
STOCHASTIC DOMINANCE FOR SHIFT-INVARIANT

MEASURES

Vasso Anagnostopoulou∗

Queen Mary University of London
Mile End Road

London, E1 4NS, UK

Abstract. Let X be the full shift on two symbols. The lexicographic order

induces a partial order known as first-order stochastic dominance on the col-
lection MX of its shift-invariant probability measures. We present a study

of the fine structure of this dominance order, denoted by ≺, and give criteria

for establishing comparability or incomparability between measures in MX .
The criteria also give an insight to the complicated combinatorics of orbits in

the shift. As a by-product, we give a direct proof that Sturmian measures are

totally ordered with respect to ≺.

1. Introduction

Let X be the full shift {0, 1}N on two symbols, and consider MX , the collection
of shift-invariant Borel probability measures on X. If X is equipped with the
lexicographic order, thenMX can be equipped with the partial order of first-order
stochastic dominance: if µ and ν are shift-invariant Borel probability measures on
X, then ν (first-order stochastically) dominates µ (written µ ≺ ν), if

∫
X
fdµ ≤∫

X
fdν for all increasing functions f : X → R.
The concept arises in decision theory and decision analysis (see, for example,

[17]). In the setting of this article, first-order stochastic dominance is used to make
precise the notion of one probability measure being larger than another. The study
of this order in such a setting is motivated by interesting questions that arise in
ergodic optimization: the study of the smallest and largest possible ergodic aver-
ages of a given function and of the invariant measures which attain these extrema,
known as minimizing and maximizing measures, respectively. For example, in [3],
β-shifts Xβ (subsets of {0, . . . , [β]}N defined as the closure with respect to the prod-
uct topology of the set of sequences arising as a β-expansion) were considered and
the set MXβ of shift-invariant Borel probability measures was ordered with first-
order stochastic dominance. Then it was natural to ask, for which β > 1, the
corresponding β-shift has a largest invariant measure, i.e. a measure which domi-
nates all other measures in MXβ or equivalently, a measure that is simultaneously
f -maximizing for every increasing function f : Xβ → R. The authors proved that
for 1 < β < 2, the β-shift Xβ has a largest shift-invariant measure if and only if the
lexicographically largest element in Xβ is the periodic sequence given by repeating
the length-(ap + 1) word (10a−1)p0, for some integers a, p ≥ 1 (a more stringent
restriction is needed for β > 2). In that case, the largest shift-invariant measure
on Xβ was the unique one supported by the periodic orbit generated by the largest
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element of Xβ . This measure also belongs to the remarkable one parameter family
of Sturmian measures: measures which are supported on orbits whose permutation
under the shift map is a rotation by angle %. Sturmian sequences and measures have
been studied extensively (e.g. [1, 4, 8, 19, 21, 24]), and appear naturally in many
problems in ergodic optimization (e.g. [2, 5, 7, 11, 14, 15, 10]). In [14, 15], second-
order stochastic dominance (also known as majorization) is studied, and Sturmian
measures are shown to simultaneously optimise the integral of all convex functions.

To understand the partially ordered set (MX ,≺), it is natural to study its fine
structure. In this article, we examine the dominance relations between any two
measures in MX and present results which yield dominance, or incomparability,
between them.

Useful reformulations of first-order stochastic dominance are detailed in Lem-
mas 3.1 and 3.2, a simplified version of which is the following. For atomic mea-
sures µ, ν ∈ MX , we have that µ ≺ ν if and only if µ[x, 1] ≤ ν[x, 1], for all
x ∈ supp(µ) ∪ supp(ν). This allows to quickly establish dominance relations be-
tween atomic measures supported on periodic orbits of small period. In Theorem
3.4, we consider two atomic measures µ, µ̂ ∈MX and assume µ is dominated by µ̂.
We prove that the measure supported on the orbit generated by the concatenation
µ ∗ µ̂ (see Definition 2.7) of the two orbits carrying µ and µ̂, dominates µ, and is
dominated by µ̂. This result also gives an insight to the combinatorics of periodic
orbits that are constructed via concatenations.

For example, consider the periodic sequences 110 and 110010 (and the orbits they
generate) and note that using the aforementioned reformulation of dominance, it is
easy to establish that µ110010 ≺ µ110. Their concatenation is the orbit generated
by 110 ∗ 110010 = 110110010 and by Theorem 3.4, the measure µ110110010 carried
by this orbit dominates µ110010 and is dominated by µ110. The three orbits are
illustrated in Figure 1, below.

Figure 1. Orbits supporting measures µ110010 ≺ µ110110010 =
µ110 ∗ µ110010 ≺ µ110

An immediate use of this result is the possibility of establishing the dominance
relation between all Sturmian measures i.e. the Sturmian measure S%1 is dominated
by S%2 if and only if %1 ≤ %2. This is due to the fact that Sturmian (periodic) orbits
are generated by a concatenation procedure analogous to the Farey construction of
rational numbers, see Figure 3, and Proposition 4.3(iv). Hence, for example,

S0 ≺ S 1
8
≺ S 1

7
≺ S 1

6
≺ S 1

5
≺ S 1

4
≺ S 2

7
≺ S 1

3
≺ S 3

8
≺ S 2

5
≺ S 3

7
≺ S 1

2

≺ S 4
7
≺ S 3

5
≺ S 5

8
≺ S 2

3
≺ S 5

7
≺ S 3

4
≺ S 4

5
≺ S 5

6
≺ S 6

7
≺ S 7

8
≺ S1 .

This result is extended to all Sturmian measures with rotation number % ∈ [0, 1]
and is presented in Corollary 4.4.
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So, when are measures incomparable? In Figure 2, the orbits carrying the mea-
sures µ10, µ1100, µ110100 and µ110010 are illustrated. It is not hard to check that these
are pairwise incomparable. Just consider the increasing functions χ[10,1], χ[0110,1],
χ[011010,1], χ[010110,1], and compare their space averages with respect to each of the
measures.

