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Abstract—Nuclear Quadrupole Resonance (NQR) signal de- 
tection is a promising explosives detection technology with appli- 
cations to humanitarian demining. NQR works in the radiofre- 
quency range, and one challenge to using it in such an application 
is coping with radiofrequency interference. We herein present an 
algorithm that cancels strong and complex radiofrequency inter- 
ference (either stationary or nonstationary) improving the utility 
of NQR-based landmine detection in humanitarian demining. The 
algorithm has been tested on both simulated and measured data, 
and demonstrates good performance in NQR detection, in the 
presence of strong and complex interference. 

Index Terms—Interference cancellation; stationary; nonsta- 
tionary; NQR signal detection 

 
I. INTRODUCTION 

Landmines and other explosives remnants of conflict cause 
thousands of casualties and keep millions of acres of land 
out-of-use long after conflicts end. Current approaches detect 
anomalies mine-like objects or metal in the ground or use 
animals (dogs,  rats, bees)  to  sniff for  traces  of explosives 
vapour, but it has long been recognized that there is a need 
in some scenarios (cluttered terrain, ground contaminated with 
trace explosives from detonations) for an approach that directly 
detects the presence of bulk explosives. 

Nuclear quadrupole resonance (NQR) signal detection has 
been a useful approach for detecting landmines in recent years 
[1]–[4]. The explosives can be revealed by transmitting an 
electromagnetic pulse sequence, as their quadrupolar nuclei 
resonate and emit the corresponding NQR signal. This tech- 
nique has high sensitivity and suffers from very few false 
alarms from misleading objects, because NQR signal has 
unique features for each explosive material. However, this 
signal is usually very weak compared to background noise and 
decays rapidly with time. More seriously, strong and complex 
interference can easily conceal the NQR signal and is very 
hard to remove from the acquired data. 

An important technique called ”echo train” [5], [6] was 
proposed for promoting NQR data acquisition as well as 
increasing the signal to noise ratio (SNR). NQR data was 
traditionally recorded by a single spectrometer. This is not very 
efficient as for each data acquisition, the spectrometer usually 
needs  a  long  relax  time  which  is  larger  than  the  duration 

 
of a fast-decaying NQR signal. By echoing the NQR signal 
periodically, the ”echo train” technique retrieves the NQR 
signal intensity and initial phase in each echo, and completes 
the relax time with data of echoes. Besides, the homogeneous 
initial phase among the echoes suggests that NQR signal in 
all the echoes of data can be added coherently as opposed to 
the stochastic noise and interference. Thus the summed data 
has a higher SNR. 

This method however is limited as data collection time is 
usually prohibitively long in reality, especially in humanitarian 
demining and security checking [2]. In addition, interference 
can not be eradicated simply by data summing. So, useful 
algorithms are needed for proceeding NQR detection after data 
acquisition. Algorithms based on NQR parameter estimation 
methods [7], [8] show good performance and robustness on 
low SNR and weak interference situations. However, the main 
difficulty of NQR detection lies on canceling strong and 
complex interference which may be nonstationary and has 
frequencies which are very close to or even coincide with 
NQR frequencies. 

Multichannel analysis is a popular method for interference 
cancelation [9]. In this method, one channel acquires primary 
data meanwhile the other channels measure interference and 
noise. However, it is not easy to implement this method in 
instrumentation or algorithm aspect. Channels may not be 
isotropic due to calibration errors, and there may be complex 
phase difference among data acquired by each channel. This 
method has its limitations in humanitarian demining where 
equipments/devices must be portable. 

Based on single channel premise, we proposed an algorithm 
which can effectively cancel strong and complex interference. 
This algorithm estimates the interference components using 
cost function and approximates the entire interference in 
acquired data using Fourier basis or wavelets basis. In par- 
ticular, this algorithm has Fourier basis version for stationary 
interference and wavelets basis version for nonstationary in- 
terference, respectively. The theory of this algorithm has been 
presented elsewhere in detail [10], [11]. As we know, simple 
interference, which is stationary or slightly nonstationary and 
has frequencies which are far from NQR frequencies, can 
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be canceled using a frequency selective method [8], [12].
The proposed algorithm can well describe the features of
stationary or nonstationary interference, and deal with the
overlap between interference and NQR signal, while plain
Fourier analysis as well as the related frequency selective
methods can not. The proposed interference cancelation (IC)
algorithm can be coupled with the well known approximate
maximum likelihood (AML) algorithm (based on parameter
estimation) [7] facilitating valid NQR detection. This combi-
nation is accordingly termed ICAML.

In the next section, we give a summary of ICAML algo-
rithm. In Section III, we assess the performance of ICAML
algorithm applied to both simulated data and experimental
data. We will summarize the main results in the last section.

