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Abstract— Automated ultrasound scanning is a growing 
research field. However, existing platforms for mounting the 
ultrasound probe do not possess any soft, compliant properties 
that would ensure the safety of the patient. Moreover, many 
current ultrasound manipulators do not include tactile 
feedback or employ rather expensive commercial force sensors. 
This paper proposes the design of a flexible platform with soft 
joints. The device equips an ultrasound manipulator with both 
compliant behaviour and 6-axis force feedback without the 
need of a commercial force sensor. A general methodology was 
developed to derive the symbolic compliance matrix of such a 
flexible mechanism. Subsequently, a finite element analysis of 
the platform was carried out and the results were compared to 
the analytical solutions. The results show that force sensing 
based on the analytical method has an error of 5-16% 
compared to the FEA simulation, depending on the degree of 
freedom.  

I. INTRODUCTION 

Ultrasound diagnosis is a non-invasive medical procedure 
that involves less risks and less dexterity than other surgical 
techniques [1]. Additionally, ultrasound examinations are 
more cost-effective and portable than other non-invasive 
diagnosis methods, such as CT (Computer Tomography) and 
MRI (Magnetic Resonance Imaging). This makes 
ultrasonography particularly suitable for being carried out by 
a machine. Robotic ultrasound probe manipulators that 
perform medical tasks can have a variety of promising 
applications. In the past decade, several systems have been 
developed, providing solutions for kidney examinations, the 
detection of internal bleedings after accidents [2], and several 
other functions [3,4]. An emerging application is tele-
echography [2,5,6], where a robotic manipulator is remotely 
controlled by a distant sonographer who cannot reach the 
patient because of time constraints or geographical reasons. 
Moreover, automated ultrasound scanners can be a solution 
to the prevalent fatigue issues of professional sonographers 
[7]. 

This paper proposes a flexible platform that equips a 
robotic ultrasound manipulator with both a compliant 
behaviour and 6-axis force feedback, without the need of a 
commercial force sensor. The implementation of soft, flexible 
structures in robotic systems is particularly useful for medical 
applications. It can ensure the safety of the patient and allows 
a gentler interaction with the human body. In the worst-case 
scenario of a system malfunction, soft materials, such as 
silicone or rubber, are more likely to break rather than 
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harming the patient. As the ultrasound manipulator interacts 
with the dynamic environment of a human body, tactile 
feedback is indispensable for the proper control of such an 
instrument. A commercial force sensor can be employed for 
this task, but such device increases the overall cost of the 
system. It would be more cost-effective to deduce the forces 
from displacement measurements, as displacement sensors 
are generally less expensive than accurate force sensors. In 
fact, when using soft materials, the manipulator will undergo 
deformations that can be detected with such sensors. 
Furthermore, displacement sensors do not have to be placed 
inside the manipulator, but can perform the measurements 
externally.  

A variety of robotic ultrasound probe manipulators has 
been developed in the past decade. Mustafa et al. presented in 
[8] a design that uses an industrial 6-axis robot to manipulate 
an ultrasound probe and mimics the movements of a 
professional sonographer. A conventional 6-axis force sensor 
was employed in order to apply a constant force to the body 
of the patient. A more compact prototype was presented in 
[9] by Sen et al. The device uses a conventional force sensor, 
placed between the end-effector and the ultrasound probe. 
However, compliant elements are not present in both of these 
systems. Similarly, most of the other examined ultrasound 
probe manipulators (i.e. [10]–[12]) use commercial 
force/torque sensors for tactile feedback and do not employ 
soft materials. A device that uses elastic components is the 
system presented by Ito in [13], where mechanical springs act 
as compliant elements in order to maintain a constant contact 
force to the body. However, there is no force feedback 
integrated in this device. Nakadate et al. presented in [14] a 
customised force sensing system for ultrasound probes that is 
based on displacement measurements. It employs elastic 
materials (i.e. sponge), which are placed between the probe 
and the outer probe case. Jentoft et al. developed in [15] an 
angle sensor for compliant joints, based on optical fibres 
placed inside the soft material. Their system demonstrates the 
feasibility of displacement measurements of soft materials 
that do not have a fixed centre of rotation. Another method to 
perform force sensing from displacement measurements 
involves ortho-planar flexure mechanisms, as presented in 
[16]–[18]. Even though the size of these elements is in the 
order of a couple of centimetres, the working principle can be 
applied to a larger scale as well. 

