 0.36 3 3.88 0.20 0.14 0.91 1.41
Tendring 005 0.97 0.84 0.44 2 2.39 0.16 0.14 0.86 1.25
Tendring 006 1.54 1.93 0.93 6 3.11 0.31 0.33 0.93 1.58
Tendring 007 1.14 0.66 0.30 2 3.05 0.24 0.16 0.92 1.50
Tendring 008 1.16 1.20 0.69 6 5.01 0.20 0.21 0.95 1.64
Tendring 009 0.95 0.30 0.10 1 3.33 0.13 0.14 0.89 1.33
Tendring 010 1.30 1.71 0.86 5 2.92 0.31 0.20 0.96 1.69
Tendring 011 1.26 1.64 0.89 6 3.65 0.24 0.25 0.90 1.41
Tendring 012 1.18 1.73 0.89 5 2.90 0.22 0.19 0.97 1.75
Tendring 013 1.35 1.82 0.91 6 3.30 0.33 0.22 0.96 1.68
Tendring 014 1.77 2.04 0.97 7 3.43 0.38 0.32 0.98 1.78
Tendring 015 1.85 1.95 0.93 6 3.08 0.57 0.28 0.95 1.63
Tendring 016 4.20 4.81 1.00 14 291 0.80 0.54 1.00 1.86
Tendring 017 1.53 0.65 0.31 2 3.06 0.38 0.28 0.95 1.59

Tendring 018 2.14 2.60 0.99 9 3.46 0.62 0.33 0.94 1.57



Table 8 Suicide Risk Estimates, IMD and SFI Scores, and Local Model Regression Coefficients
MSOAs in Middlesborough Local Authority, Overall Suicide

Middlesbrough 001
Middlesbrough 002
Middlesbrough 003
Middlesbrough 004
Middlesbrough 005
Middlesbrough 006
Middlesbrough 007
Middlesbrough 008
Middlesbrough 009
Middlesbrough 010
Middlesbrough 011
Middlesbrough 012
Middlesbrough 013
Middlesbrough 014
Middlesbrough 015
Middlesbrough 017
Middlesbrough 018
Middlesbrough 019
Middlesbrough 020

Relative
Risk Local
Model

2.45
2.30
2.58
1.75
1.63
1.67
1.83
143
1.11
1.78
1.94
0.91
0.92
1.26
0.90
0.83
1.42
1.18
0.83

SMR

2.53
2.04
2.05
0.71
3.50
1.36
2.01
1.92
1.43
2.55
0.84
0.00
0.46
2.63
1.19
0.00
1.38
1.53
0.94

Simulated
Probability
Pr(RR>1) (Data
based Poisson
simulation)

1.00
0.94
0.96
0.35
1.00
0.72
0.97
0.92
0.82
0.98
0.44
0.03
0.27
0.98
0.66
0.05
0.78
0.84
0.50

Observed
Deaths

[y
w

S OO O WO P ON OO 1O W O N 0 UL

Expected
Deaths

5.14
2.45
3.91
2.83
2.57
2.21
3.99
2.60
4.20
2.35
2.38
2.64
2.17
2.28
2.51
2.33
3.62
3.92
4.27

Depriv-
ation
(IMD)
Score

0.70
0.87
0.76
0.74
0.45
0.62
0.73
0.49
0.22
0.72
0.74
0.11
0.14
0.36
0.12
0.08
0.48
0.33
0.08

Social
Fragment-
ation (SFI)

Score

0.57
0.40
0.59
0.27
0.34
0.30
0.29
0.23
0.24
0.25
0.34
0.17
0.15
0.23
0.14
0.11
0.23
0.20
0.11

IMD
Coeff-
icient

0.93
0.92
0.93
0.90
0.97
0.93
0.93
0.96
0.94
0.95
0.92
0.94
0.95
0.96
0.97
0.95
0.96
0.96
0.95

SFI
Coeff-
icient

1.08
1.01
1.03
0.99
1.27
1.07
1.05
1.17
1.14
1.09
1.04
1.07
1.12
1.18
1.19
1.11
1.16
1.15
1.10



