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Abstract 

 

Geographic profiling (GP) was originally developed to solve the problem of 

information overload when dealing with cases of serial crime. In criminology, the 

model uses spatial data relating to the locations of connected crimes to prioritise the 

search for the criminal’s anchor point (usually a home or workplace), and is extremely 

successful in this field. Previous work has shown how the same approach can be 

adapted to biological data, but to date the model has assumed a spatially homogenous 

landscape, and has made no attempt to integrate more complex spatial information (eg, 

altitude, land use). It is this issue that I address here. In addition, I show for the first 

time how the model can be applied to conservation data and – taking the model back 

to its origins in criminology – to wildlife crime.  In Chapter 2, I use the Dirichlet 

Process Mixture (DPM) model of geographic profiling to locate sleep trees for tarsiers 

in dense jungle in Indonesia, using as input the locations at which calls were recorded, 

demonstrating how the model can be applied to locating the nests, dens or roosts of 

other elusive animals and potentially improving estimates of population size, with 

important implications for management of both species and habitats. In Chapter 3, I 

show how spatial information in the form of citizen science could be used to improve 

a study of invasive mink in the Hebrides. In Chapter 4, I turn to the issue of ‘commuter 

crime’ in a study of poaching in Savé Valley Conservancy (SVC) in Zimbabwe, in 

which although poaching occurs inside SVC the majority of poachers live outside, 

showing how the model can be adjusted to reflect a simple binary classification of the 

landscape (inside or outside SVC). Finally, in Chapter 5, I combine more complex 

land use information (estimates of farm density) with the GP model to improve 

predictions of human-wildlife conflict. 
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Chapter 1: General introduction	

	

Statement	of	intent	

This doctoral project applies geographic profiling, first developed in criminology, to 

conservation data. The project focuses on developing and extending this model to 

incorporate more complex spatial information to improve the model performance.   

 

1.1 Abstract 

In this chapter, I review the existing literature on geographic profiling, discussing its 

transition from criminology to biology and the differences in application associated 

with this transition. I discuss the different models available, from the Criminal 

Geographic Targeting (CGT) algorithm introduced by Rossmo (2000) via more 

explicitly Bayesian approaches such as those of O’Leary (2009, 2010a, 2010b) to the 

Dirichlet Process Mixture (DPM) model introduced by Verity et al. (2014). I go on to 

review the application of geographic profiling (GP) to biological data sets such as 

animal foraging, invasive species biology and epidemiology and discuss the 

similarities between criminological data sets and biological ones in the context of this 

model. I then go on to explain how GP can be a useful conservation tool and detail 

how this PhD deals with some of the weaknesses of the previous GP implementation. 

Finally, I summarise the research presented in this thesis. 
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1.2 Spatial targeting of conservation efforts 

In conservation, as in many other fields, the need for action often outstrips the 

resources available. Thus, a fundamental challenge in conservation biology is 

prioritising areas for action (Ferrier et al. 2002). This knowledge is essential for 

developing cost-effective and efficient targeted interventions. Historically, 

conservation biologists and managers have taken a subjective approach to area 

prioritisation (Denoël & Ficetola 2015) but, due to the current biodiversity crisis, more 

quantitative approaches are needed.   

Animals move in space (and time), and recognizing these patterns and having an 

understanding of the relationship between animals and their environment is important 

in many fields of biology including invasive species biology, epidemiology, population 

ecology and conservation (Trakhtenbrot et al. 2005; Bocedi et al. 2014). Interactions 

between the environment and animals or plants produce complex patterns and 

understanding how these patterns arise and their implications is essential when 

assessing their conservation status (Bowler & Benton 2005). Understanding the 

geographic distribution and habitat preferences of particular species is also important 

when assessing levels of threat associated with them (Jennings et al. 2013).  This is 

also important when dealing with issues such as climate change when there may be a 

need to prioritise particular areas. This prioritisation can be based on different aspects 

of a species’ biology; for example, understanding animal movement patterns, or the 

habitat preferences of particular species. Thus, we need to have a grasp of species’ 

home ranges, migration patterns, how they interact with humans or their breeding sites, 

for example.  
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 Research into animal movements and behavioural patterns has been revolutionised by 

technological advancements such as camera trapping, radio tracking, tagging and use 

of harmonic radar (Jonsen et al. 2003). Techniques used to model data such as these 

provide a powerful tool which can help conservation scientists or managers make 

effective use of sparse data in relation to conservation management decisions.  

 

Recently, with the development of Geographic Information Systems (GIS), analyses 

such as habitat selection have been made easier and there are numerous sophisticated 

models that take into account the spatial dimensions of the data such as species 

distribution models and maximum entropy models. In	 this	 thesis,	 I	 show	 how	

geographic	profiling	(GP),	a	statistical	 tool	originally	developed	in	criminology,	

can	be	adapted	and	used	successfully	to	deal	with	conservation	data	sets.	

	 

1.3 Introduction to geographic profiling 

Geographic profiling is an investigative technique that applies crime theory to 

locations of criminal activity and predicts likely offender locations to prioritise suspect 

lists. While the majority of murders, arson attacks and rapes will inevitably be solved 

by the fact that there is a connection between the criminal and their victim, problems 

develop when trying to solve crimes when there is no apparent connection.  

Investigations of these ‘stranger crimes’ result in large numbers of suspects, leading to 

information overload (Rossmo 2000). Research from Simon Fraser University 

pioneered the development of the GP technique by examining the spatial patterns of 

serial crime and the hunting behaviour of serial criminals (Rossmo 2000). The GP 

model identifies probable locations where the offender is likely to have connections, 

such as work, home or family ties (Rossmo 1993). Importantly, this method does not 
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attempt to identify a single individual, but allows the prioritisation of the list of 

suspects according to the resulting probability surface. 

 

History within criminology 

Studies involving spatial movement of criminals have a long-standing history, and 

understanding the key developmental stages of the GP approach within criminology is 

useful in applying the model to ecological data sets since many of the problems – such 

as temporal and financial constraints – will be the same. In the 1980’s, for example, 

police investigating the case of the Yorkshire Ripper accrued 268,000 suspect names 

and 5.4 million vehicle registration numbers (Doney 1990), making investigating each 

suspect time-consuming at best and impossible at worst.  

 

The concept of environmental criminology, developed by Brantingham & 

Brantingham (1981), was an attempt to draw together the different disciplines 

associated with solving crime. This field takes into account much broader aspects of 

crime, such as choices the offenders make, movement and activity patterns and how 

these may influence criminality (Brantingham & Brantingham 1993; Felson 2000). 

Prior to this, there were many varying methodologies that dealt exclusively with the 

spatial element of criminology (Park et al. 1921; Shaw & McKay 1942). 

Environmental criminology places a focus on all the environmental factors associated 

with the crime (e.g. time, space, criminal, victim etc.). It first looks at how the crimes 

relate to geographic space and secondly incorporates knowledge of how criminals 

structure their actions to this space (Brantingham & Brantingham 1993; Felson 2000). 

Brantingham & Brantingham (1981) state that the five constituents required for a 

crime to be committed are space, time, law (deterrent), offender and victim, and as 
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such without any one of these a crime cannot occur. This novel approach meant that it 

focused on the circumstantial elements of the crime and not just the offender.  

 

Capone & Nichols (1976) stated that criminals will attempt to maximise their gain and 

minimise their effort, and that therefore a geographic range could be applied to all 

criminal activity – a distance decay function. This assumed that crimes would be 

committed less frequently further from the offender’s home or anchor point. It was this 

idea that Rossmo used to develop his model of geographic profiling (Rossmo 2000). 

Analyses of spatial point patterns are based on one or other of two principles – those 

grounded on distance (nearest neighbour (Clark & Evans 1954)) and those focused on 

area (quadrat-based methods (Greig-Smith 1952)). When Rossmo (2000) developed 

his GP model for criminology he used the former. These three key components 

(environmental criminology, distance decay, point pattern analysis) along with 

improvements in mapping software and computer technology led the way for Rossmo 

to develop his geographic profiling model (Rossmo 2000).   

 

Development	of	Rossmo	function		

The primary algorithm used by Rossmo’s geographic profiling method is the criminal 

geographic targeting algorithm (CGT). Here, Rossmo combined two approaches – 

Pareto’s distance decay function and a buffer zone (Rossmo 1993). The idea that there 

is a buffer zone – an area within a certain distance of their own home in which a 

criminal does not commit crimes – has been a controversial topic. Yet, when Rossmo 

(2000) looked at the frequency distributions of journey to crime distances there were 

patterns emerging that backed up this theory. This traditional method looks at the 

distance decay around each data point as an individual entity. It creates a ‘jeopardy 



	

 23 

surface’ over geographic space, in which the height of the surface is a measure of how 

likely it is that a source exists at a given point. However the CGT algorithm is not 

mathematically robust; it does not produce a probability surface because the integral 

over the surface does not equal one. As Verity et al. (2014) point out, within 

criminology there is no need for the model to do this, as it produces ranked priority 

scores rather than probability. It also adds together the independent surfaces created 

from independent observations and develops a single surface that represents the most 

likely source location, which is only strictly correct if it assumed that each point forms 

a separate ‘cluster’ (Rossmo 2000; Verity et al. 2014).  

 

Bayesian development 

O’Leary (2009, 2010a, 2010b) applied a Bayesian structure to the traditional CGT 

algorithm. A key limitation of this method, however, is the assumption that all data 

points have originated from one source, and this approach can produce highly 

misleading results if this assumption is violated. Additionally, although the idea of a 

single source may be relatively robust within criminology, it is likely to be much less 

so when the model is applied to biological data sets (Verity et al. 2014). This problem 

was solved when Verity et al. (2014) produced a new Bayesian approach based on a 

Dirichlet Process Mixture (DPM) model and Gibbs sampler that allowed multiple 

sources, even when the true number of sources was unknown; however, this 

development only arose after the basic CGT model had first been applied to biological 

data. 
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1.4 Applications in biology 

GP	in	biology	

Having an understanding of how animals move through an environment and how they 

spread out from a particular central area is interesting and valuable. Modeling such 

movement to be able to predict this spread is common, and research is becoming 

increasingly sophisticated and now includes niche-based models, kernel density 

models and species distribution models. However, there is much less research looking 

at this movement backwards in time, using current locations of organisms, populations 

or individual animals to predict where they came from (Le Comber & Stevenson 

2012). This distinction becomes very relevant when looking at topics such as animal 

foraging (using the locations of feeding sites to identify nests, roosts or dens), invasive 

species biology (using the current distribution of an invasive species to identify 

potential areas of introduction) or epidemiology (using known locations of diseases to 

identify or infer source locations) (Le Comber et al. 2011; Le Comber & Stevenson 

2012).  

 

Animal foraging 

This jump from predicting future patterns to estimating how current patterns occurred 

in an ecological setting was the basis for Le Comber et al. (2006). In this pioneering 

paper they applied the original CGT GP method to investigate bat foraging patterns. 

The study looked at two sympatric colonies of bats (Pipistrellus pipistrellus and P. 

pygmaeus) in North East Scotland. The fact that these species are living within the 

same geographic range made the authors query how the bats were minimising foraging 

range competition, and whether geographic profiling models could be used to predict 

roost sites from the distribution of known foraging sites. They were then able to follow 
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this up and see if there were any differences in foraging patterns between the two 

species. When the foraging sites were inputted to the model as being analogous to 

crime sites, it was able to successfully predict the location of the roost sites for both 

species. Furthermore, the fitted model parameters showed that there was a significant 

difference in foraging patterns between the species – P. pipistrellus was a more 

generalist forager whereas P. pygmaeus foraged specifically along water edges. This 

was the first time that methods founded in criminology had been used successfully in 

biology. 

 

In 2009, another paper investigated this analogous relationship between human 

hunting behaviour and animal foraging behaviour. Raine et al. (2009) looked at 

whether this technique could be applicable to bumble-bee foraging. The social nature 

of bees and the fact that they are known to create a forage-free buffer zone around the 

entrance to their nest makes them ideal organisms for the application of GP techniques. 

The bees were observed entering a 1m enclosed arena through different entrances and 

then foraging on artificial flowers filled with sucrose solution. By using experimental 

observations of bees within an enclosed arena, Raine et al. (2009) were able to locate 

the entrance (the colony nest site) within which the bees entered the flight arena by 

applying the same algorithm as used in Le Comber et al. (2006). It was also shown 

that when flowers were present at different densities the bees undertook different 

foraging strategies. For example, when the flowers were present at higher densities the 

‘buffer zone’ decreased around the nest entrance.  

 

Martin et al. (2009) used GP methodology to look at the dispersal patterns of white 

sharks (Carcharodon carcharias) when hunting Cape fur seals (Arctocephalus pusillus 
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pusillus) off the coast of South Africa. They showed that the patterns of shark 

predation were non-random, that the sharks appeared to be predating at a well-defined 

anchor point 100m seaward from the seals’ primary entry and exit point. Counter-

intuitively this location did not have the greatest chance of encountering a seal prey, 

and it has been suggested that it actually represents a trade-off or balance between 

detection, competition and capture rates. The sharks may be using an optimal spatial 

arrangement, whereby they offset prey density against competition or success. 

Additionally, the researchers created probability surfaces for sharks of different age 

and size and were able to show that smaller sharks had a more dispersed search area 

than larger sharks, suggesting competitive exclusion, or that experience refined their 

hunting strategy (Martin et al. 2009). 

 
Invasive species biology  

Geographic profiling has also been applied to studies of invasive species, which are 

now considered to be the most significant factor (second only to habitat loss) affecting 

not only global biodiversity and ecological integrity (Vitousek & D’Antonio 1996; 

Wilcove et al. 1998; Blackburn et al. 2011; Pyšek et al. 2012; Robertson et al. 2015) 

but also having a huge global financial impact. Pimentel et al. (2001) reported a cost 

of $97 billion dollars in damages between 1906 and 1991 as a result of invasive 

species. Knowing that these invasions are set to continue at an increasing rate as a 

result of anthropogenic influence (for example an increase in potential dispersal 

ranges), conservationists and wildlife governments across the world have identified 

this as top priority (Hulme 2007; Hulme 2008; Stevenson et al. 2012). Using historical 

data from the British Records Centre, Stevenson et al. (2012) were able to show that 

GP performed significantly better than analyses using measures of spatial central 

tendency, and a more complex single parameter kernel density model. GP 
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outperformed these other techniques for 52 out of 53 datasets for invasive species. The 

sites colonised by the species in question were considered to be the crime sites, and 

used to identify a number of potential sources. By knowing the location of the sources 

of the invasive species, dealing with it becomes a much more manageable problem. 

Even when there is only limited knowledge on an invasive species’ population ecology, 

using this method means it can be eradicated early on in the invasion.  

 

GP was also shown to be effective when locating the origin of the invasive species 

Caulerpa racemosa in the Mediterranean. Invasions of microalgae, such as Caulerpa 

spp, are one of the main threats to marine environments, due to their generalised 

spreading strategy, competitive nature and high rate of vegetative propagation (Papini 

et al. 2010; Papini et al. 2013). Papini et al. (2013) were able to test the GP model by 

calibrating it against known sources of invasion and distribution data of C. taxifolia. It 

was then possible to choose appropriate parameters to allow the model to run most 

effectively and enabled a better understanding of invasion routes of other microalgae. 

The results showed that the probable sources of invasion of C. racemosa were two 

locations, which correspond to ports, implying that the most likely method of invasion 

was related to fishing vessels. 