II. PLATFORM DESIGN  

The proposed design for the ultrasound probe platform is 
shown in Figure 1. It comprises two rigid components (green 
colour), and three flexible joints (blue colour). The rigid plate 
in the centre contains a cavity that is supposed to hold the 
ultrasound probe. It is connected via the flexible joints to the 
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outer frame. The outer frame is supposed to be attached to the 
end-effector of a robotic manipulator. Thus, in terms of the 
end-effector coordinates, the outer frame is fixed, whereas 
the inner probe holder is flexible. The latter will perform 
movements when exposed to external forces, due to the three 
flexible joints. As demonstrated in [16], the radial symmetry 
of such a ortho-planar structure is very practical for force 
measurements, as it results in a diagonal compliance matrix. 
Moreover, the planar design of this structure facilitates the 
installation on the end-effector of a robotic manipulator. In 
practise, the inner probe holder can be made of two parts, 
which facilitates mounting the ultrasound probe firmly. 

The platform design must be suitable for the use with 
conventional ultrasound probes. Thus, the device should be 
compact and have roughly the same size as the ultrasound 
probe itself. Concerning compliance properties, the absolute 
displacements of the platform should be large enough to be 
measurable by typical displacement sensors for this 
application. In opposition to this, the platform’s 
displacements should be limited to less than 10% of the beam 
length. This ensures that linear approximations of the beam 
deflections are still valid. Therefore, an optimal trade-off 
between these two constraints for the beam properties has to 
be found, while keeping the overall size of the platform as 
compact as possible.  

The dimensions of the platform in Figure 1 are ! =
40mm, ℎ = 15mm, ( = 5mm for beam length, height, width 
respectively, and ) = 40mm for the radius of the inner probe 
holder. The urethane rubber PMC-780, with a Young’s 
modulus of approximately * = 9MPa and a shear modulus of 
, = 3MPa, was selected as reference material for the flexible 
joints. Given these parameters, the platform obtains satisfying 
compliance properties. This was tested by inserting the values 
for *, ,, !, ℎ, (, ) into the compliance matrix of the 
platform, derived in SECTION IV, equations (25). 

III. COMPLIANCE ANALYSIS OF THE FLEXIBLE JOINTS 
As illustrated in Figure 1, the platform structure is 

composed of three flexible segments, which make the inner 
part of the platform compliant to external forces. In order to 
predict the displacement of the platform when subjected to 
forces, it is first necessary to determine the elastic properties 
of each flexible segment separately. For this purpose, the 
three-dimensional compliance matrix of such a flexible 
segment will be formulated, using two different approaches: 
the Euler–Bernoulli Beam Theory, and the Timoshenko 
Beam Theory. Given the working principle of the proposed 
device, all forces will act on the inner part of platform, 
whereas the outer part is considered fixed. Therefore, each of 
the three flexible joints can be modelled as a cantilever beam. 
Figure 2 illustrates the case of a cantilever beam with a load 
and torque acting on its free end. 

The three flexible segments of the platform will be 
considered as homogenous beam elements with a Young’s 
modulus * and a shear modulus ,. Moreover, the cross-
section . = ℎ( is assumed rectangular, where ℎ is the beam 
height, measured along the /-axis, and ( is the beam width, 
measured along the 0-axis. The area moments of inertia for 
rotations about the y-axis and z-axis are defined as 
12 =

3

34
	(6ℎ    and    17 = 3

34
	ℎ6(    respectively.   Furthermore, 

	
Figure 1.  Section view of platform including an ultrasound probe 

 
Figure 2.  Illustration of a cantilever beam 

assuming ℎ > (, the torsion constant 	9	 of the beam can be 
approximated as: 

 9 ≈ ℎ(6 	
;

6
− 0.21

?