Figure 2. The pairwise incomparable shift-invariant probability
measures µ10, µ1100, µ110100 and µ110010 of frequency 1/2.

However, proving incomparability between measures directly from the definition
of dominance (or its reformulations) becomes increasingly difficult as the period of
the orbits carrying the corresponding measures gets larger. In this last example,
one may observe that all of these measures have frequency (defined as the measure
of the cylinder set 〈1〉) equal to 1/2. In Lemma 5.1, it is shown that, in fact, any
atomic measures with equal frequency are incomparable. Other results concerning
incomparability between measures can be found in Section 5.

Using the various results on comparability and incomparability of measures (Sec-
tions 3 and 5) one can establish all relations between measures supported on pe-
riodic orbits of small period. For example, there are 71 measures supported on
periodic orbits of period up to 8. The Sturmian measure S1/2 is dominated by
16 of those, namely S4/7, S3/5, S5/8, S2/3, S5/7, S3/4, S4/5, S5/6, S6/7, S7/8, S1,
µ11101010, µ111010, µ1111010, µ11111010 and µ11110110. By symmetry, it dominates
S3/7, S2/5, S3/8, S1/3, S2/7, S1/4, S1/5, S1/6, S1/7, S1/8, S0, µ10101000, µ101000,
µ1010000, µ10100000 and µ10010000, and is incomparable with the remaining 38 mea-
sures.

This complicated structure of the partial order of first-order stochastic dominance
in MX is illustrated in a Hasse diagram in Figure 4 where all measures supported
on periodic orbits of period up to 7 are compared.

Overview. The article is organised as follows. Section 2 consists of preliminaries
on symbolic dynamics, first-order stochastic dominance, and Sturmian measures.
Sections 3 and 5 present a study on comparability and incomparability between
measures. In Section 4, it is proved that Sturmian measures are totally ordered with
respect to ≺. In Section 6, we take a closer look at the fine structure of the partially
ordered set (MX ,≺), give a Hasse diagram for dominance relations between atomic
measures supported on orbits of small period, and prove that (MX ,≺) is not a
lattice.

2. Preliminaries

Notation. Let X denote the full shift on two symbols, i.e. {0, 1}N. An element of
X will be denoted by x = (xn)∞n=1, where xn ∈ {0, 1} for all n ∈ N.
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Definition 2.1 (Lexicographic order, topology). For x, x′ ∈ X, we write x < x′ if
there exists an N ∈ N with xn = x′n for 1 ≤ n < N and xN < x′N ; we write x ≤ x′ if
x = x′ or x < x′. This lexicographic order ≤ is a total order on X. Intervals on X
are defined in the usual way. The shift X is equipped with the product topology; the
(left) shift map σ : X → X, defined by (σx)n = xn+1 for n ∈ N is then continuous.

Definition 2.2 (Words). Elements of X are called sequences (or infinite words). A
(finite) word is any element of the set

⋃∞
i=0{0, 1}n, n ≥ 1 (by convention, the unique

element of {0, 1}n is the empty word) and will be written as w = w1w2 . . . wn. The
length of w denoted by |w|, is n. For each n ∈ N, define πn : X → {0, 1}n by
πn(x) = x1x2 . . . xn. A sequence x ∈ X is called periodic if there exists q ∈ N such
that xn = xn+q for all n ∈ N. The smallest such q is called the period of x, and
πq(x) is called the corresponding periodic word.

Definition 2.3 (Smallest and largest points). Let x ∈ X be a periodic sequence of
period q. Define x+ := max{σn(x) : n ≥ 0}, the lexicographically largest point in
the orbit of x, and denote by wx its corresponding periodic word πq(x

+). Similarly,
let x− := min{σn(x) : n ≥ 0}, the lexicographically smallest point in the orbit of x.

Definition 2.4 (Cylinder set, invariant measures). Let w be any finite word. De-
fine the cylinder set of w by 〈w〉 := {x ∈ X : π|w|(x) = w}, a closed interval in X.
Let MX denote the collection of shift-invariant Borel probability measures on X.

Notation. Let x ∈ X be periodic. Denote by µx, the invariant probability measure
in MX whose support equals {σn(x), n ≥ 0}. For simplicity, in examples, we
will (almost always) write µwx instead of µwx = µx. For example, the measure
supported on the period-3 orbit {0010010 . . . , 0100100 . . . , 1001001 . . .} will simply
be represented by µ100.

Definition 2.5 (Measure frequency). Let µ ∈ MX be any shift-invariant Borel
probability measure. Define its frequency to be the probability with which the digit
1 appears, i.e. ϕ(µ) := µ(〈1〉).

Definition 2.6 (Conjugate). Define the conjugate of a sequence x = (xi)
∞
i=1 ∈ X

by conj(x) = (yi)
∞
i=1 ∈ X, where yi := 1− xi, n ∈ N.

Remark 1. Note that, for x ∈ X, ϕ(µx) = 1 − ϕ(µconj(x)) and for a Borel set
A ⊂ X, µconj(x)(A) = µx(conj(A)).

Definition 2.7 (Concatenation). Let x, x̂ ∈ X be periodic sequences with x+ ≤
x̂+. Define the concatenation of x, x̂, by x ∗ x̂ = wx̂wx. If µx, µx̂ ∈MX are atomic
measures supported on those orbits, denote the concatenation of the two measures
by µx ∗ µx̂ = µx∗x̂.

Note that concatanation of orbits can be defined in different ways, for example
by concatenating the corresponding periodic words of the lexicographically smallest
point in each orbit.