 

Epidemiology 

It is surprising considering the global scale of epidemic diseases that few studies have 

actually attempted to identify disease sources – with the exception of the classic study 

undertaken by Dr. John Snow or the London cholera outbreak in 1854 (Smith 2002). 

Although it might seem logical that when studying disease outbreaks, identifying the 

source of the outbreak is the first port of call, research in these fields of epidemiology 
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and invasive species biology tend to work forwards in time, spatially mapping the 

outbreaks and predicting where future outbreaks may occur. Very few studies look 

backwards in time and try to locate the sources of these problems. 

 

Due to the clustering nature of many of these diseases, and therefore their suitability 

for GP, Le Comber et al (2011) re-examined the original cholera data set from 1854. 

They showed that when the disease sites were inputted as crime sites, the infamous 

Broad Street pump (the source as discovered by Snow) ranked first out of 17 water 

pumps and was found after searching just 0.2% of the geoprofile. A second part of the 

study examined an outbreak of malaria in Cairo, Egypt. 139 locations where malaria 

cases had been recorded were used as crimes sites and 59 mosquitogenic water sources 

where inputted as possible sources. Seven of these sources tested positive in field 

studies for malaria carrying vectors (Anopheles sergentii), and the geoprofile identified 

six out of seven of these sources in the top 2% of the geoprofiles (Le Comber et al. 

2011). Malarial larval habitats can be very transient and diverse in their nature and 

therefore a novel efficient technique to identify these locations and targeting 

interventions at these sources is of huge interest (Carter et al. 2000; Le Comber et al. 

2011). 

 

A	Dirichlet	Process	Mixture	model	of	geographic	profiling	

As noted above (Section 1.3), neither the CGT (Rossmo 2000) or O’Leary’s simple 

Bayesian model (O’Leary 2009, 2010a, 2010b) is entirely suitable for the application 

of GP to biological data, the first because of its mathematical flaws and the second 

because of its assumption of a single source (Verity et al. 2014). The Dirichlet Process 

Mixture (DPM) model of geographic profiling used in this thesis solves both of these 
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problems, combining the original CGT model and the simple Bayesian model within 

a single framework.  

 

While the O’Leary model assumes a single source and multiplies together the 

distributions around each crime, the CGT assumes as many sources as crimes (even 

though this is never explicitly said) and sums these distributions. In contrast, the DPM 

model takes the mathematically correct approach of multiplying together distributions 

around crimes assigned to one source, and summing across all sources (Verity et al. 

2014).  

 

Constructing a geoprofile can be broken down into two related tasks: allocating crimes 

to clusters and finding the sources of the clusters. Solving these two problems together 

is difficult, but each is simple if the answer to the other is known. That is, if one knows 

which crimes come from which sources, finding the sources is straightforward because 

they are most likely to be found at the spatial means of these clusters. Similarly, if one 

knows where the sources are, allocating crimes to clusters is easy because crimes are 

most likely to originate from the closest source. The solution is to alternate between 

these two problems in a process known as Gibbs sampling (Geman & Geman 1984). 

The Gibbs sampler begins by randomly assigning crimes to clusters and then – 

conditional on this clustering – estimates the locations of the sources. Then – 

conditional on these source locations – crimes are reassigned to clusters. These two 

steps are repeated thousands of times with standard Bayesian Markov chain Monte 

Carlo (MCMC) methods until the model converges on a posterior distribution of 

interest. Crucially, it is not necessary to decide on the number of clusters because at 
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each step there is a finite, positive probability that a crime comes from a previously 

unseen source.  

	

1.5  Alternative spatial approaches in biology 

Recently large amounts of geospatial data have become freely available (Mayfield et 

al. 2017).  Governmental open data initiatives are one such example where census 

data, crime data and various other social and economic processes are made available 

at no cost in the form of a geographic information system (GIS) (Brundson & Comber 

2015).  This thesis looks to take advantage of these resources for conservation by 

integrating these data into the GP model. First, though, I will consider briefly other 

spatial models in biology. 

	

Species	distribution	models	

In the last few years there has been an increase in the development of species 

distribution models and there are now multiple methods available, each with their own 

specialities (Elith et al. 2010). The type of model used will largely depend on the type 

of data that are available.  Many spatial approaches already incorporate varying levels 

of spatial complexity and can be used – either singly or in combination – to identify 

areas of conservation importance. For example, species distribution models (SDM) 

(sometimes referred to as ecological niche models, habitat suitability models or simply 

niche-based models (Elith & Leathwick 2009; Guisan et al. 2013) are increasingly 

becoming the main tool to predict how climate and habitat change can impact species 

and quantify the species-environment relationship (Guisan & Thuiller 2005; Peterson 

et al. 2011). SDM models emerged when statistical analyses of ecological habitat 

studies, such as generalised linear models and linear multiple regression, were 
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combined with GIS-based environmental layers (Ferrier et al. 2002; Elith & Leathwick 

2009). SDMs are correlative models and they use environmental information to 

explain occurrence data (Elith & Graham 2009). They evaluate the relationship 

between species distributions and the environment and use this information to 

highlight the factors that will determine the chance of a species moving to a particular 

location (Howard et al. 2014). There has been a dramatic increase in the popularity of 

this approach, which is shown in the rapidly growing scientific literature on the 

potential application of these models to environmental planning (Guisan & 

Zimmerman 2000). Despite their potentially crucial role in addressing conservation 

problems there is little peer reviewed evidence of the practical utility of SDMs to real 

world conservation decisions (Guisan et al. 2013). However, when using an SDM the 

choice of environmental predictor is crucial and the output can vary depending on what 

variables are selected (Synes & Osborne 2011; Fourcade et al. 2017).  

 

Maximum entropy models 

There are several different statistical techniques that fall under the name of SDMs and 

that are used to predict species distributions and modeling complexity has increased 

over time with advancements in technology and statistics (Elith & Graham 2009). 

Maximum Entropy (MaxEnt) modeling is a method used for modeling the distribution 

of species based on presence data alone. MaxEnt was developed in 2004 and since 

then it has become hugely popular as a predictive method to map species distributions 

and is used by governmental and non-governmental organisations (Elith et al. 2010; 

Fourcade et al. 2014). It uses a machine-learning algorithm that applies maximum 

entropy theory to presence data and environmental/geographical variables to predict 

species distributions (Fourcade et al. 2014).  Essentially the model has two parts. First, 
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there is a constraint component where we must define particular environmental 

constraints on the probability surface such as temperature, or altitude where the species 

could occur. Second, the model has an entropy component where the model assumes 

the probability is perfectly uniform in geographic space and moves away from this 

distribution until the constraint component precludes this. The model ultimately 

produces a probability surface with a probability value in each grid cell that expresses 

the suitability for a species at that point dependent on the environmental variables.  

 

Because systematic biological survey data that includes both presence and absence 

data are often rare, using models that can run with restricted data is advantageous. 

Most methods for determining species distributions rely on occurrence data, which are 

naturally biased towards particular areas, and pseudo-absence data, which is drawn 

from a wider spatial area (Philips et al. 2009; Vaclavik & Meentemeyer 2009). 

However, both GP and MaxEnt can produce probability surfaces with presence-only 

data, and can therefore be used to analyse database records from herbariums and 

museum archives, as well as up-to-date survey data (Philips & Dudik 2008; Elith et al. 

2011). Using presence-only data means that we do not have to worry about the 

unreliability of absence data which can be hard to obtain accurately – the species may 

be present but not detected, or absent for historical reasons even if the habitat is 

suitable (Hirzel et al. 2002).  

 

The fundamental differences between GP and MaxEnt is that MaxEnt produces a 

probability surface that can predict the most likely location of a species subject to 

particular conditions such as climate change, flooding or human disturbance – 

essentially asking where these species are moving to. This requires prior knowledge 
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of what environmental variables are favourable or unfavourable to the species in 

question. GP, on the other hand, asks where these species are coming from. Spatial 

information of the kind used by other SDMs can be incorporated but it is not required, 

making it more suitable when such data are unavailable. This difference – between 

where species will move in the future, and where they have come from in the past – 

may be thought of as starting with present-day distributions and running forwards in 

time (MaxEnt) or backwards in time (GP). This is an important distinction since there 

are cases where it is beneficial to look backwards in time – for example, using the 

current locations of invasive species to identify a source, identifying poachers from 

the locations where they have already poached, or identifying sources of infectious 

disease from the locations of people carrying the disease (Le Comber et al. 2011).  

 

One major advantage of GP is its ability to produce a probability surface with very few 

data points but it can also cope well with very large datasets, and its Bayesian core 

means that more information can be added as it becomes available.	In fact Rossmo 

(2000) states that it is possible to produce a geoprofile quickly and efficiently using as 

few as five data points. As such, in data sets of very rare species whereby it is difficult 

to obtain a lot of data, GP could potentially, still be a valuable tool.   

 

Further developments 

Despite its successful applications in biology and other fields, to date the work on GP 

in fields outside criminology is far from complete, and there are several areas which it 

does not address – for example, genetic data, temporal data and incorporating complex 

spatial information. It is the last of these – the spatial information – which this thesis 

addresses. Prior to this thesis, the application of GP to biology has assumed a spatially 
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homogenous landscape, making no attempt to integrate more complex spatial 

information (eg, altitude or land use). These habitat differences are likely to be 

particularly important in conservation – for example freshwater aquatic invertebrates 

will only be found in lakes, streams and ponds, while particular species of plants may 

only occur at specific altitudes. 

 

1.6  Summary 

In this thesis, I show for the first time how the GP model can be applied to conservation 

data and – taking the model back to its origins in criminology – to wildlife crime. 

Specifically I ask in in Chapter 2 if GP can be used to aid conservation efforts. I use 

the GP model to locate sleep trees for tarsiers in dense jungle in Indonesia, using as 

input the locations at which calls were recorded, demonstrating how the model can be 

applied to locating the nests, dens or roosts of other elusive animals and potentially 

improving estimates of population size, with important implications for management 

of both species and habitats. In Chapter 3, I ask if GP is useful when responding rapidly 

is crucial and/or when data quality is poor?  I show how spatial information obtained 

from citizen science data can be used to improve a study of invasive mink in the 

Hebrides. In Chapter 4, I turn to the issue of ‘commuter crime’ in a study of poaching 

in Savé Valley Conservancy (SVC) in Zimbabwe, in which although poaching occurs 

inside SVC the majority of poachers live outside, showing how the model can be 

adjusted to reflect a simple binary classification of the landscape (inside or outside 

SVC). Finally, in Chapter 5 I ask if GP can be improved by incorporated complex 

spatial information, I combine more complex land use information (point estimates of 

farm density) with the GP model to improve predictions of human-wildlife conflict. 
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Chapter 2: Using geographic profiling to locate elusive 

nocturnal animals: a case study with spectral tarsiers 

Faulkner et al. (2015) 

 

2.1 Abstract  

Estimates of biodiversity, population size, population density and habitat use have 

important implications for management of both species and habitats, yet are based on 

census data that can be extremely difficult to collect. Traditional assessment 

techniques are often limited by time and money, and by the difficulties of working in 

certain habitats, and species become more difficult to find as population size decreases. 

Particular difficulties arise when studying elusive species with cryptic behaviours. 

Here, I show how geographic profiling – a statistical tool originally developed in 

criminology to prioritise large lists of suspects in cases of serial crime – can be used 

to address these problems. I ask whether GP can be used to locate sleeping sites of 

spectral tarsiers (Tarsius tarsier) in Sulawesi, SE Asia, using as input the positions at 

which tarsier vocalisations were recorded in the field. This novel application of GP is 

potentially of value as tarsiers are cryptic and nocturnal and can easily be overlooked 

in habitat assessments (for example, in dense rainforest). My results show that GP 

provides a useful tool for locating sleeping sites of this species, and indeed analysis of 

a preliminary data set during fieldwork strongly suggested the presence of a sleeping 

tree at a previously unknown location; two sleeping trees were subsequently found 

within five metres of the predicted site. I believe that GP can be successfully applied 

to locating the nests, dens or roosts of elusive animals such as tarsiers, potentially 

improving estimates of population size, with important implications for management 

of both species and habitats. 
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2.2 Introduction 

The ability to accurately and reliably detect and locate individuals is vital for assessing 

animal population density and dynamics, habitat use and ranging patterns – crucial 

information that underpins the development of conservation management plans for 

both species and their habitat (Tyre et al. 2003). Traditional census and survey 

techniques are often limited by time constraints, prohibitive costs and the challenging 

logistics of certain habitats. Particular difficulties arise when studying elusive species 

with cryptic behaviours (MacKenzie et al. 2005; Neilson et al. 2013), or species with 

declining populations, since animals become more difficult to find as population size 

decreases (Chades et al. 2008; Neilson et al. 2013).  

 

Researchers attempting to census such species typically encounter two main problems. 

First, the overall study area is often too large to explore exhaustively and inferences 

must therefore be made using a smaller sampling location, for example using a 

probabilistic sampling method (MacKenzie et al. 2005). Secondly, variation arises due 

to detectability, and research must take into account the likelihood that many 

individuals will go undetected even though they may be present (Chades et al. 2008; 

Neilson et al. 2013). In this study, I ask whether geographic profiling, a statistical 

method commonly used in criminology (Rossmo 2000) and increasingly being applied 

to biological data (Le Comber et al. 2006; Martin et al. 2009; Raine et al. 2009; Le 

Comber et al. 2011; Le Comber & Stevenson, 2012; Stevenson et al. 2012; Papini et 

al. 2013; Verity et al. 2014), can be used to improve surveys of species that are rare 

and/or elusive.  
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In criminology, geographic profiling uses the spatial locations of a series of linked 

crimes to calculate the probability of offender residence for each location within the 

study area, producing a three-dimensional probability surface called a jeopardy 

surface; overlaid on a map of the study area, this is termed a geoprofile. Suspect sites 

are prioritised according to their height on the geoprofile (Rossmo 2000). Geographic 

profiling was designed to solve the problem of information overload when dealing 

with cases of serial crime, since such cases typically generate too many suspects rather 

than too few, and resources will often preclude a detailed investigation of them all: for 

example, police investigating the case of the Yorkshire Ripper accrued 268,000 

suspect names and 5.4 million vehicle registration numbers (Doney 1990; Rossmo 

2000). Similar constraints – lack of time, lack of resources – will obviously also often 

apply in conservation. 

 

Geographic profiling has been extremely successful in criminology, and is routinely 

used by organisations including the Royal Canadian Mounted Police, the Bureau of 

Alcohol, Tobacco, Firearms and Explosives, the Los Angeles Police Department, the 

National Crime Agency in the UK and the United States Marine Corps (Rossmo 2012). 

This success has led to its application to biological data, notably animal foraging 

(where it can be used to find animal nests or roosts using the locations of foraging sites 

as input) (Le Comber et al. 2006; Martin et al. 2009; Raine et al. 2009; Le Comber & 

Stevenson 2012), epidemiology (identifying disease sources from the addresses of 

infected individuals) (Le Comber et al. 2011; Le Comber & Stevenson 2012; Verity et 

al. 2014) and invasive species biology (using current locations to identify source 

populations) (Le Comber & Stevenson 2012; Stevenson et al. 2012) (Table 2.1). More 

recently, a version of the model based on a Dirichlet Process Mixture (DPM) model 
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that outperforms the Criminal Geographic Targeting (CGT) algorithm used in 

criminology has been developed and applied to biological data (Verity et al. 2014).  