II. SUMMARY OF ICAML ALGORITHM

In the echo-train system for data acquisition, the NQR signal
can be modeled after echo summing [5] as

y(t) =
dX

k=1

Ake
� |t�tsp|
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+j2⇡f̌kt
, (1)

where t=t0,...,tN�1 is the N points echo sampling time with
the symmetric center to be tsp, µ=2tsp is the echo spacing,
and Ak, T ⇤

k , and f̌k are the amplitude, damping time, and
frequency of the kth component, respectively. The raw data in
vector form can be written as

ZN = YN +NN +RN , (2)

where NN and RN are the noise and interference parts,
respectively. The signal part YN satisfies

YN = QNA, (3)

where A and QN are the amplitude vector and phase matrix
respectively, given by,
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T, (4)
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ICAML algorithm chooses Fourier basis or wavelets basis to

precisely approximate stationary or nonstationary interference,
respectively [10], [11]. Using cost functions, ICAML is able to
determine an optimum basis functions set whose linear com-
bination can effectively model interference. The interference
cancelled data Z(l)

N is

Z
(l)
N = ZN � [Vm1 Vm2 ... Vml ][Vm1 Vm2 ... Vml ]

†ZN ,
(6)

where Vmi , i=1,2,...,l are the selected basis functions, and
(.)† denotes the Moore-Penrose pseudo-inverse.

After interference cancellation, ICAML applies the approx-
imate maximum likelihood (AML) method to Z(l)

N to identify

the existence of the NQR signal [7]. The amplitudes vector A
in Eq. (4) is estimated as

Â = Q†
NZ(l)

N , (7)

where (.)† denotes the Moore-Penrose pseudo-inverse, yield-
ing the likelihood function

L(f̌k, T
⇤
k ) =

h
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where (.)H denotes the conjugate transpose. Then we can
obtain the estimated f̌k and T ⇤

k
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where seeking f̌k and T ⇤
k is respectively among all the

possible values of f̌k and T ⇤ under immediate environment
conditions based on knowledge of NQR theory [13]. Hence
Â = Q†

N ( ˆ̌fk, T̂ ⇤
k )Z

(l)
N . The acquired ˆ̌fk and T̂ ⇤

k can be
substituted into the AML test statistic [14],
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(10)
By predetermining a threshold value �, the NQR signal is
deemed present if and only if T

⇣
Z(l)

N

⌘
>�, and otherwise not.

III. PERFORMANCE ASSESSMENT OF THE ICAML
ALGORITHM

This section presents simulated and experimental data to
validate the ICAML algorithm. Results are compared to those
produced by previously proposed algorithms AML, FSAML
[7], [12].

We examines detection of the 14N NQR signal due to
sodium nitrite (NaNO2). Under our lab conditions, (NaNO2)
has only one resonant frequency f̌ about 1.0365MHz. All pos-
sible values of f̌ is denoted as ”NQR band”. The frequencies
of interference we consider are all centered outside the NQR
band. Since the NQR band is very narrow and interference
confined only inside the NQR band is very rare and may be
filtered in a physical way.

To imitate a landmine, we let a piece of solid NaNO2

suspended in silicone oil served in a sealed plastic box which
is buried under soil. The other box without NaNO2 is also pre-
pared for testing probability of false alarms. Data is recorded
by a spectrometer with a sampling frequency fs = 1

16µs and
sampling points N=128 per echo. In the measurements, the
frequency band

h
� fs

2
, fs

2

i
of the recorded data is modulated

from
h
fc � fs

2
, fc +

fs
2

i
, where fc is the frequency center of

signal modulation. By setting fc ' f̌ , the equivalent NQR
frequency is about 0.



 

 
 

 

Fig. 1: (Color online) A run of the simulated data (with 
stationary interference) and its interference canceled form in 
time domain and frequency domain. ”|DFT(·)|” means the 
absolute value of Discrete Fourier transformation of data. The 
vertical axis of frequency domain is base-10 logarithmic. 

initial phases among the 100 runs. In particular, frequencies 
of some components are very close to the NQR band causing 
strong overlap between NQR signal and these interference 
components (see Fig. 1). Since the interference is stationary, 
the Fourier basis version of the ICAML is better than the 
wavelets basis version in this case. As shown in Fig. 1, the 
difference between the original ”NQR signal + noise” data 
and the interference canceled data is very small in both time 
and frequency domains, which shows that the interference is 
nicely extracted and removed by ICAML algorithm. Receiver 
operating characteristic (ROC) curves are shown in Fig. 2. 
Although the interference can not be handled by the classic 
AML algorithm, the ICAML algorithm effectively cancels the 
interference thereby facilitating valid NQR detection. AML’s 
frequency selective (FS) version FSAML alleviates the influ- 
ence of interference. However, the main limitation of the FS 
method is that FS can hardly cope with the overlap between 
the NQR signal and interference [10]. 

