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Abstract

In this thesis, I present my hypothesis, experiment results, and discussion that are related

to various aspects of deep neural networks for music tagging.

Music tagging is a task to automatically predict the suitable semantic label when music is

provided. Generally speaking, the input of music tagging systems can be any entity that

constitutes music, e.g., audio content, lyrics, or metadata, but only the audio content

is considered in this thesis. My hypothesis is that we can find effective deep learning

practices for the task of music tagging task that improves the classification performance.

As a computational model to realise a music tagging system, I use deep neural networks.

Combined with the research problem, the scope of this thesis is the understanding,

interpretation, optimisation, and application of deep neural networks in the context of

music tagging systems.

The ultimate goal of this thesis is to provide insight that can help to improve deep

learning-based music tagging systems. There are many smaller goals in this regard.

Since using deep neural networks is a data-driven approach, it is crucial to understand the

dataset. Selecting and designing a better architecture is the next topic to discuss. Since

the tagging is done with audio input, preprocessing the audio signal becomes one of the

important research topics. After building (or training) a music tagging system, finding

a suitable way to re-use it for other music information retrieval tasks is a compelling

topic, in addition to interpreting the trained system.

The evidence presented in the thesis supports that deep neural networks are powerful

and credible methods for building a music tagging system.
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Chapter 1

Introduction

1.1 Motivation, hypothesis, and research questions

Motivation

The task that I have been interested in during my PhD is music tagging. Music tagging,

also often called music auto-tagging, is a music information retrieval (MIR) task to

automatically predict relevant tags when the audio content of music is given. The tags

are often applied to a track or a short clip of music item, making the task a track-level

music classification. Thanks to the diversity of music tags – which often include music

genres (e.g., rock, jazz), moods (e.g., sad, happy), and instruments (e.g., guitar, vocal)

– music tagging can be thought as a super-problem of genre, mood, and instrument

classification. Tagging can be useful for music discovery and recommendation [1] which

are one of the most commercially successful topics in MIR.

Deep learning refers to various types of machine learning algorithms where features

are trained in a multiple-layer network to achieve the goal of a task. They are distin-

guished from ‘conventional’ machine learning methods with feature design approach. In

the latter approach, researchers need to spend time on designing potentially useful fea-

1



Chapter 1. Introduction 2

tures for each task. Moreover, the designed features are not necessarily optimal. Deep

learning approaches provides an alternative way that addresses these problems, and as

a result, significantly outperformed the conventional approaches in computer vision [2]

and speech processing [3].

In late 2014, when I started my PhD programme, deep learning approach for music

tagging was still in its early stage. There were some papers learning to predict music tags

with deep neural network [4]. However, the adoption was slow, leaving many unanswered

research questions such as finding the optimal network structure, convolutional kernel

sizes, and input audio conditioning strategy. Solving those questions were clearly of

interest to academia, industry, and myself.

Hypothesis

In the intersection of music tagging and deep learning, I present the fundamental hypoth-

esis.

• We find effective deep learning practices for the task of music tagging that

improves the classification performance

To elaborate, “effective” indicates better performance and higher data/memory/com-

putation efficiency and “practices” indicates the way to design network structure and

use data.

Research questions

There are many detailed research topics to examine the hypothesis. The topics that I

have been working on are summarised as below with the corresponding chapters.

- How is the music tagging dataset constructed? How accurate are they? These are
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crucial when the algorithm is heavily relying on learning from the given dataset,

which is true in deep learning methods (Chapter 3)

- Given the properties of music signals and tags, what kinds of new structure can

we use to improve the performance? Proposing a new structure is one of the most

common research topics in deep learning, requiring to exploit domain knowledge

(Chapter 4)

- What are the most suitable data preprocessing methods for deep learning in music

tagging and why? This is important, particularly from an engineering perspective

(Chapter 5)

- After training a network for music tagging, how can we re-use the network for other

MIR tasks? (Chapter 6)

- What does a convolutional neural network learn when it is trained for music clas-

sification? (Chapter 7)

This thesis presents the research I have performed to answer these questions. The

following section elaborates each chapter and related papers.

1.2 Contributions and outline

I have been actively publishing papers and software. In this section, I focus on presenting

the contributions that are related to each chapter of this thesis. A more comprehensive

list of my works is presented in Section 1.3.

In Chapter 2, I present the backgrounds on music tagging, machine learning, and

deep learning. Some of this content overlaps with my journal submission, ”A Tutorial

on Deep Learning for Music Information Retrieval” [5].

In Chapter 3, I extensively studied the effects of noisy labels in music tagging. It was
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well known that there is a large amount of noise in music tagging datasets [6]. However,

to my best knowledge, my work is the first attempt to quantify the amount of noise

as well as its effects. This chapter includes why there is a large amount of noise in

music tagging datasets, how much they are, and how much they affect the training and

evaluation of music tagging algorithms. Additionally, I defined ‘tagability’ to explain the

observation. This work is closely related to [7], “The Effects of Noisy Labels on Deep

Convolutional Neural Networks for Music Classification” that was published in IEEE

Transaction on the Emerging Topics of Computational Intelligence, 2018.

In Chapter 4, I suggest a novel network structure and compare it with three different

convolutional neural network structures that have been proposed for music tagging and

classifications. Because there are various aspects of network structures, only presenting

the best performances does not comprehensively reflect the attributes of the structures.

Instead, I scale the networks by changing the width of the network while keeping the

overall structure. The performance comparison is twofold, i) with respect to the number

of parameters which is related to the memory usage and ii) with respect to training

time which is related to the computation complexity. This chapter is related to [8],

“Convolutional Recurrent Neural Networks for Music Classification” that was presented

in International Conference on Acoustics, Speech, and Signal Processing, 2017.

In Chapter 5, I discuss various audio preprocessing methods in the context of deep

neural networks for music tagging. Although they affect the performance, audio prepro-

cessing methods have not gained much attention. One of the reasons would be because

comparing the performance with changing audio processing parameters (e.g., the FFT

size) requires substantial time and storage. I addressed this problem by using a custom

Python package, Kapre [9], which does real-time audio preprocessing on GPU and is

developed by myself. Using Kapre, I ran a set of experiment with varying audio prepro-

cessing methods in order to compare their effects on the performances. This chapter is

linked to [10], “A Comparison on Audio Signal Preprocessing Methods for Deep Neural

Networks on Music Tagging” that suggests a practical advice on how to preprocess the
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audio for deep learning-based methods and was submitted to EUSIPCO 2018.

In deep learning, transfer learning is considered to be important in general. It could

be even more in MIR where large-scale datasets are not always available. In Chapter 6,

I introduce a novel transfer learning approach, where I show how can we transfer the

knowledge that is obtained in the network by training a music tagger to other MIR

problems. This is related to [11], “Transfer learning for music classification and regres-

sion tasks” which was presented in International Society of Music Information Retrieval

conference, 2017 and received the best paper award.

Finally, one of the important research areas in deep learning is to understand and

explain the networks. Chapter 7 includes two approaches for those purposes in music

classification. First, I analyse a convnet that is trained for music classification by a

technique called auralisation. I suggest to sonify the trained feature to listen to what

each convolutional kernel focuses on so that we can understand the mechanism of convnet

by listening. Second, I present an analysis of a trained network using label vector, which

shows the inter-label similarities computed by the network. These are related to my

preprints “Explaining Deep Convolutional Neural Networks on Music Classification” [12],

“Auralisation of Deep Convolutional Neural Networks: Listening to Learned Features”

[13], and a journal article, “The effects of noisy labels on the Deep Convolutional Neural

Networks for Music Classification” [7].

I conclude my work in Chapter 8, summarising the meanings of the presented works

and suggesting the direction of future work.

1.3 Publications

This section introduces the publications during my PhD. Papers are accessible via my

Google scholar page.1

1 Visit https://scholar.google.co.kr/citations?hl=en&user=ZrqdSu4AAAAJ&view op=list works&
sortby=pubdate or search “Keunwoo Choi”

https://scholar.google.co.kr/citations?hl=en&user=ZrqdSu4AAAAJ&view_op=list_works&sortby=pubdate
https://scholar.google.co.kr/citations?hl=en&user=ZrqdSu4AAAAJ&view_op=list_works&sortby=pubdate
https://scholar.google.co.kr/citations?hl=en&user=ZrqdSu4AAAAJ&view_op=list_works&sortby=pubdate
https://scholar.google.co.kr/citations?hl=en&user=ZrqdSu4AAAAJ&view_op=list_works&sortby=pubdate
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1.3.1 Journal papers

1. The Effects of Noisy Labels on the Deep Convolutional Neural Networks for Music

Classification, Keunwoo Choi et al., IEEE Transactions on Emerging Topics on

Computational Intelligence, 2017

2. Deep Learning for Audio-based Music Classification, Juhan Nam, Keunwoo Choi,

et al., Under review (IEEE Signal Processing Magazine)

1.3.2 Conference papers (peer-reviewed)

1. Text-based LSTM networks for automatic music composition, Keunwoo Choi et

al., Conference on Computer Simulation of Musical Creativity, Huddersfield, UK,

2016

2. Automatic Tagging using Deep Convolutional Neural Networks, Keunwoo Choi et

al., 17th International Society for Music Information Retrieval Conference, New

York, USA, 2016

3. Convolutional Recurrent Neural Networks for Music Classification, Keunwoo Choi

et al., 42nd IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), New Orleans, USA, 2017

4. Transfer Learning for Music Classification and Regression Tasks, Keunwoo Choi

et al., The 18th International Society for Music Information Retrieval Conference,

Suzhou, China, 2017

5. Similarity measures for vocal-based drum sample retrieval using deep convolutional

auto-encoders, Adib Mehrabi, Keunwoo Choi, et al., 43rd IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada,

2018
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6. A Comparison of Audio Signal Preprocessing Methods for Deep Neural Networks

on Music Tagging, Keunwoo Choi et al., EUSIPCO, Rome, Italy, 2018

7. Revisiting Singing Voice Detection: A quantitative review and the future outlook,

Kyungyun Lee, Keunwoo Choi, et al., The 19th International Society for Music

Information Retrieval Conference, Paris, France, 2018

1.3.3 Preprints, workshop papers, and abstracts

1. Understanding Music Playlists, Keunwoo Choi et al., Machine Learning for Music

Discovery Workshop at 32nd International Conference on Machine Learning, Lille,

France, 2015

2. Auralisation of Deep Convolutional Neural Networks: Listening to Learned Fea-

tures, Keunwoo Choi et al., Late-Breaking Demo Session of 16th International

Society of Music Information Retrieval Conference, Malaga, Spain, 2015

3. Towards Playlist Generation Algorithms using RNNs Trained on Within-Track

Transitions, Keunwoo Choi et al., SOAP Workshop (Workshop on Surprise, Oppo-

sition, and Obstruction in Adaptive and Personalized Systems), Halifax, NS, Canada,

2016

4. Explaining Deep Convolutional Neural Networks on Music Classification, Keunwoo

Choi et al., arXiv:1607.02444, 2016

5. Towards Music Captioning: Generating Music Playlist Descriptions, Keunwoo

Choi et al., Late-Breaking/Demo session of 17th International Society of Music

Information Retrieval Conference, New York, USA, 2016

6. Kapre: On-GPU Audio Preprocessing Layers for a Quick Implementation of Deep

Neural Network Models with Keras, Keunwoo Choi et al., Machine Learning for

Music Discovery Workshop at 32nd International Conference on Machine Learn-
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ing, Sydney, Australia, 2017

7. A Tutorial on Deep Learning for Music Information Retrieval, Keunwoo Choi et

al., Under review (Transaction of ISMIR)

1.4 Software

List of the software I released during my PhD.

1. Kapre: Keras Audio Preprocessor

https://github.com/keunwoochoi/kapre

Kapre is a Python package for faster implementation of audio signal preprocessing

in a deep learning workflow. It was released in December 2016 and has been starred

for more than 200 times on Github and currently used by many researchers.

2. LSTM Realbook

https://github.com/keunwoochoi/lstm real book

This repository consists of the dataset and RNN models for my paper, “Text-based

LSTM networks for automatic music composition” [14] (CSMC 2016).

3. Convnet-based music taggers

https://github.com/keunwoochoi/music-auto tagging-keras

This repository includes the trained music tagger in my paper, “Automatic Tagging

Using Deep Convolutional Neural Networks” [15] (ISMIR 2016).

4. Music tagger-based feature extractor

https://github.com/keunwoochoi/transfer learning music

This repository consists of a trained music feature extractor in my paper, “Transfer

learning for music classification and regression tasks” [11] (ISMIR 2017).

5. dl4mir - deep learning for music information retrieval

https://github.com/keunwoochoi/dl4mir

https://github.com/keunwoochoi/kapre
https://github.com/keunwoochoi/lstm_real_book
https://github.com/keunwoochoi/music-auto_tagging-keras
https://github.com/keunwoochoi/transfer_learning_music
https://github.com/keunwoochoi/dl4mir
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dl4mir consists of a series of educational Python codes for deep learning beginners

in MIR research.
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Abstract

This chapter introduces the music tagging problem and basic concepts of machine

learning and deep learning. A precise definition and detailed explanation of music

tagging are provided to help the reader to understand this thesis. The following

subsections for machine learning and deep learning can be considered as a short

tutorial on the field, as well as introductory sections for the terms of this the-

sis. Finally, I introduce Compact-convnet, a simple 5-layer convolutional neural

network that I use for several times throughout this thesis.

The machine learning and deep learning sections are closely related to my tutorial

paper, “A tutorial on deep learning for music information retrieval” [5].

2.1 Music tagging

2.1.1 Music tags

Music tags are descriptive keywords that convey various types of high-level information

about recordings such as mood (‘sad’, ‘angry’, ‘happy’), genre (‘jazz’, ‘classical’) and

instrumentation (‘guitar’, ‘strings’, ‘vocal’, ‘instrumental’) [15]. Tags may be associ-

ated with music in the context of a folksonomy, i.e., user-defined metadata collections

commonly used for instance in online streaming services, as well as personal music col-

lection management tools. As opposed to expert annotation, these types of tags are

deeply related to listeners’ or communities’ subjective perception of music. In the afore-

mentioned tools and services, a range of activities including search, navigation, and

recommendation may depend on the existence of tags associated with tracks. New and

rarely accessed tracks however often lack the tags necessary to support them, which leads

to well-known problems in music information management [6]. For instance, tracks or

artists residing in the long tail of popularity distributions associated with large music

catalogues may have insufficient tags, therefore they are rarely recommended or accessed
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and tagged in online communities. This leads to a circular problem. Expert annotation

is notoriously expensive and intractable for large catalogues, therefore content-based

annotation is highly valuable to bootstrap these systems. Music tag prediction is often

called music auto-tagging [1]. Content-based music tagging algorithms aim to automate

this task by learning the relationship between tags and the audio content.

Music tagging can be seen as a multi-label classification problem because music can

be correctly associated with more than one true label, for example, {‘rock’, ‘guitar’,

‘happy’, and ‘90s’}. This example also highlights the fact that music tagging may be

seen as multiple distinct tasks from the perspectives of machine learning and music

informatics. Because tags may be related to genres, instrumentation, mood and era, the

problem may be seen as a combination of genre classification, instrument recognition,

mood and era detection, and possibly others. In the following, I highlight three aspects

of the task that emphasise its importance in music information retrieval (MIR).