2.1. Stochastic dominance.

Definition 2.8. Let µ(f) :=
∫
fdµ and µ, ν ∈ MX . We say that µ is dominated

(first-order stochastically) by ν (or ν dominates µ), and write µ ≺ ν, if µ(f) ≤ ν(f)
for every increasing1 function f : X → R.

1f : X → R is increasing if f(x) ≤ f(x′) whenever x ≤ x′.
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Some examples of measures ordered by ≺ are, µ0 ≺ µ1, µ01 ≺ µ1, µ10 ≺ µ11010.
Not all measures are comparable under this dominance relation, for example observe
that

∫
χ[1100,1]dµ10 = 0 < 1/4 =

∫
χ[1100,1]dµ1100 and

∫
χ[10,1]dµ10 = 1/2 > 1/4 =∫

χ[10,1]dµ1100, i.e. there is no dominance between µ10 and µ1100, and thus ≺ defines
a partial order on MX .

Definition 2.9 (Incomparable measures). Let µ, ν ∈ MX . If µ is not dominated
by ν, and ν is not dominated by µ, we say µ and ν are incomparable with respect
to first-order stochastic dominance, and write µf ν.

The following is a well known characterisation of first-order stochastic dominance
using so-called couplings (see Strassen’s theorem [23], [18]):

Definition 2.10 (Couplings and first-order stochastic dominance). Let µ, ν ∈MX .
A coupling of µ and ν is a probability measure γ on the product space {0, 1}N ×
{0, 1}N such that the marginals of γ coincide with µ and ν, i.e. γ(A×{0, 1}N) = µ(A)
and γ({0, 1}N ×A) = ν(A) for all Borel sets A ⊆ {0, 1}N.

Then, two measures µ, ν ∈MX satisfy µ ≺ ν if and only if they admit a coupling
(i.e. a probability measure on {0, 1}N × {0, 1}N with marginals µ, ν) whose support
is contained in the half plane {(x, y) ∈ {0, 1}N × {0, 1}N : x ≤ y}.

3. On comparability of measures

In this section, conditions that establish dominance between measures are inves-
tigated. These results are crucial in understanding the fine structure of the partially
ordered set (MX ,≺).

Firstly, observe that ≺ is a transitive relation. Simple approximation arguments
(cf. e.g. [16]) give the following reformulations of dominance:

Lemma 3.1. Let µ, ν ∈MX , then the following are equivalent:
(i) µ ≺ ν,
(ii) µ(x, 1] ≤ ν(x, 1] for all x ∈ X,
(iii) µ[x, 1] ≤ ν[x, 1] for all x ∈ X.

It is also useful to simplify this lemma, for the case of atomic measures.

Lemma 3.2. Let µ, ν ∈ MX , and in addition, let µ be an atomic measure. Then
the following are equivalent:
(i) µ ≺ ν,
(ii) µ(x, 1] ≤ ν(x, 1] for all x ∈ supp(µ),
(iii) µ[x, 1] ≤ ν[x, 1] for all x ∈ supp(µ).

Proof. (i) ⇒ (ii) and (iii) are obvious from the previous lemma. Now it will be
shown that (ii) ⇒ (i). For any y ∈ X, and let x̃ = min{x ∈ supp(µ) : x ≥ y}.
Then µ(y, 1] = µ(x̃, 1] ≤ ν(x̃, 1] ≤ ν(y, 1]. Similarly (iii)⇒ (i) is shown. �

Remark 2. It is easy to show that Lemma 3.2 also holds if measure ν is atomic,
and the assumption that µ is atomic is removed. In this case, the equivalence holds
if inequalities in (ii) and (iii) hold for all x ∈ supp(ν).

Lemma 3.3. Let x ∈ X be periodic and w be its corresponding periodic word (note
that it is not necessary that w = wx, i.e. that x is lexicographically largest in its
orbit). Then,

(a) If 1w = (1w)+, the lexicographically largest point in its orbit, then µw ≺ µ1w.
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(b) If 0w = (0w)−, the lexicographically smallest point in its orbit, then µ0w ≺ µw.

Proof. By Lemmas 3.1 and 3.2, it is enough to show

(1) µw[σi(w), 1] ≤ µ1w[σi(w), 1]

for all i ∈ {0, . . . , q − 1}, where q is the period of x. If w = 1 then (1) is trivially
true. Now let w 6= 1, then ww . . . < w1w1 . . . and hence

(2) σi(w) < σi(w1) < 1w, for all i ∈ {0, . . . , q − 1}

Let b1 < . . . < bq be the atoms of µw, where {bj}qj=1 is a permutation of {σi(w)}q−1i=0 .

Then (2) implies

(3) µw[bj , 1] =
q − j + 1

q
≤ q − j + 1 + 1

q + 1
≤ µ1w[bj , 1]

for all j = 1, . . . , q, which proves (a). The proof of (b) is identical to that of (a) and
is omitted. �

Example. Lemma 3.3 implies that the measures µ11001010, µ11010010 and µ11010100

are all dominated by µ1101010. Another dominance relation implied is µ10100 ≺
µ110010. Note that 10010 is not lexicographically largest in its orbit.

Remark 3. In Lemma 3.3, the condition that 1w (respectively 0w) is lexico-
graphically largest (respectively smallest) in its orbit, is necessary. For example, if
w = 100110 then it is not implied that µ100110 is dominated by µ1100110. In fact it
will be shown later that the two measures are incomparable.

The following theorem gives an insight to the structure and combinatorics of
periodic orbits that are constructed via concatenations, in relation to the periodic
orbits they were constructed from.