B. Simulated data with nonstationary interference 

 
 

  
 

 

Fig. 2: (Color online) The ROC curves obtained by AML, 
FSAML, and ICAML algorithms. The results are for the 
simulated data with stationary interference. 

 
 

A. Simulated data with stationary interference 

In this subsection, we apply the ICAML algorithm to 
simulated data that corresponds to the landmine detection 
problem  described  above.  A  simulated  data  set  containing 
100 Monte Carlo runs is created, where the NQR signal 
amplitude is 1 and the noise is circularly symmetric zero-mean 
Gaussian white noise with variance being 0.25. Simulated 
stationary interference is added into this set, which contains 
multiple frequency components. All these components have 
their constant frequencies and amplitudes, as well as random 

Fig. 3: (Color online) A run of the simulated data (with 
nonstationary interference) and its interference canceled form 
in time domain and frequency domain. ”|DFT(·)|” means the 
absolute value of Discrete Fourier transformation of data. The 
vertical axis of frequency domain is base-10 logarithmic. 

 
In this subsection, interference added into the previous 

simulated data set is nonstationary containing multiple fre- 
quency components which all have time-varying frequencies 
and amplitudes, as well as random initial phases among the 
100 runs. In particular, the interference appears intermittently 
along the time axis, and its spectrum is close to the NQR band 
causing strong overlap between NQR signal and interference 
(see Fig. 3). To deal with the time-varying properties of 
interference, it is necessary to select wavelets basis version 
of ICAML for interference cancellation. The results in Fig. 3 
show that wavelets basis version performs better than Fourier 



 

 
Fig. 4: (Color online) The ROC curves obtained by AML, 
FSAML, and ICAML algorithms. The results are for the 
simulated data with nonstationary interference. 

 
 

basis version in extracting the time-varying interference [11]. 
This is further confirmed by comparing the ROC curves in 
Fig. 4, which suggests that wavelets basis is a nice choice 
for dealing with nonstationary interference when Fourier basis 
loses performance. 

 
C. Experimental data test 

 
 

 
Fig. 5: (Color online) The time-frequency analysis on a run of 
the experimental data. It is achieved using Morlet wavelets 
of ’cmor1-1’ in Matlab environment. The intensity of the 
displayed time-frequency information is normalized. 

 
Our experimental data set includes 100 runs. The inter- 

ference we encountered is nonstationary. A time-frequency 
analysis on the experimental data (see Fig. 5) confirms the 
nonstationary properties of interference in the data. For this 
experimental case, both Fourier basis  and  wavelets  basis can 
handle the interference well and the ICAML algorithm 

 
 

 
Fig. 6: (Color online) A run of the experimental data and 
its interference canceled form in time domain and frequency 
domain. ”|DFT(·)|” means the absolute  value of Discrete 
Fourier transformation of data. The vertical axis of frequency 
domain is base-10 logarithmic. 

 
 

 
 

 

Fig. 7: (Color online) The ROC curves obtained by AML, 
FSAML, and ICAML algorithms. The results are for the 
experimental data. 

 
 

makes good NQR detection (see Figs. 6 and 7). According to 
our numerical tests, Fourier basis version has robustness on 
nonstationary interference to some extent. However, wavelets 
basis version exhibits better performance as it is more suitable 
than Fourier basis version for dealing with nonstationary 
interference. 

D. Detecting the NQR signals of TNT 
As TNT is a very common explosive used in landmines, 

it is worth applying the current algorithm for detecting TNT 
NQR signals. To test our algorithm for TNT detection, we 



II. CONCLUSION 

This paper introduces a novel interference cancelation 
method which can improve NQR signal detection in a back- 
ground containing strong and complex interference (either 
stationary or nonstationary). The method can be coupled with 
the classic NQR detection algorithm approximate maximum 
likelihood (AML) which assumes the NQR signal is only 
accompanied with noise, yielding the proposed algorithm 
ICAML. Both simulated data (including TNT case) and ex- 
perimental data prove that ICAML algorithm can effectively 
cancel strong and complex interference and make good NQR 
detection. Thus ICAML is recommended for real-life demining 
tasks. 

 
 
 

 
 

Fig. 8: (Color online) A run of the TNT data and its interfer- 
ence canceled form in time domain and frequency domain. 
”|DFT(·)|” means the absolute value of Discrete Fourier 
transformation of data. The vertical axis of frequency domain 
is base-10 logarithmic. 