First, collaboratively created tags reveal significant information about music con-

sumption habits. Tag counts show how listeners label music in the real-world, which is

often very different from the decision of a limited number of experts (see Section 3.2.1)

[16]. The first study on automatic music tagging proposed the use of tags to enhance

music recommendation [1] for this particular reason. Second, the diversity of tags and the

size of tag datasets make them relevant to several MIR problems including genre classifi-

cation and instrument recognition. In the context of deep learning, tags can particularly

be considered a good source task for transfer learning [11, 17], a method of reusing a

trained neural network in a related task, after adapting the network to a smaller and

more specific dataset. Since a music tagger can extract features that are relevant to

different aspects of music, tasks with insufficient training data may benefit from this

approach. Finally, investigating trained music tagging systems may contribute to our

understanding of music perception and music itself. For example, analysing subjective

tags such as mood and related adjectives can help building computational models for

human perception of music.
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The importance of music tagging is clear both from the perspectives of recommen-

dation and broader music informatics systems, as well as research including human per-

ception and behaviour, yet there are several issues one faces when analysing music tags.

A severe problem, particularly in the context of deep learning is the fact that suffi-

ciently large training datasets are only available in the form of folksonomies. In these

user-generated metadata collections, tags not only describe the content of the annotated

items, for instance, well-defined categories such as instruments that appear on a track or

the release year of a record, but also subjective qualities and personal opinions about the

items [18]. Tags are often related to organisational aspects, such as self-references and

personal tasks [19]. For instance, users of certain music streaming services frequently

inject unique tags that have no significance to other users, i.e., they label music with

apparently random character sequences which facilitate the creation of virtual personal

collections, misappropriating this feature of the service. While tags of this nature are rel-

atively easy to recognise and disregard using heuristics, other problems of folksonomies

are not easily solved and constitute a great proportion of noise in these collections. Rel-

evant problems include mislabelling, the use of highly subjective tags, such as those

pertaining to genre or mood, as well as heterogeneity in the taxonomical organisation

of tags. Researchers have been proposing to solve these problems either by imposing

pre-defined classification systems on social tags [18], or providing tag recommendation

based on context to reduce tagging noise in the first place [20]. While the benefits of

such organisation or explicit knowledge of tag categories have been shown to benefit

automatic music tagging systems e.g. in [21], most available large folksonomies still

consist of noisy labels.

2.1.2 Music tagging as a machine learning problem

Music tagging is related to common music classification and regression problems such as

genre classification and emotion prediction. The majority of prior research has focussed

on extracting relevant music features and applying a conventional classifier or regres-
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sor. For example, the first auto-tagging algorithm [1] proposed the use of mid-level

audio descriptors such as mel-frequency cepstral coefficients (MFCCs) and an AdaBoost

[22] classifier. Since most audio features are extracted frame-wise, statistical aggregates

such as mean, variance and percentiles are also commonly used. This is based on the

assumption that the features adhere to a pre-defined or known distribution which may

be characterised by these parameters. However, hand-crafted audio features do not nec-

essarily obey known parametric distributions [23, 24]. Consequently, vector quantisation

and clustering were proposed e.g. in [25] as an alternative to parametric representations.

A recent trend in music tagging is the use of data-driven methods to learn features

instead of designing them, together with non-linear mappings to more compact represen-

tations relevant to the task. These approaches are often called representation learning

or deep learning, due to the use of multiple layers in neural networks that aim to learn

both low-level features and higher-level semantic categories. Convolutional Neural Net-

works (denoted ‘convnets’ hereafter) have been providing state-of-the-art performance

for music tagging in recent works [4], [15], [17].

2.1.3 Evaluation of music tagging algorithms

There are several methods to evaluate tagging algorithms. Since the target is typically

binarised to represent if the ith tag is true or false (yi ∈ {0, 1}), classification evaluation

metrics such as ‘Precision’ and ‘Recall’ can be used if the prediction is also binarised.

Because label noise is mostly associated with negative labels, as quantified in Section

3.2.2, using recall is appropriate since it ignores incorrect negative labels. They can

be used instead as an auxiliary method of assessment after training. This strategy

can work well because it prevents the network from learning trivial solutions for those

metrics. For instance, predicting all labels to be ‘True’ to obtain a perfect recall score.

Optimal thresholding for binarised prediction is an additional challenge however and

discards information. The network learns a maximum likelihood solution with respect to

the training data, which is heavily imbalanced, therefore the threshold should be chosen
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Figure 2.1: An example of AUC-ROC curves. Please note that there are infi-
nite numbers of the curves that exhibits an equal AUC-ROC score.

specifically for each tag. This introduces an entirely new research problem which I do

not address here.

The area under curve - receiver operating characteristic (AUC-ROC, or simply AUC)

works without binarisation of predictions and is often used as an evaluation metric. A

ROC curve is created by plotting the true positive rate against the false positive rate.

As both rates range between [0, 1], the area under the curve also ranges between [0, 1].

However, the effective range of AUC is [0.5, 1] since random classification yields 0.5

when the true positive rate increases at the exact same rate of false positives. Figure 2.1

illustrates examples of AUC curves when scores are 0.95, 0.85, 0.75, and 0.50.

2.2 Machine learning

It is not the scope of this thesis to provide a comprehensive overview of machine learn-

ing. This section only covers the fundamentals of machine learning that would help to

understand the motivation of deep learning.
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2.2.1 General concepts

Data-driven approaches One of the aspects that defines machine learning from other

mathematical and/or computational approaches is that it learns how to capture the

relevant patterns from the provided data (example). It is shown in the name itself,

‘machine learning’, which indicates the procedure that lets machine learn from data.

Training indicates the procedure of machine learning something using given data

which is called as training data.

Supervised learning There are several categories of algorithms and approaches under

machine learning. Let me first describe supervised learning since it is the most relevant

category to the thesis. Supervised learning is a type of machine learning approaches

where the training data consists of a set of input X and another set of output (or label),

Y. The machine is trained to learn the relationship between inputs and outputs.

This is in contrast to other categories. For example, during unsupervised learning,

only the input data is provided. Principal component analysis, clustering algorithms

such as K-means clustering, and non-negative matrix factorisation are of this type.

Classification and regression problems Supervised learning algorithms usually

perform either classification or regression. Classification is a process that predicts a

qualitative (or categorical) label for an input. For example, in MIR, genre classification

task is to predict the genre label(s) of music input.

On the other hand, regression is a process that predicts a quantitative response for an

input. For example, in MIR, music emotion prediction is often formulated as a regression

problem where the algorithm predicts the levels of ‘arousal’ and ‘valence’ for given music

input. The response may be bounded in a range, e.g., arousal and valence are often

bounded in [0, 1].
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There can be an ambiguity between classification and regression. For example, on

one hand, a classification algorithm can be based on a regression which predicts the

probabilities for each class. On the other hands, regression problems are sometimes

converted into a classification problem by quantising (or binning) the prediction range.

Feature extractor and classifier/regressor In many cases, machine learning meth-

ods consist of two stages; a feature extractor and a classifier/regressor.

A feature extractor takes the raw input data (e.g., audio signals, images, documents)

and extracts a representation that is (hoped to be) useful for the prediction of given task.

Usually the feature is expected to be in a smaller dimension than the original data so

that the following procedure can be performed efficiently. For audio signal, MFCCs are

one of the most popular and robust features. Different features are designed and used

in different domains and designing/selecting features require background knowledge as

well as substantial efforts.

A classifier (or regressor) takes the feature as an input and makes a prediction.

Usually, this is the procedure that involves learning from the training data. The classifier

learns to map the features to the label using the ground truth. Popular classifiers are

linear regression, support vector machine, K-nearest neighbour, random forest, XGBoost,

etc.

Concepts in artificial neural networks A node is analogous to a biological neuron

and represents a scalar value as in Figure 2.2 (a). A layer consists of a set of nodes as

in Figure 2.2 (b) and represents a vector. Note that the nodes within a layer are usually

not inter-connected. Usually, an activation function f() is applied to each node as

in Figure 2.2 (c). A node may be considered to be activated/deactivated by the output

value of an activation function. The value of a node is usually computed as a weighted

sum of the input followed by an activation function, i.e., f(w · x) where w is the weights

and x is the inputs as in Figure 2.2 (d). A simple artificial neural network is illustrated
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Figure 2.2: Illustrations of (a) a node and (b) a layer. A node often has an
nonlinear function called activation function f() as in (c). As
in (d), the value of a node is computed using the previous layer,
weights, and an activation function. A single-layer artificial neural
network in (e) is an ensemble of (d).

in Figure 2.2 (e), which is an extension of Figure 2.2 (d). In a network with multiple

layers, there are intermediate layers as well as the input and the output layer which are

also called hidden layers. The depth of a network is the total number of layers in a

network, often ignoring the input layer. This is because the input layer itself does not

have parameters (or weights) that do any computation. Similarly, the width(s) of a

network is the number of nodes in layer(s).

When referring the layers of a network, ‘earlier layers’ means the layers that are closer

to the input, while ‘deeper layers‘ means the layers that are closer to the output.

2.3 Deep learning

In recent years, deep learning methods have become more popular in the field of MIR

research. For example, while there were only 2 deep learning articles in 2010 in ISMIR

conferences 1 ([26], [27]) and 6 articles in 2015 ([28], [29], [30], [31], [32], [33]), it increases

to 16 articles in 2016. This trend is even stronger in other machine learning fields,

e.g., computer vision and natural language processing, those with larger communities

and more competition. Overall, deep learning methods are probably going to serve an

1http://www.ismir.net

http://www.ismir.net
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essential role in MIR.

There were a number of important early works on neural networks that are related to

the current deep learning technologies. The error backpropagation [34], which is a way

to apply the gradient descent algorithm for deep neural networks, was introduced in the

80s. A convolutional neural network (convnet) was used for handwritten digit recognition

in [35]. Later, long short-term memory (LSTM) recurrent unit was introduced [36] for

sequence modelling. They still remain the foundation of modern DNN algorithms.

Recently, there have been several advancements that have contributed to the success

of the modern deep learning. The most important innovation happened in the opti-

misation technique. The training speed of DNNs was significantly improved by using

rectified linear units (ReLUs) instead of sigmoid functions [37] (Figure 2.4). This led to

innovations in image recognition [2] and speech recognition [38] [39]. Another important

change is the advance in hardware. Parallel computing on graphics processing units

(GPUs) enabled Krizhevsky et al. to pioneer a large-scale visual image classification in

[2].

‘Conventional’ machine learning approaches involve hand-designing features and hav-

ing the machine learn a classifier as illustrated in Figure 2.3 (a). For example, one can

use MFCCs, assuming they provide relevant information for the task, then train a clas-

sifier (e.g., logistic regression), that maps the MFCCs to the label. Therefore, only a

part of the whole procedure (e.g., classifier) is learned while the other (e.g., computing

MFCCs) is not data-dependent.

On the contrary, deep learning approaches assume multiple trainable layers, all of

which learn from the data, as in Figure 2.3 (b). Having multiple layers is important

because when they are combined with nonlinear activation functions, a network learns

complicated relationships between the input and the output. Because of this fully train-

able connection, deep learning is also called end-to-end learning. For example, the input

and output can be audio signals and genre labels respectively.
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Figure 2.3: Block diagrams of conventional machine learning and deep learn-
ing approaches. Trainable modules are in rounded rectangular.

2.3.1 Designing and training neural networks

Designing a neural network structure involves selecting types and numbers of layers

and loss function relevant to the problem. These parameters, that govern the network

architecture, are called hyperparameters. Let’s consider neural networks as function

approximators f : X → Y with given input X and output Y in the data. A network

structure constrains the function form; and during designing a network, the constraints

are compromised to minimise redundancy in the flexibility while maximising the capacity

of the network.

After the design process, a network is parametrised by its weights w. In other words,

an output of a network ŷ is a function of input x and the weights w. A loss function

J(w) is used to measure the difference between the predicted output ŷ and the ground

truth output y with respect to the current weights w. A loss function is decided so that

minimising it would lead to achieving the goal of the task.

Training a network is an iterative process of adjusting the weights w to reduce the

loss J(w). A loss function provides a way to evaluate the prediction with respect to

the true label. A de-facto optimisation method is the gradient descent which iteratively

updates the parameters in such a way that the loss decreases most rapidly, as formulated

in Eq. 2.1.
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w := w − η∇J(w) (2.1)

where η is the learning rate and ∇J(w) is the gradient of J(w). As mentioned earlier,

in DNNs, gradient descent over multiple layers is called backpropagation [34], which

computes the gradient of loss function with respect to the nodes in multiple layers using

the chain rule.

The convergence speed may affect the overall performance because a significant

difference in it may result in different convergences of the training. As in Eq. 2.1, a

successful training is a matter of controlling the learning rate η and the gradient ∇J(w).

The learning rate η can be adaptively controlled, which is motivated by the intuition

that the learning rate should decrease as the loss approaches local minima. As of 2017,

Adam is one of the most popular methods [40], providing an adaptive controlling of

the learning rate using the accumulated gradient per each dimension. An overview of

adaptive learning rate can be found in an overview article on gradient descent algorithms

[41] as well as [42].

The gradient ∇J(w) is crucial for training DNNs. Backpropagation, the norm of

training method for neural networks, is based on the chain rule of gradients. A good

gradient flow leads to high performance and is the fundamental idea of innovations

such as LSTM unit [36], highway networks [43], and deep residual networks [44], all of

which are showing state-of-the-art performances in sequence modelling and visual image

recognition.

Activation functions play an important role in DNNs. Not only they are analogous

to the activation of biological neurons in some sense, but also they introduce non-linearity

between layers and it enables the whole network to learn more complicated patterns.

Sigmoid functions (e.g., the logistic function, f(x) = 1
(1+e−x)

and the hyperbolic

tangential function, f(x) = (ex−e−x)
(ex+e−x)

) were used in early neural network works until early
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Figure 2.4: Four popular activation functions - a logistic, hyperbolic tangen-
tial, rectified linear unit (ReLU), and leaky ReLU.

2010s. However, a network with sigmoid activation functions may have the ‘vanishing

gradient’ problem [45] which impedes training DNNs. The vanishing gradient problem

happens when the gradient flow becomes too slow due to a very small gradient, ∇J(w)

(see [45] for further details).

ReLU was introduced as an alternative to solve the vanishing gradient problem [37].

Its response is illustrated in 2.4. ReLU has been the first choice in many recent applica-

tions in deep learning.

For the output layer, it is recommended to use an activation function that has the

same output range to the range of the ground truth. For example, if the label y is a

probability, Sigmoid function would be most suitable for its output ranges in [0, 1]. If

the task is single-label classification problem, the softmax is preferred because correct

gradients can be provided from all the output nodes. If it is a regression problem with

an unbounded range, a linear activation function can be used.
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2.3.2 Audio data representation for deep learning

In this section, several audio data representations are reviewed in the context of using

deep learning methods. Majorities of deep learning approaches in MIR take advantage of

2-dimensional representations instead of the original 1-dimensional representation which

is the (discrete) audio signal. In many cases, the two dimensions are frequency and time

axes.

When applying deep learning methods to MIR problems, it is particularly important

to understand the properties of audio data representations. Training DNNs is com-

putationally intensive, therefore optimisation is necessary for every stage. One of the

optimisations is to pre-process the input data so that it represents its information effec-

tively and efficiently – effectively so that the network can easily use it and efficiently so

that the memory usage and/or the computation is not too heavy.

In many cases, two-dimensional representations provide audio data in an effective

form. By decomposing the signals with kernels of different centre frequencies (e.g.,

STFT), audio signals are separated, i.e., the information of the signal becomes clearer.

Although those 2D representations have been considered as visual images and these

approaches have been working well, there are also differences. Visual images are locally

correlated; nearby pixels are likely to have similar intensities and colours. In spectro-

grams, there are often harmonic correlations which are spread along frequency axis while

local correlation may be weaker. [46] and [47] focus on the harmonic correlation by mod-

ifying existing 2D representations, which is out of the scope of this paper but strongly

recommended to read. A scale invariance is expected for visual object recognition but

probably not for music/audio-related tasks.