@
1 −

?A

;B@A
	.		 (1)   

Moreover, we can introduce a 3D compliance matrix, 
denoted as C, and a 3D stiffness matrix, denoted as D, which 
describe the relation between an applied wrench 
E = FG F2 F7 HG H2 HI

J and the resultant displacement 
KL = MG M2 M7 NG N2 NI

J of the free beam end, such that 

 KL = C ⋅ E	, (2)   

 E = D ⋅ KL	. (3)   

A. Euler–Bernoulli Beam Theory 
The Euler–Bernoulli beam theory is a very common tool 

in engineering for calculating the deflection of a beam. It 
provides accurate results for slender beams under a static 
load, when the scale of the deflections is relatively small. 
Derivations of the Euler–Bernoulli beam theory for common 
beam configurations can be found in most university-level 
engineering books about structure mechanics and [19], [20]. 
For this specific case of a cantilever beam, all forces and 
torques act at the free end of the beam and can be combined 
to a resulting load F and torque H. The deflection of the 
beam-end M2	along the /-axis and its angle about the z-axis 
N7 can be expressed as follows; using a right handed 
coordinate system and positive rotations acting in counter-
clockwise direction, as shown in Figure 2. 

 M2 =
QR

6STU
F2 +

Q4

BSTW
H7	, 			N7 =

Q4

BSTU
F2 	+

Q

STU
H7.  (4)   

The relations for displacements along the z-axis and rotations 
about the y-axis are equivalent: 
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 M7 =
QR

6STX
F7 −

Q4

BSTX
H2	, 		N2 = −

Q4

BSTX
F7 +

Q

STX
H2.  (5)  

The Euler–Bernoulli beam theory therefore provides four 
of the six required equations to create a 3D compliance 
matrix of the free end of a cantilever beam. The remaining 
two equations describe linear and angular deformations along 
the Y-axis, i.e. the axis of the beam. One equation can be 
directly obtained from the definition of the Young’s modulus 
*, which expresses how much a material extends under 
tensions or shortens under compression: 

 * ≡
Q

[Q

\

]
=

Q

^_

\_

]
		. (6)  

The second equation can be obtained from the definition of 
the shear modulus ,, and describes how much the material 
twists, when subjected to torque around the Y-axis. 

 , ≡
Q

`

J

a
=

Q

`_

J_

a
		.  (7)  

Equations (4)–(7) can be put into matrix form by defining a 
6×6 compliance matrix, henceforth denoted as CSd, which 
transforms a wrench vector E into a displacement vector KL, 
such that 

					KL			 = 																												 CSd 																																 ⋅ 					E   

			 		

MG

M2

M7

NG

N2

N7

		 	= 	 		

Q

]S
0 0 0 0 0

0
QR

6STU
0 0 0

Q4

BSTU

0 0
QR

6STX
0 −

Q4

BSTX
0

0 0 0
Q

ea
0 0

0 0 −
Q4

BSTX
0

Q

STX
0

0
Q4

BSTU
0 0 0

Q

STU

		 	 ⋅ 	 		

FG

F2

F7

HG

H2

H7

		 . (8)  

On the other hand, solving the same system of six equations 
for the variables FG, F2, F7, HG, H2, H7 leads to the stiffness 
matrix DSd = CSd

f;, which satisfies the relation  

						E					 = 																																	DSd 																														 ⋅ 			KL		  

			 		