Figure
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Figure 1 Histogram of Varying SFI Coefficients
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Figure 3 Varying SFI Coefficients in Tendring Local Authority
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Supplement O1. Simulation Analysis (North West England, Overall Suicides)

A simulation study is based on one of the main English regions (North West England, which contains
924 of the England wide total of 6791 MSOAs), and applies models 1 and 2 to overall suicides within
that region. The simulation uses fitted means from model 2 to simulate new data (for 100 simulations)
and then compares estimates from models 1 and 2 for these simulations. This study shows that for
data generated from a known model form, the same features as in model estimates from actual
observations are reproduced repeatedly. That is, model 2 applied to simulated data produces higher
estimates of relative risk than model 1 in areas with high probabilities of excess relative risk, as well
as lower WAIC values.

The upper panel (panel A) in Table 01.1 concerns the two models applied to the actual suicide data in
NW England. This shows that there is significant variability in the impacts of SFI in model 2, and that
the relative impacts of deprivation and SFI change considerably between models 1 and 2. Thus
substantive inferences regarding these two risk factors are substantially affected by the form of
model.

Fit is considerably improved under model 2, with the WAIC falling from 3807 to 3778.5 (though both
models are satisfactory with regard to removing residual spatial dependence).

The upper panel (panel A) of Table 01.2 also shows the varying slopes model (applied to the actual
observations) to better predict risk in high risk areas, as for the full England wide analysis in Table 6A.
This assessment uses Poisson simulations to estimate probabilities that relative risks exceed 1 (as in
Appendix 1 of the main paper), but within the North West region.

We assess the replicability of these effects using simulation, namely Poisson sampling to produce

simulated suicide death totals YSim t for t=1,..,100 simulations. The Poisson means used to generate

simulated data are the fitted values Eixi from model 2 when applied to observed NW England suicides

(ii denotes posterior mean relative risks). We carry out 100 such simulations, and for each simulated

dataset compare the estimated model 1 and model 2 in the same way that these models are compared
for the observed suicide data. Each simulation includes a sub-simulation, as in Appendix 1, applied to
Ysim,t’ to assess probabilities that relative risks exceed 1.

Model 2 produces an average WAIC of 3783.5 over 100 simulations compared to an average of 3802.7
under model 1. The gap in WAIC between models (excess of WAIC for model 1 over model 2) varies
from 47.7 to -2.2. In terms of average performance, both models are satisfactory with regard to
removing residual dependence (the average p-values from moran.mc are 0.89 and 0.85 under models
1 and 2 respectively), though for model 1 there are 3 simulations where the p-test exceeds 0.95
compared to none under model 2.

Regarding regression effects and their variability, the lower panel (part B) of Table O1.1 shows that
high variability in effects of SFI persists in the results using simulated data. So also does the reversal
in the relative importance of deprivation and social fragmentation between the models.

The lower panel (part B) of Table 01.2 shows that, for the simulated as for the observed data, there is
a consistent tendency for model 2 to produce higher estimates of relative risk in high risk areas (areas
where the Appendix 1 procedure shows excess relative risk probabilities over 0.95). Figure 01.1 plots
the differences between estimated average relative risk (model 2 excess over model 1) in high risk
areas where E; exceeds 4. In fact, model 2 also produces lower estimates of relative risk in low risk



areas (areas where the Appendix 1 procedure shows excess relative risk probabilities to be under

0.05).

Table 01.1 Parameter Estimates, Overall Suicides, North West England MSOAs, 2011-15
Actual Observations and Simulated Data