•Audio signal: The time-series audio signal is often called raw audio, compared

to other representations that are transformations based on it. A digital audio signal

consists of audio samples that specify the amplitudes at time-steps. In the majority of
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Figure 2.5: Audio content representations. STFT, mel-spectrogram, CQT,
and a chromagram of a music signal are plotted. Please note the
different scales of frequency axes of STFT, mel-spectrogram, and
CQT.

MIR works, researchers assume that the music content is given as a digital audio signal,

isolating the task from the effect of acoustic channels. The time-series audio signal has

not been the most popular choice; researchers have preferred 2D representations such as

STFT and mel-spectrograms because learning a network starting from the audio signal

requires even a larger computation power.

Recently, however, one-dimensional convolutions are often used to learn an alternative

of existing time-frequency conversions, e.g., in music tagging [4, 17].

•Short-Time Fourier Transform: STFT provides a time-frequency representa-

tion with linearly-spaced centre frequencies. The computation of STFT representation

is usually quicker than other time-frequency representations thanks to fast Fourier trans-

form (FFT) which reduces the cost O(N2) to O(N log(N)) with respect to the number

of FFT points and parallel computing.
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The linear centre frequencies are not always desired in music analysis. They do not

match the frequency resolution of the human auditory system, nor musically motivated

like the frequencies of constant-Q transform (CQT, explained later in this subsection).

This is why STFT is not the most popular choice in deep learning – it is not efficient in

size as mel-spectrogram and not as raw as audio signals.

One of the merits of STFT is that it is perfectly invertible to the audio signal, for

which STFT was used in sonification of learned features [12] and source separation [48].

• Mel-spectrogram: Mel-spectrogram is a 2D representation that is optimised for

human auditory perception. It compresses the STFT in the frequency axis and therefore

can be more efficient in its size while preserving the most perceptually important infor-

mation. Mel-spectrogram only provides the magnitude (or energy) of the time-frequency

bins and it is not invertible to time-series audio signals.

There are other scales that are similar to mel-bands and based on the psychology

of hearing – the bark scale, equivalent rectangular bandwidth (ERB), and gammatone

filters [49]. They have not been compared in MIR context but in speech research and

the result did not show a significant difference on mel/bark/ERB in speech synthesis [50]

and mel/bark for speech recognition [51].

There are many suggestions on composing mel-frequencies. [52] suggests the formula

as Eq. 2.2.

m = 2595 log10(1 +
f

700
) (2.2)

for frequency f in hertz. Trained kernels of end-to-end configuration have resulted in

nonlinear frequencies that are similar to log-scale or mel-scale [4, 17]. Those results agree

with the known human perception [49] and indicate that the mel-frequencies are quite

suitable for the those tasks, perhaps because tagging is a subjective task. For those

empirical and psychological reasons, mel-spectrograms have been popular for tagging
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[53] [15], [8], boundary detection [54], onset detection [55] and learning latent features

of music recommendation [56].

•Constant-Q Transform (CQT): CQT provides a 2D representation with logarithmic-

scale centre frequencies. This is well matched to the frequency distribution of the pitch,

hence CQT has been predominantly used where the fundamental frequencies of notes

should be precisely identified, e.g. chord recognition [57] and transcription [58].The

centre frequencies are computed as Eq. 2.3.

fc(klf ) = fmin × 2klf/β, (2.3)

where fmin: minimum frequency of the analysis (Hz), klf : integer filter index, β :

number of bins per octave, Z : number of octaves.

Note that the computation of a CQT is heavier than that of an STFT or mel-

spectrogram. (As an alternative, log-spectrograms can be used and showed even a better

performance than CQT in piano transcription [59].)

• Chromagram [60]: The chromagram, also often called the pitch class profile,

provides the energy distribution on a set of pitch classes, often with the western music’s

12 pitches.[61] [62]. One can consider a chromagram as a CQT representation folding in

the frequency axis. Given a log-frequency spectrum Xlf (e.g., CQT), it is computed as

Eq. 2.4.

Cf (b) =

Z−1∑
z=0

|Xlf (b+ zβ)|, (2.4)

where z=integer, octave index, b=integer, pitch class index ∈ [0, β − 1].

Like MFCCs, chromagram is more ‘processed’ than other representations and can be

used as a feature by itself.
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Symbols Meaning

N Number of channels of a 2D representation
F Frequency-axis length of a 2D representation
T Time-axis length of a 2D representation
H Height of a 2D convolution kernel (frequency-axis)
W Width of a 2D convolution kernel (time-axis)
V Number of hidden nodes of a layer
L Number of layers of a network

Table 2-A: Symbols and their meanings defined in this paper. Subscript indi-
cates the layer index, e.g., N1 denotes the number of channels
(feature maps) in the first convolutional layer.

Figure 2.6: An illustration of a dense layer that has a 4D input and 3D output.

In the following sections, the frequently used layers in deep learning are introduced.

For each type of a layer, a general overview is followed by a further interpretation in the

MIR context. Hereafter, the symbols in layers are defined as in Table 2-A.

2.3.3 Dense layers

A dense layer is a basic module of DNNs. Dense layers have many other names - dense

layer (because the connection is dense), fully-connected layers (because inputs and out-

puts are fully-connected), affine transform (because there is W · x + b as in Eq. 2.5),

MLP (multi-layer perceptron which is a conventional name of a neural network), and

confusingly and unlike in this paper, DNNs (deep neural networks, but to denote deep
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neural networks only with dense layers). A dense layer is formulated as Eq. 2.5,

y = f(W · x + b), (2.5)

where x and b ∈ RVin , y ∈ RVout , W ∈ RVin×Vout , and each corresponds to input, bias,

output, and the weight matrix, respectively. f() is a nonlinear activation function (Sec

2.3.1 for details).

The input to a dense layer with V nodes is transformed into a V -dimensional vec-

tor. In theory, a single node can represent a huge amount of information as long as the

numerical resolution allows. In practice, information is often spread over more than one

node. Sometimes, a narrow layer (a layer with a small V ) can work as a bottleneck of the

representation. For networks in many classification and regression problems, the dimen-

sion of output is smaller than that of input, and the widths of hidden layers are decided

between Vout and Vin, assuming that the representations become more compressed, in

higher-levels, and more relevant to the prediction in deeper layers.

2.3.3.1 Dense layers and music

In MIR, a common usage of a dense layer is to learn a frame-wise mapping as in (d1)

and (d2) of Figure 2.8. Both are non-linear mappings but the input is multiple frames

in d2 in order to include contextual information around the centre frame. By stacking

dense layers on the top of a spectrogram, one can expect that the network will learn how

to reshape the frequency responses into vectors in another space where the problem can

be solved more easily (the representations becomes linearly separable2). For example, if

the task is pitch recognition, we can expect the first dense layer to be trained in such a

way that its each output node represents different pitch.3

2http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ for a further explanation and
demonstration.

3See example 1 on https://github.com/keunwoochoi/dl4mir, a simple pitch detection task with a
dense layer.

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://github.com/keunwoochoi/dl4mir
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By its definition, a dense layer does not facilitate a shift or scale invariance. For

example, if an STFT frame length of 257 is the input of a dense layer, the layer maps

vectors from 257-dimensional space to another V -dimensional space. This means that

even a tiny shift in frequency, which we might hope the network be invariant to for

certain tasks, is considered to be a totally different representation.

Dense layers are mainly used in early works before convnets and RNNs became pop-

ular. It was also when the learning was less of end-to-end for practical reasons (compu-

tation power and dataset size). Instead of the audio data, MFCCs were used as input

in genre classification [63] and music similarity [64]. A network with dense layers was

trained in [65] to estimate chroma features from log-frequency STFTs. In [66], a dense-

layer network was used for source separation. Recently, dense layers are often used in

hybrid structures; they were combined with Hidden Markov model for chord recognition

[67] and downbeat detection [68], with recurrent layers for singing voice transcription

[69], with convnet for piano transcription [59], and on cepstrum and STFT for genre

classification [70].

2.3.4 Convolutional layers

The operation in convolution layers can be described as Eq. 2.6.

yj = f(
K−1∑
k=0

Wjk ∗ xk + bj), (2.6)

where all yj , Wjk, xk, and bj are 2-dimensional and the superscripts denote the

channel indices. yj is j-th channel output, xk is k-th channel input, ∗ is convolution

operation, Wjk ∈ Rh×l is the convolution kernel which associates k-th input channel

and j-th output channel, and bj is the bias for j-th output channel (h and l are the

convolution kernel lengths in frequency and time axes ). The total weights (Wjk for all

j and k) are in a 4-dimensional array with a shape of (h, l, K, J) while x and y are
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Figure 2.7: An illustration of a convolutional layer in details, where the num-
bers of channels of input/output are 2 and 3, respectively. The
dotted arrows represent a convolution operation in the region, i.e.,
a dot product between convolutional kernel and local regions of
input.

Figure 2.8: Neural network layers in the context of MIR

3-dimensional arrays including channel indices (axes for height, width, and channel). k,

j are the numbers of input and output channels, and K is the number of input channels.

A 2D convolutional kernel ‘sweeps’ over an input and this is often described as ‘weight
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sharing’, indicating that the same weights (convolutional kernels) are applied to the whole

input area. This results in vastly reducing the number of trainable parameters.

For a given input, as a result of the sweeping, the convolutional layers output repre-

sentation of local activations of patterns. This representation is called feature map (y in

Eq. 2.6). As a result, unlike dense or recurrent layers, convolutional layers preserves the

spatiality of the input.

In essence, the convolution computes a local correlation between the kernel and input.

During training, the kernels learn local patterns that are useful to reduce the loss. With

many layers, kernels can learn to represent some complex patterns that combine the

patterns detected in the previous layers.

2.3.5 Subsampling

Convolutional layers are very often used with pooling layers. A pooling layer reduces the

size of feature maps by downsampling them with an operation, usually the max function

(Figure 2.7). Using max function assumes that on the feature maps, what really matters

is if there exists an activation or not in a local region, which can be captured by the

local maximum value. This non-linear subsampling provides distortion and translation

invariances because it discards the precise location of the activations.

The average operation is not much used in pooling except in a special case where it

is applied globally after the last convolutional layer [71]. This global pooling is used to

summarise the feature map activation on the whole area of input, which is useful when

input size varies, e.g., [72].

2.3.5.1 Convolutional layers and music

Figure 2.8 (c1) and (c2) show how 1D and 2D convolutions are applied to a spectrogram.

By stacking convolutional layers, a convnet can learn more complicated patterns from
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Figure 2.9: Learned 1D convolutional kernels that are applied to audio samples
in [4] for music tagging

Figure 2.10: Learned 3×3 convolutional kernels at the first layer of a convnet
used in [11]. These kernels are applied to log-mel-spectrograms
for music tagging.

music content [12, 13].

The convolutional layer applied to the input data provides some insights of the mecha-

nism underneath the convnet. Figure 2.9 illustrates the learned 1D convolutional kernels

that are applied to raw audio samples in [4]. The kernels learned various fundamental

frequencies. A more common approach is to apply 2D convolutional layers to 2D time-

frequency representations. Figure 2.10 illustrates a subset of the 2D kernels that are

applied to mel-spectrograms for a music tagging problem [15]. Kernels size of 3-by-3

learned vertical edge detectors (on the top row) and horizontal edge detectors (on the

lower row). As in the convnets in other domains, these first-layer kernels are combined
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to create more complex features.

The kernel size determines the maximum size of a component that the kernel can

precisely capture in the layer. How small can a kernel be in solving MIR tasks? The

layer would fail to learn a meaningful representation if the kernel is smaller than the

target pattern. For example, for a chord recognition task, a kernel should be big enough

to capture the difference between major and minor chords. For this reason, relatively

large-sized kernels such as 17×5 are used on 36-bins/octave CQT in [57]. A special case

is to use different shapes of kernels in the same layer as in the Inception module [73]

which is used for hit song prediction in [74].

Another question would be then how big can a kernel be? One should note that a

kernel does not allow an invariance within it. Therefore, if a large target pattern may

slightly vary inside, it would better be captured with stacked convolutional layers with

subsampling so that small distortions can be allowed. More discussions on the kernel

shapes for MIR research are available in [75, 76].

Max-pooling is frequently used in MIR to add time/frequency invariant. Such a

subsampling is necessary in the DNNs for time-invariant problems in order to yield a

one, single prediction for the whole input. In this case, One can begin with specifying

the size of target output, followed by deciding subsampling details (how many and how

much in each stage) somehow empirically.

A special use-case of the convolutional layer is to use 1D convolutional layers directly

onto an audio signal (which is often referred as a raw input) to learn the time-frequency

conversions in [4], and furthermore, [77]. This approach is also proposed in speech/audio

and resulted in similar kernels learned of which fundamental frequencies are similar to

log- or mel-scale frequencies [78]. Figure 2.9 illustrates a subset of trained kernel in

[4]. Note that unlike STFT kernels, they are not pure sinusoid and include harmonic

components.

The convolutional layer has been very popular in MIR. A pioneering convnet research
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for MIR is convolutional deep belief networks for genre classification [79]. Early works

relied on MFCC input to reduce computation [80], [81] for genre classification. Many

works have been then introduced based on time-frequency representations e.g., CQT for

chord recognition [57], guitar chord recognition [82], genre classification [83], transcrip-

tion [58], mel-spectrogram for boundary detection [84], onset detection [55], hit song

prediction [74], similarity learning [85], instrument recognition [86], music tagging [4],

[15], [8], [17], and STFT for boundary detection [32], vocal separation [87], and vocal

detection [88]. One-dimensional CNN for raw audio input is used for music tagging [4],

[77], synthesising singing voice [89], polyphonic music [90], and instruments [91].

One of the limitations of these convolution neural network-based approaches is lack

of scaling property. Convolutional operation does not automatically provide the shift

invariance, which is, to some extent, desired along the time axis of time-frequency rep-

resentations of music content.

2.3.6 Recurrent layers

A recurrent layer incorporates a recurrent connection and is formulated as Eq. 2.7.

yt = fout(Vht),

ht = fh(Uxt + Wht−1),

(2.7)

where fh is usually tanh or ReLU, fout can be softmax/sigmoid/etc., ht: hidden

vector of the network that stores the information at time t, and U,V,W are matrices

which are trainable weights of the recurrent layer. To distinguish the RNN with this

formula from other variants of RNNs, it is often specified as vanilla RNN.

An easy way to understand recurrent layers is to build them up from dense layers.

If the networks in Figure 2.11 (b) are isolated by each time step (i.e., if W is discon-
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Figure 2.11: Illustrations of a recurrent layer as (a) folded and (b) unfolded,
with the dimensionality of input/hidden/output as 3/2/2. Note
that W ∈ R2×2 and fully-connects the hidden nodes between
time-steps.

nected), the network becomes a feed-forward network with two dense layers which are

parametrised with two matrices, V and U. Let’s further assume that there are three data

samples, each of which is a pair (x ∈ R3, y ∈ R2) and is fed to the isolated network one

by one. In this case, only the relationship between x and y for data sample is modelled

by V and U and one is assuming that there is no relationship between data samples,

e.g., input at t = 0 is not related to the outputs at t 6= 0. By connecting them with the

recurrent connection W, the relationships between x at t = 0 and y’s at t = 0, 1, 2 are

modelled by U, V,W . In other words, the network learns how to update the ‘memory’

from the previous hidden state (ht−1) to the current hidden state (ht) which is then used

to make a prediction (yt).

In short, recurrent layer models p(yt|xt−k, ..., xt). This is similar to the goal of HMMs

(hidden Markov models). Compared to HMMs which consist of 1-of-n states, RNNs are

based on hidden states that consist of continuous value and therefore scale with a large

amount of information.