FG

F2

F7

HG

H2

H7

		 		= 	 		

]S

Q
0 0 0 0 0

0
;BSTU

QR
0 0 0 −

gSTU

Q4

0 0
;BSTX

QR
0

gSTX

Q4
0

0 0 0
ea

Q
0 0

0 0
gSTX

Q4
0

hSTX

Q
0

0 −
gSTU

Q4
0 0 0

hSTU

Q

		 	 ⋅ 	 		

MG

M2

M7

NG

N2

N7

		 . (9)  

B. Timoshenko Beam Theory 
The Timoshenko beam theory is a more accurate model to 

describe the deflection of beams than the Euler-Bernoulli 
theory. A main drawback of the latter is that it underestimates 
the deflection of short beams. The Timoshenko model 

overcomes this problem by taking into account rotational 
inertia effects and shear deformation. This results in a lower 
stiffness than predicted by the Euler-Bernoulli theory. For 
long beams with a slenderness ratio (length-to-depth ratio) of 
more than 5, the Timoshenko approach converges to the 
solution of the Euler–Bernoulli theory [19].  

Timoshenko introduced an additional correction term 
denoted Φ, which leads to a modified form of equation (4): 

 M2 =
hjkl 	Q

R

;BST
F2 +

Q4

BST
H7	. (10)   

The term Φ represents the effect of shear deformation on the 
bending of the beam. Depending on the observed axis, it is 
defined as [20] 

 Φm =
;BSTU

n]eQ4
	 , Φo =

;BSTX

n]eQ4
	,  (11)   

where p is the so called Timoshenko coefficient, which is 
equal to 5/6 for beams with rectangular cross-sections. As Φ 
is strictly positive, it can be concluded that beam deflections 
caused by forces are generally larger when using the 
Timoshenko model. The effect of torques, on the other hand, 
remains unchanged compared to the Euler-Bernoulli theory. 
The resulting compliance matrix CJTq is defined as  

				KL		 = 																														 CJTq 																													 ⋅ 				E			  

			 		

MG

M2

M7

NG

N2

N7

		 	= 	 		

Q

]S
0 0 0 0 0

0
hjkU 	Q

R

;BSTU
0 0 0

Q4

BSTU

0 0
hjkX 	QR

;BSTX
0 −

Q4

BSTX
0

0 0 0
Q

ea
0 0

0 0 −
Q4

BSTX
0

Q

STX
0

0
Q4

BSTU
0 0 0

Q

STU

		 	 ⋅ 	 		

FG

F2

F7

HG

H2

H7

		 . (12)   

Note that the terms Φ2 and Φ7 converge to zero when shear 
effects are negligible, resulting in CJTq = CSd. The inverse 
of this matrix gives the corresponding stiffness matrix of the 
Timoshenko beam element DJTq, as shown below, 

					E		 = 																												DJTq 																																 ⋅ 		rL  

			 		

FG

F2

F7

HG

H2

H7

		 = 		

]S

Q
0 0 0 0 0

0
;B

;jkU

STU

QR
0 0 0

fg

;jkU

STU

Q4

0 0
;B

;jkX

STX

QR
0

g

;jkX

STX

Q4
0

0 0 0
ea

Q
0 0

0 0
g

;jkX

STX

Q4
0

hjkX	

;jkX

STX

Q
0

0
fg

;jkU

STU

Q4
0 0 0

hjkU

;jkU

STU

Q

		 	 ⋅ 	 		

MG

M2

M7

NG

N2

N7

		 . (13)   

Detailed derivations of the 3D compliance and stiffness 
matrices based on the Timoshenko theory can be found in 
[19], [20]. 

IV. COMPLIANCE ANALYSIS OF THE ENTIRE PLATFORM 
After having formulated the compliance matrix of the 

flexible joints in SECTION III, it is now possible to 
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formulate the 3D compliance matrix of the entire platform. 
Given the stiffness matrix Dstuv of a flexible beam element, 
the problem consists in constructing the overall stiffness 
matrix Dwxuy of a structure that is composed of a parallel 
chain of such beam elements. Moreover, the aim is to express 
this stiffness matrix with respect to the global reference frame 
located at the centre of the platform structure. 