 
 

 
 

 

Fig. 9: (Color online) The ROC curves obtained by AML, 
FSAML, and ICAML algorithms. The results are for the TNT 
data. 

 
 

used realistic TNT NQR signal simulations provided by Lund 
University, and mix them with our simulated stochastic noise 
and nonstationary interference to create 100 monte carlo data. 
The interference cancellation results are shown in Fig. (8). As 
we can see, TNT NQR signal has 4 frequency components. 
After interference cancellation, the 4 NQR peaks are nicely 
recovered by wavelet basis version. Figure. 9 shows the almost 
perfect detection performance of wavelet basis version. Be- 
sides, Fourier basis version presents its robustness of detecting 
NQR signal in this case. 

ACKNOWLEDGMENT 

This work has been supported by Find a Better Way 
(FABW) UK, under Project AQUAREOS. The authors would 
like to thank Prof. Andreas Jakobsson from Lund University 
for providing us the simulations of realistic TNT NQR signals. 

REFERENCES 

[1]  J. A. S. Smith, “Nuclear quadrupole resonance spectroscopy,” J. Chem. 
Educ., vol. 48, no. 1, pp. 39–48, 1971. 

[2] N. R. Butt, E. Gudmundson, and A. Jakobsson, “An overview of NQR 
signal detection algorithms,” in Magnetic Resonance Detection of Ex- 
plosives and Illicit Materials, ser. NATO Science for Peace and Security 
Series B: Physics and Biophysics, T. Apih, B. Rameev, G. Mozzhukhin, 
and J. Barras, Eds.   Springer, 2013, pp. 19–34. 

[3]  J. Barras, D. Murnane, K. Althoefer, S. Assi, M. D. Rowe, I. Poplett, 
G. Kyriakidou, and J. A. S. Smith, “Nitrogen-14 nuclear quadrupole 
resonance spectroscopy: a promising new analytical methodology for 
medicines authentication and counterfeit antimalarial analysis,” Analyt- 
ical Chemistry, vol. 84, pp. 2746–2753, 2013. 

[4] J. Barras, K. Althoefer, M. D. Rowe, I. Poplett, and J. A. S. Smith, 
“The emerging field of nuclear qudrupole resonance-based medicines 
authentication,” Appl. Magn. Reson., vol. 43, pp. 511–529, 2012. 

[5] M. D. Rowe and J. A. S. Smith, “Mine detection by nuclear quadrupole 
resonance,” in Proc. EUREL Int. Conf. on the Detection of Abandoned 
Land Mines, pp. 62–66, Oct. 1996. 

[6] A. Gregorovic̆ and T. Apih, “Relaxation during spin-lock spin-echo pulse 
sequence in n 14 nuclear quadrupole resonance,” J. Chem. Phys., vol. 
129, p. 214504, 2008. 

[7] A. Jakobsson, M. Mossberg, M. D. Rowe, and J. A. S. Smith, “Ex- 
ploiting temperature dependency in the detection of nqr signals,” IEEE 
Transactions on Signal Processing, vol. 54, no. 5, pp. 1610–1616, 2006. 

[8] S. D. Somasundaram, A. Jakobsson, J. A. S. Smith, and K. Althoefer, 
“Exploiting spin echo decay in the detection of nuclear quadrupole 
resonance signals,” IEEE Trans. Geosc. Remote Sensing, vol. 45, pp. 
925–933, 2007. 

[9] H. Xiong, J. Li, and G. A. Barrall, “Joint tnt and rdx detection via 
quadrupole resonance,” IEEE Transactions on Aerospace and Electronic 
Systems, vol. 43, no. 4, pp. 1282–1293, 2007. 

[10] W. H. Shao, J. Barras, P. Kosmas, and K. Althoefer, “Detecting nqr sig- 
nals severely polluted by interference,” submitted to Signal Processing. 

[11] W. Shao, J. Barras, P. Kosmas, and K. Althoefer, “The use of wavelets 
basis for cancelling time-varying interference in nqr signal detection,” 
submitted to IEEE Transactions on Signal Processing. 

[12] A. Jakobsson, M. Mossberg, M. D. Rowe, and J. A. S. Smith, 
“Frequency-selective detection of nuclear quadrupole resonance signals,” 
IEEE Trans. Geosc. Remote Sensing, vol. 43, no. 11, pp. 2659–2665, 
2005. 

[13] S. D. Somasundaram, “Advanced signal processing algorithms based 
on novel nuclear  quadrupole resonance  models for the detection  of 
explosives,” Ph.D. dissertation, King’s College London, 2007. 

[14]  S. M. Kay, Fundamentals of Statistical Signal Processing, Volume II: 
Detection Theory.   Englewood Cliffs, NJ: Prentice-Hall, 1998. 