 
 
Field Crime sites Suspect sites References 

Criminology 

Murder, rape, 

burglary, arson 

Spatial locations of 

linked crime sites 

(eg murders) 

Areas likely to be 

associated with the 

offender (eg a home 

or workplace) 

Rossmo 2000 

and many others 

Biology 

Animal foraging Spatial locations of 

foraging sites 

Possible nests, roosts, 

dens etc 

Le Comber et al. 

2006; Martin et 

al. 2009; Raine 

et al. 2009 

Invasion biology Spatial locations of 

current populations 

of invasive species 

Areas associated with 

source populations 

Stevenson et al. 

2012; Papini et 

al. 2013 

Epidemiology 

Malaria, cholera Spatial locations of 

infected individuals 

Vector breeding sites 

or other sources of 

infection (eg 

contaminated water) 

Buscema et al. 

2009; Le 

Comber et al. 

2011; Verity et 

al. 2014 

Table 2.1 Geographic profiling’s application in criminology, biology and epidemiology  

 

Here, I apply this model to a small, cryptic nocturnal primate species, the spectral 

tarsier, Tarsius tarsier. There are 10 extant species of tarsier, and eight of these are 

endemic to the Indonesian island of island of Sulawesi (Shekelle et al. 2008a; Shekelle 

et al. 2008b; Merker et al. 2005); however, there may well be many more species that 

have yet to be described (Shekelle et al. 2008a). Tarsiers are nocturnal, roosting in 

trees and crevices during the day, but sleeping sites vary depending on forest type. In 

most cases tarsiers will be found sleeping in the crevices of strangler figs. They are the 
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only extant obligatory carnivorous primates, feeding exclusively on live animals, 

predominantly insects.  Their small size (100-150g), nocturnal lifestyle and ability to 

leap, almost silently, between branches in the forest make them difficult to locate in 

the field (MacKinnon & MacKinnon 1980). Understanding tarsier population 

dynamics and home ranges is critical to understanding their likely response to habitat 

change and destruction. However, many tarsier species are either critically endangered 

or listed by the International Union for Conservation of Nature (IUCN 2013) as data 

deficient, meaning that there are insufficient data for a proper IUCN assessment. Many 

tarsier species have been extensively studied, but much of this relates to aspects of 

their biology such as their phylogeny (for example, Merker et al. 2014 and Pozzi et al. 

2014), and there is less information on their distribution or population size (IUCN 

2013).  

 

Lowland forest is thought to contain the highest diversity and abundance of animal 

and plant species and, with the exceptionally high biodiversity in SE Asian forests, in 

conjunction with carbon storage within the peatlands, deforestation of this area is of 

global concern. Despite this, deforestation is occurring at a rapid rate within Indonesia 

itself (Whitten 2000; Whitten et al. 2002; Miettinen et al. 2011a). Globally, Indonesia 

has exhibited the largest increase in forest loss between 2000 and 2012, with a low of 

10,000km2 lost per year to a high of over 20,000km2. Further analyses of spatial 

resolution land maps have revealed an overall yearly decline of 1% of forest cover, 

with the main destruction occurring within plantations and secondary vegetation. 

(Miettinen et al. 2011a,b; Hansen et al. 2013). These recent studies show that 

deforestation is still occurring at a high rate in SE Asia, endangering many endemic 

forest species, such as the tarsier, and habitat destruction leading to the loss of suitable 
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habitat has led to the IUCN classifying two species of tarsier, the spectral tarsier 

Tarsius tarsier and Dian’s tarsier T. dentatus, as vulnerable. This vulnerable status is 

primarily driven by habitat loss rather than population number (Shekelle et al. 

2008a,b).  

 

One way to estimate tarsier numbers is via identification of their roost sites (Fig. 2.1a). 

In practice, though, this is extremely difficult, and is usually carried out by tracking 

the animals using their duet vocalisations – characteristic calls made prior to dawn 

each morning as pairs return to their sleeping sites (MacKinnon & MacKinnon 1980). 

However, the short overall duration of the duetting period, and rapid sound attenuation 

in the dense rainforest typical of this species’ habitat, mean that actually locating 

individuals from their duets is at best difficult and time consuming, and at worst 

impossible. Other methods of estimating population numbers, such as camera 

trapping, are arguably less labour intensive but perhaps less effective (Foster & 

Harmsen 2012) and in any case also present logistical difficulties due to the dense 

habitat (Fig. 2.1b); camera trapping is also expensive.  
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Figure 2.1 (a) A sleeping tree;  
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Figure 2.1 (b) Typical habitat within the study site. 
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Here, I use the DPM implementation of the geographic profiling model (Verity et al. 

2014) to identify likely sleeping sites, with locations of duet vocalisations representing 

‘crime sites’ and the sleeping sites analogous to an offender’s ‘anchor point’. To test 

this model, I take a retrospective approach, using data on vocalisations and sleeping 

trees that were collected in a previous study. I suggest that this approach has the 

potential to provide a more efficient way to identify physical locations of elusive, 

cryptic species such as the spectral tarsier, and to improve estimates of population size, 

population density and home range size for such species.  

 

2.3 Methods 

Study area 

This project was conducted on Buton Island, Southeast Sulawesi, Indonesia (longitude 

123º12’ E-122º 33’E and latitude 5º44’ S-4º 21’ S; Fig. 2.2). Buton has a length of 100 

km and is 42 km at its widest point, and an area of approx. 4,520 km2 (Priston et al. 

2011). The forest where sampling took place is split into two reserves, separated only 

by a small road: Kakanauwe Nature Reserve (810 ha) and Lambusango Wildlife 

reserve (28,500 ha) (Martin & Blackburn 2010). Buton Island experiences a tropical 

climate, with a pronounced dry season between August and October, and a wet season 

between October and April; there is variable rainfall between May and July each year 

(Whitten 2000; Whitten et al 2002; Gillespie et al 2004). The traditional economy is 

based on subsistence farming, arising from slash and burn agriculture (Priston et al. 

2011). The main anthropogenic impacts on the Buton rainforest are forest clearance 

for land use such as subsistence farming, illegal logging, asphalt mining and rattan 

collection (Priston et al. 2011). 
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Figure 2.2 Buton Island. The area in the red square represents the two forested reserves (Kakanauwe 

and Lambusango) where the study took place.  

 

Field data collection  

I collected the data between May and August 2013. Surveys started before 05:00 each 

morning, and continued until approximately 06:00. Before dawn, between 05:00 and 

06:15, mated pairs of tarsiers make shrill, sexually dimorphic vocalisations that last up 

to four minutes as they are returning to roost; these are repeated as the animals move 

closer to the sleeping sites, covering in total a period of around 20 minutes (Faulkner, 

pers. obs.). Each morning, after the first tarsier was heard, the observer remained static 

and noted the time of day. I recorded the GPS data on the location of the observer, and 
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estimated the distance/compass bearing of the vocalising animals from the observer. I 

then attempted to follow the tarsiers to the sleeping tree; where this was possible, its 

precise location was recorded. A sleeping site was only classed as such if a tarsier or 

tarsiers were seen entering a tree, vine tangle or rock crevice. A total of 25 sleeping 

trees were identified during the study, including two located using output from a 

preliminary GP analysis carried out during data collection; since these were not 

independent of the model they were excluded from the final analysis. 

 

Geographic profiling 

The DPM model of geographic profiling, which is fully described in Verity et al. 

(2014), provides a mathematically robust method of estimating source locations from 

the spatial locations of the observed crime sites. Conceptually the method can be split 

into two parts. First, the crime sites are partitioned into distinct clusters, with crimes 

that are close to one another being more likely to end up in the same cluster. It is 

assumed that all points within a cluster originated from the same source, while points 

in different clusters originated from different sources. Second, conditional on a 

particular partition of the data into clusters, the posterior distribution of the unknown 

source locations is calculated using a method analogous to that described by O’Leary 

(2010a). By alternating between these two steps using standard Markov Chain Monte 

Carlo (MCMC) methods it is possible to reconstruct the full posterior distribution of 

the source locations, integrated over all possible partitions of the data into groups.  

 

In this case, I was interested in using the spatial locations of tarsier vocalisations as 

input to the DPM model, and using the resulting geoprofile to construct a prioritised 

search strategy when looking for sleep sites. By carrying out this analysis 
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retrospectively, on data in which the true sleep sites (or at least a subset of the true 

sleep sites) are known, I could measure the effectiveness of this search strategy 

compared with a number of alternative approaches. 

 

Finally, I note that although the terminology used in geographic profiling (crime sites, 

offender residence, etc.) is not always appropriate for use with biological data, for 

consistency with the criminological literature we will here refer to tarsier sleeping tree 

sites as anchor points or source locations and vocalisation location sites as crime sites.   

 

Model implementation 

The DPM model was implemented in R (R Core Team, 2014) using the package 

Rgeoprofile as described by Verity et al. (2014); this package is available from from 

the authors on request. Model parameters were set to default values, with the exception 

of sigma, the distance (in lat/long degrees) representing one standard deviation of the 

bivariate normal distribution centred on the source. This was set to 0.0009, 

corresponding to a distance of 100m at the study site location. This is equivalent to 

stating that 99% of the ‘crime sites’ are expected to occur within a circle of radius 

300m centred on the source. This is consistent with the (admittedly sparse) literature 

on the dispersal distances of tarsiers, which report them as having nightly path lengths 

of roughly 1 km (Neri-Arboleda et al. 2002; Merker 2006). 

 

Model evaluation 

Model output can be assessed using the hitscore, the proportion of the area covering 

the crimes (in this case, the positions at which tarsiers were recorded, plus a ‘guard 

rail’ of 5 % surrounding this) in which the anchor point/s (sleep tree/s) are located. 
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The hitscore is calculated by dividing the ranked score by the total search area. The 

smaller the hitscore, the more efficient the search strategy described by the model; a 

hitscore of 0.5 (50%) is what would be expected from a nonprioritised (i.e. random or 

uniform) search (Rossmo 2000). 

 

2.4 Results 

Field study 

In total, 190 tarsier call locations were recorded across 45 mornings of sampling, 

within both the Kakanauwe and Lambusango forest reserves. A total of 15% of the 

vocalisations were recorded between 05:00 and 05:30, 47% between 05:30 and 05:45, 

34% between 05:45 and 06:00 and 4% after 06:00). This follows previously published 

data on the timing of tarsier calls (Neitsch 1999; MacKinnon & Mackinnon 1980). I 

identified 25 sleeping sites, mostly large strangler fig trees (Fig. 2.1a), but dense vine 

tangles and dead tree trunks were also used. 

 

Preliminary analysis 

Although the analysis here is retrospective, I ran the model on an early partial data set 

while fieldwork was still in progress. This preliminary analysis strongly suggested the 

presence of a sleeping tree in the NW part of the study area; two sleeping trees were 

subsequently found within 5 m of the predicted location (Fig. 2.3). Since these two 

sleeping trees were not independent of the model, they were not used to test the model 

and were excluded from the full analysis reported below. 
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Figure 2.3 Geoprofile showing the results of the preliminary analysis. Red circles show the positions 

of the observer when tarsier vocalizations were recorded, and blue squares the two sleeping trees whose 

locations were successfully predicted in this analysis. Contours show bands of 5%, with lighter colours 

corresponding to higher parts of the geoprofile. 
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Full analysis 

The mean hitscore for the 23 sleeping trees identified during field work (excluding an 

additional two sleeping trees identified in the preliminary analysis) was 0.16 (sd = 

0.154); the median hitscore was 0.15. The model found 10 of the sleeping trees after 

searching less than 10% of the total map area of 3.4 km2, and 16 after searching less 

than 20% (Fig. 2.4, Fig. 2.5). 
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Figure 2.4 (a) Geoprofile showing the results of the final analysis. As before, red circles show the 

positions of the observer when tarsier vocalizations were recorded, and blue squares the sleeping trees. 

Contours show 5% increments. (b) The raw probability scores (P) underlying the geoprofile in (a). 
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Figure 2.5 Histogram showing the hitscores for all 23 sleeping trees in the final analysis. 

 

2.5 Discussion 

These results show that the DPM model of geographic profiling described in Verity et 

al. (2014) can successfully be used to prioritise the search for tarsier sleeping sites. I 

suggest that the DPM model could be used to help locate nests, dens or roosts of other 

rare and hard-to-study animals, potentially improving estimates of population size in 

these cases, and allowing important management decisions at both the species and 

habitat level to be based on better data. In fact, although the analysis here is 

retrospective, the DPM model of geographic profiling also proved useful in practice, 

with a preliminary analysis successfully predicting the locations of two sleep trees that 

were subsequently confirmed in the field. While I would be cautious about inferring 

too much from such a limited example, I note that this is the first time that GP has been 
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used in biology as a prelude to further investigation and at the very least demonstrates 

the potential of this approach. 

 

The ability to locate tarsier roost sites quickly and efficiently is of critical importance 

if conservation strategies are to be put into place to help conserve this species. 

Although there is limited destruction occurring on Buton itself in comparison to other 

areas, and although many tarsier species, including the spectral tarsier, often do prefer 

secondary forest, possibly due to increased insect abundance arising as a consequence 

of disturbance, as has been suggested in other contexts (Zhang et al. 2014) and 

locomotory aids from smaller trees (Merker et al. 2005), there will be a limit to how 

much disturbance this species can tolerate before population numbers begin to decline. 

The use of GP to better target behavioural studies and gain more accurate information 

on the species’ ecology could thus be of considerable practical use.  

 

Large cavity-bearing trees provide important ecological functions such as nesting and 

denning resources for many species (Lindenmayer et al. 2012). The overall decline in 

cavity-bearing trees such as the strangler fig is an emerging conservation concern, due 

to the importance of these trees to a variety of cavity-dwelling wildlife including 

tarsiers, other mammals, birds and invertebrates (Struebig et al. 2013).  Forests are not 

recruiting these trees fast enough due to the extended period required for their 

replacement once they are destroyed (Lindenmayer et al. 2012). A study by Cockle et 

al. (2010) showed that logging was reducing the basal area of primary forests by half 

and therefore reducing the number of trees with suitable cavities for nesting animals. 

However, there are limited studies on the availability of these cavity-bearing trees in 

Southeast Asian rainforests (Cockle et al. 2010; Struebig et al. 2013). 
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There are numerous advantages to using GP rather than other more simple measures 

of spatial tendency such as spatial mean, spatial median and centre of minimum 

distance. Chief among these is the fact that the DPM model can deal with multiple 

sources (eg, multiple roost sites in this study), as opposed to providing a single point 

estimate for a single source or roost site. In criminology, Rossmo & Velarde (2008) 

made direct comparisons between measures of spatial tendencies and the CGT 

(Criminal Geographic Targeting) algorithm used in geographic profiling and showed 

that GP is three times more effective at detecting the anchor points of serial offenders, 

while in ecology, in a study looking at source populations of invasive species, 

Stevenson et al. (2012) found that the CGT algorithm outperformed other measures of 

spatial central tendency (spatial mean, spatial median, centre of minimum distance and 

a kernel density model) in 52 of the 53 species studied.  