Theorem 3.4. Consider periodic points x, x̂ ∈ X, with x+ ≤ x̂+. Then

µx ≺ µx̂ ⇐⇒ µx ≺ µx∗x̂ ⇐⇒ µx∗x̂ ≺ µx̂

Proof. Assume without loss of generality that x = x+ and x̂ = x̂+. If x = x̂ then
the theorem holds trivially. Now, let x 6= x̂. If x = 0 or x̂ = 1, then all relations
dominance relations hold (by Lemma 3.3 or trivially). Now suppose that x 6= 0 and
x̂ 6= 1.

First, it will be shown that if µx ≺ µx̂, then µx ≺ µx∗x̂ ≺ µx̂. By Lemma 3.1, it
is enough to show

(4) µx[y, 1] ≤ µx∗x̂[y, 1] ≤ µx̂[y, 1] for all y ∈ X.

Inequality (4) will be proved in two stages. For the left inequality, by Lemma 3.2,
it is enough to prove the following claim:

Claim 1. Let x(1) < . . . < x(q) = x+ be the atoms of µx where q is the period of
x. Then,

(5) µx[x(i), 1] ≤ µx∗x̂[x(i), 1] for all i = 1, . . . , q.

Proof of Claim. We have that, µx[x(i), 1] = (q − i + 1)/q and µx̂[x(i), 1] = δi/q̂
where q̂ is the period of x̂ and δi denotes the cardinality | · | of the set [x(i), 1] ∩
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supp(µx̂), i = 1, . . . , q. Using Lemma 3.1, the hypothesis implies (q−i+1)/q ≤ δi/q̂
for all i = 1, . . . , q, and consequently,
(6)

µx[x(i), 1] =
q − i+ 1

q
≤ (q − i+ 1) + δi

q + q̂
≤ δi

q̂
= µx̂[x(i), 1] for all i = 1, . . . , q.

It will be shown that, by construction of x ∗ x̂,

(7) µx∗x̂[x(i), 1] =
(q − i+ 1) + δi

q + q̂
for all i = 1, . . . , q.

Let x+ = b1 . . . bq = wx, x̂+ = c1 . . . cq̂ = wx̂. Then x ∗ x̂ = c1 . . . cq̂b1 . . . bq.

Consider the intervals Ji = [x(i), x(i+1)), i ∈ {1, . . . , q − 1}, Jq = [x(q), 1]. Define

ki ∈ {2, . . . , q}, where i ∈ {1, . . . , q − 1}, to be such that x(i) := bki . . . bqb1 . . . bki−1
and kq := 1. Then {k1, . . . kq} is a permutation of {1, . . . , q}. Now, consider

the point bki . . . bqwx̂b1 . . . bki−1 in the support of µx∗x̂. We claim that the point

bki . . . bqwx̂b1 . . . bki−1 belongs to Ji.
Observe that,

(8) x(i) = bki . . . bqb1 . . . bki−1 < bki . . . bqwx̂b1 . . . bki−1

since wx < wx̂wx. Also, by the definition of the points x(i), it is clear that for i < q,

(9) x(i) = bki . . . bqb1 . . . bki−1 < bki+1
. . . bqb1 . . . bki+1−1 = x(i+1).

Now, since σq−ki+1(x(i)) = x+ > σq−ki+1(x(i+1)), it cannot be that x(i) and x(i+1)

have the same first q − ki + 1 digits (because it would contradict that fact that
x(i) < x(i+1)). Therefore an inequality has to appear in those first q− ki + 1 digits.

This implies

(10) bki . . . bqwx̂b1 . . . bki−1 < bki+1
. . . bqb1 . . . bki+1−1 = x(i+1) < 1.

By inequalities (8) and (10), it is derived that there is at least one atom of µx∗x̂
of the form bki . . . bqwx̂b1 . . . bki−1, ki ∈ {2, . . . , q} in the interior of each interval

Ji, i ∈ {1, . . . , q− 1}, and clearly b1 . . . bqwx̂ is in the interior of Jq. Since there is a
total of q of these points that lie in q intervals, there is precisely one of those atoms
of µx∗x̂ in each Ji, i ∈ {1, . . . , q}.

Now let x̂(1) < . . . < x̂(q̂) = x̂+ be the atoms of µx̂ and let i ∈ {1, . . . , q} be
such that supp(µx̂) ∩ Ji 6= ∅ and let j ∈ {1, . . . , q̂} be such that x̂(j) ∈ supp(µx̂) ∩
[x(i), x(i+1)], where clearly, j = j(i). Define nj ∈ {2, . . . , q̂} to be such that x̂(j) =
cnj . . . cq̂c1 . . . cnj−1 and nq̂ = 1. Consider the point cnj . . . cq̂wxc1 . . . cnj−1 in the
support of µx∗x̂. Then, we claim

(11) x(i) < cnj . . . cq̂wxc1 . . . cnj−1.

By definition of x̂(j) = x̂(j(i)), bki . . . bqb1 . . . bki−1 = x(i) < x̂(j) = cnj . . . cq̂c1 . . . cnj−1.

Now, if (x(i))λ < (x̂(j))λ for some λ ∈ {1, . . . , q̂−nj+1}, then inequality (11) holds.

Otherwise, (x(i))λ = (x̂(j))λ for all λ ∈ {1, . . . , q̂− nj + 1}, but then (11) is implied
by the fact that

(12)

σq̂−nj+1(x(i)) < x+ = wx < wxwx̂ = wxc1 . . . cq̂ = σq̂−nj+1(cnj . . . cq̂wxc1 . . . cnj−1)
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Now, the inequality wx < wx̂ implies

(13) cnj . . . cq̂wxc1 . . . cnj−1 < cnj . . . cq̂c1 . . . cnj−1 = x̂(j) < x(i+1) < 1.