In practice, modified recurrent units with gates have been widely used. A gate is

a vector-multiplication node where the input is multiplied by a same-sized vector to
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attenuate the amount of input. Gated recurrent networks usually use long short-term

memory units (LSTM, [36]) and gated recurrent unit (GRU, [92]). In LSTM units,

the gates control how much read/write/forget from the memory h. Moreover, additive

connections between time-steps help gradient flow, remedying the vanishing gradient

problem [45]. RNNs with gated recurrent units have been achieving state-of-the-art

results in many sequence modelling problems such as machine translation [93] and speech

recognition [94] as well as MIR problems, e.g., singing voice detection [95].

Sometimes, an RNN has another set of hidden nodes that are connected by W but

with a reversed direction. This is called a bi-directional RNN [96] and can model the

recurrence both from the past and the future, i.e., p(yt|xt−k, ..., xt) and p(yt|xt+1, ..., xt+k).

As a result, the output is a function of its past and future inputs. An intuitive way of

understanding it is to imagine another recurrent layer in parallel that works in the

reversed time order.

2.3.6.1 Recurrent layers and music

Since the input is fully-connected to the hidden layer with U in a recurrent layer, a

recurrent layer can replace with a dense layer with contextual inputs. Figure 2.8 - r1

is a many-to-many recurrent layer applied to a spectrogram while r2 is a many-to-one

recurrent layer which can be used at the final layer.

Since the shift invariance cannot be incorporated in the computation inside recurrent

layers, recurrent layers may be suitable for the sequences of features. The features

can be either known music and audio features such as MFCCs or feature maps from

convolutional layers [8].

All the inputs are sequentially transformed and summed to a V -dimensional vector,

therefore it should be capable of containing enough information. The size, V , is one of the

hyperparameters and choosing it involves many trials and comparison. Its initial value

can be estimated by considering the dimensionality of input and output. For example,
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V can be between their sizes, assuming the network learns to compress the input while

preserving the information to model the output.

One may want to control the length of a recurrent layer to optimise the computational

cost. For example, on the onset detection problem, probably only a few context frames

can be used since onsets can be specified in a very short time, while chord recognition

may benefit from longer inputs.

Many time-varying MIR problems are time-aligned, i.e., the ground truth exists for

a regular rate and the problem does not require sequence matching techniques such as

dynamic time warping. This formulation makes it suitable to simply apply ‘many-to-

many’ recurrent layer (Figure 2.8 - r1). On the other hand, classification problems such

as genre or tag only have one output prediction. For those problems, the ‘many-to-one’

recurrent layer (Figure 2.8 - r2) can be used to yield only one output prediction at the

final time step.

For many MIR problems, inputs from the future can help the prediction and therefore

bi-directional setting is worth trying. For example, onsets can be effectively captured

with audio contents before and after the onsets, and so are offsets/segment bound-

aries/beats.

So far, recurrent layers have been mainly used for time-varying prediction; for exam-

ple, singing voice detection [95], singing and instrument transcription [69], [58] [97], and

emotion prediction [98]. For time-invariant tasks, a music tagging algorithm used a

hybrid structure of convolutional and recurrent layers [8].

2.4 Compact-convnet

Along with this thesis, a simple 5-layer 2D convnet structure with 3 × 3 kernels and 32-

channels per layer, which is similar to the network in [15] and called Compact-convnet,

is used. The structure is illustrated in Figure 2.12. It assumes an input size of 96×1360,
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Table 2-B: Details of the Compact-convnet architecture. 2-dimensional convo-
lutional layer is specified by (channel, (kernel lengths in frequency,
time)). Pooling layer is specified by (pooling length in frequency
and time). Batch normalization layer [99] and exponential linear
unit activation [100] are used after all convolutional layers.

input (1, 96, 1360)

Conv2d and Max-Pooling (32, (3, 3)) and (2, 4)

Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 4)

Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 5)

Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (2, 4)

Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 4)

Batch normalization - ELU activation

Fully-connected layer (50)

output (50)

which is reduced to 1× 1 after 5 convolutional layers. The 32-dimensional feature map

is mapped to 50-dimensional output layer, where each node represents the probability

of each label. More details are presented in Table 2-B with its activation functions and

batch normalization layers. In Chapter 4, this structure is called k2c2 to discriminate

itself from similar but different convnet structures in terms of kernel and convolution

dimensionalities.

Later in this thesis (Chapter 4), I proposed CRNN, convolutional recurrent neural

networks, which show similar to or better performance than usual convnet structures

such as Compact-convnet. I still preferred to use Compact-convnet for several reasons:

i) CRNN is widely considered to be a variant of convnet, especially the recurrent layer

only plays a role of effectively aggregating the feature maps out of convolutional layers

and ii) pure convnets are more stable to train while showing equal performance per

training time.
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Figure 2.12: Compact-convnet structure

2.5 Summary

In this chapter, I presented backgrounds of machine learning and deep learning. They

are explained in the context of the application for MIR problems with visualisations to

understand their mechanism, which will help to understand many design choices of the

networks used in this thesis and in general. At the end of the chapter, the ‘compact

convnet’ was introduced, which is used for multiple times through this thesis.
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Abstract

In recent research that uses machine learning methods, it is important to under-

stand the training dataset to expect and understand the behaviour of the trained

classifiers or deep learning models. This chapter introduces my work on investi-

gating the music tagging dataset in order to build a deeper understanding of my

other works on music tagging.

In this chapter, I present a quantification of the label noise in the groundtruth

of the Million Song Dataset as well as measuring its effect on the training and

evaluation. During the quantification, I introduce a concept named ‘tagability’ to

explain my observation on the noise and its effect.

This chapter is closely related to my IEEE Journal paper, “The Effects of Noisy

Labels on the Deep Convolutional Neural Networks for Music Classification” [7].

3.1 Introduction

Under a supervised learning scheme, many music classification works including my own

ones ([15] and [8]) assume that the training data provides correct information – the

pairwise information of music items and its labels. In classification, the label is given as

binary, 1 (=True) or 0 (=False). However, as will be elaborated in this chapter, in music

tagging datasets, False can mean either Negative or Unknown. This is due to the weak

labelling, which introduces a particular type of label noise to the negative labels. Given

the dataset be noisy, a research question would be “how bad the noise is?” which will

be followed by “what is its impact on the system?”. These are the questions I pursue to

answer in this chapter.
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3.1.1 Labelling strategy

Audio items in a dataset may be ‘strongly’ or ‘weakly’ labelled, which may refer to several

different aspects of tagging. A particular form of weak labelling means that only positive

associations between tags and tracks are provided. This means, given a finite set of tags,

a listener (or annotator) applies a tag in case s/he recognises a relationship between the

tag and the music. In this scenario, no negative relations are provided, and as a result,

a tag being positive means it is ‘true’, but a tag being negative, i.e. not applied, means

‘unknown’. Typical crowd-sourced datasets are weakly labelled, because it is the only

practical solution to create a large dataset. Furthermore, listeners in online platforms

cannot be reasonably expected to provide negative labels given the large number of

possible tags. Strong labelling in this particular context would mean that disassociation

between a tag and a track confirms negation, i.e., a zero element in a tag-track matrix

would signify that the tag does not apply. To the best of my knowledge, CAL500

[101] is the biggest music tag dataset (500 songs) that is strongly labelled. Most recent

research has relied on collaboratively created, and therefore weakly-labelled datasets

such as MagnaTagATune [102] (5,405 songs) and the Million Song Dataset (MSD) [103]

containing 505,216 songs if only tagged items are counted.

Learning from noisy labels is an important problem, therefore several studies address

this in the context of conventional classifiers such as support vector machines [104]. In

deep learning research, [105] assumes a binary classification problem while [106] deals

with multi-class classification. Usually, auxiliary layers are added to learn to fix the

incorrect labels, which often requires a noise model and/or an additional clean dataset.

Both solutions, together with much other research, are designed for single-class classi-

fications, and there is no existing method that can be applied for music tagging when

considered as multi-label classification and when the noise is highly skewed to negative

labels. This will be discussed in Section 3.2.2.
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3.1.2 Tagging dataset and label noise

In this chapter, I perform data-driven analyses, focussing on the effects of noisy labels

on deep convolutional neural networks for automatic tagging of popular music. Label

noise is unavoidable in most real-world applications, therefore it is crucial to under-

stand its effects. I hypothesise that despite the noise, neural networks are able to learn

meaningful representations that help to associate audio content with tags and show that

these representations are useful even if they remain imperfect. The insights provided

by my analyses may be relevant and valuable across several domains where social tags

or folksonomies are used to create automatic tagging systems or in research aiming to

understand social tags and tagging behaviour. The primary contributions of this chapter

are as follows: i) An analysis of the largest and most commonly used public dataset for

music tagging including an assessment of the distribution of labels within this dataset.

ii) I validate the ground truth and discuss the effects of noise, e.g. mislabelling, on both

training and evaluation.

Finally, I draw overall conclusions and discuss cross-domain applications of my method-

ology in Section 3.3.

3.1.3 The dataset

I select the Million Song Dataset (MSD) [103] as it is the largest public dataset available

for training music taggers. Other large datasets are MagnaTagATune [102] and CAL10K

[107] which have 25,863 and 10,271 tracks respectively. MSD is weakly labelled and

therefore potentially has the problem that I am concerning in this chapter. MSD also

provides crawlable track identifiers for audio signals, which enables me to access the

audio and re-validate the tags manually by listening. MSD is a foundational dataset

through my PhD research and many experiments in this thesis are based on it.

The tags in the MSD are collected using the Last.fm API which provides access to
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crowd-sourced music tags. Because the listeners are allowed to use any text as tags, the

original tag data is extremely diverse – there are 505,216 tracks with at least one tag

and 522,366 unique tags in the dataset.

In this thesis, I use the top 50 tags sorted by popularity (occurrence counts) in the

dataset. The number of tags, ‘50’, may sound a tentative choice, but it is chosen to

compromise between two contradictory goals - to maximise the number of tags to utilise

richer information during training and to minimise the number of tag due to the long-tail

of tag distribution. The tags include 28 genres (‘rock’, ‘pop’, ‘jazz’, ‘funk’), 5 eras (‘60s’

– ‘00s’), 5 instruments (‘guitar’, ‘female vocalists’), and 12 moods (‘sad’, ‘happy’, ‘chill’).

There are 242,842 clips with at least one of the top 50 tags. The tag counts range from

52,944 (‘rock’) to 1,257 (‘happy’) and there are 12,348 unique tag vectors represented as

a joint variable of 50 binary values.

3.2 Experiments and Discussions

3.2.1 Tag co-occurrences in the MSD

In this section, the distribution and mutual relationships of tags in the dataset are inves-

tigated. This procedure helps to understand the task. Furthermore, the analysis repre-

sents information embedded in the training data. This will be compared to knowledge

we can extract from the trained network (see Chapter 7).

Here, I investigate the tuple-wise1 relations between tags and plot the resulting nor-

malised co-occurrence matrix (NCO) denoted C. Let me define #yi := |{(x, y) ∈ D|y =

yi}|, the total number of the data points with ith label being True given the dataset

D where (x, y) is an (input, target) pair. In the same manner, #(yi ∧ yj) is defined as

the number of data points with both ith and jth labels being True, i.e., those two tags

1These are not pairwise relations since there is no commutativity due to the normalisation term.
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Figure 3.1: Normalised tag co-occurrence pattern of the selected 23 tags from
the training data. For the sake of visualisation, I selected 23 tags
out of 50 that have high co-occurrences and represent different cat-
egories; genres, instruments and moods. The values are computed
using Eq. 3.1 (and are multiplied by 100, i.e., shown in percent-
age), where yi and yj respectively indicate the labels on the x-axis
and y-axis.

co-occur. NCO is computed using Eq. 3.1 and illustrated in Fig. 3.1.

C(i, j) = #(yi ∧ yj)/#yi. (3.1)
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In Fig.3.1, the x- and y-axes correspond to i, j respectively. Note that C(i, j) is not

symmetric, e.g., (‘alternative rock’, ‘rock’) = #(alternative rock∧rock)/#alternative rock.

The pattern in NCO reveals mutual tag relationships which I categorise into three

types: i) tags belonging to a genre hierarchy, ii) synonyms, i.e., semantically similar

words and iii) musical similarity. Genre hierarchy tuples include for instance (‘alter-

native rock’, ‘rock’), (‘house’, ‘electronic’), and (‘heavy metal’, ‘metal’). All the first

labels are sub-genres of the second. Naturally, we can observe that similar tags such as

(‘electronica’, ‘electronic’) are highly likely to co-occur. Lastly, I notice tuples with sim-

ilar meaning from a musical perspective including (‘catchy’, ‘pop’), (‘60s’, ‘oldies’), and

(‘rnb’, ‘soul’). Interestingly, C(i, j) values with highly similar tag pairs, including certain

subgenre-genre pairs, yi and yj are not close to 100% as one might expect. For example

the pairs (‘female vocalist’, ‘female vocalists’)and (‘alternative’, ‘alternative rock’) reach

only 30% and 44% co-occurrence values, while the pairs (‘rock’ and ‘alternative rock’),

(‘rock’, ‘indie rock’) reach only 69% and 39% respectively. This is primarily because i)

items are weakly labelled and ii) there is often a more preferred tag to describe a certain

aspect of a track compared to others. For instance, ‘female vocalists’ appears to be

preferred over ‘female vocalist’ in the data as also noted in [6]. The analysis also reveals

that certain types of label noise related to missing tags or taxonomical heterogeneity

turn out to be very high in some cases. For instance, only 39% of ‘indie rock’ tracks

are also tagged ‘rock’. The effect of such label noise is studied more deeply in Section

3.2.2. Furthermore, the computed NCO under-represents these co-occurring patterns.

This effect is discussed in the the following section (section 3.2.2) and Chapter 7.

3.2.2 Validation of the MSD as ground truth for auto-tagging

Next, I move to the main body of this chapter, analysing the ground truth noise in

the MSD and examine its effect on training and evaluation. There are many sources of

noise including incorrect annotations as well as information loss due to the trimming of

full tracks to preview clips. Some of these factors may be assumed to be less adverse



Chapter 3. The Dataset, Label, and Noise 47

Table 3-A: The scores of ground truth with respect to the strongly-labelled
manual annotation (subset100) in (a)-(d) and occurrence counts
by the ground truth (e), estimation (f), and on Subset400.

Scores of the ground truth on Subset100 Occurrence counts

(a)
Error
rate,

Positive
label [%]

(b)
Error
rate,

Negative
label [%]

(c)
Precision

[%]

(d)
Recall

[%]

(e)
In ground truth
(for all items)

(f)
Estimate by

Eq.3.2
and Subset100

(g)
By our

annotation
(on Subset400)

instrumental 6.0 12.0 94.0 88.7 8,424 (3.5%) 36,048 (14.9%) 85 (21.3%)

female vocalists 4.0 24.0 96.0 80.0 17,840 (7.3%) 71,127 (29.3%) 94 (23.5%)

male vocalists 2.0 64.0 98.0 60.5 3,026 (1.2%) 156,448 (64.4%) 252 (64.0%)

guitar 2.0 70.0 98.0 58.3 3,311 (1.4%) 170,916 (70.4%) 266 (66.5%)

than others. In large-scale tag datasets, the frequently used weak labelling strategy

may introduce a significant amount of noise. This is because by the definition of weak

labelling, considering numerous tags a large portion of items remain unlabelled, but then

these relations are assumed to be negative during training as I have discussed earlier in

this chapter.

Validation of the annotation requires re-annotating the tags after listening to the

excerpts, which is not a trivial task for several reasons. First, manual annotation does not

scale and requires significant time and effort. Second, there is no single correct answer for

many labels – music genre is an ambiguous and idiosyncratic concept, emotion annotation

is highly subjective too, so as labels such as ‘beautiful’ or ‘catchy’. Instrumentation

labels can be objective to some extent, assuming the annotators have expertise in music.