 

Although the results from this study are highly promising, geographic profiling is still 

in the initial stages of application to the field of biology. For example, not all species 

will offer a conspicuous vocalisation like the elusive tarsier; however, other 

measurable parameters abound. These include sightings, scat evidence or GPS data 

from radio collars, for example, all of which could potentially be used as ‘crime sites’ 

to help locate the animals’ anchor points (nests, dens or roosts).  However, it is striking 

how well even this simple model performs: using other dispersal distributions (eg 

Cauchy distributions) or incorporating more complex priors based on habitat 

information could all add power to the model. 
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2.6 Conclusion 

In conclusion, this study suggests that GP could be useful when searching for elusive 

and rare species such as tarsiers, increasing search efficiency, improving estimates of 

population numbers and range size and leading to more efficient use of scarce 

resources such as time, money and personnel.  
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Chapter 3: Using geographic profiling to compare the value 

of sightings vs trap data in a biological invasion  

Faulkner et al. (2017) 

 

3.1 Abstract 

The development of conservation plans, including those dealing with invasive species, 

is underpinned by the need to obtain reliable and accurate data. However, in many 

cases responding rapidly is equally critical. These data were obtained from the 

Hebridean Mink Project, which was set up with the objective of removing mink from 

North Uist, Benbecula and South Uist. Here, I introduce an extension of the Dirichlet 

Process Mixture (DPM) model of geographic profiling that can be used to estimate 

source locations of invasions directly from spatial point pattern data without the need 

to specify dispersal parameters. I use this model to analyse a biological invasion of 

American mink (Neovison vison) in the Hebrides. The results suggest that sightings 

data – which are relatively easy and quick to acquire – can be used to capture much of 

the information about sources of invasive species that is obtained from the harder to 

acquire and more intensive trap data. These results have important implications for the 

development of conservation plans and, in this case, in the early stages of biological 

invasions, when interventions are most likely to be successful. 

 
3.2 Introduction 

In many areas of biology – for example wildlife conservation or invasion biology– the 

development of management strategies is hampered by the lack of reliable and 

accurate data (Tyre et al. 2003; Faulkner et al. 2015). However, in many cases 

responding rapidly is critical – perhaps more so than waiting to obtain high quality 
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data – since delaying action until further data is obtained can be catastrophic and can 

hinder opportunities to prevent species extinctions (Grantham et al. 2009; Martin et al. 

2012). Thus, extracting the maximum amount of information from existing data is 

crucial, even when the data sources are less than ideal – for example, ad hoc sightings 

rather than systematic survey data. Traditional survey techniques can often be limited 

by time and financial constraints, along with logistical challenges that are presented 

by particular habitats (Faulkner et al. 2015). In addition detection of a species is not 

always possible until the species has reached a particular threshold, and this detection 

threshold will depend not only on how well established the species is but also on the 

monitoring method used (Myers et al. 2000; Harvey et al. 2009; Dejean et al. 2012). 

 

One instance in which rapid action may be especially important is invasive species 

management. Invasive species are a major factor affecting global diversity and 

ecological integrity, with costs totalling millions of dollars per episode (Vitousek et 

al. 1996; Wilcove et al. 1998; Gurevitch & Padilla 2004; Didham et al. 2005; 

Blackburn et al. 2011; Pyšek et al. 2012; Robertson et al. 2015). The cost of the 

response to invasive species incursion is best predicted by the area over which the 

species has spread (Martins et al. 2006; Pluess et al. 2012; Robertson et al. 2015). 

Estimating this area at an early stage is therefore important to reduce costs. Damage 

due to invasive species is particularly prevalent within island ecosystems, where 

species have evolved in the absence of strong ecological competition (Nogales et al. 

2006). In addition island environments are often characterised by high levels of 

endemism, or distinctive ecological processes that have a high potential to be disrupted 

by invasive mammals (Stone et al. 1994; Nogales et al. 2006).  However, it is important 

to note that not all invasive species are deleterious, and that there are some positive 
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interactions that can occur which drive the diversity-invasibility relationship. These 

interactions are particularly important when dealing with issues such as climate 

change, which makes it even harder to identify invaders (Altieri et al. 2010).  

 

The American mink (Neovison vison) is a widely distributed invasive carnivore now 

found within 28 European countries, and is one of five non-native mammals that have 

established feral populations in Europe (Bonesi & Palazon 2007; Roy et al. 2015). It 

can reach high population densities and is known to have a major negative impact on 

ground nesting birds and other native fauna (Roy 2011). Management efforts have 

proved challenging with most strategies concentrating on long-term control operations 

rather than eradications (Bonesi & Palazon 2007; Roy et al. 2015). Feral mink 

populations are also establishing in vulnerable island populations such as the Outer 

Hebrides in Scotland. Here they established following the release or escape from fur 

farms on the Isle of Lewis in the 1950s, after which they then spread south on to Harris 

and the Uists (Roy et al. 2015).   

Early detection, rapid assessment and rapid response are crucial for preventing 

invasive species establishment and spread (National Invasive Species Council 2008). 

Even when there is only limited knowledge of an invasive species’ population ecology, 

it can often be eradicated early on in the invasion. For this reason, financial 

investments are most beneficial during the early stages of the search for an invader 

(Holden et al. 2016). However, much of the invasive species literature is focused on 

costly population biology studies and determining the best control strategies under 

complete knowledge of invader dispersal and demography (Simberloff 2003; 

Epanchin-Niell & Hastings 2010; Holden et al. 2016). Given limited conservation 

budgets cost efficacy is important for achieving the best outcomes (Naidoo et al. 2006) 
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and therefore studies on dispersal processes may only be necessary when the window 

of opportunity for early detection and eradication is lost (Simberloff  2003). 

Consequently, methods that can be used quickly on limited data sets (for example 

citizen science data) can be important, potentially decreasing the financial strain of 

invasive species management 

 

As in many similar examples, the mink invasion highlights the time and expense 

required to acquire high-quality trapping data. One tempting alternative is to use 

sightings data produced by members of the public as part of ‘citizen science’, since 

this is likely to be quicker, easier and less costly to collect. Citizen science is the 

process by which the public are involved in science as researchers (Keough & Blahna 

2006; Conrad & Hilchey 2011) – although of course ‘citizen science’ in the form of 

the naturalist was established long before academic research became a form of 

employment. Advocates of citizen science in its modern sense claim a number of 

benefits (for example, the ‘democratisation’ of science, or the acquisition of new skills 

to non-professional volunteers) although fewer provide empirical evidence (Legg & 

Nagy 2006; Conrad & Hilchey 2011). More recently, citizen-based observation data 

have been viewed as an important tool for investigating spatial patterns of a wide range 

of taxa and natural processes (Sullivan et al. 2009; Snäll et al. 2011). However, a 

number of concerns have been raised about the quality of data collected via citizen 

science (Tyre et al. 2003). In this study, I use geographic profiling to compare the 

results obtained from analysis of (a) professional trap data, and (b) sightings data 

derived from citizen science.  
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Geographic profiling (GP) is a statistical technique originally developed in 

criminology to prioritise large lists of suspects in cases of serial crime such as murder, 

rape and arson by using the spatial locations associated with linked crimes to calculate 

the probability of offender residence for each point in the study area (Rossmo 2000); 

suspects are then selected for further investigation according to their height on the 

resultant probability surface. More recently this method has been applied to biological 

data, including animal foraging behaviour (finding animal nests or roosts using the 

locations of foraging sites as input) (Le Comber et al. 2006; Martin et al. 2009; Raine 

et al. 2009; Le Comber & Stevenson 2012), epidemiology (identifying disease sources 

from the addresses of infected individuals) (Buscema et al. 2009; Le Comber et al. 

2011), conservation (locating the sleeping sites of rare, nocturnal tarsiers using 

locations at which calls were detected) (Faulkner 2015) and invasive species biology 

(using current locations to identify source populations) (Stevenson et al. 2012). Using 

historical data from the Biological Records Centre, Stevenson et al. (2012) were able 

to show that GP performed significantly better both than analyses using measures of 

spatial central tendency, and a more complex single-parameter kernel density model.  

At the same time the model has been adapted to fit a Bayesian framework in the form 

of a Dirichlet Process Mixture (DPM) model which is designed to deal with situations 

with multiple sources when even the number of sources is unknown (Verity et al. 

2014). The model can also be used to estimate dispersal parameters (as in Le Comber 

et al. 2006).  

 

In this chapter, I ask whether GP can be applied to the type of data-poor situations that 

are likely to characterise the early stages of biological invasions when data quality may 

be low; for example, when sample sizes are small, when data are based on public 
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sightings data rather than systematic trap data, when locations are not precisely 

recorded, when identification is uncertain or when there is limited knowledge about 

the way in which the species in question might disperse across novel habitat. To deal 

with this last point, I develop (in collaboration with Robert Verity and Mark 

Stevenson) a novel mathematical extension to the DPM model that requires minimal 

input from the user about the likely dispersal of the invading species, testing this on 

both simulated and real-world data sets. Specifically, I ask: (i) does the model 

extension introduced here lead to correct posterior inference of dispersal parameters 

when tested with simulated data? (ii) can this novel implementation of the DPM model 

be used to locate known den sites associated with the invasion of American mink in 

the Hebrides, using either trap data or sightings data as ‘crime sites’?; (iii) how does 

the geoprofile derived from public sightings data compare to that derived from 

professional trap data? 

 

3.3 Methods 

Note that although the terminology used in GP  – for example crime sites, offender 

residence – is not always appropriate for use with ecological and biological data, for 

consistency this paper will refer to mink sightings/captures as crime sites and mink 

dens/breeding grounds as source locations. No negative connotations should be 

inferred from this. 

 

The DPM model 

The model used here is an extension of the DPM model described by Verity et al. 

(2014). The original method works by breaking down the difficult problem of 

estimating multiple unknown source locations into two conceptually simpler sub-
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problems. The first step is to estimate which “crimes” originated from which sources 

based on the locations of these sources – which are assumed known at this stage. 

Observations are more likely to be allocated to sources that are close by, leading to a 

clustering of observations into a finite number of groups, where members of the same 

group are assumed to have originated from the same source. The second step is to re-

estimate source locations based on the clustering, which is now assumed known. The 

final model implementation uses Bayesian Markov chain Monte Carlo (MCMC) to 

alternate between these steps many thousands of times until the algorithm converges 

on the posterior distribution of interest, with convergence being measured via the 

Gelman-Rubin diagnostic statistic (Gelman et al. 2004). These posterior draws can be 

used to generate a probability surface of the unknown sources (i.e. a geoprofile) 

together with an estimate of the number of sources from which the observed data 

originated. Further details of the method can be found in Verity et al. (2014). 

 
Fitting σ from point pattern data 

Note: The two following paragraphs were written in collaboration with Dr. Robert 

Verity and Dr. Mark Stevenson.  

 

In the original implementation of the model described in Verity et al. (2014) (and used 

in Faulkner et al. (2015)) the dispersal distance was defined by the fixed parameter σ, 

which had to be set by the user. σ represents the standard deviation of the bivariate 

normal distribution describing dispersal from a central source. Previously, this was in 

units of degrees of latitude/longitude; in the new version of the model presented here, 

I use km to avoid differences in distance between 1 degree latitude and 1 degree 

longitude. So, a σ value of 1 km will imply that 39% of dispersal events occur within 
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1 km of the source, 87% within 2 km and 99% within 3 km. In many cases, existing 

knowledge of the species in question will suffice to provide a reliable estimate of σ. 

However, in the case of invasions this may be more challenging, due to the uncertainty 

associated with a non-native species moving into a new and atypical habitat. In such 

situations the ability to estimate σ from point pattern data alone will clearly be 

advantageous, and it is this extension to the DPM model that I introduce here.  

 

The underlying mathematics of this extension are described in Section 3.7, but in brief 

the method uses a Gibbs sampler to estimate the locations of the sources and the value 

of σ simultaneously. I assume an inverse-gamma prior on σ2, which has the advantage 

of being flexible enough to capture broad uncertainty in σ, while also being 

mathematically convenient due to being conjugate to the likelihood. The user is 

required to specify two parameters that control the mean and shape of this distribution. 

Generally, this approach is to use values such that the prior is extremely diffuse and 

heavy-tailed, and thus is relatively uninformative of σ. 

 

Model implementation 

The DPM model described here was implemented in R (R Core Team 2014) using a 

modification of the package Rgeoprofile as described by Verity et al. (2014); this 

package is available at https://github.com/bobverity/Rgeoprofile. 
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Testing the model  

Model output can be assessed using the hitscore: the proportion of the area covering 

the crimes (here, as is common in criminology, the positions of the ‘crimes’, plus a 

‘guard rail’ of 5% surrounding this). The hitscore is calculated by dividing the ranked 

score of each grid square within the total search area by the total number of grid 

squares. The smaller the hitscore, the more efficient the search strategy described by 

the model; a hitscore of 0.5 (50%) is what would be expected from a non- prioritized 

(i.e. random or systematic) search (Rossmo 2000).  

 

Comparing geoprofiles 

For both analyses, the study area was defined as the rectangular area encompassing all 

trap and sightings data, plus a ‘guard rail’ of 5%. Since correlations between 

geoprofiles produced from the two data sets would be artificially inflated by the low 

scores assigned to the sea in both cases (where there are neither sightings nor trap 

data), even if the two approaches produced quite different results for the areas of 

interest (the land), I took the conservative approach of calculating Pearson’s product 

moment correlation coefficients after restricting the analysis to the top 50% of the 

geoprofile in each case (largely corresponding to land, and shown in Fig. 3.2). This 

ensured that distributions were compared in terms of high priority regions.  

 

Data 

The data were obtained from the Hebridean Mink Project, which was set up with the 

objective of removing mink from North Uist, Benbecula and South Uist, whilst also 

trying to reduce the density from South Harris. Trapping started in 2001, and data were 

collected until 2005. The area used in the study included a mixture of saltwater and 
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freshwater habitats – 1,116km of coastline, 2,416km of loch shore and 189km of 

freshwater rivers and streams. Full details of the project can be found in Roy et al. 

(2011, 2015).  

 

Sightings and trap data 

The data consisted of 125 sightings identified by the public (in many cases, crofters) 

over four years  (2002-2005) and 409 total captures over five years (2001-2005, 

141,498 trap nights). These data covered both Uist and Harris. Locations for 15 known 

dens (sources) were used for assessing the performance of the model.  

 

Simulations 

To test the accuracy of the model, 1000 simulated data sets were created, with 1-5 

sources (drawn from a uniform distribution between -4 and -3º longitude, and 56 and 

57º latitude), with 5-10 crimes per source, again drawn from a uniform distribution. 

The actual value of σ was set independently for each simulation, drawing from a 

uniform distribution ranging from 1-10 km. The DPM model was run on each data set, 

with the prior expectation of σ chosen independently but in the same way, and using 

the same range of values; these values, combined with the area from which the sources 

were selected, meant that crimes from different sources often overlapped, providing a 

more challenging (and more realistic) test for the model. The shape parameter of the 

inverse-gamma prior on σ2 was set to 2, corresponding to a weakly informative 

distribution. In each simulation the prior expectation of σ, the posterior mean value of 

σ, and the true value of σ were recorded. 
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3.4 Results 

Simulations 

Across 1000 replicates, the fitted value of σ was most strongly affected by the actual 

value, although the prior expectation of σ, the number of sources and the number of 

crimes also had significant effects; the fitted coefficient for the relationship between 

actual and fitted values was 0.92, with an intercept of -1.35 (ANOVA: prior 

expectation F1,995 = 114.5, p < 0.0001; sources F1,995 = 15.8, p < 0.0001, crimes F1,995 

= 123.2, p < 0.0001; actual value F1,995 = 2799.1, p < 0.0001) (Fig. 3.1). Model error, 

expressed as the difference in km between the actual σ value and the fitted value, 

increased with number of sources, with a slight tendency to underestimate σ when 

there was a single source and to overestimate with multiple sources (F4,995 = 21.5, p < 

0.0001) (Fig. 3.1c). 