The so called wrench transformation matrix z{ maps a 
wrench E = FG F2 F7 HG H2 HI

J from one coordinate 
frame to another. More specifically, a wrench E| expressed 
with respect to coordinate frame | can be converted to a 
wrench Eℬ with respect to coordinate frame ℬ by using the 
wrench transformation matrix z{ as follows [21], 

 Eℬ = z{	E|	,				E| = z{f;	Eℬ	. (14)  

The wrench transformation matrix can also be used to 
transform a displacement vector KL = 
MG M2 M7 NG N2 NI

J, using the relations 

 KLℬ = z{f~	KL|	,				KL| = z{~	KLℬ	. (15)  

If frame | can be obtained by performing a translation � =
ÄG, Ä2, Ä7

Jof frame ℬ, followed by a rotation Å, then  

 z{ =
	Å Ç	

	ÉÅ Å	
	, (16)  

where É is the skew-symmetric matrix that represents the 
cross product operation with the vector �, [16], [22] 

 É =

0 −Ä7 Ä2

Ä7 0 −ÄG

−Ä2 ÄG 0

	. (17)  

The transformation matrix z{ can also be used to convert a 
stiffness matrix Dℬ in frame ℬ to its equivalent D| in frame 
|. The relation between these two matrices can be 
established via equations (14) and (15), 

	
D|	KL| 	

= 		 E| = z{f;	Eℬ = z{f; Dℬ	KLℬ 		

= 	z{f;	Dℬ	z{
fJ	KL]	

(18)  

From this relation, the conversion rule for stiffness matrices 
can be identified as, [23] 

 D| = z{f;	Dℬ	z{
f~ (19)  

It is now possible to derive the symbolic compliance matrix 
DÑÖÜá of the proposed structure. This matrix will be 
constructed, based on the individual stiffness matrix of one 
flexible joint D?àÜâ, derived in SECTION III.  

The proposed platform design, as illustrated in Figure 1, is 
composed of three flexible joints that form a parallel chain of 
connections. For a parallel topology, the overall stiffness is 
obtained by summing up all the individual stiffness matrices: 

 DÑÖÜá = z{ä
f;
	DsàÜâ	z{ä

f~6
äã; 	. (20)  

The wrench transformation matrix z{ä used in this equation 
represents the transformation from the local frame of flexible 
joint å to the global reference frame. Hereby, we can define 
the local coordinate frame of each joint as beeing located at 
the free end of the beam element (i.e. node B in Figure 2). 
The beams are arranged in a radial pattern around the 

platform centre, equally separated by angles of 120°. As a 
consequence, the local Y-axis always points towards the 
platform centre and the local /-axis is parallel to the global 
/-axis for each beam. This means that the global frame is 
obtained by translating the local frame along the local Y-axis 
by a distance ) (i.e. the radius of the inner plate), followed by 
a rotation around the local /-axis of 0°, 120° or 240°, for 
each of the three beams respectively. Therefore, the three 
expressions of z{ä can be expressed using the definitions 
(16) and (17), 

 z{ç =
	Åä	 Ç	

	ÉäÅä Åä	
	, (21)   

where 

 Åä = Å2
Bé

6
å − 1 =, Éä =

0 0 0

0 0 )

0 −) 0

	. (22)   

The matrix Å2 represents the rotation about the /-axis of an 
angle è in radians, 

 Å2 è =

cos α 0 sin α

0 0 0

− sin α 0 cos α

 (23)   

By inserting equations (21) into equation (20), the stiffness 
matrix DÑÖÜá of the platform is obtained. The corresponding 
compliance matrix, on the other hand, can be obtained via the 
inverse of the stiffness matrix, CÑÖÜá = DÑÖÜá

f;. 