Therefore, I re-annotate items in two subsets using four instrument labels as described

below.

• Labels: ‘instrumental’, ‘female vocalists’, ‘male vocalists’, ‘guitar’.

• Subsets:

� Subset100: randomly selected 100 items for each class. All are from the

training set and positive/negative labels are balanced as 50/50 respectively.

� Subset400: randomly selected 400 items from the test set.



Chapter 3. The Dataset, Label, and Noise 48
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precision (column c)
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Figure 3.2: The precision and recall of ground truth on Subset100, correspond-
ing to columns (c) and (d) in Table 3-A. They are plotted with
95% confidential interval computed by bootstrapping [108].
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Figure 3.3: The estimates of the number of items (red) and the number of
items in Subset400 (blue), both in percentage (they correspond to
columns (f) and (g) in Table 3-A). The estimates are plotted with
95% confidential interval computed by bootstrapping [108].

3.2.2.1 Measuring label noise and defining tagability

Table 3-A column (a)-(d) summarises the statistics of Subset100. Confidence intervals

for precision and recall are computed by bootstrapping [108] and plotted in Figure 3.2.

The average error rate of negative labels is 42.5%, which is very high, while that of

positive labels is 3.5%. Equivalently, the precision of the ground truth is high (96.5%

on average) while the recall is much lower (71.9% on average). This suggests that the

tagging problem should be considered weakly supervised learning to some extent. We

may expect this problem exists in other weakly-labelled datasets as well.

Such a high error rate for negative labels suggests that the tag occurrence counts
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instrumental(24) female
vocalists(6)

male
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0.4
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1.0
[recall] of GT (taggability)
[AUC] w.r.t, GT
[AUC] w.r.t. our annotation

Figure 3.4: The recall rates (tagability, pink), AUC scores with respect to the
GT (ground truth) (green), and AUC scores with respect to my
annotation (yellow), all reported on Subset400. The numbers on
the x-axis labels are the corresponding popularity rankings of tags
out of 50. The recall rates and their 95% confidential intervals
are identical to Figure 3.2 but plotted again for comparison with
tag-wise AUC scores.

in the ground truth are significantly under-represented. This can be related to the

tagability of labels, a notion which may be defined as the likelihood that a track will be

tagged positive for a label when it really is positive. If the likelihood is replaced with the

proportion of items, tagability is measured by recall as presented in Table 3-A as well

as in Figure 3.2. For example, bass guitar is one of the most widely used instruments

in modern popular music, but it is only the 238th most popular tag in the MSD since

tagging music with ‘bass guitar’ does not provide much information from the perspective

of the average listener. Given the scores, we may assume that ‘female vocalists’ (88.7%

of recall) and ‘instrumental’ (80.0%) are more ‘tagable’ than ‘male vocalists’ (60.5%) and

‘guitar’ (58.3%), which indicates that the latter are presumably considered less unusual.

The correct number of positive /negative items can be estimated by applying Bayes’

rule with the error rate. The estimated positive label count N̂+ is calculated using Eq.3.2

as follows:

N̂+ = N+(1− p+) + (T −N+)p−, (3.2)

where N+ is the tag occurrence, T is the number of total items (T = 242, 842 in this

case), and p+, p− refers to the error rates of positive and negative labels respectively.
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Column (f) of Table 3-A and Figure 3.3 present the estimated occurrence counts using

Equation 3.2. This estimate is validated using Subset400. Comparing the percentages

in columns (f) and (g) confirms that the estimated counts are more correct than the tag

occurrences of the ground truth. For all four tags, the confidence intervals overlap with

the percentage counted in Subset400 as illustrated in Figure 3.3. In short, the correct

occurrence count is not correlated with the occurrence in the dataset, which shows the

bias introduced by tagability. For instance, ‘male vocalists’ is more likely to occur in

music than ‘female vocalists’, which means it has lower tagability, and therefore it ends

up having fewer occurrences in the ground truth.

3.2.2.2 Effects of incorrect ground truth on the training

Despite such inaccuracies, it is possible to train networks for tagging with good perfor-

mances using the MSD, achieving an AUC between 0.85 [15] and 0.90 [17]. This may be

because even with such noise, the network is weakly supervised by stochastically correct

feedbacks, where the noise is alleviated by a large number of training examples [109].

In other words, it is believed in general that given x is the input and ytrue, ynoisy are

the correct and noisy labels respectively, the network can approximate the relationship

f : x→ ytrue when training using (x,ynoisy).

However, I suggest that the noise affects the training and it is reflected in the per-

formances of different tags. In [8], where different deep neural network structures for

music tagging were compared, I observed a pattern of the per-tag performances that is

common among different structures. This is illustrated in Figure 3.5 where the x-axis

labels represent tag popularity ranking. The performances were not correlated with the

ranking, the reported correlation is 0.077, therefore the question remained unanswered

in [8].

I conjecture that tagability, which is related to (negative) label noise can explain

tag-wise performance differences. It is obvious that a low tagability implies more false
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negatives in the ground truth, and as a result, we feed the network with more confusing

training examples. For example, assuming there is a pattern related to male vocalists,

the positive-labelled tracks provide mostly correct examples. However, many examples of

negative-labelled tracks (64% in Subset100) also exhibit the pattern. Consequently, the

network is forced to distinguish hypothetical differences between the positive-labelled

true patterns and the negative-labelled true patterns, which leads to learning a more

fragmented mapping of the input. This is particularly true in music tagging datasets

where negative label noise dominates the total noise. This is supported by data both in

this chapter and [8] as discussed below.

First, tagabilities (or recall) and AUC scores with respect to the ground truth and my

re-annotation are plotted in Figure 3.4 using Subset400 items and Compact-convnet 2.4.

Both AUC scores are positively correlated to tagability while they are not related to the

tag popularity rankings. Although the confidence intervals of ‘instrument’ vs. ‘female

vocalists’, and ‘male vocalists’ vs. ‘guitar’ overlap, there is an obvious correlation. The

performances on the whole test set also largely agree with my conjecture.

Second, in Figure 3.5, AUC scores for instrument tags are ranked as ‘instrumental’

> ‘female vocalists’ > ‘guitar’ > ‘male vocalists’ for all three convnet structures. This

aligns with tagability in Figure 3.4 within the confidence intervals.

This observation motivates me to expand this approach and assess tags in other

categories. Within the Era category in Figure 3.5, performance is negatively correlated

with the popularity ranking (Spearman correlation coefficient=−0.7). There is a large

performance gap between old music groups (60s, 80s, 70s) and the others (90s, 00s). I

argue that this may also be due to tagability. In the MSD, older songs (e.g. those released

before the 90s) are less frequent compared to modern songs (90s or 00s). According to

the year prediction subset of the MSD2, 84% of tracks are released after 1990. This is

also related to the fact that the tag ‘oldies’ exists while its opposite does not. Hence, old

eras seem more tagable, which might explain the performance differences in Era tags. I

2https://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos

https://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos
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cannot extend this approach to mood and genre tags because the numbers of tags are

much larger and there may be aspects contributing to tag-wise performance differences

other than tagability. The high subjectivity of many tags are also one of the aspects to

make it difficult, which is also discussed in the following section.

3.2.2.3 Validation of the evaluation

Another problem with using a noisy dataset is the evaluation. In the previous section,

I assumed that the system can learn a denoised relationship between music pieces and

tags, f : x→ ytrue. However, the evaluation of a network with respect to ynoisy includes

errors due to noisy ground truth. This raises the question of the reliability of the results.

I use the strongly-labelled annotation of Subset400 to assess this reliability.

Let us re-examine Figure 3.4. All AUC scores with respect to my annotation are

lower than the scores with respect to the ground truth. Performance for the guitar tag

is remarkably below 0.5, the baseline score of a random classifier. However, the overall

trend of tag-wise performance does not change. Because the results are based only on

four classes and a subset of songs, a question arises: How does this result generalise to

other tags?

To answer the question, three AUC scores are plotted in Figure 3.6: i) the scores of

the four instrument tags with respect to my annotation (dotted red), ii) the scores of

the four instrument tags with respect to the given ground truth (dashed blue), and iii)

the scores of all tags with respect to the given ground truth (solid yellow).

Before discussing the details, the limitations of this approach should be clarified.

Without an ideal, complete and correct ground truth (which will make this chapter

obscure), re-evaluating the evaluation cannot be noise-free. Furthermore, because of

the subjectivity of majorities of the tags, it is not even possible to strongly-label the

groundtruth of a subset of items. Under this circumstance, the re-evaluation is performed

indirectly by second-order: using correlation, I will measure two similarities, assuming
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Figure 3.6: AUC scores of all tags (yellow, solid) and four instrumentation
tags. Instrumentation tags are evaluated using i) dataset ground
truth (blue, dashed) and ii) my strong-labelling re-annotation
(red, dotted). Pearson correlation coefficients between {red vs.
blue} and {blue vs. yellow} is annotated on each chart as ρ. In
(c), x-axis is experiment index and various audio preprocessing
methods were applied for each experiment.

both of them being high means the our re-evaluation on the subset (with limited songs

and limited tags) may apply for the whole set (all songs and tags).

The reliability of evaluation is typically assessed with a given ground truth and can be

measured by ρ1, the Pearson correlation coefficient between AUCs using my annotation

and the MSD. The correlation between the four tags and all other tags (shown in blue

and yellow), denoted ρ2, is a measure of how we can generalise my re-annotation result

to those concerning all tags.

I selected three sets of tagging results to examine and plotted these in Figure 3.6 (a-c).

The first two sets shown in subfigure (a) and (b) are results after training the Compact-

convnet with varying training data size and different audio representations: (a) mel-

spectrogram and (b) short-time Fourier transform. The third set of curves in Figure 3.6
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(c) compare six results with varying input time-frequency representations, training data

size and input preprocessing techniques including normalisation and spectral whitening.

The third set is selected to observe the correlations when the performance differences

among systems are more subtle than those in (a) and (b).

First, the ρ1 values in (a)–(c) suggest that noisy ground truth provides reasonably

stable evaluation for the four instrument tags. On the first two sets in (a) and (b), the

scores of four tags using the MSD ground truth (in blue) are highly correlated (ρ1 = 0.905

and 0.833) to the scores using my annotation (red). This suggests the evaluation using

noisy labels is still reliable. However, in (c), where the scores of all tags with given ground

truth (yellow) are in a smaller range, the correlation between all tags and the four tags

(ρ1) decreases to 0.543. The results imply that the distortion on the evaluation using

the noisy ground truth may disguise the performance difference between systems when

the difference is small. Second, large ρ2 indicates that my validation is not limited to

the four instrument tags but may be generalised to all tags. The correlation coefficients

ρ2 is stable and reasonably high in (a)–(c). It is 0.856 on average.

It is noteworthy that there are small but clear differences between models themselves

in (c) unlike (a) or (b), where an identical model is used with only changing the amount

of training data. In (c), the models consist of same convolutional layers but different

input data type, possibly making the models learn different characteristics. This means

there are not only the noise in the evaluation but also the noise introduced by the system

differences, making the experiment (c) less robust than (a) and (b).

3.3 Summary

In this Chapter, I investigated several aspects how noisy labels affect the training and

performance of deep convolutional neural networks for music tagging. I analysed the

MSD, the largest dataset available for training a music tagger from a novel perspective.

I reported on a study aiming to validate the MSD as ground truth for this task. I found
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that the dataset is reliable overall, despite several noise sources affecting training and

evaluation.

Overall, the behaviours of the trained network were shown to be related to the prop-

erty of the given labels. The analysis showed that tagability, which I measured by recall

on the ground truth, is correlated to the tag-wise performance. This opened a way to

explain tag-wise performance differences within other categories of tags such as era. In

the analysis of the trained network, I found that the network learns more intricate rela-

tionships between tags rather than simply reproducing the co-occurrence patterns in the

ground truth. The trained network is able to infer musically meaningful relationships

between tags that are not present in the training data.

Although I focused on music tagging, results provide general knowledge applicable in

several other domains or tasks including other music classification tasks. The analysis

method presented here and the result on the tagging dataset can easily generalise to sim-

ilar tasks in other domains involving folksonomies with noisy labels or tasks involving

weakly labelled datasets, e.g. image tagging, object recognition in video, or environ-

mental sound recognition, where not all sources are necessarily labelled. Future work

will explore advanced methods to learn and evaluate using noisy datasets under a struc-

tured machine learning framework. Tagability can be understood from the perspective

in music cognition research and should be investigated further.

So far, I have discussed if and how much we can trust the data-driven approach for

music tagging. The experiment results have revealed that although there is huge noise

on the label, the networks can still take advantage of the dataset. In the next chapter,

I will present the training results based on the dataset with comparing many convnet

structures for music tagging. One of the compared structures is one that I propose to

use for the first time in music tagging, convolutional recurrent neural networks (CRNN).
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Abstract

This chapter introduces one of the main body of my PhD works. There is an

enormous amount of recent research papers on proposing new deep neural net-

work structures to improve the performance. In this chapter, I also introduce a

structure for music tagging. Additionally, I present a detailed set of comparative

experiments of different structures for tagging. The comparison result supports

my proposal while also justifying to use Compact-convnet in this thesis.

I propose to use convolutional recurrent neural networks for music tagging for the

first time. CRNNs take advantage of convolutional neural networks (CNNs)a for

local feature extraction and recurrent neural networks for temporal summarisation

of the extracted features. I present not only the proposed structure’s performance

but also the performances of other types of deep neural networks. CRNNs show

a strong performance with respect to the number of parameter and training time,

indicating the effectiveness of its hybrid structure in music feature extraction and

feature summarisation. b

The work introduced in this chapter is closely related to my ICASSP 2017 paper,

“Convolutional Recurrent Neural Networks for Music Classification”” [8].

aI use ‘CNN’ instead of ‘convnet’ in this chapter to follow the naming convention of the
proposed structure, CRNN.

bOne of the final results is the performances per tag and per structure, which was already
introduced in the previous chapter.

4.1 Introduction

CNNs have been popular in many fields including MIR. CNNs assume features that

are at different levels of hierarchy and can be extracted by convolutional kernels. The

hierarchical features are learned to achieve a given task during supervised training. For

example, learned features from a CNN that is trained for genre classification exhibit low-

level features (e.g., onset) to high-level features (e.g., percussive instrument patterns) [12]
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as will be discussed in Chapter 7.

Recently, CNNs have been combined with recurrent neural networks (RNNs) which

are often used to model sequential data such as audio signals or word sequences. This

hybrid model is called a convolutional recurrent neural network (CRNN). A CRNN

can be described as a modified CNN by replacing the last convolutional layers with

a recurrent layer. In CRNNs, CNNs and RNNs play the roles of feature extractor

and temporal summariser respectively. Adopting an RNN for aggregating the features

enables the networks to take the global structure into account while local features are

extracted by the remaining convolutional layers. This structure was first proposed in

[110] for document classification and later applied to image classification [111] and music

transcription [112].

CRNNs fit the music tagging task well. RNNs are more flexible in selecting how to

summarise the local features than CNNs which are rather static by using an weighted

sum (convolution) and subsampling. This flexibility can be helpful because some of the

tags (e.g., mood tags) may be affected by the global structure while other tags such as

instruments can be affected by the local and short-segment information.

In this chapter, CRNNs for music tagging are introduced and compared with three

pre-existing CNNs. For correct comparisons, the hardware, data, and optimisation tech-

niques are carefully controlled while varying two attributes of the structure: i) the

number of parameters and ii) computation time.