 

Profiling the trap and sighting data 

The geoprofiles for the trap and sightings data are shown in Fig. 3.2 and the hitscores 

for known den locations in Table 3.1. Using the trap data, the mean hitscore for the 15 

known den sites was 0.06 (sd 0.058) and the median was 0.04, with the model finding 

all of the known dens by searching just over 20% of the study area, 13 by searching 

10% and four less than 1%. Using the sightings data the mean hitscore was 0.14 (sd 

0.112; median 0.10), with the model finding eight of the dens by searching 10% of the 

total search area. Although the hitscores for the trap data were lower (paired t-test: t = 

3.1, df = 14, p = 0.007), overall the geoprofiles derived from the trap data and the 

sightings were similar (Pearson’s product moment correlation: r = 0.42, p < 0.0001), 

despite the discrepancy in the size of the two data sets (409 data points for the trap 

data versus 125 sightings). 
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Latitude Longitude Hitscore Area Searched (km2) 

  Trap data Sightings 
data 

Trap data Sightings 
data 

-6.8645701 57.794056 0.000 0.014 0.2 67.5 
-7.1439991 57.652154 0.003 0.058 14.7 286.3 
-7.0150114 57.758104 0.003 0.164 15.4 811.0 
-7.1384491 57.657167 0.004 0.070 18.1 347.2 
-6.8578971 57.789041 0.013 0.038 64.4 185.1 
-7.1339153 57.663083 0.020 0.093 99.8 461.0 
-7.1550095 57.665138 0.040 0.123 195.8 607.0 
-7.3170788 57.177832 0.044 0.060 218.4 298.2 
-7.1289061 57.663277 0.051 0.100 249.2 491.7 
-7.0513014 57.655395 0.057 0.127 279.6 625.9 
-7.289443 57.701967 0.064 0.265 317.4 1308.2 
-7.3499298 57.271959 0.098 0.373 484.4 1838.9 
-7.3498816 57.27197 0.098 0.373 484.4 1838.9 
-7.1242865 57.672283 0.141 0.166 693.3 816.8 
-7.289001 57.163076 0.203 0.082 1002.9 406.7 

Table 3.1. Latitude and longitude coordinates of known dens, with hitscores of search area (km2) for 

the two analyses.  
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Figure 3.1. (a) Prior expectation and actual value of σ (in km), and (b) fitted sigma versus the actual sigma. (c) shows the error in σ for one to five sources; positive 

errors represent fitted values greater than the true value, and negative errors fitted values lower than the true value. In both (a) and (b), replicates from single sources 

are shown in red, and from multiple (2-5) sources in black, with fitted lines in red. The red line in (b) shows the 1:1 line and the blue line the fitted line. 
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68	

 

Figure 3.2. Geoprofiles showing the results of the GP analysis. Black dots show the locations of successful traps in (a) and the locations of mink sightings in (b). 

Contours show the top 50% of the geoprofile in both cases, in bands of 2%, with lighter colours corresponding to higher parts of the geoprofile. Sources (known den 

locations) are shown by the red squares 
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3.5 Discussion 

In this chapter I show for the first time that citizen science data – in the form of 

sightings – and the DPM model could together be used to target interventions and 

estimate the area required for control in the early stages of an invasion, when control 

efforts are most likely to be effective. Although the hitscores for the trap dataset were 

significantly lower, the sightings data produced fundamentally the same result, as 

shown by the correlation between the two geoprofiles, even when the analysis was 

restricted to compare only the highest – and therefore most relevant – parts of the two 

surfaces. This was despite the fact that the trap dataset was both professionally 

acquired and much larger than the sightings dataset. In addition, our extension of the 

DPM model enhances the model’s utility in data poor situations that might characterise 

the movement of an invasive species into a novel habitat. 

 

GP’s origins lie in criminology, where it was developed as a tool to prioritise suspect 

lists in cases of serial crime, since either time or resources often preclude detailed 

investigation of the large lists of suspects that typify such investigations (for example, 

268,000 suspects and 5.4 million vehicle registrations in the case of the Yorkshire 

Ripper (Doney 1990)). Similar problems are also encountered in conservation, since 

time and resources are likely to be similarly limited (Stevenson et al. 2012). Added 

complications that apply in both criminology and conservation are (i) sample sizes 

may be low (models depending on large sample sizes are obviously useless when data 

points are murders), and (ii) that data may be incomplete (i.e. there may be unknown 

or unrecorded crimes, or populations of an invasive species). GP is generally robust to 

both of these problems, and can be successful on as few as five locations (Rossmo 

2000). However, in conservation if not criminology, there may be the option of using 
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larger data sets even if the data are of lower quality – for example, data derived from 

citizen science rather than rigorous survey or trap data. Here, I show that in the case 

of the American mink in the Hebrides GP works very well at identifying known den 

sites using trapping data or when using sightings and – crucially – that the results of 

each are similar. The similarity of the results is particularly impressive since the 

sightings data set was smaller than the trap data, in addition to being (presumably) of 

lower quality. 

 

In this chapter I also introduce an extension to the DPM model of GP originally 

described in Verity et al. (2014). This original paper placed GP within a Bayesian 

framework, while also allowing for multiple sources, even when the number of sources 

is unknown (previous Bayesian models had explicitly assumed a single source) 

(O’Leary 2009, 2010a, 2010b, 2012). However, the model did require the user to 

specify a fixed parameter, σ, describing the standard deviation (in that version of the 

model, in decimal degrees of latitude/longitude) of the bivariate normal distribution 

describing dispersal from the source. The version of the DPM model introduced here 

removes this limitation, and requires only an expected value of σ (now in km) and a 

prior shape parameter. 

 

There are a number of other ways in which the basic model used here could be 

extended. Rather than a normal dispersal distribution, other types of distributions (for 

example, the Cauchy distribution or Student’s t distribution) could be used, and in 

particular distributions that are biased in particular directions, to account for the fact 

that dispersal may be easier in some directions than others, perhaps because of 

prevailing winds etc. In addition, more informed priors could be used – in the data set 
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described here, for example, setting a zero prior on the sea, eliminating the need for 

the (cruder) post hoc correction used here. 

 

The results of the simulations show good correspondence between the actual σ value 

and the fitted value (Fig. 3.1b). The prior expectation of σ had a significant effect on 

the model (Fig. 3.1a), although eventually I would expect the prior to be overwhelmed 

by the data as the number of ‘crimes’ increased (in simulations there were as few as 

five crimes); in any case, this effect was minor compared to the effect of the actual σ 

value, with an F statistic of 114.5 compared to 2799.1. The model had a slight tendency 

to overestimate σ as the number of sources increased, almost certainly due to 

overlapping distributions of crimes from closely adjacent sources leading the model to 

select a single, larger cluster (as Fig. 3.1c shows, simulations with single sources 

typically have lower fitted values of σ than simulations with multiple sources). Again, 

this effect was small compared to the effect of the true value, with an F statistic of 

15.8. 

 

3.6 Conclusion 

Together, the use of sightings data and the removal of the requirement to specify σ in 

the DPM model suggest that this approach could potentially be of use in other 

biological invasions, particularly in the early stages when interventions are likely to 

be most successful but when data quality may be low and the population poorly 

characterised. With the cost of invasive species running from millions to billions of 

dollars per occurrence (Vitousek et al. 1996; Wilcove et al. 1998; Gurevitch & Padilla 

2004; Didham et al. 2005; Blackburn et al. 2011; Pyšek et al. 2012), it is clear that 

tools helping to inform management strategy in real time are highly advantageous, and 
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I suggest that this implementation of the DPM model provides one such tool. In 

particular, targeting control efforts in this way will reduce the area required for control, 

making interventions more efficient and more cost effective. 
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3.7 Appendix  

Note: This appendix was written by Dr. Robert Verity, it is included here for 
completeness.  

 

Here I build on the basic DPM model that is described in detail in the appendix of 

Verity et al. (2014) to allow for variable dispersal distance. Following the same 

notation, and assuming that crime sites !" (for #	%	1,… , )) are drawn from a bivariate 

normal distribution around their corresponding source locations *+, , we obtain the 

following likelihood: 

-(!	|01) ∝ 4
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(where !" and *+, are column vectors, each with two rows). In order to infer 01 I must 

first choose a suitable prior for this parameter. I follow the convention of using an 

inverse-gamma prior on 01: 
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This prior has the significant advantage of being conjugate to the likelihood; if the 

prior distribution on 01 is written J)K − LMNNM(O, G) then the conditional posterior 

is given by J)K − LMNNM PO + ), G + R
S
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>!" − *+,?

6
"AB U. By drawing a 

new value of 01 from this conditional posterior distribution at each iteration of the 

MCMC – conditional on known source locations (*) and cluster allocation (V) at that 

point in the algorithm – we obtain a series of draws from the complete posterior 

distribution of 01. The posterior distribution of source locations (i.e. the geoprofile) 

can then be considered to be integrated over the prior on 01. I note that in the original 

Verity et al. (2014) application * was integrated out analytically, meaning only the 
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group allocation needed to be updated as part of the MCMC sampler. Here I can still 

make use of this gain in efficiency by integrating over * when updating the group 

allocation, however, * values must be realized immediately prior to updating 01, as 

the posterior on 01 is conditional on these values. 

Finally, when defining prior parameters we choose to work in the space of 0 rather 

than 01. The parameters set by the user are the expectation of 0, denoted W, and the 

shape parameter O. The distribution of 0 can then be written 

-(0) ∝ 4
1
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5
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The advantage of this setup is that W has an intuitive interpretation as the expected 

dispersal distance. The prior variance of 0 is given by 

[M\(0) = W1 X
Γ(O − 1)Γ(O)

Γ(O − B
1)
1

	− 	1Z	. 
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Chapter 4: A spatial approach to combatting wildlife crime 

Faulkner et al. (2018) 

 

4.1 Abstract 

Poaching can have devastating impacts on animal and plant numbers, and in many 

countries has reached crisis levels, with illegal hunters employing increasingly 

sophisticated techniques. In this chapter, I show how geographic profiling – a 

mathematical technique originally developed in criminology and recently applied to 

animal foraging and epidemiology – can be adapted for use in investigations of wildlife 

crime, using data from an eight-year study in Savé Valley Conservancy, Zimbabwe 

that in total includes more than 10,000 incidents of illegal hunting and the deaths of 

6,454 wild animals. Using a subset of these data for which the illegal hunters’ identities 

are known, I show that the model can successfully identify the illegal hunters’ home 

villages using the spatial locations of hunting incidences (for example, snares) as input, 

and show how this can be improved by manipulating the probability surface inside the 

Conservancy to reflect the fact that – although the illegal hunters mostly live outside 

the Conservancy, the majority of hunting occurs inside (in criminology, ‘commuter 

crime’). The results of this analysis – combined with rigorous simulations – show for 

the first time how geographic profiling can be combined with GIS data and applied to 

situations with more complex spatial patterns – for example, where landscape 

heterogeneity means that some parts of the study area are unsuitable (e.g. aquatic areas 

for terrestrial animals, or vice versa), or where landscape permeability differs (for 

example, forest bats tending not to fly over open areas). More broadly, these results 

show how geographic profiling can be used to target anti-poaching interventions more 
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effectively and more efficiently, with important implications for the development of 

management strategies and conservation plans in a range of conservation scenarios. 

 

4.2 Introduction 

Illegal hunting represents one of the most severe threats to wildlife worldwide (Ripple 

et al. 2016). The severity of the threat is such that a growing number of species are 

suffering population declines and becoming threatened with extinction (Ripple et al. 

2015, 2016). In Africa, wildlife hunting is conducted to obtain bushmeat for 

subsistence, as well as wildlife products such as ivory, rhino horn, pangolin scales and 

leopard skins for the international (and in some cases, local) trade (Biggs et al. 2013; 

Blanc et al. 2013; Lindsey et al. 2013, 2017). The resources available to tackle illegal 

hunting are severely limited, with the effect that protecting wildlife populations in the 

vast landscapes in which they occur is extremely challenging (Mansourian & Dudley 

2008; Lindsey et al. 2016). There is an urgent need to develop technological solutions 

to provide law enforcement agencies with the edge over illegal hunters. 

 

Although illegal hunting is prevalent even in times of relative peace, it can intensify 

during times of political instability (Cumming 2004). In Zimbabwe, illegal hunting 

began to rise with the onset of the land reform programme in which subsistence 

farmers were re-settled onto private farms and wildlife ranches (du Toit 2004). In 

2001, settlers began to invade a large wildlife area in southeastern Zimbabwe, the Savé 

Valley Conservancy (SVC). Financial losses realized through illegal hunting in SVC 

were calculated to be at least USD 1 million per year (Lindsey et al. 2011), highlighting 

that the crisis is as much an economic problem as a conservation one. 
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In this chapter, I show how geographic profiling (GP) can be adapted for use in 

investigations of wildlife crime, using data from an eight-year study in Savé Valley 

Conservancy, Zimbabwe that includes more than 10,000 incidents of illegal hunting 

and the deaths of 6,454 wild animals.  

 

Geographic profiling is a statistical technique that was originally developed in 

criminology to prioritise large lists of suspects in cases of serial crime such as murder, 

rape and arson (Rossmo 2000). More recently, the model has been successfully applied 

to epidemiological and biological data sets such as locating animal roost and nest sites 

using as input their foraging locations (Le Comber et al. 2006; Buscema et al. 2009; 

Martin et al. 2009; Raine et al. 2009; Le Comber et al. 2011; Le Comber & Stevenson 

et al. 2012; Verity et al. 2014; Faulkner et al. 2015, 2017). In criminology, the model 

uses the locations of linked crimes to calculate the probability of offender residence 

for each point within the study area. These probabilities are then ranked to produce a 

geoprofile, with suspects higher on the profile investigated first. 

 

Despite the success of GP in a range of disparate fields within biology, the model’s 

application has to date largely ignored a great deal of spatial complexity and 

differences in habitat, many of which are likely to be important (as a simple example, 

freshwater aquatic invertebrates will generally be restricted to ponds, lakes and 

streams). The particular case examined in this chapter provides another good example 

of this, as although the illegal hunters mostly live outside SVC, the animals they are 

hunting are found almost exclusively inside the Conservancy. In criminology, such a 

scenario results in what would be referred to as ‘commuter crime’. In contrast to the 

normal assumptions of the model, in which the majority of offenders commit crimes 
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close to their anchor point (usually a home or workplace) (Brantingham & 

Brantingham 1981; Meany 2004), in commuter crime offenders must travel some 

distance to specific locations to commit their crimes because of the clustered nature of 

potential crime sites (for example, opportunities for high-value shoplifting are likely 

to occur in city centres, with few or no opportunities for the criminal near their home) 

(Canter & Larkin 1993).  

 

In the case study presented here, I address the issue of commuter crime by a post-hoc 

manipulation of the geoprofile in which I adjust the model probabilities inside the 

Conservancy in a variety of ways to reflect the fact that the illegal hunters will in most 

cases live outside SVC. This chapter, thus has two main aims. First, I examine how an 

approach originally developed in crime science can be applied to wildlife crime. 

Second, I extend the GP method to show how post-hoc adjustment of the resulting 

geoprofile can improve model performance. Specifically, I ask: (1) Can geographic 

profiling be used to identify illegal hunters from hunting incidences alone? (2) Can 

geographic profiling be improved by incorporating geospatial data, in this case to deal 

with the issue of commuter crime? 