Due to the symmetrical arrangement of the three flexible 
joints, both of these matrices are rotationally invariant. 
Therefore, the overall stiffness and compliance matrices 
obtained through this method are diagonal matrices:  

 CÑÖÜá = 	diag	 ô;;		ôBB		ô66		ôhh		ôöö		ôgg , (24)   
				DÑÖÜá = 	diag	 õ;;		õBB		õ66		õhh		õöö		õgg . 

This means that all displacement components are 
uncorrelated with one another. Furthermore, each 
displacement component is directly proportional to one force 
component. For instance, applying a force to the platform that 
is pointing in Y-direction will only produce a displacement in 
the Y-direction. Likewise, the torque component HG will only 
affect the angle NG, etc. 

Finally, we can insert the compliance matrix for a 
cantilever beam seen in equation (13) into equation (20), by 
setting D?àÜâ = DJTq. This yields the symbolic compliance 
matrix of the entire platform: 

 ô;; =
B ;jkX QR

;jkX 6]SQ4j6gSTX
	,  

 ôBB =
;jkU Q

R

6gSTl
	,  

 ô66 = ô;;	,  

 ôhh =
BQR

6 hjkU STUQ
4j ;jkU eaQ

4j;BSTUú
4j;BSTUQú

	, (25)  

 ôöö =
;jkX QR

6STX hjkX Q4j;BQúj;Bú4
	,  

 ôgg = ôhh	.  

Note that the corresponding stiffness matrix components 
õää	are equal to the inverses of these expressions. 
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V. FORCE SENSING 
6-DoF force sensing is essential for understanding the 

interactions between the ultrasound probe and the human 
body (e.g. sliding friction [24] and centroid of the applied 
pressure [25]), as well as for achieving adaptive interaction 
control [26]. Force sensing can be achieved by measuring the 
displacement of the inner probe holder. Multiplying these 
displacement measurements with the stiffness matrix from 
SECTION IV yields the applied force. In order to estimate 
the accuracy of this method, FEM simulations were carried 
out in SolidWorks and directly compared to the analytical 
model. 

A. Simulation Setup 
Figure 3 shows the mesh that was used for this analysis. 

For the rigid components, a relatively large element size of 
7.88 mm was chosen. For the flexible joints, a finer mesh was 
used, with an element size of 2.11 mm. During the tests, a 
force was simulated at the platform centre and the resulting 
displacement of the platform was recorded. In order to obtain 
comparable results to the analytical model, the forces had to 
be exerted precisely at the platform centre, located within the 
body. For this reason, a small spherical hole was extruded 
from the centre of the platform. During the simulation, all 
forces and moments where applied on the surface of this 
sphere. As the sphere’s diameter of 1cm is relatively small 
compared to the dimensions of the platform, it can be 
considered as a point contact. The peak forces and torques 
exerted during ultrasound examinations were assumed as 
FG = F7 = 10N, F2 = 20N, HG = H7 = 0.5Nm, H2 = 0.2Nm, 
based on the measurements described in [27]. 

B. Simulation Results 
The described simulations were carried out for each axis 

separately, with forces and moments of different magnitudes 
within the defined application range. The results of these 
measurements are given in Figure 4. The black dashed line 
represents the values obtained through FEA. For comparison, 
the models of the Euler-Bernoulli and Timoshenko beam 
theories are plotted in red and blue respectively. As predicted 
by the analytical models, the measurements in the 0-axis 
produced the same values as for the Y-axis (recall that the Y0-
plane is the horizontal plane). In the FEA simulation, the 
values for these two axes differed by less than 1%. For this 
reason, the results of the 0-axis are not shown. Figure 4 only 
displays the Y-axis and /-axis, hereafter denoted as 
horizontal axis and vertical axis respectively. 