4.2 Models

There are four models – CRNN with k1c2, k2c1, and k2c2, which are illustrated in Figure

4.1. The three latter models are named in a way to specify their kernel shape (e.g., k1 for

1D kernels) and convolution dimension (e.g. c2 for 2D convolutions). The specifications

are shown in Table 4-A. For all networks, the input is assumed to be of size 96×1366
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Figure 4.1: Block diagrams of CNN (k1c2, top-left), CNN (k2c1,
top-right), CNN (k2c2, lower-left), and CRNN, lower-right.
The grey areas illustrate the convolution kernels. N refers to the
number of feature maps of convolutional layers. RNN is, in the
experiment, gated recurrent unit (GRU) and uni-directional.

(mel-frequency band×time frame) and single channel. Sigmoid functions are used as

activation at output nodes because music tagging is a multi -label classification task.

Across the structures, all the convolutional and fully-connected layers are equipped

with identical optimisation techniques and activation functions – batch normalization [99]

and ELU activation function [100]. This is for a correct comparison since optimisation

techniques greatly improve the performances of networks that are having essentially the

same structure. Exceptionally, CRNN has weak dropout (0.1) between convolutional layers

to prevent overfitting of the RNN layers [113].

4.2.1 CNN - k1c2

k1c2 in Figure 4.1 is motivated by structures for genre classification [81]. The network

consists of 4 convolutional layers that are followed by 2 fully-connected layers. One-

dimensional convolutional layers (1×4 for all, i.e., convolution along time-axis) and max-

pooling layers ((1×4)-(1×5)-(1×8)-(1×8)) alternate. Each element of the last feature
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map (the output of the 4-th sub-sampling layer) encodes a feature for each band. They

are flattened and fed into a fully-connected layer, which acts as the classifier.

4.2.2 CNN - k2c1

k2c1 in Figure 4.1 is motivated by structures for music tagging [4] and genre classification

[83]. The network consists of 5 convolutional layers that are followed by 2 fully-connected

layers. The first convolutional layer (96 × 4) learns 2D kernels that are applied to the

whole frequency band. After then, one-dimensional convolutional layers (1×4 for all, i.e.,

convolution along time-axis) and max-pooling layers ((1×4) or (1×5)) alternate. The

results are flattened and fed into a fully-connected layer.

This model compresses the information of whole frequency range into one band in the

first convolutional layer and this helps to reduce the computation complexity vastly. At

the same time, the compression is more radical than what’s happening in other networks

which gradually reduce the length in the frequency axis.

4.2.3 CNN - k2c2

CNN structures with 2D convolution have been used in music tagging [15] and vocal/in-

strumental classification [88]. k2c2 consists of five convolutional layers of 3×3 kernels

and max-pooling layers ((2×4)-(2×4)-(2×4)-(3×5)-(4×4)) as illustrated in Figure 4.1.

The network reduces the size of feature maps to 1×1 at the final layer, where each feature

covers the whole input rather than each frequency band as in k1c1 and k2c1.

This model allows time and frequency invariances in different scale by gradual 2D

sub-samplings. Also, using 2D subsampling enables the network to be fully-convolutional,

which ultimately results in fewer parameters.
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k1c2 k2c1 k2c2 CRNN
No. params

(×106) 0.1 0.25 0.5 1.0 3.0 0.1 0.25 0.5 1.0 3.0 0.1 0.25 0.5 1.0 3.0 0.1 0.25 0.5 1.0 3.0

Layer type Layer width Type Layer width Type Layer width
conv2d 15 23 33 47 81 conv1d 43 72 106 152 265 conv2d 20 33 47 67 118 conv2d 30 48 68 96 169
conv2d 15 23 33 47 81 conv1d 43 72 106 152 265 conv2d 41 66 95 135 236 conv2d 60 96 137 195 339
conv2d 30 47 66 95 163 conv1d 43 72 106 152 265 conv2d 41 66 95 135 236 conv2d 60 96 137 195 339
conv2d 30 47 66 95 163 conv1d 87 145 212 304 535 conv2d 62 100 142 203 355 conv2d 60 96 137 195 339
FC 30 47 66 95 163 conv1d 87 145 212 304 535 conv2d 83 133 190 271 473 rnn 30 48 68 96 169
FC 30 47 66 95 163 FC 87 145 212 304 535 rnn 30 48 68 96 169

FC 87 145 212 304 535

Table 4-A: Hyperparameters and results of all structures. Number of param-
eters indicates the total number of trainable parameters in the
structure. Layer width indicates either the number of feature
maps of a convolutional layer or number of hidden units of fully-
connected/RNN layers. Max-pooling is applied after every row of
convolutional layers.

4.2.4 CRNN

CRNN uses a 2-layer RNN with gated recurrent units (GRU) [114] to summarise tempo-

ral patterns on the top of two-dimensional 4-layer CNNs as shown in Figure 4.1. The

assumption underlying this model is that the temporal pattern can be aggregated bet-

ter with RNNs then CNNs, while relying on CNNs on the input side for local feature

extraction. GRU was chosen since it achieved similar performances to long short-term

memory units with smaller number of parameters.

In CRNN, RNNs are used to aggregate the temporal patterns instead of, for instance,

averaging the results from shorter segments as in [4] or convolution and sub-sampling

as in other CNN’s. In its CNN sub-structure, the sizes of convolutional layers and max-

pooling layers are 3×3 and (2×2)-(3×3)-(4×4)-(4×4). This sub-sampling results in a

feature map size of N×1×15 (number of feature maps×frequency×time). They are then

fed into a 2-layer RNN, of which the last hidden state is connected to the output of the

network.

4.2.5 Scaling networks

The models are scaled by controlling the number of parameters to be 100,000, 250,000,

0.5 million, 1M, 3M with 2% tolerance. Considering the limitation of current hardware
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and the dataset size, 3M-parameter networks are presumed to provide an approximate

upper bound of the structure complexity. Table 4-A summarises the details of different

structures including the layer width (the number of feature maps or hidden units).

The widths of layers are based on [4] for k1c2 and k2c1, and [15] for k2c2. For CRNN,

the widths are determined based on preliminary experiments which showed the relative

importance of the numbers of the feature maps of convolutional layers over the number

of hidden units in RNNs.

Layer widths are changed to control the number of parameters of a network while the

depths and the convolutional kernel shapes are kept constant. Therefore, the hierarchy

of learned features is preserved while the numbers of the features in each hierarchical

level (i.e., each layer) are changed.

4.3 Experiments

The whole training procedure is the same as introduced in the previous chapters. I use

the preview clips of Million Song Dataset [103] with last.fm tags and train the networks

to predict the top-50 tag.

The models are built with Keras [115] and Theano [116]. I use ADAM for learning

rate control [40] and binary cross-entropy as a loss function. The reported performance is

measured on test set and by AUC-ROC (Area Under Receiver Operating Characteristic

Curve) given that tagging is a multi-label classification. The experiment was performed

on NVIDIA Titan X (Pascal) GPU.

I use early-stopping for all structures – the training is stopped if there is no improve-

ment of AUC on the validation set while iterating the whole training data once.
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Figure 4.2: AUCs for the three structures with {0.1, 0.25, 0.5, 1.0, 3.0}×106

parameters. The AUC of SOTA (state-of-the-art) is .851 [15].
SOTA result was obtained with a structure similar to k2c2, but
with different number of layers and training scheme.

4.3.1 Memory-controlled experiment

Figure 4.2 shows the AUCs for each network against the number of parameters. With

the same number of parameters, the ranking of AUC is CRNN > k2c2 > k1c2 >k2c1. This

indicates that CRNN can be preferred when the bottleneck is memory usage.

CRNN outperforms k2c2 in all cases. Because they share 2D-convolutional layers, this

difference is probably a consequence of the difference in RNNs and CNNs the ability

to summarise the features over time. This may indicate that learning a global struc-

ture is more important than focusing on local structures for summarisation. One may

focus on the different layer widths of two structures – because recurrent layers use fewer

parameters than convolutional layers, CRNN has wider convolutional layers than k2c2 with

the same number of parameters. However, even CRNN with narrower layer widths (0.1M

parameters) shows better performance than k2c2 with wider widths (0.25M parameters).

k2c2 shows higher AUCs than k2c1 and k1c2 in all cases. This shows that the model of

k2c2, which encodes local invariance and captures local time-frequency relationships, is

more effective than the others, which ignores local frequency relationships. k2c2 also uses

parameters efficiently with its fully-convolutional structure, while k2c1 and k1c2 allocate

only a small proportion of the parameters to the feature extraction stage. For example,

in k1c2 with 0.5M parameters, only 13% of the parameters are used by convolutional
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Figure 4.4: AUCs of the structures in training time - AUC plane. Each plot
represents four different parameters, {0.1, 0.25, 0.5, 1.0, 3.0}×106,
from left to right.

layers while the rest, 87%, are used by the fully-connected layers.

k2c2 structures (>0.5M parameters) shows better performances than a similar but

vastly larger structure in [15], which is shown as state of the art (SOTA) in Figure 4.2.

This may be due to the reduction in the number of feature maps removes redundancy.

The flexibility of k1c2 may contribute the performance improvement over k2c1. In

k2c1, the tall 2-dimensional kernels in the first layer of k2c1 compress the information of

the whole frequency-axis pattern into each feature map. The following kernels then deal

with this compressed representation with temporal convolutional and pooling. On the

other hands, in k1c2, 1-dimensional kernels are shared over time and frequency axis until

the end of convolutional layers. In other words, it gradually compresses the information

in time axis first, while preserving the frequency-axis pattern.

4.3.2 Computation-controlled comparison

I further investigate the computational complexity of each structure. The computational

complexity is directly related to the training and prediction time and varies depending

not only on the number of parameters but also on the structure. The wall-clock training

times for 2500 samples are summarised in Table 4-A and plotted in Figure 4.4.
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The input compression in k2c1 results in a fast computation, making it merely over-

laps in time with other structures. The time consumptions of the other structures range

in an overlapping region.

Overall, with similar training time, k2c2 and CRNN show the best performance. This

result indicates that either k2c2 or CRNN can be used depending on the target time budget.

With the same number of parameters, the ranking of training speed is always k2c1 >

k2c2 > k1c2 > CRNN. There seem two factors that affect this ranking. First, among CNN

structures, the sizes of feature maps are the most critical since the number of convolution

operations is in proportion to the sizes. k2c1 reduces the size of feature map in the first

convolutional layer, where the whole frequency bins are compressed into one. k2c2

reduces the sizes of feature maps in both axes and is faster than k1c2 which reduces

the sizes only in the temporal axis. Second, the difference between CRNN and CNN

structures arises from the negative correlation of speed and the depth of networks. The

effective depth of CRNN structure is up to 20 (15 time steps in RNN and 5 convolutional

layers), introducing heavier computation than the other CNN structures.

4.3.3 Tag-wise performance

Figure 4.3 visualises the AUC score of each tag of 1M-parameter structures. Each tag is

categorised as one of genres, moods, instruments and eras, and sorted by AUC within its

category. Under this categorisation, music tagging task can be considered as a multiple-

task problem equivalent to four classification tasks with these four categories.

The CRNN outperforms k2c1 for 44 tags, and k2c1 outperforms k1c2 for 48 out of

50 tags. From the multiple-task classification perspective, this result indicates that a

structure that outperforms in one of the four tasks may perform best in the other tasks

as well.

Although the dataset is imbalanced, the tag popularity (number of occurrence of
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each tag) is not correlated to the performance. Spearman rank correlation between tag

popularity and the ranking of AUC scores of all tags is 0.077. It means that the networks

effectively learn features that can be shared to predict different tags.

For further discussion on the tag-wise performance, please refer to Chapter 3 where

it is analysed with respect to label noise of the dataset.

4.4 Summary

I proposed a convolutional recurrent neural network (CRNN) for music tagging. In the

experiment, I controlled the size of the networks by varying the numbers of parame-

ters to for memory-controlled and computation-controlled comparison. The experiments

revealed that 2D convolution with 2d kernels (k2c2) and CRNN perform comparably to

each other with a modest number of parameters. With a very small or large number

of parameters, we observed a trade-off between speed and memory. The computation

of k2c2 is faster than that of CRNN across all parameter settings, while the CRNN tends

to outperform it with the same number of parameters. It is worth mentioning that the

approach to scale and the criteria to evaluate the models in this chapter are generally

applicable regardless of the domain.

This chapter was about designing a neural network structure, which is based on the

characteristic of the input, the music signal. As a music researcher, another interesting

question is how can (or should) we prepare the input data so that the neural networks

can extract the information better and easier. That will be discussed in the following

chapter.

m
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Abstract

In this chapter, I introduce my empirical analysis on audio input preprocessing for

deep neural network-based music tagger. This is one of the topics that researchers

in music domain would be particularly interested in, as well as an important topic

to build an optimised music tagger, or classifier in general, in the real world.

A set of experiments is performed to compare the performances when varying the

audio input preprocessing methods. The results show that decibel-scaling of the

magnitude is critical while other methods do not result in substantial performance

variance.

The work in this chapter is closely related to my EUSIPCO 2018 submission, “A

Comparison of Audio Signal Preprocessing Methods for Deep Neural Networks on

Music Tagging” [10].

5.1 Introduction

MIR researches that use deep learning techniques commonly focus on optimising the

hyperparameters which specify the network structure. Conversely, the audio preprocess-

ing stage is often decided on using heuristics without being subject to optimisation.

Although neural networks are known to be universal function approximators [117],

training efficiency and performance may vary significantly with not only different training

methods but also generic techniques including preprocessing the input data [118]. In

other words, a neural network can represent any function but it does not mean it can

always learn any function in practice. Optimising learning rate, for example, does not

change the shape of loss function but help to converge to the better optima. In developing

a deep learning-based system, both empirical decisions and domain knowledge are crucial

because they can help to find a better optima. Especially, choosing between various

preprocessing methods can be seen as a non-differentiable choice function, which cannot
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be optimised using gradient-based learning methods.

To consider examples in prior works, mel-spectrograms have been preferred over

short-time Fourier transform in many tasks [5] because it was considered to represent

enough information about many problems despite its smaller size. As another example,

when a time-frequency representation magnitude X ∈ RN×M≥0 is given, one of the most

common preprocessing approaches is to apply logarithmic compression, i.e., log(X + α)

where α can be arbitrary constants such as very small number (e.g. 10−7) or 1. However,

the performances of these methods are not usually compared.

In this chapter, I focus on audio preprocessing strategies for deep convolutional neural

networks for music tagging. By assessing various preprocessing strategies and providing

empirical results, I aim at demystifying the effects of audio preprocessing on network

performance. This will help researchers in designing deep learning systems for music

research.

5.2 Experiments and discussion

A representative network structure needs to be defined to compare the effects of audio

preprocessing. Compact-convnet (Section 2.4), a convnet with 2D kernels and 2D con-

volution axes was chosen. This showed a good performance with efficient training in

Chapter 4 [8] under the name of k2c2, indicating 2D kernels and convolution axes. As

illustrated in Figure 5.1, homogeneous 2D (3×3) convolutional kernels are used in every

convolutional layer. The input has a single channel, 96 mel bins, and 1,360 temporal

frames (1, 96, 1360).

For the training of music tagger, in this chapter, I used the MSD with preview audio

clips as introduced previously. To remind the details, the training data are 30-60s stereo

mp3 files with a sampling rate of 22,050Hz and 64 kbps constant bit-rate encoding. For

efficient training in the experiments, I downmix and downsample the signals to 12kHz



Chapter 5. The Effects of Audio Input Pre-processing 72

Figure 5.1: Network structure of the 5-layer convnet. N refers to the number
of feature maps (which is set to 32 for all layers in this chapter)
while W refers to the weights matrix of the fully-connected output
layer.)

after decoding and trimming the audio duration to 29-second to ensure equal-sized input

signals. The short-time Fourier transform and mel-spectrogram are computed using a

hop size of 256 samples (21.3 ms) with a 512 point DFT aggregated to yield 96 mel

bins per frame. The preprocessing is performed using Librosa [119] and Kapre [9]. The

training scheme is identical to the previous chapters. The binary cross-entropy function

is used as a loss function. For the acceleration of stochastic gradient descent, I use

adaptive optimisation based on Adam [40].