 

4.3 Methods 

Ethics 

The data relating to the incidents of illegal hunting are a subset of data in an earlier 

study (Lindsay et al. 2011). As part of that study, anti-poaching scouts from the 

ranches comprising SVC were interviewed on a monthly basis and the locations of 

incidents of illegal hunting (eg poaching, snares) recorded. For a subset of these 

incidents, illegal hunters had been observed or caught as part of their routine patrols. 
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Where the hunter was known to the scouts, the location of their town or village (and 

not individual addresses) was recorded; it is these data that our study utilises. Thus, 

none of the data in this paper can be used to identify individuals (particularly since the 

data were collected 12 years ago). No additional data or analysis were shared with the 

police or with anti-poaching scouts. 

 

General approach 

This study examines how an approach originally developed in crime science can be 

applied to wildlife crime, and extends the GP method to show how post-hoc 

adjustment of the geoprofile can improve model performance. In the particular case I 

examine here, the majority of incidents of illegal hunting originate outside SVC, even 

though the incidents themselves mostly occur inside the conservancy. To address this, 

I first divide the geoprofile– a matrix describing, for each point in the study area, the 

probability that there is a source at that point –into areas inside SVC and outside SVC 

using a shapefile. I then adjust our estimate of the probability of source location inside 

the conservancy to reflect our belief that source locations within the conservancy are 

less likely than sources outside. I consider a range of manipulations in which I reduce 

the probability of source location for points inside the conservancy by factors from 0.1 

to 0.000001; I also consider the extreme case where the probability of source location 

is set to zero inside the conservancy. 

 

Study area 

The Savé Valley Conservancy (20°24'48.10"S, 32° 8'19.61"E) is a large wildlife area 

(3,450 km2) in arid, southeastern Zimbabwe (Fig. 4.1). The Conservancy is comprised 

of 26 individual wildlife ranches held in ownership by private, government, and local 
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community entities. While there are no internal fences between ranches, 350 km of 

double, perimeter fencing has served as a boundary between wildlife within SVC and 

the surrounding high-density human settlements. The Conservancy is home to an 

abundance of wildlife species such as impala, zebra, wildebeest, buffalo, giraffe, 

elephant, wild dog, and both black and white rhino. 

 

In 2001, trends of increasing wildlife populations within the Conservancy began to 

reverse with the implementation of Zimbabwe’s land reform programme. Subsistence 

farmers began to settle within SVC and removed large tracts of perimeter fencing, 

enough to make over 400,000 wire snares (Lindsey et al. 2009) which are used to catch 

wildlife for bushmeat. In Zimbabwe, hunting using snares is prohibited by law 

(Trapping of Animals (Control) Act [Chapter 20:21]), as is the possession or sale of 

illegally obtained bushmeat (Parks and Wildlife Act [Chapter 20:14]). 
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Figure 4.1.  Map of Savé Valley Conservancy in southeastern Zimbabwe. 

 

Data 

Illegal hunting data were collected between August 2005 and July 2009. My 

collaborators received data monthly from anti-poaching managers on each ranch in 

SVC. I compiled: number of illegal hunting incidents, number of hunters and dogs, 

number of illegal hunters caught (or shot in the case of dogs), how they were caught, 
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number of snares recovered, number/species/gender/age of animals killed in each 

snare as well as the status of carcasses; i.e. recovered by illegal hunters, recovered by 

ranch, rotten or scavenged. Data on wildlife killed included records of observations of 

carcasses in snares, carcasses found in the possession of hunters, at their homes or in 

hunting camps, or from identifiable hair or body parts left in snares. The location of 

illegal hunting incidents was indicated by the anti-poaching managers on 1:50,000-

scale maps overlaid with 1-km grid squares, with an average error of approximately 1 

km (Lindsey et al. 2011).  For this analysis I used a subset of these data for which the 

illegal hunter identities are known. This included 151 hunting incidents, and a total of 

47 known illegal hunters.  The most hunting incidents per individual was 32, with most 

individuals hunting just one time.  The method of hunting varied: snares (66), dogs 

(60), fishing (13), snares and dogs (3), and other (9).   

 

Geographic profiling: the DPM model 

The DPM model is described fully in Verity et al. (2014) and extended in Faulkner et 

al. (2017). In brief, though, it can be explained as follows. Constructing a geoprofile 

can be broken down into two related problems – allocating ‘crimes’ to clusters, and 

finding the sources of the clusters. Solving these two problems together is difficult, 

but each is simple if the answer to the other is known. That is, if we know which crimes 

come from which source, finding the sources is straightforward, since they are most 

likely to be found at the spatial means of these clusters. Similarly, if we know where 

the sources are, allocating crimes to clusters is easy, since crimes are most likely to 

originate from the closest source. The solution is to alternate between these two 

problems in a process known as Gibbs sampling (Geman & Geman 1984). The Gibbs 

sampler begins by randomly assigning crimes to clusters, and then – conditional on 
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this clustering – estimates the locations of the sources. Then – conditional on these 

source locations – it reassigns crimes to clusters. These two steps are repeated many 

thousands of times using standard Bayesian Markov Chain Monte Carlo (MCMC) 

methods until the model converges on a posterior distribution of interest. Crucially, it 

is not necessary to decide on the number of clusters, since at each step there is a finite, 

positive probability that a crime comes from a previously unseen source. 

 

Model implementation 

The DPM model described here was implemented in R (R Core Team 2014) using 

version 2.0.0 of the package Rgeoprofile introduced by Verity et al. (2014) and 

extended in Faulkner et al (2017); this package is available at 

https://github.com/bobverity/Rgeoprofile. Models settings are explained in detail in 

Verity et al. (2014). Here, the settings used were sigma_mean=1, 

sigma_squared_shape=2, samples=10000, chains=10, burnin=1000. Broadly 

speaking sigma represents the standard deviation (in km) of the dispersal distribution 

around the source, and sigma_mean is the initial prior on this.  The parameter 

sigma_squared_shape relates to the shape parameter of the inverse-gamma prior on 

sigma, with a value of 2 corresponding to a weakly informative distribution; see 

Faulkner et al. (2017) for details of the underlying mathematics. These settings 

correspond to a diffuse prior on sigma of 1km, implying that 39% of the poaching 

events occur within 1km from the source, 87% within 2km and 99% within 3km; 

however, the model will disregard this prior if the data warrant it. A value of 1km is a 

value typical of human patterns of movement (Rossmo 2000). The parameters 

samples, chains and burnin are all standard parameters relating to the MCMC. 
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Model evaluation 

The model output is assessed in two ways. The model’s performance in finding an 

individual source can be calculated using the hitscore. The hitscore is the proportion 

of the total area covering the crimes (in this case the hunting incidents) that has to be 

searched before that source is located. This is calculated by ranking each grid square 

within the total search area and dividing the ranked score of the grid square in which 

the source is located by the total number of grid squares to give a value between 0 and 

1: the smaller the hitscore the more efficient the search strategy. For example, a suspect 

site with a hitscore of 0.1 would be located after searching one tenth of the total search 

area. 

 

Overall model performance – across all sources – can be compared by calculating the 

Gini coefficient or Gini index. The Gini coefficient is essentially a measure of 

inequality (it is often used to look at wealth distribution) (Gini 1921). Here, I compare 

the proportion of illegal hunting incidents whose sources have been identified to the 

proportion of the total area searched. A strategy that finds sources exactly in proportion 

to the area searched would have a Gini coefficient of 0. In contrast, a perfect search 

strategy would have a Gini coefficient of 1. The higher the Gini coefficient, the more 

effective the search. 
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Simulations 

To further test the accuracy of the model with and without the incorporated spatial 

data, I compared 1000 simulated data sets, each dealing with a simplified case with a 

study area spanning -1º to 1º longitude and -1º to 1º latitude, with a central 

‘conservancy’ from -0.5º to 0.5º longitude and -0.5º to 0.5º latitude. I randomly 

generated 36 sources from a uniform distribution within the study area but outside the 

simulated conservancy, and 11 sources within the ‘conservancy’, again from a uniform 

distribution. The ratio of 36:11 was chosen because it reflected the spatial distribution 

of crimes in the SVC dataset. For each of these 47 sources, I generated a large number 

of crimes from a bivariate normal distribution with a standard deviation of 20km 

around the source, and sub-sampled from this distribution to select a maximum of 12 

crimes per source such that all of the crimes occurred within the simulated conservancy 

(note that this constraint meant that for sources further from the conservancy, the 

realised number of crimes was in some cases less than 12; sources for which no crimes 

fell within the conservancy were excluded from the analysis). For each data set, eight 

analyses were carried out: the unmodified DPM model, and then using the same 

modifications used on the real data set (that is, multiplying by factors from 0.1 to 1 x 

10–6, and also by zero). To account for the paired nature of the design (each analysis 

was run on the same data set), the data were analysed using an analysis of variance on 

the differences obtained by subtracting the unmodified DPM hitscores from the 

hitscores for each of the other analyses; thus, negative values indicate cases in which 

the modified version of the model outperforms the unmodified DPM. 
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Spatial data 

To account for the issue of commuter crime as mentioned previously, I incorporated 

spatial information into the model post-hoc. Shapefiles for SVC were superimposed 

on the geoprofile, and the probability of offender residence within SVC reduced by 

multiplying points within the Conservancy by 1 x 10n, where n ranged from -1 to -6; 

in addition, I considered the case where the Conservancy was excluded entirely by 

multiplying by zero within SVC. Effectively, this forces the model to give greater 

weight to potential locations outside SVC to varying extent. This approach was 

compared to a simple ‘ring search’ strategy based on searching outwards from illegal 

hunting incidents in circles of increasing radii (see for example Smith et al. (2015)). 

 

4.4 Results 

Simulations  

Across the 1000 replicates, the model identified the sources located outside the 

specified area (here, the area comprising the simulated ‘conservancy’) better when the 

model was adjusted (Fig. 4.2a). The hitscores improved as the adjustment on the 

surface increased, until it stopped having an effect at an adjustment of 0.001. 

(ANOVA:  Adjusted surface F7,226504 = 21953, p < 0.0001; location (inside/outside) 

F1,226504 = 3181562, p < 0.0001, interaction F7,226504 = 201110, p < 0.0001). 
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Figure 4.2.  Boxplot of (a) simulated and (b) Savé Valley data. The plot shows the difference in hitscore for sources located inside and outside the conservancy (or 

simulated area) (grey and white boxes respectively). 
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Spatial data 

The geoprofiles produced by the standard DPM model and the subsequent adjusted 

surfaces are shown in Figure 4.3. Figure 4.3a shows the basic DPM model results 

before I corrected for the commuter crime issue. Figures 4.3b and 4.3c show the 

geoprofiles when the probability values inside SVC were multiplied by 0.001 and 0. 

Hitscores improved as the adjustment on the surface increased and again the model 

identified the sources located outside the specified area better when the model was 

adjusted (ANOVA: adjusted surface F7,360 = 7.993, p < 0.0001; location 

(inside/outside) F1,360 = 1241.61, p < 0.0001, interaction F7,360 = 77.328, p < 0.0001) 

(Fig 4.2b). Proportions of illegal hunters located using the different methods of spatial 

targeting were also compared. All of the analyses using the adjusted geoprofiles 

located 50% of the illegal hunters by searching less than 20% of the area, with hitscores 

for sources outside SVC improving and hitscores for those inside SVC becoming 

worse.  

 

The adjusted geoprofile (using a multiplication of 0.001 inside SVC) (Fig. 3b) also 

outperformed a simple ‘ring search’ strategy based on searching outwards from illegal 

hunting incidents in circles of increasing radii (Fig. 4.4). Although the GP hitscores 

were higher for the small number of sources inside the conservancy (t = 6.00, df = 10, 

p = 0.0001), they were lower for the larger number of sources outside the conservancy 

(t = 18.5, df = 35, p < 0.0001), searching on average 13% less of the total area than the 

ring search. Overall, the adjusted geoprofile identified the sources of more incidents 

of illegal hunting while searching a smaller area, with a Gini coefficient of 0.879 

compared to 0.825 for the ring search, finding the sources for 50% of the incidents 

while searching 11% of the search area, as opposed to 18
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Figure 4.3. Geoprofiles showing the results of the geospatial analyses (a) standard – no adjustment, (b) 0.001 probability and (c) 0 probability. Locations of hunting 

incidents are shown as black circles and locations of illegal hunters by red squares. Contours show bands of 5%, with lighter colours corresponding to higher parts of 

the geoprofile. 
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Figure 4.4. An alternative search strategy, based on searching outwards from incidents of illegal hunting 

in circles of expanding radii. 
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4.5 Discussion 

Crimes that have been committed against the environment and animals – variously 

termed ‘green criminology’ (Lynch & Stretsky 2003), ‘conservation criminology’, and 

‘environmental criminology’ (Gibbs et al. 2010) have had an increasing profile in 

recent years (Wellsmith 2011).  The field of criminology has historically shown little 

interest in these issues, largely leaving environmental issues to other disciplines 

(Lynch & Stretsky 2003). This chapter shows that GP can be successfully used to 

identify areas where illegal hunters may live and could be used to target law 

enforcement interventions and community engagement efforts in these areas to prevent 

reoffending. In addition, I demonstrate for the first time how incorporating spatial 

information can improve the efficiency of the model, with the model outperforming 

an alternative ‘ring search’ strategy. Crucially, the DPM model identified the sources 

of 50% of illegal hunting incidents after searching just 11% of the study area, as 

opposed to 18%. Clearly, across the spatial scales that often characterise reserves and 

conservancies, such an improvement in efficiency may be of considerable benefit. 

 

The origins of geographic profiling lie in criminology, and this study takes the 

modifications to the model that have been developed in biology back to this source. In 

criminal investigations, limitations of resources and time mean that a search 

prioritisation tool such as GP can be of great practical utility. The same can be said for 

conservation where resources and time are likely to be heavily limited (Stevenson et 

al. 2012; Faulkner et al. 2016).  

 

There has been an increase in the scale of commercial hunting and the wildlife trade 

as the population expands and as techniques used by hunters improve (Fa & Brown 
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2009; Peres 2009; Di Minin et al. 2015; Naidoo et al. 2016). Traditionally conservation 

actions have been dependent on the hypothesis that different illegal wildlife actions 

occur in different places; commercial trade will occur closer to cities and coastal areas 

(Di Minin et al. 2015) and illegal hunting incidents will cluster in rural areas where 

the primary motivation for hunting is subsistence (Sanchez-Mercado et al. 2016). 

However, it has recently been shown that subsistence hunting and wildlife trade maybe 

spatially correlated (Sanchez-Mercado et al. 2016). In fact, spatial patterns of hunting 

will differ from case to case, just as the techniques used by the illegal hunters and the 

pressures driving hunting will vary between countries, time of year species and 

protected areas as illegal hunters adapt to – for example – difference in terrain and 

accessibility to protected areas and to the population changes that will occur amongst 

the animals (Risdianto et al. 2016). Geographic profiling provides one way of 

identifying locations that are the source of hunting  – in most cases, areas where illegal 

hunters live – on a case by case basis. This could have important implications for the 

design and implementation of effective and efficient conservation actions since it 

could allow limited law enforcement resources to be focused on communities where it 

is needed most and help focus conservation efforts and generate economic benefits 

from wildlife to these local communities (Knapp 2012; Cooney et al. 2016). Such 

focusing of efforts is key. Law enforcement and protected area management is 

expensive and enormous budget deficits exist in African countries (Lindsey et al. 2016, 

2017). Traditional anti-poaching patrols are reactive and attempt to find evidence of 

hunting after it has already happened, or after illegal hunters have already entered the 

area (Lotter & Clark 2014). Due to the large areas that are often involved and the 

difficulty associated with finding snares and traps, or of catching illegal hunters on the 

move, such interventions often fail to prevent hunting incidents and are of limited 
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efficacy. This method, especially if combined with information from intelligence 

operations has potential to allow for both preventative outreach efforts with the 

communities and households most involved in illegal hunting, and also much more 

targeted law enforcement efforts (Lotter & Clark 2014).   