The first graph visualises the compliance in horizontal 
directions (i.e. the Y0-plane). It shows that both the Euler-
Bernoulli model and the Timoshenko model deviate from the 
FEA tests by approximately +5%. This is the only degree of 
freedom, where there is no significant difference between the 
Euler-Bernoulli and Timoshenko beam bending models. The 
second and the third graph are the most relevant to the 
manipulation of an ultrasound probe, since they represent 
forces in the vertical axis and torques about a horizontal axis. 
In these cases, the Timoshenko model is much closer to the 
FEA results, with a deviation of roughly +9%. The Euler-
Bernoulli model on the other hand underestimates the 
compliance, with a deviation of approximately -27%. The last 
graph represents twists around the vertical axis. Both the 
Timoshenko   and   Euler-Bernoulli   models   overestimate   the 

	
Figure 3.  Compliance Simulation using FEA (condition: H7 = 0.5Nm)	

	 	

	 	
Figure 4.  Compliance obtained through Timoshenko model, Euler-

Bernoulli model and FEA 

compliance for this case, with +19% and +13% deviation 
respectively. 

Force sensing based on displacement measurements is the 
reciprocal case of the above measurements. When the 
displacement of the platform centre is measured, it can be 
converted into a force, using the stiffness matrix, which is 
the inverse of the compliance matrix (i.e. the inverse of the 
slopes of the graphs in Figure 4). The data obtained through 
the FEA measurements reflects therefore how accurate force 
sensing will turn out, when using the Euler-Bernoulli model 
and the Timoshenko model.  

Table 1 shows how much force measurements based on 
the analytical models will deviate from the FEA simulation. 
In general, the Timoshenko model produces more reliable 
results than the Euler-Bernoulli model. The average absolute 
error of the former is 8.54% with a standard deviation of 
4.09%, whereas the latter produces an average absolute error 
of 21% with a standard deviation of 23.85%. Furthermore, it 
can be stated that the Timoshenko model has the tendency to 
overestimate the compliance for all degrees of freedom. This 
systematic error indicates the presence of some specific 
mechanism that is not covered by the Timoshenko theory 
(and hence neither by the more approximate Euler-Bernoulli 
theory). 
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TABLE I.  ACCURACY OF FORCE SENSING 

Model Displacement Compliance 
[N-1m] or [rad N-1m-1] 

Equivalent 
Error for Force 
Measurements 

Finite 
Element 

X,Z – linear 3.700E-5 - 
Y – linear 1.933E-4 - 
X,Z – angular 1.015E-1 - 
Y – angular 2.994E-1 - 

Timoshenko 

X,Z – linear 3.893E-5   -4.96 % 
Y – linear 2.116E-4   -8.64 % 
X,Z – angular 1.106E-1   -8.27 % 
Y – angular 3.570E-1 -16.13 % 

Euler- 
Bernoulli 

X,Z – linear 3.890E-5    -4.88 % 
Y – linear 1.405E-4 +37.61 % 
X,Z – angular 7.490E-1 +35.45 % 
Y – angular 3.386E-1 -11.59 % 

	

VI. CONCLUSION AND DISCUSSION 
The presented platform is comprised of a movable inner 

planar disk, surrounded by a fixed circular frame. Rubber 
joints make the system compliant to exterior forces.  FEM 
simulations showed that the Timoshenko model significantly 
provides higher accuracy. When performing force sensing 
based on displacement measurements, the analytical method 
deviates in average by -9% from the FEM model, for all 6 
degrees of freedom. The most important degrees of freedom 
for ultrasound probe manipulation are vertical translations 
(along the /-axis) and tilts of the horizontal plane (around the 
Y and 0-axis). The corresponding force and torque 
measurements for these axes had a deviation of -8.64% and   
-8.27% respectively, compared to the FEM model. For 
horizontal translations (along the Y and 0-axis), the difference 
is slightly smaller. However, for twists about the vertical axis 
(around the /-axis), the measured deviation of -16.13% was 
significantly higher. The proposed force sensing method 
relies on tracking the displacement and rotation of the inner 
planar disk. To realize this in practice, we plan to implement 
a fiber optic displacement sensing approach [28, 29] in the 
future. 
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