5.2.1 Variance by different initialisation

In deep learning, using K -fold cross-validation is not a standard practice for two reasons.

First, with large enough data and a good split of train, validation, and test sets, the model

can be trained with small variance. Second, the cost of hyperparameter search is very

high and it makes repeating experiments too expensive in practice. For these reasons, I

do not cross-validate the convnet in this study. Instead, I present the results of repeated

experiments with fixed network and training hyperparameters such as training example

sequences and batch size. This experiment, therefore, measures the variance of the
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Figure 5.2: Performances and their mean (left), as well as the 95% confidence
interval (CI). The two deltas on the plot indicate the difference
between the average AUC and the scores of experiments 4 and 8.

model introduced by different weight initialisations of the convolutional layers. For this,

a normal distribution is used following He et al. [120], which has been shown to yield a

stable training procedure.

The results are summarised in Figure 5.2. This shows the AUC scores of 15 repeated

experiments on the left as well as their standard deviation on the right. Small stan-

dard deviation indicates that we can obtain a reliable, precise score by repeating the

same experiments for a sufficient number of times. The two largest differences observed

between the average AUC score and that of experiment 4 and 8 (AUC differences of

0.0028 and 0.0026 respectively) indicate that we may obtain up to ∼ 0.005 AUC differ-

ence among experiment instances. Based on this, I assume that an AUC difference of

< 0.005 is non-significant in this chapter.

5.2.2 Time-frequency representations

STFT and mel-spectrogram have been the most popular input representations for music

classification [5]. Although sample-based deep learning methods have been introduced,

2-dimensional representations would be still useful in the near future for efficient training.

Mel-spectrograms provide an efficient and perceptually relevant representation compared
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Figure 5.3: Performances of predictions with mel-spectrogram and STFT with
varying training data sizes. The numbers above bars indicate the
absolute performance differences between mel-spectrograms and
STFTs.

to STFT [49] and have been shown to perform well in various tasks [4, 15, 54–56].

However, an STFT is closer to the original signal and neural networks may be able to

learn a representation that is more optimal to the given task than mel-spectrograms.

This requires large amounts of training data, however, as reported in [15] where using

mel-spectrograms outperformed STFT with a smaller dataset.

Figure 5.3 shows the AUC scores obtained using log(STFT) vs. log(mel-spectrogram)

while varying the size of the utilised training data. Although there are small differ-

ences on AUC scores up to 0.007, neither of them outperforms the other, especially

when enough data is provided. This rebuts the results reported in [15] because mel-

spectrograms did not have a clear advantage here, even with a small training data size.

This may be explained by the higher frequency resolution of the STFT representation

used and summarised as follows.

• STFT in [15]: 6000/129=46.5 Hz (256-point FFT with 12 kHz sampling rate)

• STFT in this work: 6000/257=23.3 Hz (512-point FFT with 12 kHz sampling rate)

• Mel-spectrogram in [15] and this work: 35.9 Hz for frequency < 1 kHz (96 mel-bins

and by [121] and [119])
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In [15], the frequency resolution of the STFT was lower than that of the mel-

spectrogram to enable comparing them with a similar number of frequency bins. On

the contrary, STFT of higher frequency resolution is used in this experiment. Neverthe-

less, it is found to be only as good as mel-spectrogram in terms of performance. This

means overall that, in practice, mel-spectrogram may be preferred since its smaller size

leads to reduced computation in training and prediction. However, this may be because

of the limit of the used networks which does not take advantage of finer input rather

than because of the nature of the task. For example, detecting vocal component (to tag

‘instrumental’) could use finer frequency structure of the consonant part, but only if the

network is designed to capture them effectively. The figure also illustrates how much the

data size affects the performance. Exponentially increasing data size merely results in a

linear AUC improvement. AUC starts to converge at 64% and 100%.

5.2.3 Analysis of scaling effects and frequency-axis weights

Lastly, I discuss the effects of magnitude manipulation. Preliminary experiments sug-

gested that there might be two independent aspects to investigate; i) frequency-axis

weights and ii) magnitude scaling of each item in the training set. Examples of frequency-

axis weights are illustrated in Figure 5.4, where different weighting schemes are plotted.

The experiment is designed to isolate these two effects. I tested two input representa-

tions log-mel-spectrogram (mel-spectrogram in decibel scale) vs. mel-spectrogram, with

three frequency weighting schemes per-frequency, A-weighting and bypass, as well as two

scaling methods ×10 (on) and ×1 (off), yielding 2×3×2=12 configurations in total.

I summarise the mechanism of each block as follows. First, there are three frequency

weights schemes.

• per-frequency stdd: This is often called spectral whitening. I compute means and

standard deviations across time, i.e., per-frequency and standardise each frequency

band using these values. The average frequency response becomes flat (equalised).
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This method has been used in the literature for tagging [15], singing voice detection

[88] and transcription [58].

• A-weighted: I apply the international standard IEC 61672:2003 A-weighting curve,

which approximates human perception of loudness as a function of frequency.

• Bypass: Do not apply any processing, i.e., f : X→ X

There are two other blocks which are mutually independent and also independent to

frequency weights schemes.

• per-sample stdd: Excerpt-wise normalisation with its overall mean and standard

deviation, i.e., using statistics across time and frequency of each spectrogram.

• ×10 scaler: Multiply the input spectrogram by 10, i.e.,f : X→ 10X.

In the following sections, I discuss result on frequency weighting and scaling effects

respectively.

5.2.3.1 Frequency weighting

This process is related to loudness, i.e., human perception of sound energy [49], which

is a function of frequency. The sensitivity of the human auditory system drops substan-

tially below a few hundred Hz1, hence music signals are often produced to exhibit higher

physical energy in the lower frequency range in order to be perceptually balanced. This

is illustrated in Figure 5.4, where uncompensated average energy measurements corre-

sponding to the Bypass curve (shown in green) yield a peak at low frequencies. This

imbalance affects neural network activations in the first layer which may influence perfor-

mance. To assess this effect, I tested three frequency weighting approaches. Their typical

profiles are shown in Figure 5.4. In all three strategies, excerpt-wise standardisation is

used to alleviate scaling effects (see Section 5.2.3.2).

1See equal-loudness contours e.g. in ISO 226:2003.
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Figure 5.4: Average frequency magnitude of randomly selected 200 excerpts
with three frequency-axis normalisation. A per-sample (excerpt)
standardisation follows to remove the effect of different overall
average magnitude.

The test results show that networks using the three strategies all achieve similar AUC

scores. The results are illustrated in Figure 5.5 where the colours indicate normalization

schemes.2 The performance differences within four groups {1, 1s, 2, 2s} shown in Figure

5.5 are small and none of them are significantly different the others, which indicates they

do not produce a significant effect on the training. The curves in Figure 5.4 show the

average input magnitudes over frequency. These offsets change along frequency, but the

change does not seem large enough to corrupt the local patterns due to the locality of

convnets, and therefore the network is learning useful representations without significant

performance differences within each group.

5.2.3.2 Analysis of scaling effects

For a number of reasons discussed below, we may assume a performance increase if we

scale the overall input magnitudes. During training using gradient descent, the gradient

of error with respect to weights ∂E
∂W is proportional to ∂

∂W f(W>X) where f is the

activation function. This means that the learning rate of a layer is proportional to the

magnitude of input X. In particular, the first layer usually receives the weakest error

backpropagation, hence scaling of the input may affect the overall performance.

2Additionally, {1, 2 vs. 1s, 2s} compares scaling effect (see Section 5.2.3.2) and {1, 1s} vs. {2, 2s}
compares the log-compression effect (see Section 5.2.4).
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Figure 5.5: Performance comparisons of different preprocessing procedures.
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Figure 5.6: histograms of the magnitude of mel-spectrogram time-frequency
bins with (left) and without (right) logarithmic compression. The
number of bins are 100 and both are normalised, i.e.,

∑100
i=1 0.01×

yi = 1. Log compression significantly affects the histogram, mak-
ing the distribution Gaussian (left), otherwise extremely skewed
(right). This is after standardisation and based on randomly
selected 100 tracks from the training set.

I tested the effect of this with the results shown in Figure 5.5. To this end, consider

comparing the matching colour bars of {1 vs. 1s} and {2 vs. 2s}. Here, the scaling

factor is set to 10 for illustration, however many possible values <100 were tested and
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showed similar results. In summary, this hypothesis is rebutted as scaling did not affect

the performance. The analysis of trained weights revealed that different magnitudes of

the input only affects the bias of the first convolutional layer. Training with scaling set

to ×10 results in about 3.4 times larger mean absolute value of the biases in the first

layer. This may be due to batch normalization [99] which compensates for the different

magnitudes by normalising the activations of convolutional layers.

5.2.4 Log-scaling of magnitudes

Lastly, I discuss how logarithmic compression of magnitudes, i.e. decibel scaling, affects

performance. This is considered standard preprocessing in music information retrieval.

The procedure is motivated by the human perception of loudness [49] which has a loga-

rithmic relationship with the physical energy of sound. Although learning a logarithmic

function may be a trivial task for neural networks, it can be difficult to implicitly learn an

optimal nonlinear compression when it is embedded in a complicated task. For the same

reason, a nonlinear compression was also shown to affect the performance in visual image

recognition using neural networks [122]. Figure 5.6 compares the histograms of the mag-

nitudes of time-frequency bins after zero-mean unit-variance standardisation. On the

left, a logarithmically compressed mel-spectrogram shows an approximately Gaussian

distribution without any extreme values. Meanwhile, the bins of linear mel-spectrogram

on the right is extremely condensed in a very small range while they range in wider region

overall. This means the network should be trained with higher numerical precision to

the input, hence more vulnerable to noise.

As a result, log-compressed mel-spectrograms always outperform the linear versions

as shown in Figure 5.5, where matching colour bars should be compared across within

{1 vs. 2} and {1s vs. 2s}3. The additional work introduced by not using log-compression

can be roughly estimated by comparing these scores to those networks when the training

data size is limited (shown in pink on the right of Figure 5.5). While this also depends

3Log-compressed STFT also outperformed linear STFT in the initial experiments.
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on other configurations of the task, seemingly twice the data is required to compensate

for the disadvantage of not using a log-compressed representation. This is a significant

difference as the non-trivial burden for collecting labelled data and training time. It is

noteworthy that this specific ‘doubling’ relationship would differ by the task and data,

e.g. [123].

5.3 Summary

In this chapter, I have shown that some of the input preprocessing methods can affect

the performance of neural networks for music tagging. I quantify this in terms of the

size of the training data required to achieve similar performances. Among several pre-

processing techniques tested in this study, only logarithmic scaling of the magnitude

resulted in significant improvement. In other words, the network was resilient to most

modifications of the input data except logarithmic compression of magnitudes in various

time-frequency representations. Considering the diverse nature of music tags that cover

genre, mood, and instruments, our results provide practical advice applicable in many

similar machine-listening problems, e.g., music genre classification or mood prediction.

Since the introduced experiments are based on pair-wise comparison instead of a grid-

search, there is a possibility in theory that a combination of non-optimal choices would

result in better performance. However, the parameters that I tested in this chapter do

not seem to interact each other, hence it is unlikely that such a combination exists. In

a long term, end-to-end approaches would get more attention and become a computa-

tionally viable option, but by then, a mel-spectrogram with log-magnitude would be at

least a good starting point for a new task/dataset in MIR.

A supervised learning system learns a suitable mapper f : X → Y . So far, as a

practitioner of neural networks in music research, I discussed all the three components

– music signal preprocessing (X), the network structures (f), and the properties of the

label (Y ). In the following chapter, I will introduce how can we re-use a trained network
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as a feature extractor that can be generally used in music classification and regression

tasks.
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Abstract

This chapter introduces my work on ‘transfer learning’, a method to re-use a

trained network on other tasks and/or datasets. In general, transfer learning is

gaining attention in the research fields because not every task/every researcher

are provided with a large dataset to train a network, which is true in many MIR

tasks.

In this chapter, I propose to use a pre-trained convnet feature. I show how this

convnet feature can serve as a general-purpose music representation. In the exper-

iments, a convnet is trained for music tagging and then transferred to other music-

related classification and regression tasks. The convnet feature outperforms the

baseline MFCC feature in all the considered tasks and several previous approaches

that are aggregating low- and high-level music features.

This chapter is based on my ISMIR 2017 paper, “Transfer Learning for Music

Classification and Regression Tasks” [11] which was awarded the best paper.

6.1 Introduction

Transfer learning is often defined as re-using parameters that are trained on a source

task for a target task, aiming to transfer knowledge between the domains. A common

motivation for transfer learning is the lack of sufficient training data in the target task.

When using a neural network, by transferring pre-trained weights, the number of train-

able parameters in the target-task model can be significantly reduced, enabling effective

learning with a smaller dataset.

A popular example of transfer learning is semantic image segmentation in computer

vision, where the network utilises rich information, such as basic shapes or prototypical

templates of objects, that were captured when trained for image classification [124].

Another example is pre-trained word embeddings in natural language processing. Word
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embedding, a vector representation of a word, can be trained on large datasets such as

Wikipedia [125] and adopted to other tasks such as sentiment analysis [126].

In the case of deep neural networks, a common approach is to freeze a once-trained

network, remove the final 1 or several layers, and add a new output layer which is trained

for the target task.

There have been several works on transfer learning in MIR. Hamel et al. proposed to

directly learn music features using linear embedding [127] of mel-spectrogram represen-

tations and genre/similarity/tag labels [64]. Oord et al. outlines a large-scale transfer

learning approach, where a multi-layer perceptron is combined with the spherical K-

means algorithm [128] trained on tags and play-count data [129]. After training, the

weights are transferred to perform genre classification and auto-tagging with smaller

datasets. In music recommendation, Choi et al. used the weights of a convolutional

neural network for feature extraction in playlist generation [130], while Liang et al. used

a multi-layer perceptron for feature extraction of content-aware collaborative filtering

[31].

6.2 Transfer learning for music

In this section, the proposed transfer learning approach is described. A convolutional

neural network (convnet) is designed and trained for a source task, and then, the network

with trained weights is used as a feature extractor for target tasks. The schematic of the

proposed approach is illustrated in Figure 6.1.

6.2.1 Convolutional neural networks for music tagging

I argue that music tagging is suitable as a source task because i) large training data is

available and ii) its rich label set covers various aspects of music, e.g., genre, mood, era,

and instrumentations. The convnet used in this chapter is Compact-convnet which was
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Figure 6.1: A block diagram of the training and feature extraction procedures. The
convnet structure is identical to Compact-convnet (Section 2.4). After
training, the feature maps from 1st–4th layers are subsampled using aver-
age pooling while the feature map of 5th layer is used as it is, since it is
already scalar (size 1 × 1). Those 32-dimensional features are concate-
nated to form a convnet feature.

introduce in 2.4 with the best performing input preprocessing strategy in Chapter 5. To

remind the details, a 96-bin mel-spectrogram (X) is used as the input to the convnet.

Its magnitude is mapped to decibel scale (log10 X). There are five layers of convolutional

and sub-sampling in the convnet as shown in Figure 6.1. This convnet structure with

2-dimensional 3×3 kernels and 2-dimensional convolution.

6.2.2 Representation transfer

In this section, I explain how features are extracted from a pre-trained convolutional

network. In the remainder of the chapter, this feature is referred to as pre-trained

convnet feature, or simply convnet feature.