Combining (11) and (13) we see that for each point x̂(j) that lies in Ji, i ∈
{1, . . . , q}, there is an atom of µx∗x̂ that lies in [x(i), x̂(j)] ( [x(i), x(i+1)). Since
there is a total of q̂ atoms of µx̂ (all of which lie in ∪qi=1Ji), and the same number
of atoms of µx∗x̂ of the form cn . . . cq̂wxc1 . . . cn−1, n ∈ {1, . . . , q̂}, then, using all
the above work,supp(µx∗x̂) ∩ Ji

 = 1 +
supp(µx̂) ∩ Ji

 , i ∈ {1, . . . , q}.
Thus,

µx∗x̂(Ji) =
1 +

supp(µx̂) ∩ Ji


q + q̂
, i ∈ {1, . . . , q}

and so

µx∗x̂[x(i), 1] =

q∑
l=i

1 +
supp(µx̂) ∩ Jl


q + q̂

=
(q − i+ 1) + δi

q + q̂
, i ∈ {1, . . . , q}

which is the required equality in (7), hence Claim 1 is proved.

For the right inequality in (4), the argument is similar. By Lemma 3.2 and
Remark 2, is it enough to prove the following claim:

Claim 2. Let x̂(1) < . . . < x̂(q̂) = x̂+ be the atoms of µx̂. Then,

(14) µx∗x̂[x̂(j), 1] ≤ µx̂[x̂(j), 1], for all j = 1, . . . , q̂.

Proof of Claim. For each j ∈ {1, . . . , q̂}, µx̂[x̂(j), 1] = (q̂−j+1)/q̂ and µx[x̂(j), 1] =

δ̂j/q where δ̂j :=
supp(µx) ∩ (x̂(j), 1]

. By hypothesis, µx[x̂(j), 1] ≤ µx̂[x̂(j), 1],
which implies

µx[x̂(j), 1] =
δ̂j
q
≤ δ̂j + q̂ − j + 1

q + q̂
≤ q̂ − j + 1

q̂
= µx̂[x̂(j), 1].

It will be shown that, by construction of x ∗ x̂,

(15) µx∗x̂(x̂(j), 1] ≤ δ̂j + 1 + q̂ − j
q + q̂

for all j = 1, . . . , q̂,

from which inequality (14) follows. Consider the interval [x̂(j), 1], where x̂(j) ∈
supp(µx̂), j ∈ {1, . . . , q̂}.

In the proof of (7), it was shown that there is precisely one atom of µx∗x̂ of the

form, bk . . . bqwx̂b1 . . . bk−1, k ∈ {1, . . . , q} in each Ji. Since there are δ̂j atoms of

µx in [x̂(j), 1], there are at least δ̂j and at most δ̂j + 1 atoms of µx∗x̂ of the form

bk . . . bqwx̂b1 . . . bk−1, k ∈ {1, . . . , q}, in [x̂(j), 1], j ∈ {1, . . . , q̂}.
In addition, as seen in inequality (13) for any point x̂(j) ∈ supp(µx̂), there is

an atom of µx∗x̂ of the form cnj . . . cqwxc1 . . . cnj−1 < x̂(j). This implies that there

are at least j = µx̂[0, x̂(j)] atoms of µx∗x̂ of the form cn . . . cqwxc1 . . . cn−1, n ∈
{1, . . . , q̂} which lie in [0, x̂(j)), j ∈ {1, . . . , q̂} (out of a total of q̂ points of this
form).

Therefore, µx∗x̂[x̂(j), 1] ≤ δ̂j + 1 + q̂ − j for all j ∈ {1, . . . , q̂}, which proves (15),
and thus Claim 2 is proved, which completes the first part of the proof.
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Now it will be shown that if µx ≺ µx∗x̂ or µx∗x̂ ≺ µx̂, then µx ≺ µx̂. Assume
that µx f µx̂. Now, observe that x+ < (x ∗ x̂)+ < x̂+, hence:

(16) µx[(x ∗ x̂)+, 1] = 0 < µx∗x̂[(x ∗ x̂)+, 1]

and

(17) µx∗x̂[x̂+, 1] = 0 < µx̂[x̂+, 1].

Now, since µxfµx̂, by Lemma 3.2, there exists some x(i) ∈ supp(µx), i = 1, 2, . . . q,
such that µx[x(i), 1] > µx̂[x(i), 1]. Carrying through the exact same argument as in
Claim 1 (with the inequalities in (6) in the other direction), we derive that

(18) µx[x(i), 1] > µx∗x̂[x(i), 1] > µx̂[x(i), 1]

for some x(i) ∈ supp(µx). But this, together with (16) and (17), implies µx f µx∗x̂
and µx∗x̂ f µx̂, a contradiction. �

Remark 4. Note that Theorem 3.4 is easily shown to hold if we define the concate-
nation of orbits by concatenating the corresponding periodic words of the lexico-
graphically smallest point in each orbit, i.e. if x ∗ x̂ := πq(x

−)πq̂(x̂
−), see Definition

2.7 for comparison.

Lemma 3.5. Let x, x̂ ∈ X be periodic of the same period, with x ≤ x̂ and assume
that their periodic words differ only by one digit. Then, µx ≺ µx̂.

Proof. Without loss of generality, it can be assumed that the corresponding periodic
words of x, x̂ agree on the first q−1 digits and disagree on the qth digit, i.e. xi = x̂i
for all i = {1, . . . , q − 1} and xq = 0, x̂q = 1.

Then, xλq = 0 < 1 = x̂λq for all λ ∈ N and xn+λq = xn+λq for N ∈ {1, . . . , q−1},
λ ∈ N0. This implies σκ(x) < σκ(x̂) for all κ ∈ N, and hence

µx[σκ(x), 1] =

supp(µx) ∩ (σκ(x), 1]


q
≤
supp(µx̂) ∩ (σκ(x), 1]


q

= µx̂[σκ(x), 1]

for all κ ∈ {0, . . . , q − 1}. By Lemmas 3.1 and 3.2, the result follows. �

Example. By Lemma 3.5, µ1000 ≺ µ1100. Then Theorem 3.4 implies µ1000 ≺
µ11001000 ≺ µ1100.