 

Beyond the interest of the particular case I describe here, this chapter illustrates how 

more complex spatial information can be incorporated within the DPM model 

framework. In many instances – notably in biology but also in criminology – treating 

the study area – the target backcloth in criminology – as homogenous will fail to take 

into account important information. For example, if we are searching for plants that 

only occur above 400m, or mosquitoes that only breed in water, it may well be the 

case that large parts of our study area can be excluded from the search, creating a more 

efficient search strategy. More complex manipulations of the model output – using 

continuous variables, rather than the categorical inside/outside here – are also possible 

– for example, if the probability of finding an anchor point is proportional to altitude, 

soil pH, distance from water, etc.  

 

In some cases, of course, it will not be obvious precisely what manipulation of the 

final model output will be most appropriate and selecting a particular manipulation 

will require expert input. In this study, for example, it is clear that entirely excluding 

areas inside SVC from the search misses a number of sources (Fig 4.3c); multiplying 

by 0.001, on the other hand, effectively excluded large areas within SVC which are 

unlikely to be of interest, while still prioritising the areas of highest probability within 

the Conservancy (Fig 4.3b).  
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4.6 Conclusion 

This chapter shows that geographic profiling can successfully identify areas where 

illegal hunters may live, using only the spatial locations of hunting incidents such as 

traps and snares. This has important implications for management strategies and 

conservation plans in terms of targeting particular areas with community based 

initiatives.  I suggest that by being able to target control efforts in this way, will make 

hunting interventions more efficient and cost effective.  More broadly, I demonstrate 

for the first time how incorporating additional spatial information can improve the 

overall efficiency of the DPM model. 
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Chapter 5: Human-wildlife conflict in Sumatra: using 

geographic profiling to identify areas of human-tiger conflict 

Faulkner et al (in prep) 

 

5.1	Abstract	

The number of wild Sumatran tigers has been decreasing dramatically since the 20th 

century.  There are a number of reasons for this decline, including habitat loss, habitat 

fragmentation and trade of illegal animal parts. Additional to these are human-wildlife 

conflict and persecution by humans in response to real or perceived livestock predation 

and/or attacks on people. As a result, there is an urgent need to be able to monitor and 

reduce the human-tiger conflict for the c.500 remaining wild Sumatran tigers 

(Panthera tigris sondaica) on the island of Sumatra. Here, I show how geographic 

profiling – a statistical technique originally developed in criminology and more 

recently applied to animal foraging and epidemiology – can be used to identify areas 

where the risk of human tiger conflict is high and indicate where retaliatory tiger 

killings are likely to occur. I use data collected from within 30km from the Kerinci 

Seblat National park over 13 years, including tiger sightings (106), attacks on livestock 

(83), attacks on people (12) and killing of tigers (27). First, I show that locations where 

tigers have attacked livestock or humans represent a good predictor for where tigers 

themselves will be hunted, finding 80% of these sites searching just 14% of the study 

area. I then show that GP can correctly predict where the livestock (or human) attacks 

may occur using as input areas where tigers have been sighted. I also show how 

incorporating a measure of farming intensity improves the model’s search strategy and 

efficiency, with more human-tiger conflict events where farm density is higher. Being 
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able to predict areas of future human-tiger conflict will have important implications 

for the development of management strategies and conservation plans. 

 

5.2 Introduction 

Human-wildlife conflict has been a problem globally for many years now in both 

developing and developed countries and is a major conservation issue (Manfredo & 

Dayer 2004). Community-based natural resource management systems are expected 

to hold more promise for conservation of wildlife, with local people recognising 

wildlife as an asset (du Toit 2002). However, when wildlife presents a risk to human 

life or property these conservation efforts can be undermined (Gusset et al. 2009).  

Outside the boundaries of the protected areas the risk of livestock predation is a 

particular challenge. Community and individual support for predator conservation will 

depend largely on the value that local people place on the animal (Sillero-Zubiri & 

Laurenson 2001; Gusset et al. 2008).  If we are unable to address the human-wildlife 

conflict at a community level we will ultimately be threatening this area of economic 

growth (Madden 2004; Gusset et al. 2008).  

 

Throughout Asia there has been a dramatic decline in the numbers of tigers; recent 

population estimates put this figure at less than 4000 (Wilting et al. 2015). Tigers 

occupy only 7% of their original distribution range, with only a few forest patches that 

can maintain viable tiger populations (Nyhus & Tilson 2004; Seidensticker 2010; 

Sanderson et al. 2010; Wilting et al. 2015). Reasons for this decline include habitat 

loss, forest degradation and an increase in the illegal wildlife trade (O’Brien et al. 

2003). In addition to this there is an increase in persecution by humans in the form of 

retaliation hunting as a response to livestock loss. When humans and wildlife occupy 
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the same areas and use the same resources tensions can be high and tolerances will 

decline as livestock, crops and personal security are threatened (Campbell-Smith et al. 

2010; Hardwick et al. 2017). Human-wildlife conflict has contributed to the extinction 

of two tiger sub-species  – the Bali tiger (Panthera tigris balica) and the Javan tiger 

(Panthera tigris sondaica) (Hoogerwerf 1970; Seidensticker 1987; O’Brien et al. 

2003). In Sumatra there is an urgent responsibility to understand, monitor and reduce 

the human-tiger conflict, as there are only c.500 Sumatran tigers remaining in the wild 

(Nyhus & Tilson 2004).   

 

Geographic profiling 

Geographic profiling (GP) is a mathematical technique that was pioneered as a 

criminal investigative tool to deal with cases of serial crime such as arson, rape and 

murder.  It was designed to solve the problem of information overload, and uses the 

spatial locations of serial crime to calculate the probability of offender residence at 

each point within the study area (Rossmo 2000). The probabilities are then ranked to 

produce a geoprofile – a probability surface in which the suspects are investigated in 

order of their height on the profile.  More recently this method has been successfully 

applied to analogous problems in biology such as locating animal foraging sites and 

sleeping sites (Le Comber et al. 2006; Martin et al. 2009; Raine et al. 2009; Le Comber 

& Stevenson 2012; Faulkner et al. 2015), identifying sources of disease outbreaks from 

addresses of disease carrying individuals (Buscema et al. 2009; Le Comber et al. 

2011), identifying locations of poachers from the poaching locations (Faulkner et al. 

2018) and invasive species biology, where it identifies the source populations of 

invasive species from the observed locations of individuals (Stevenson et al. 2012; 

Faulkner et al. 2017). 
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GP has been highly successful within criminology and in a range of biological fields, 

but until very recently the model has largely ignored complex spatial information, 

instead assuming spatial heterogeneity across the study area (Faulkner et al. 2018). 

Here, I address the issue of differences in habitat use and how this will be more 

important and relevant to tiger activity and subsequently to human-wildlife conflict. I 

believe human wildlife conflict will be greatest where tigers are leaving their territory 

within the forest and becoming more active in the human-dominated landscape. As a 

result I incorporated farm density into the model and ask if this improves the search 

efficiency in identifying known locations of human-tiger conflict.  

 

Aims 

In this study I ask whether GP can be used to predict areas human-tiger conflict. I ask 

(1) if the locations where tigers have attacked humans or livestock can predict where 

tigers are themselves hunted, and (2) if can I use GP to correctly predict where the 

livestock attacks from the locations where tigers have been seen. I revisit both of these 

questions after incorporating farm density as an additional variable. Overall, I aim to 

expand GP beyond the usual spatial analyses of this method and help develop 

management strategies in Sumatra. By highlighting areas of human-tiger conflict I 

may able to suggest ways to better manage the Sumatran tiger’s future conservation 

needs. 
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5.3 Methods 

General approach 

This study examines how a method used in criminology can be adapted and used to 

identify locations of human-tiger interactions. I extend the model to show how post-

hoc adjustment of the geoprofiles to include other geospatial information can improve 

model performance. In this case, I address the complexity of the surface with respect 

to where human-tiger incidents may occur; I would expect more conflict to occur 

where there is a higher intensity of famring. I first divide the geoprofile – a matrix 

describing, for each point in the study area, the probability that there is a source at that 

point – into areas of different spatial complexities using spatial rasters, in this case a 

raster representing farming intensity. I then adjust our estimate of the probability of 

source location with respect to each individual raster grid cell. See Faulkner et al. 

(2018) for more details. 

 

Study Area/data collection 

Tiger encounter data were collected by the Kerinci-Seblat National Park (KSNP) 

authority and Fauna & Fauna international (Fig 5.1). KSNP comprises of 13,000km2 

of continuous mountainous forest, which is capable of supporting a healthy tiger 

population (Wikramanayake et al. 1998; Linkie et al. 2003).	The National Park is 

recognized as a UNESCO World Heritage Site for its rich biodiversity and a global 

priority for the long-term survival of wild tigers (Dinerstein et al. 2007). KSNP is 

surrounded by lower elevation smallholder farms and spans the provinces of Jambi, 

West Sumatra, Bengkulu and South Sumatra. The altitude ranges from the lowland hill 

forests at 200m up to the montane forests with a highest point of 3,805m (Linkie et al. 

2003).  To protect the tigers, six Tiger Protection and Conservation units have been in 
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place around the park since 2000. Data from ranger patrol logbooks and datasheets 

were compiled and georeferenced (Linkie et al. 2015), these data included sightings 

(106), attacks on livestock (83), attacks on people (12) and poaching of tigers (27), 

each incident was recorded as an independent incident if it occurred at least one month 

apart.   

 

Figure 5.1. Kerinci-Seblat National Park, Sumatra. 

 

Geographic profiling: the DPM model 

I used the Dirichlet Process Mixture (DPM) model of geographic profiling, described 

fully in Verity et al. (2014) and extended in Faulkner et al. (2017, 2018), to analyse 
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the spatial locations of the tiger encounter data. Specifically, I used livestock/human 

attack and tiger sightings data as the input into the model and used the resulting 

probability surface to predict where future tiger encounters – such as tiger attacks on 

humans and livestock or tiger poaching events – were likely to occur. Constructing a 

geoprofile using the DPM model can conceptually be broken down into two parts; 

first, the tiger encounters are separated into clusters, with encounters that are close 

together more likely to be assigned to the same cluster. Second, source locations are 

estimated based on the initial clustering. The DPM model alternates between these two 

parts many thousands of times, using standard Bayesian Markov chain Monte Carlo 

(MCMC) based on a Gibbs sampler (Geman & Geman 1984), until the algorithm 

converges on a posterior distribution of interest.   

 

Model implementation 

The DPM model described here was implemented in R (R Core Team 2014) using 

version 2.1.0 of the package Rgeoprofile introduced by Verity et al. (2014) and 

extended in Faulkner et al. (2017); this package is available at 

https://github.com/bobverity/Rgeoprofile. A key parameter of the DPM model is 

sigma, the standard deviation of the bivariate distribution around the sources; a sigma 

value of 1 km implies that 39% of points (eg crimes, sightings etc) occur within 1 km 

of the ‘source’, 87% within 2 km and 99% within 3 km (see Faulkner et al (2017) for 

details of the underlying mathematics). Since the model fits sigma based on within- 

and between-cluster distances, the inclusion of multiple records at exactly the same 

location (as in the dataset here) will cause the model to fit artificially small values of 

sigma. To avoid this, I used the approach in which I first of all ran the model on the 

105 unique locations only and fitted sigma from these data only. This produced a sigma 
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value of 27 km, which I then used to analyse the full dataset, using 50000 samples and 

10 chains with a burnin of 10000.  The parameters samples, chains and burnin are all 

standard parameters relating to the MCMC and are fully explained in Verity et al. 

(2014) and in the help documentation for Rgeoprofile 2.1.0 

 
Model performance 

The geographic profiling model output is assessed in two ways. For individual points, 

the model’s performance can be assessed using a hitscore. This is the proportion of the 

total area covering the ‘crimes’ (for example sightings) that the model had to search 

before a source is located. The overall model performance – using all sources – is 

assessed using the Gini coefficient, which is obtained by plotting the proportion of 

sources found as a function of the proportion of the area searched; see Faulkner et al. 

(2018) for details. Gini coefficients range from 0 to 1, with an optimal search strategy 

producing a value of 1.  

 

Spatial information 

To address the issue of landscape heterogeneity I incorporated farming intensity into 

the model. I would expect human-tiger conflict to be greater where farming intensity 

is higher. I matched the extent of the geoprofile (excluding areas in the sea, and those 

outside of the area for which data were available) with the farming intensity study area 

and multiplied the two surfaces together. Thus, areas with high farming intensity will 

be prioritised, while areas of low farming intensity will be less heavily weighted. 

Effectively, these manipulations force the model to give greater weights to different 

parts of the geoprofile based on farming intensity. 
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5.4 Results 

Can the locations where tigers have attacked humans or livestock predict where tigers 

are themselves hunted? 

Figure 2 shows the geoprofiles produced using the locations where tigers have attacked 

either humans or livestock as ‘crimes’ to predict where tigers have been hunted, first 

using the basic DPM model without the inclusion of any additional spatial information 

(Fig 5.2ab) and after including farm density (Fig 5.2b). The hitscores improved after 

I added the spatial surface (paired t-test; t = 3.3526, df=25, p = 0.002551). The Gini 

coefficient associated with the unadjusted surface was 0.738, with the model 

identifying 70% of the attacks locations by searching just 17% of the total area. This 

was improved by incorporating the farm density surface, increasing the Gini 

coefficient to 0.839, now the model identified 80% of the locations where tigers had 

been hunted by searching less than 14% of the search area (Fig 5.3).  
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Figure 5.2.  Geoprofiles showing the results of the geospatial analyses using the attack data to predict areas where tigers may get hunted  (a) unadjusted surface and 

(b) surface adjusted with farm density. Locations of human-wildlife conflicts events are shown as red circles and locations where tigers have been hunted represented 

by blue squares. Contours show the top 40% of the geoprofile, with the highest priority areas shown in yellow. 
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Figure 5.3.  Lorenz plot for the unadjusted profile in blue (Gini coefficient 0.738), and the final adjusted 

geoprofile including a farming intensity surface in red (Gini coefficient 0.839).  
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Can we use GP to correctly predict the locations the livestock attacks from the 

locations where tigers have been seen? 

Second, I ask if can use the DPM model to correctly predict where livestock attacks 

may occur from the locations where they have been sighted. The geoprofiles produced 

using the standard DPM model, and the subsequent adjusted surfaces are shown in 

Figure 5.4. Figure 5.4a shows the basic DPM model before incorporating the farming 

intensity data. Figure 5.4b shows the profile after I multiplied across the surface with 

the farming intensity spatial information. The hitscores improved once I added the 

geospatial information with the model identifying more areas of human-wildlife 

conflict events using a smaller search area (paired t-test; t = 3.0683, df=92, p = 

0.002828). Overall, the adjusted surface identified more human-wildlife conflict 

events while searching a smaller area than the unadjusted surface with a Gini 

coefficient of 0.565, as compared to 0.458 for the original, unadjusted model, 

identifying 60% of the sources by searching just 23% of the total area, compared to 

searching 31% of the total area using the unadjusted surface (Fig 5.5). 