Model 1

Mean
Standard deviation

Model 2

Mean
Standard deviation

Model 1

Mean
Standard deviation

Model 2

Mean
Standard deviation

Intercept

-0.463
0.069

Intercept

-0.490
0.069

Intercept

-0.463
0.069

Intercept

-0.490
0.069

(A) Actual Observations

Random Effects

Predictor Effects Standard Deviations

. Social Spatial IID
Depriv- .
ation Fragment- Rurality Random random
ation Intercept  intercept
0.915 0.515 0.033 0.233 0.011
0.108 0.173 0.118 0.048 0.007
. Social Random Random Randgm
Depriv- . - Rurality
- Fragment- Rurality Deprivation SFI
ation : Effects
ation Effects Effects
St Devn
0.788 0.901 -0.018 0.011 0.808 0.011
0.117 0.217 0.101 0.007 0.139 0.007
(B) Simulated Data (Averages over 100 Simulations)
. Random Effects
Predictor Effects Standard Deviations
. Social Spatial IID
Depriv- .
ation Fragment- Rurality Random random
ation Intercept  intercept
0.915 0.514 0.033 0.233 0.010
0.108 0.173 0.118 0.049 0.007
. Social Random Random Randgm
Depriv- . - Rurality
. Fragment- Rurality Deprivation SFI
ation : Effects
ation Effects Effects
St Devn
0.788 0.901 -0.018 0.011 0.803 0.010
0.117 0.217 0.101 0.007 0.134 0.007



Table 01.2 Northwest Region of England, Predictions of Extreme Relative Risks

(A) Actual Observations

Simulation Probability, Expected Suicides Model 1 Model 2 SMR Number of

Relative Risk > 1 Areas
Over 0.95 Over 4 1.34 1.43 2.22 28
Over 0.95 Under 4 1.36 1.42 2.35 34
Under 0.05 Over 4 0.87 0.85 0.16 19
Under 0.05 Under 4 0.84 0.82 0.00 32

(B) Simulations
. . - Mean
S|mulat|9n Pr.Obablhty' Expected Suicides Model 1 Model2  SMR  Number of
Relative Risk > 1

Areas

Over 0.95 Over 4 1.24 131 2.17 24.6

Over 0.95 Under 4 1.30 1.36 2.39 38.2
Under 0.05 Over 4 0.88 0.86 0.18 20.2
Under 0.05 Under 4 0.86 0.85 0.01 31.7

Figure O1.1 Estimated Relative Risks

10
J

Frequency

[ I I |
0.00 0.05 0.10 0.15

Model 2 RR - Model 1 RR



Supplement 02. GWR and Disease Mapping Estimates Compared (England Overall Suicides)

GWR analysis of overall suicides (male and female combined) across England was carried out in R using
the spgwr package. This analysis uses the ggwr option (generalised geographically weighted
regression), and also the adaptive kernel option in spgwr. Comparison with the INLA disease mapping
model 2’ is most approprate, as the GWR model includes varying intercepts as well as varying predictor
effects.

Table 02.1 GWR and Disease Mapping Estimates Compared (Overall Suicides)

Disease Mapping Estimates (R-INLA), Model 2'

Social
Model 2 Intercept Deprivation Fragment- Rurality

ation
Mean Coefficient -0.460 0.973 0.555 0.141
Characteristics of Area Coefficients
Standard deviation 0.011 0.011 0.205 0.010
2.5% Quantile -0.461 0.972 0.402 0.140
97.5% Quantile -0.459 p.973 0.693 0.142
Areas with positive effects 0 6791 6791 6791

GWR Estimates (spgwr)
Social
Intercept Deprivation Fragment- Rurality

ation
Mean Coefficient -0.586 0.996 0.541 0.375
Characteristics of Area Coefficients
Standard deviation 0.168 0.307 0.405 0.215
2.5% Quantile -0.770 0.332 -0.172 -0.079
97.5% Quantile -0.194 1.390 1.168 0.591
Areas with positive effects 63 6791 5827 6122

Comparison of GWR and INLA disease mapping estimates shows closely similar England wide effects
of the deprivation and social fragmentation predictors (Table 02.1), with both having a positive
England wide coefficient. However, the GWR analysis shows a definitely stronger rurality effect.

The GWR analysis does not borrow strength between estimated parameters for different areas, and
consequently the spread of effects is much greater under this analysis. A commonality between the
two analyses is that the SFI effect is the most variable predictor effect. However, considered at
individual area level, while correlations between the two sets of predictor coefficients are positive,
they are low, under 0.3.

As an illustration of the wider spread of GWR coefficients, Figure 02.1 compares the estimated mean
SFl regression effects from the two models.
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