Lemma 3.6. Let x, x̂ ∈ X be periodic. If µx ≺ µx̂ then µconj(x̂) ≺ µconj(x).

Proof. We will argue by contradiction. Assume that µconj(x̂) is not dominated by

µconj(x). Then, by Lemma 3.1, there exists some y ∈ X such that µconj(x̂)(y, 1] >

µconj(x)(y, 1]. However, by Remark 1 this implies that µx̂[0, 1 − y) > µx[0, 1 − y),

hence 1− µx̂[1− y, 1] > 1− µx[1− y, 1], and so µx̂[1− y, 1] < µx[1− y, 1] for some
y ∈ X. This contradicts our assumption that µx ≺ µx̂, by Lemma 3.1. �

4. Sturmian sequences and measures

The focus of this section will be the remarkable one parameter family of Sturmian
sequences and measures. Their definition and several of their properties will be
recalled here whilst as a corollary of Theorem 3.4, it will be proved that Sturmian
measures are totally ordered with respect to first-order stochastic dominance.

First, consider the semi-conjugacy ψ : X → [0, 1], ψ(xi)
∞
i=1 =

∑∞
i=1

xi
2i ∈ [0, 1],

between the doubling map T : [0, 1] → [0, 1], T (x) = 2x (mod 1) and the (left)
shift map σ : X → X, σ(xn)∞n=1 = (xn+1)∞n=1.
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Lemma 4.1. There exists precisely one shift-invariant probability measure on MX

whose support is contained in an interval [x, x̂] such that m(ψ[x, x̂]) = 1/2 where m
denotes Lebesgue measure on [0, 1].

Proof. See [7, 8]. �

Definition 4.2. Any shift-invariant Borel probability measure in MX is called
Sturmian if its support lies in an interval [x, x̂], x, x̂ ∈ X such that m(ψ[x, x̂]) = 1/2.

Figure 3. A concatenation procedure that generates the largest
point in the support of a Sturmian measure Sp/q

The following are well known properties of Sturmian sequences and measures.

Proposition 4.3.
(i) For every % ∈ [0, 1] there exists a unique Sturmian measure whose frequency
equals %. This measure will be denoted by S%.
(ii) For % ∈ (0, 1) if R%(t) = t+ % (mod 1) and

x(%)n (t) :=

{
0 if Rn−1% (t) ∈ [0, 1− %)

1 otherwise ,

then S% is the push forward of Lebesgue measure on [0, 1) under the map t 7→
(x

(%)
n (t))∞n=1.

(iii) If % is irrational, the support of S% is a uniquely ergodic Cantor set. If %
is rational then S% is supported on a single periodic orbit; if % = p/q, p, q ∈ N,
p ∈ [0, q − 1], and gcd(p, q) = 1, and the points in this orbit are s1 < . . . < sq, then
the shift σ acts as a cyclic permutation:

σ(si) =

{
si+p if i ∈ [0, q − p]
si+p−q if i ∈ [q − p+ 1, q] ,

i.e. it is combinatorially equivalent to the action of Rπ/q(t) := t+ p/q (mod 1) on
any of its periodic orbits.
(iv) The largest (or smallest) point in the support of a Sturmian measure can be
generated by a concatenation procedure analogous to the Farey construction of ra-
tional numbers (see Figure 3 and e.g. [9, Ch. III]). For n ≥ 1, let Fn denote the



STOCHASTIC DOMINANCE FOR SHIFT-INVARIANT MEASURES 11

order-n Farey sequence, i.e. the increasing finite sequence consisting of rationals in
[0, 1] whose denominator is at most n (0 and 1 are included as 0

1 and 1
1 respec-

tively). If p1/q1 < p2/q2 (with p1, p2, q1, q2 ∈ N, gcd(p1, q1) = 1 = gcd(p2, q2)) are
Farey-consecutive (i.e. they appear as successive terms in some Fn), and s+p/q = s+%
is the largest point in the support of Sp/q, (with p, q ∈ N, gcd(p, q) = 1), then

s+p1+p2
q1+q2

= s+p2
q2

s+p1
q1

.

If % ∈ [0, 1] is irrational, and {%i}∞i=1 is any sequence of rational numbers in [0, 1]
converging to %, then s+% (the largest point in the support of S%)) is the limit of s+%i
as i→∞.

Proof. Property (i) follows from existence and uniqueness of S% for % ∈ [0, 1) (See
[7, 8]). For property (ii), see for example [2, 5, 8, 14, 19]. Property (iii) follows
from (ii), also see [8]. For (iv), the proof is easily adapted from one in [20], see also
[11]. �

Corollary 4.4. Sturmian measures are totally ordered with respect to first-order
stochastic dominance, i.e. if % < %′, %, %′ ∈ [0, 1], then S% ≺ S%′ .

Proof. First, it will be shown that Sturmian measures with rational rotation num-
ber are totally ordered. It is clear that S0 ≺ S1 (the Dirac measures at 0 and
1 respectively) but by Proposition 4.3, the largest point in the support of a every
Sturmian measure with rational rotation number can be generated using concatena-
tions analogous to the Farey construction of rational numbers. Hence, by Theorem
3.4, if p1

q1
< p2

q2
(with p1, p2, q1, q2 ∈ N, gcd(p1, q1) = 1 = gcd(p2, q2)) are Farey-

consecutive, then

Sp1/q1 ≺ Sp1/q1 ∗ Sp2/q2 = S p1+p2
q1+q2

≺ Sp2/q2 .

Since this construction generates all Sturmian sequences, by Theorem 3.4, S% ≺ S′%
for all % < %′, %, %′ ∈ Q.