	

 107 

 

Figure 5.4. Geoprofiles showing the results of the geospatial analyses using the sightings data to predict areas where tigers may attack humans or livestock (a) 

unadjusted surface and (b) surface adjusted with farming intensity. Locations of sightings are shown as red circles and locations where tigers have attacked humans 

or livestock as blue squares. Contours show the top 40% of the geoprofile, with the highest priority areas shown in yellow.  
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Figure 5.5. Lorenz plot for the unadjusted profile in blue (Gini coefficient 0.458), and the final adjusted 

geoprofile including a farming intensity surface in red (Gini coefficient 0.565). 
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5.5 Discussion 

In criminal investigation, geographic profiling is an important practical tool for use in 

situations when resources and time are limited and where improved targeting of 

interventions is critical. It is these same characteristics, which make it a potentially useful 

tool in conservation where time and resources are often similarly limited (Stevenson et al. 

2012; Faulkner et al. 2017; Faulkner et al. 2018).  

 

Given the limited resources that are available to conservation managers and agencies, 

there is an urgent need to work with governments and landowners to develop targeted 

strategies that are efficient and reliable. Here, I show that locations where human-wildlife 

conflict (livestock and human attacks by tigers) have occurred are the best predictor for 

where these endangered animals may themselves be killed. I also show that geographic 

profiling is successful at identifying areas where these incidents of human-wildlife are 

likely to occur. In addition, I demonstrate how incorporating additional spatial information 

can improve the performance of the model. Clearly, identifying areas where human-

wildlife conflict is more likely to occur means that we can target particular areas where 

non-lethal and affordable mitigations could be implemented. This could allow 

intervention in particular areas and potentially prevent further retaliation killings. Bespoke 

land management plans could be put in place with focus groups, discussions, education 

and training.  

 

The probability of human-tiger conflict, both human and livestock attacks and tiger 

hunting incidences, appears to be highest in diffuse edge areas around the Kernici National 

Park where there is greater overlap between tigers and humans, and this conflict is lowest 
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when there is little overlap. Considering both land use and tiger density together – as I do 

here – means that I was better able to identify areas of future conflict as a prelude to 

interventions aimed at reducing this conflict.  

 

This study shows that attacks on livestock and humans by tigers are generally a good 

indicator for where tigers may get hunted. The unadjusted DPM model identified these 

areas efficiently, but model performance was improved by incorporating farm density. I 

showed that tiger attacks on livestock occur more frequently where there is a higher 

density of farmland – and hence people or livestock (Fig 5.2). Crucially, the DPM model 

identified 80% of the tiger poaching incidents by searching just 14% of the total area when 

I incorporated the farm density surface as opposed to 70% of poaching incidents searching 

17% of the area, without the this additional spatial information (Fig 5.3).  

 

Importantly, I also show that GP can successfully identify areas of human-tiger conflict 

such as attacks on livestock using just the locations of tiger sightings. Again, I show that 

I can improve the efficiency of the model by incorporating information on farm density, 

finding 60% of conflict sites after searching just 25% of the study area.  Crucially, if I can 

identify were tigers may attack livestock I could potentially prevent these attacks from 

occurring. 

 

With the global problem of human wildlife conflict increasing especially around protected 

areas, novel methods to diffuse these conflicts need to be developed (Manfredo & Dayer 

2004; Wang et al. 2006). These problems will escalate when local people feel that the 

values and needs of the wildlife becomes a priority over their own requirements (Madden 
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2004).  In order for tigers and humans to co-exist integrated management strategies must 

be in place, which take multi-land uses into account and can control the hunting and 

poisoning of tigers as a response to human-wildlife conflict. The attitudes of local 

communities concerning conservation policies are important and this must be taken into 

account when during the decision-making process (Wang et al. 2006; Hardwick et al. 

2017). Figures 5.2 and 5.4 both show how incorporating complex spatial information into 

the model improves its performance. Although the model performs well prior to any 

manipulation, in many cases assuming a homogenous landscape will lose critical 

information. Faulkner et al. (2018) showed how a simple binary post-hoc manipulation of 

the surface (inside or outside a particular area) could be used to improve the search 

strategy when dealing with so-called ‘commuter crime’. Here, I extend this by 

incorporating a continuous surface representing farm density and use it to multiply across 

the whole geoprofile. More broadly within the field of GP, this approach could be 

extended to use other continuous surfaces such as altitude, rainfall, water depth and soil 

pH.  

 

5.6 Conclusion 

This study shows that whilst tiger hunting in response to a livestock attack is prevalent it 

is also predictable.	I show that it is possible to use human-wildlife conflict data/ mapping 

and the optimised geographic profiling technique to predict areas where conflict such as 

poaching in response to livestock hunting by tigers is likely to occur. These predictions 

could enable bespoke spatial targeting of limited conservation resources. Solutions to 

combat these complex issues are not straightforward and increased persecuting of the 

offenders should not be considered. By predicting areas where these attacks are most 
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likely to occur we can focus efforts to increase community involvement in eco-tourism 

and engage in efforts to help increase anti-predation strategies.  There has been a drive to 

develop initiatives that improve the landscape connectivity for tigers, by linking protected 

areas through corridors (Brodie et al. 2015), however these increased boundary areas will 

increase the risk of conflict with local people and this conflict risk is likely to lead to more 

tigers being killed in retaliation. Human-wildlife conflict will continue to increase when 

habitats are restricted and animals are forced into areas beyond their own decreasing 

territories (Gaveau et al. 2006; Jędrzejewski et al. 2017). This deforestation and habitat 

fragmentation is the overriding issue that needs to be addressed.  
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Chapter 6: Summary of research and main findings 
 

6.1 Abstract 

Geographic profiling is continually adapting and evolving as new challenges arise. This 

thesis has for the first time applied the method to conservation, addressing new challenges, 

such as spatial heterogeneity, and further developing the model. In this final chapter I 

summarise the research undertaken and explore the rationale for the thesis. I outline the 

key findings from each study within the thesis and discuss the strengths and limitations of 

this work. I also make recommendations for future applications – both in biology and 

criminology – and developments of this model for further use in conservation.  

 

6.2 Main findings 

GP was originally developed in criminology and is still commonly used in its original 

CGT form – which forms the basis of Rigel (ECRI, Canada) – by the Metropolitan Police, 

the FBI and others. The ability of the CGT model to reliably detect an anchor point 

associated with a criminal has been invaluable in many criminological cases, such as the 

Yorkshire Ripper and Washington sniper (Thurman & Jamieson 2015). While GP does 

not necessarily directly solve cases it helps to focus the investigation and helps manage 

large volumes of information. Just as resources will often limit criminal investigations, a 

fundamental challenge in conservation biology is deciding what areas are most worthy of 

conservation action (Ferrier et al. 2002).  So, applying the model to conservation datasets 

was a logical step.  
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In Chapter 1, I discuss the history of geographic profiling, its more recent biological 

applications and the importance of considering a spatially heterogeneous environment.   

 

In Chapter 2 I use the GP model to locate sleep trees for tarsiers in dense jungle in 

Indonesia, using as input the locations at which calls were recorded, demonstrating how 

the model can be applied to locating the nests, dens or roosts of other elusive animals and 

potentially improving estimates of population size, with important implications for 

management of both species and habitats. This is the first time that GP has been used for 

conservation purposes.  

 

Chapter 3 builds on this work to show how spatial information can be used to improve a 

study of invasive mink in the Hebrides. I show that GP is a useful tool in situations where 

data are poor or not as reliable, such as citizen science, and that citizen science data can 

in fact be used to capture much of the information about sources of invasive species that 

is obtained from the harder to acquire and more expensive trap data. In this chapter I also 

introduce an extension to the DPM model (developed by R. Verity), which allows the 

model to infer source locations without the need to specify dispersal parameters. It is this 

chapter that highlights the importance of being able introduce the issue of heterogeneous 

surfaces to within the DPM framework. Here I needed to compare two geoprofiles 

encompassing the Isle of Harris and the Isle of Uist in the Inner Hebrides, Scotland, but 

low scores assigned to the sea artificially inflated a correlation between the two. It became 

clear that having the ability to remove the sea from the analysis would increase the search 

efficiency of the model. This led the way to incorporating geospatial information into the 

model.   
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In Chapter 4, I turn to the issue of ‘commuter crime’ in a study of poaching in Savé Valley 

Conservancy (SVC) in Zimbabwe. This is the first time spatial information in the form of 

GIS data has been incorporated into the model. I address the problem that although 

poaching occurs inside SVC, the majority of illegal hunters live outside. I show how the 

model can be adjusted to reflect a simple binary classification of the landscape (inside or 

outside SVC). Although these data were collected 12 years ago, this study could 

potentially have an important impact on the way in which NGOs and other conservation 

organisations deal with issues such as illegal hunting, by making more efficient and cost 

effective decisions.  

 

Finally, in Chapter 5, I combine more complex land use information (point estimates of 

farm density) with the GP model to improve predictions of human-wildlife conflict such 

as tigers attacking livestock or a tiger being hunted as a retaliation killing.	I show how 

using a measure of farmland density improves the model’s search strategy and efficiency, 

with more human-tiger conflict events where farm density is higher. This study shows 

how GP, as it stands, can aid in managerial decisions and planning that deal with these 

conservation issues, but importantly how I can implement complex spatial information on 

a case by case basis to improve the efficiency of the model. This is the first time I use a 

continuous spatial surface – farming intensity – rather than a more binary approach.  
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6.3 Are these geospatial layers important for criminology? 

In this thesis I have adapted a technique that originated in criminology, and applied it to 

conservation data before taking the model back to its beginnings and applying it to studies 

of wildlife crime. It is interesting now to consider how the research from this thesis could 

be applied to criminal investigations.  

 

GIS and remote sensing tools are commonplace tools for law enforcement agencies. 

Criminological studies already use mapping software to visualise crimes and crime 

mapping is a key component of modern day crime analysis. Advancements in GIS 

technology have meant that that the need for GIS experts in law enforcement is increasing 

rapidly (Waters 1998). Using GIS, crime analysts can overlay geospatial layers such as 

census demographics, street networks and land use onto crime maps and look for any 

emerging patterns. For example the U.S. Forest service developed a system to locate 

illegal Cannabis sativa L. growth sites within the Chattahoochee National Forest of 

Georgia. They incorporated variables that were relevant such as soil conditions, sun 

exposure and privacy. As a result they had a very successful prediction rate (Rossmo 

2000). Techniques employed by epidemiologists to predict disease outbreaks have been 

used to assess the likelihood of a predator being active in a particular area (Rossmo 2000).   

Although criminologists use GIS software, to date there is no record of incorporating this 

technology within the GP framework. There are times when it would useful to be able to 

prioritise particular areas. I believe incorporating informative geospatial layers such as 

street networks, land use and demography into the current GP model used in criminology 

would be a beneficial adaptation.  This could simply mean excluding areas of water 
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surrounding urban areas, or prioritising distances closer to canals if it was known than a 

criminal was acting just on tow paths.  

 

6.4 Implications and recommendations for policy and practice 

Despite the current variety and successes of modelling techniques in the field of biology, 

there is always room for more pragmatic algorithms. Geographic profiling was the product 

of an academic doctorate by Kim Rossmo in 1995 and is now commonly used by many 

law enforcement agencies. It is my hope that GP iwill now be taken up by ecological 

organisations and conservation bodies to become a useful tool in these disciplines. It is 

imperative that conservation management strategies and policies move forward and do not 

dwell on the past. With the increasing pressure on the natural systems we must critically 

review our approaches to conservation and look at novel and effective ways to manage 

our natural resources (Doak et al. 2014).  

 

A novel application such as GP should be attractive to policymakers and conservation 

managers as it is clear, quantifiable and now has a proven track record in the field. The 

use of GP is transferable and it is applicable across many diverse jurisdictions and 

disciplines. This thesis alone has shown that it can be used to locate elusive animals, find 

sources of invasive species, and help identify areas of human wildlife conflict and wildlife 

crime. Previous studies have identified its application in epidemiology. All of these 

disciplines, including criminology, share a similar issue and that is they all cover large 

areas and large remits with limited resources. The natural world is complex and trying to 

align conservation practice with this ecological complexity can result in many challenges 
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such as over-homogenising habitat that will benefit some species whilst compromising 

others (Hiers et al. 2016).  

 

An important issue I wanted to address in this thesis was the relationship between 

humanity and nature. Taking this into account when dealing with conservation 

management decisions could produce better long-term conservation and sustainability 

outcomes. Retaliation killings of wildlife are an often-understandable result of a livestock 

or human attack, as seen in Chapter 5. GP can help prevent these retaliation killings from 

occurring by predicting where livestock (or human) attacks may occur, rather than 

punishing poachers after the event.  In Chapter 4 I address the issue of poaching and 

suggest that the areas the model predicts as having a large concentration of poachers 

should be targeted for education programs or financial incentives. In my opinion, the main 

benefit of GP is its ability to specify areas that could be targeted to promote sustainable 

behaviours. I feel it is important to validate the presence of indigenous people and 

empower individual action.  

 

6.5 Future research 

This thesis has for the first time used a technique used in criminology and applied it 

specifically to conservation data sets. I integrated different types of geospatial data into 

the model to improve it performance. However, despite its success in this field this 

research is far from complete. There are a number of key areas that would benefit from 

future development. 
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Integrating SDM models 

In parts this thesis discusses the use of species distribution models in ecology as a 

standard. It is important to reiterate that these SDM models are different to GP and 

therefore not directly comparable. In fact, future applications of GP could combine the 

two. Being able to combine SDM models and GP models we potentially could produce a 

very powerful tool, which combines two robust methods. Traditionally, GP models do not 

encompass habitat preferences to identify where species are located and SDM models are 

based on habitat preferences but do not incorporate spatial information. Combining these 

two models could produce a map of where the species are coming from and a probability 

surface of where they are most likely to disperse (Le Comber et al. 2011).  

 

User-friendly application 

Visualising data on a map is a highly informative tool and an easily understood technique 

to present data. Future applications of GP could include the development of a user-friendly 

application that updates the geoprofile in real time so users can see the map update as they 

feed in their information. This becomes useful when studies are looking for an elusive or 

rare species such as the tarsiers in Chapter 2, or invasive species like the mink in Chapter 

3. Members of the public could add data as they see an animal, these citizen science data 

sets could provide a potentially very useful addition to any studies. In addition, if anti-

poaching scouts could have access to an application such as this it may be able to help 

with the war against poaching and illegal wildlife trade.  
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Genetics 

There has been a surge in research studying the inter play between ecology and evolution 

(Lowe et al. 2017). Future developments of GP could include genetic information. This 

could be integrated into the DPM model in addition or separately to GIS information. 

Clusters could be weighted by their spatial location but also their genetic information. 

 

6.5 Concluding statement 

This thesis has shown that novel spatial methods such as GP can improve the 

understanding of animal spatial patterns, and as such can play an important role in the 

conservation of species. The adaptability of the model allows it to point to specific areas 

where elusive or invasive animals may be located, to areas where human-wildlife conflict 

occurs or go back to its criminological roots and identify areas where illegal hunters may 

be living. In addition, this thesis has explored the integration of complex spatial 

information into the model to improve its search strategy in cases such as these. The 

unadjusted geoprofiles produced by the model using the presence data alone provide 

fundamental information on the distribution and sources of cases. However, the current 

advancements in GIS technology allow for a much more sophisticated and tailored 

techniques to be implemented. These developments mean that GP has the potential to 

support much more effective and efficient investigations into conservation issues.  

 

The work I have presented in this thesis showcase the realised and potential application 

of GP to conservation and ecological data. It is my genuine hope that this work will lead 
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to further expansions of the model leading to more efficient and targeted interventions in 

ecology and conservation. 
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