It is now enough to show that S%̃ ≺ S%̂ for all %̃ < %̂, %̃ ∈ Q, %̂ /∈ Q. Consider
a sequence {%i}∞i=1 of rational numbers in [0, 1] such that %̃ < %1 < %2 < . . . < %i,
converging to %̂ /∈ Q as i→∞.

Sturmian measures with rational rotation number are totally ordered with respect
to ≺, hence we have that S%̃ ≺ S%1 ≺ S%2 ≺ . . . ≺ S%i . Then, since % 7→ S% is
continuous (in the vague topology, see [7]),

S%i(x, 1] =

∫
X

χ(x,1]dS%i
%→%̂−−−→

∫
X

χ(x,1]dS%̂ = S%̂(x, 1]

for all x ∈ X. Thus, by Lemma 3.2, S%̃ ≺ S%i ≺ S%̂, which completes the proof. �

Remark 5. This corollary can also be proved by utilising the characterisation of
stochastic dominance by couplings. More precisely, one can consider the partial
order ≤1 on the shift {0, 1}N, defined by

x1x2 . . . ≤1 y1y2 . . .⇐⇒ ∀ n ≥ 0 x1 + x2 + . . . xn ≤ y1 + y2 + . . . yn

for sequences x = x1x2 . . ., y = y1y2 . . . ∈ {0, 1}N which, in particular, implies that
x ≤ y for the lexicographic order. Using the couplings characterisation, it can be
shown that S%(f) ≤ S%′(f) for % ≤ %′, for all bounded measurable functions f :
{0, 1}N → R which are increasing with respect to ≤1 (which then implies S% ≺ S′%).
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The order ≤1 is also studied in [6], where it is shown that the support of each
Sturmian measure S% is totally ordered with respect to ≤1.

5. On incomparability of measures

In this section some incomparability conditions will be presented which can be
used to easily identify incomparable pairs of measures.

Proposition 5.1. Consider atomic measures µ, ν ∈ MX with µ 6= ν. If µ and ν
have equal frequency, i.e. if ϕ(µ) = ϕ(ν), then µf ν.

First, a more general result will be proven.

Lemma 5.2. Suppose µ̂, ν̂ ∈ MX are atomic measures, with µ̂ 6= ν̂, µ̂ ≺ ν̂. Let
x̂(1) < . . . < x̂(q) be the atoms of µ̂ where q is the period of the orbit, and let
Ji = [x̂(i), x̂(i+1)), i ∈ {1, . . . , q − 1} and Jq = [x̂(q), 1]. If f : X → R is an
increasing function such that its restriction to

(
supp(µ̂) ∪ supp(ν̂)

)
∩ Ji is not a

constant value for at least one value of i ∈ {1, . . . , q} for which supp(ν̂) ∩ Ji 6= ∅,
then µ̂(f) < ν̂(f).

Proof. Let ŷ(1) < . . . < ŷ(q̂) be the atoms of ν̂, where q̂ is the period of the orbit.
We have the following

µ̂(f) =

∫
X

f(x)dµ̂(x)

= f(x̂(1))µ̂[x̂(1), x̂(2)) + . . .+ f(x̂(q−1))µ̂[x̂(q−1), x̂(q)) + f(x̂(q))µ̂[x̂(q), 1]

=

q−1∑
i=1

f(x̂(i))µ̂[x̂(i), x̂(i+1)) + f(x̂(q))µ̂[x̂(q), 1]

=

q−1∑
i=1

f(x̂(i))(µ̂[x̂(i), 1]− µ̂[x̂(i+1), 1]) + f(x̂(q))µ̂[x̂(q), 1]

= f(x̂(1))µ̂[x̂(1), 1] +

q−1∑
i=1

(f(x̂(i+1))− f(x̂(i)))µ̂[x̂(i+1), 1]

≤ f(x̂(1))ν̂[x̂(1), 1] +

q−1∑
i=1

(f(x̂(i+1))− f(x̂(i)))ν̂[x̂(i+1), 1] by Lemma 3.2

=

q−1∑
i=1

f(x̂(i))ν̂[x̂(i), x̂(i+1)) + f(x̂(q))ν̂[x̂(q), 1] .(19)

It will now be shown that this last expression is strictly smaller than
∫
f(x)dν̂(x).

Let αi :=
Ji ∩ supp(ν̂)

, i ∈ {1, . . . , q}. If i is such that αi = 0, then Ji does not

contain any atoms of ν̂, hence f(x̂(i))ν̂(Ji) = 0. If i is such that αi 6= 0, denote the

atoms of (̂ν) that lie in Ji by ŷ(ki) < . . . < ŷ(ki+αi−1).
Then, since f is increasing,

(20) f(x̂(i))ν̂(Ji) ≤ f(ŷ(ki))ν̂({ŷ(ki)}) + . . .+ f(ŷ(ki+αi−1))ν̂({ŷ(ki+αi−1)}).

By hypothesis f is not constant on
(
supp(µ̂) ∪ supp(ν̂)

)
∩ Ji for at least one

value of i ∈ {1, . . . , q}, so for that value of i, the inequality (20) is strict. Thus by
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inequalities (19) and (20) and since all atoms of ν̂ lie in [x̂(1), 1],

µ̂(f) ≤
q∑
i=1

f(x̂(i))ν̂(Ji) <

q̂∑
j=1

f(ŷ(j))ν̂{ŷ(j)} =

∫
X

f(x)dν̂(x) = ν̂(f)

which completes the proof. �

Proof of Lemma 5.1. This will be proved by contradiction. Assume µ and ν are
comparable, say µ ≺ ν, without loss of generality. Define f : X → R by f(x) =∑∞
n=1 xn2−n and observe that f is increasing. For any atomic measure m ∈ MX

with atoms x(1) < . . . < x(q̃), x(i) = {x(i)n }q̃n=1, where q̃ is the period of the orbit,
the following holds:

∫
f(x)dm(x) =

q̃∑
i=1

f(x(i))m({x(i)}) =
1

q̃

q̃∑
i=1

f(x(i))

=
1

q̃

q̃∑
i=1

( ∞∑
n=1

x(i)n 2−n
)

=
1

q̃

q̃∑
i=1

( q̃∑
n=1

x(i)n 2−n
( 2q̃

2q̃ − 1

))
=

2q̃

q̃(2q̃ − 1)

q̃∑
n=1

( q̃∑
i=1

x(i)n 2−n
)

= m〈1〉 2q̃

2q̃ − 1

q̃∑
n=1

2−n = m〈1〉

Therefore, µ(f) = µ〈1〉 = ν〈1〉 = ν(f). But f is increasing and clearly, its
restriction to

(
supp(µ̂) ∪ supp(ν̂)

)
∩ Ji is not a constant value for any value of

i ∈ {1, . . . , q} for which supp(ν̂)∩Ji 6= ∅, so Lemma 5.2 implies µ(f) < ν(f), which
contradicts the assumption. Thus, µ and ν are incomparable. �

Lemma 5.3. The following hold:

(i) Let x, x̂ be periodic. If x+ < x̂+ and x̂− < x−, then µx f µx̂.
(ii) Let x ∈ X be periodic, with x 6= 0, 1. Then µx f µ1wx0

.

(iii) Let x, x̂ ∈ X be periodic. If ϕ(µx) < ϕ(µx̂) and x̂+ < x+ or x̂− < x−, then
µx f µx̂.

(iv) Let x, x̂ ∈ X be periodic of period q, q̂ respectively, with q < q̂.
(a) If x+ < x̂+ and σi(x̂+) < x+ for all i = 1, . . . , q̂ − 1, then µx f µx̂.
(b) If x̂− < x− and x− < σi(x̂−) for all i = 1, . . . , q̂ − 1, then µx f µx̂.

Proof.
Proof of part (i). By hypothesis, µx[x̂+, 1] = 0 < µx̂[x̂+, 1] and µx[x−, 1] = 1 >
µx̂[x−, 1]. By Lemma 3.1, this implies µx f µx̂.

Proof of part (ii). We have that σi(wx01) < σi(wx) ≤ wx < 1wx0 for all i =
0, . . . , q, where q is the period of x. This implies µx[1wx0, 1] = 0 < µ1wx0

[1wx0, 1]

and µx[x+, 1] = 1
q >

1
q+2 = µ1wx0

[x+, 1] which yields incomparability.

Proof of part (iii). The inequality ϕ(µx) < ϕ(µx̂) implies µx(〈1〉) < µx̂(〈1〉) i.e.

(21) µx[10, 1] < µx̂[10, 1]
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Now x̂+ < x+ implies

(22) µx[x+, 1] > 0 = µx̂[x+, 1]

and x̂− < x− implies

(23) µx[x−, 1] = 1 > µx̂[x−, 1]

So (21) together with (22) or (23) prove the claim.
Proof of part (iv). The hypothesis implies µx[x+, 1] = 1

q >
1
q̂ = µx̂[x+, 1] and

µx[x̂+, 1] = 0 < 1
q̂ = µx̂[x̂+, 1], so by Lemma 3.1 the result follows. The proof of

(b) is similar.
�

6. Fine structure

The preceding results in Sections 3 and 5 make it easy to establish dominance
relations between atomic measures supported on periodic orbits of small period.

Proposition 6.1. The dominance relations of measures on MX supported on pe-
riodic orbits of period up to 7 are as shown in the Hasse diagram in Figure 4.

Proof. There are 41 measures supported on periodic orbits of period up to 7, thus
there are 820 dominance relations between them, out of which 189 are incompara-
bility relations.

Colours are used to indicate which lemma or proposition was used to show each
dominance relation. So, more precisely, green arrows were used to represent Lemma
3.3, orange for Theorem 3.4, blue for Lemma 3.5, black for Lemma 3.6 and red for
Lemma 3.2.

Incomparability relations are all proved easily using Lemmas 5.1, 5.3, and 3.2.
Due to the transitivity of first-order stochastic dominance, the Hasse diagram in
Figure 4 represents all relations between measures supported on periodic orbit of
up to period 7.

�

It is natural to ask if the partially ordered set (MX ,≺) is a lattice, i.e. if any
two measures have a first-order stochastically least upper bound and greatest lower
bound. The following theorem shows that this is not the case.

Theorem 6.2. The partially ordered set (MX ,≺) is not a lattice.

Proof. Consider the measures µ10 and µ1100. We will show that these do not have
a least upper bound. Let ν ∈ MX be such that µ10 ≺ ν and µ1100 ≺ ν. Then,
0 = µ10〈00〉 ≥ ν〈00〉 hence ν〈00〉 = 0. Now ϕ(ν) = 1 − ν〈0〉 = 1 − ν(σ−1〈0〉) =
1− ν(〈00〉 ∪ 〈10〉) = 1− ν〈10〉 = 1− (ν〈1〉 − ν〈11〉) = 1− ϕ(ν) + ν〈11〉.

Hence,

ϕ(ν) =
1 + ν〈11〉

2
≥ 1 + µ1100〈11〉

2
= 5/8.

But by Lemma 3.2, the incomparable measures of frequency 5/8, µ11101010 and
µ11011010, dominate both the measures µ10, µ1100. Consequently, µ10 and µ1100 do
not have a least upper bound. �
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Figure 4. Hasse diagram of first-order stochastic dominance for
measures supported on periodic orbits of period up to 7. Orbits
that carry measures with equal frequency are displayed on the same
horizontal line, and frequencies decrease from top to bottom.
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