It is already well understood how deep convnets learn hierarchical features in visual

image classification [131]. By convolution operations in the forward path, lower-level
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features are used to construct higher-level features. Subsampling layers reduce the size

of the feature maps while adding local invariance. In a deeper layer, as a result, the

features become more invariant to (scaling/location) distortions and more relevant to

the target task.

This type of hierarchy also exists when a convnet is trained for a music-related task.

Visualisation and sonification of convnet features for music genre classification has shown

the different levels of hierarchy in convolutional layers [13], [12]. (This is further discussed

in the following chapter, Chapter 7.)

Such a hierarchy serves as a motivation for the proposed transfer learning. Rely-

ing solely on the last hidden layer may not maximally extract the knowledge from a

pre-trained network. For example, low-level information such as tempo, pitch, (local)

harmony or envelope can be captured in early layers, but may not be preserved in deeper

layers due to the constraints that are introduced by the network structure: aggregat-

ing local information by discarding information in subsampling. For the same reason,

deep scattering networks [132] and a convnet for music tagging introduced in [17] use

multi-layer representations.

Based on this insight, I propose to use not only the activations of the final hidden

layer but also the activations of (up to) all intermediate layers to find the most effective

representation for each task. The final feature is generated by concatenating these fea-

tures as demonstrated in Figure 6.1, where all the five layers are concatenated to serve

as an example.

Given five layers, there are
∑5

n=1

(
5
n

)
= 31 strategies of layer-wise combinations. In

the experiment, I perform a nearly exhaustive search and report all results. I designate

each strategy by the indices of layers employed. For example, a strategy named ‘135’

refers to using a 32 × 3 = 96-dimensional feature vector that concatenates the first,

third, and fifth layer convnet features.

During the transfer, average-pooling is used for the 1st–4th layers to reduce the size
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of feature maps to 1×1 as illustrated in Figure 6.1. Averaging is chosen instead of max

pooling because it is more suitable for summarising the global statistics of large regions,

as done in the last layer in [133]. Max-pooling is often more suitable for capturing the

existence of certain patterns, usually in small and local regions1.

Lastly, there have been works suggesting random-weights (deep) neural networks

including deep convnet can work well as a feature extractor [134] [135] (Not identical, but

a similar approach is transferring knowledge from an irrelevant domain, e.g., visual image

recognition, to music task [136].) I report these results from random convnet features and

denote it as random convnet feature. Assessing performances of random convnet feature

will help to clarify the contributions of the pre-trained knowledge transfer versus the

contributions of the convnet structure and nonlinear high-dimensional transformation.

6.2.3 Classifiers and regressors of target tasks

Variants of Support vector machines (SVMs) [137, 138] are used as a classifier and regres-

sor. SVMs work efficiently in target tasks with small training sets, and outperformed

K-nearest neighbours in my work for all the tasks in a preliminary experiment. Since

there are many works that use hand-written features and SVMs, using SVMs enables us

to focus on comparing the performances of features.

SVMs were chosen for a number of reasons. First, with small amount of data, they

often outperform many other classifiers including neural networks. Second, within the

given ranges of the number of items and dimensionalities (few hundreds - thousands items

and up to 128 dimensions), SVMs can scale well, being trained in a reasonable amount of

time. Third, since SVMs were extremely popular in mid-2000s, there are enough number

of research that are based on SVMs but with different feature sets, which makes it easy

to evaluate the proposed convnet feature as a representation.

1Since the average is affected by zero-padding which is applied to signals that are shorter than 29
seconds, those signals are repeated to create 29-second signals. This only happens in Task 5 and 6 in
the experiment.
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Task Dataset name #clips Metric #classes

T1. Ballroom dance
genre classification

Extended ballroom [139] 4,180 Accuracy 13

T2. Genre classification Gtzan genre [140] 1,000 Accuracy 10
T3. Speech/music
classification

Gtzan speech/music [141] 128 Accuracy 2

T4. Emotion prediction EmoMusic (45-second) [142] 744
Coefficient of
determination (r2)

N/A
(2-dimensional)

T5. Vocal/non-vocal
classification

Jamendo [143] 4,086 Accuracy 2

T6. Audio event classification Urbansound8K [144] 8,732 Accuracy 10

Table 6-A: The details of the six tasks and datasets used in the transfer learn-
ing evaluation.

6.3 Preparation

6.3.1 Source task: music tagging

The training details of source task are identical to other cases in the previous chapters,

Chapter 3 and 4. In the source task, 244,224 preview clips of the Million Song Dataset

[103] are used with top-50 last.fm tags. Binary cross-entropy is used as the loss function.

The ADAM optimisation algorithm [145] is used for accelerating stochastic gradient

descent. The convnet achieves 0.849 AUC-ROC score (Area Under Curve - Receiver

Operating Characteristic) on the test set.

6.3.2 Target tasks

Six datasets are selected to be used in six target tasks. They are summarised in Table

6-A.

• Task 1: The Extended ballroom dataset consists of specific Ballroom dance sub-

genres.

• Task 2: The Gtzan genre dataset has been extremely popular, although some flaws

have been found [146].

• Task 3: The dataset size is smaller than the others by an order of magnitude.
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• Task 4: Emotion prediction on the arousal-valence plane. I evaluate arousal and

valence separately. I trim and use the first 29-second from the 45-second signals.

• Task 5. Excerpts are subsegments from tracks with binary labels (‘vocal’ and

‘non-vocal’ ). Many of them are shorter than 29s. This dataset is provided for

benchmarking frame-based vocal detection while I use it as a pre-segmented clas-

sification task, which may be easier than the original task.

• Task 6: This is a non-musical task. For example, the classes include air conditioner,

car horn, and dog bark. All excerpts are shorter than 4 seconds.

6.3.3 Baseline feature and random convnet feature

As a baseline feature, the means and standard deviations of 20 Mel-Frequency Cepstral

Coefficients (MFCCs), and their first and second-order derivatives are used. In this

chapter, this baseline feature is called MFCCs or MFCC vectors. MFCC is chosen since

it has been adopted in many music information retrieval tasks and is known to provide a

robust representation. Librosa [119] is used for MFCC extraction and audio processing.

The random convnet feature is extracted using the identical convnet structure of

the source task and after random weights initialisation with a normal distribution (‘he’

normalisation) [120] but without a training.

6.4 Experiments

6.4.1 Configurations

For Tasks 1-4, the experiments are done with 10-fold cross-validation using stratified

splits. For Task 5, pre-defined training/validation/test sets are used. The experiment

on Task 6 is done with 10-fold cross-validation without replacement to prevent using
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the sub-segments from the same recordings in training and validation. The SVM hyper-

parameters are optimised using grid-search based on the validation results. Kernel type-

/bandwidth of radial basis function and the penalty parameter are selected from the

ranges below:

• Kernel type: [linear, radial ]

– Bandwidth γ in radial basis function :

[1/23, 1/25, 1/27, 1/29, 1/211, 1/213, 1/Nf ]

• Penalty parameter C : [0.1, 2.0, 8.0, 32.0]

A radial basis function is exp(−γ|x − x′|2), and γ and Nf refer to the radial kernel

bandwidth and the dimensionality of feature vector respectively. With larger C, the

penalty parameter or regularisation parameter, the loss function gives more penalty to

misclassified items and vice versa. I use Scikit-learn [147] for these target tasks. The

code for the data preparation, experiment, and visualisation are available on GitHub2.

6.4.2 Results and discussion

Figure 6.2 shows a summary of the results. The scores of the i) best performing convnet

feature, ii) concatenating ‘12345’3 convnet feature and MFCCs, iii) MFCC feature, and

iv) state-of-the-art algorithms for all the tasks.

In all the six tasks, the majority of convnet features outperforms the baseline feature.

Concatenating MFCCs with ‘12345’ convnet feature usually does not show improvement

over a pure convnet feature except in Task 6, audio event classification. Although the

reported state-of-the-art is typically better, almost all methods rely on musical knowledge

and hand-crafted features, yet my features perform competitively. An in-depth look at

each task is therefore useful to provide insight.

2https://github.com/keunwoochoi/transfer learning music
3Again, ‘12345’ refers to the convnet feature that is concatenated from 1st–5th layers. For another

example, ‘135’ means concatenating the features from first, third, and fifth layers.

https://github.com/keunwoochoi/transfer_learning_music
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Figure 6.2: Summary of performances of the convnet feature (blue), MFCCs (pur-
ple), and state-of-the-art (red) for Task 1-6 (State-of-the-art of Task 5
does not exist).

In the following subsections, the details of each task are discussed with more results

presented from (almost) exhaustive combinations of convnet features as well as random

convnet features at all layers. For example, in Figure 6.3, the scores of 28 different

convnet feature combinations are shown with blue bars. The narrow, grey bars next to

the blue bars indicate the scores of random convnet features. The other three bars on

the right represent the scores of the concatenation of ‘12345’ + MFCC feature, MFCC

feature, and the reported state-of-the-art methods respectively. The rankings within the

convnet feature combinations are also shown in the bars where top-7 and lower-7 are

highlighted.

I only briefly discuss the results of random convnet features here. The best performing

random convnet features do not outperform the best-performing convnet features in any

task. In most of the combinations, convnet features outperformed the corresponding

random convnet features, although there are few exceptions. However, random convnet

features also achieved comparable or even better scores than MFCCs, indicating i) a

significant part of the strength of convnet features comes from the network structure

itself, and ii) random convnet features can be useful especially if there is not a suitable
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source task.

6.4.2.1 Task 1. Ballroom genre classification

Figure 6.3 shows the performances of different features for Ballroom dance classification.

The highest score is achieved using the convnet feature ‘123’ with 86.7% of accuracy.

The convnet feature shows good performances, even outperforming some previous works

that explicitly use rhythmic features.

The result clearly shows that low-level features are crucial in this task. All of the

top-7 strategies of convnet feature include the second layer, and 6/7 of them include the

first layer. On the other hand, the lower-7 are [‘5’, ‘4’, ‘3’, ‘45’, ‘35’, ‘2’, ‘25’], none of

which includes the first layer. Even ‘1’ achieves a reasonable performance (73.8%).

The importance of low-level features is also supported by known properties of this

task. The ballroom genre labels are closely related to rhythmic patterns and tempo [139]

[148]. However, there is no label directly related to tempo in the source task. Moreover,

deep layers in the proposed structure are conjectured to be mostly invariant to tempo.

As a result, high-level features from the fourth and fifth layers poorly contribute to the

task relative to those from the first, second, and third layers.

The state-of-the-art algorithm which is also the only algorithm that used the same

dataset due to its recent release uses 2D scale transform, an alternative representation

of music signals for rhythm-related tasks [149], and reports 94.9% of weighted average

recall. For additional comparisons, there are several works that use the Ballroom dataset

[150]. This has 8 classes and it is smaller in size than the Extended Ballroom dataset

(13 classes). Laykartsis and Lerch [151] combines beat histogram and timbre features to

achieve 76.7%. Periodicity analysis with SVM classifier in Gkiokas et al. [152] respectively

shows 88.9%/85.6 - 90.7%, before and after feature selection.
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Figure 6.3: Performances of Task 1 - Ballroom dance genre classification of con-
vnet features (with random convnet features in grey), MFCCs, and the
reported state-of-the-art method. (Note the exception that the state-of-
the-art score is reported in weighted average recall.)
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Figure 6.4: Performances of Task 2 - Gtzan music genre classification of convnet fea-
tures (with random convnet features in grey), MFCCs, and the reported
state-of-the-art method.

6.4.2.2 Task 2. Gtzan music genre classification

Figure 6.4 shows the performances on Gtzan music genre classification. The best-

performing convnet feature shows 89.8% while the concatenated feature and MFCCs

respectively show only 78.1% and 66.0% of accuracy. Although there are methods that

report accuracies higher than 94.5%, I set 94.5% as the state-of-the-art score following

the dataset analysis in [146], which shows that the perfect score cannot surpass 94.5%

considering the noise in the Gtzan dataset.

Among a significant number of works that use the Gtzan music genre dataset, I
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describe four methods in more detail. Three of them use an SVM classifier, which enables

us to focus on the comparison with the proposed feature. Arabi and Lu [153] is most

similar to the proposed convnet features in a way that it combines low-level and high-

level features and shows a similar performance. Beniya et al. [154] and Huang et al. [155]

report the performances with many low-level features before and after applying feature

selection algorithms. Only the latter outperforms the proposed method and only after

feature selection.

• Arabi and Lu [153] uses not only low-level features such as {spectral centroid/flatness/roll-

off/flux}, but also high-level musical features such as {beat, chord distribution and

chord progressions}. The best combination of the features shows 90.79% of accu-

racy.

• Beniya et al. [154] uses a particularly rich set of statistics such as {mean, stan-

dard deviation, skewness, kurtosis, covariance} of many low-level features includ-

ing {RMS energy, attack, tempo, spectral features, zero-crossing, MFCC, dMFCC,

ddMFCC, chromagram peak and centroid}. The feature vector dimensionality is

reduced by MRMR (max-relevance and min-redundancy) [156] to obtain the high-

est classification accuracy of 87.9%.

• Huang et al. [155] adopts another feature selection algorithm, self-adaptive har-

mony search [157]. The method uses statistics such as {mean, standard devia-

tion} of many features including {energy , pitch, and timbral features} and their

derivatives. The original 256-dimensional feature achieved 84.3% of accuracy which

increases to 92.2% and 97.2% after feature selection.

• Reusing AlexNet [2], a pre-trained convnet for visual image recognition achieved

78% of accuracy [136].

In summary, the convnet feature achieves better performance than many approaches

which use extensive music feature sets without feature selection as well as some of the

approaches with feature selection. For this task, it turns out that combining features
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and ‘5’ for Gtzan music genre classification. Numbers denote the differ-
ences of scores.
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Figure 6.6: Performances of Task 3 - Speech/music classification of convnet features
(with random convnet features in grey), MFCCs, and the reported state-
of-the-art method. All scores of convnet features and SoTA are 1.0 and
omitted in the plot.

from all layers is the best strategy. In the results, ‘12345’, ‘2345’, and ‘1234’ are three

best configurations, and all of the top-7 scores are from those strategies that use more

than three layers. On the contrary, all lower-7 scores are from those with only 1 or 2

layers. This is interesting since the majority (7/10) of the target labels already exists in

source task labels, by which it is reasonable to assume that the necessary information can

be provided only with the last layer for those labels. Even in such a situation, however,

low-level features contribute to improving the genre classification performance4.

Among the classes of target task, classical and disco, reggae do not exist in the source

task classes. Based on this, I consider two hypotheses, i) the performances of those three

classes may be lower than the others, ii) low-level features may play an important role

to classify them since high-level feature from the last layer may be biased to the other

7 classes which exist in the source task. However, both hypotheses are rebutted by

4On the contrary, in Task 5 - music emotion classification, high-level feature plays a dominant role
(see Section 6.4.2.4).
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comparing the performances for each genres with convnet feature ‘5’ and ‘12345’ as in

Figure 6.5. First, with ‘5’ convnet feature, classical shows the highest accuracy while

both disco and reggae show accuracies around the average accuracy reported over the

classes. Second, aggregating early-layer features affects all the classes rather than the

three omitted classes. This suggests that the convnet features are not strongly biased

towards the genres that are included in the source task and can be used generally for

target tasks with music different from those genres.

6.4.2.3 Task 3. Gtzan speech/music classification

Figure 6.6 shows the accuracies of convnet features, baseline feature, and state-of-the-art

[158] with low-level features including MFCCs and sparse dictionary learning for Gtzan

music/speech classification. A majority of the convnet feature combinations achieve

100% accuracy. MFCC features achieve 99.2%, but the error rate is trivial (0.8% is one

sample out of 128 excerpts).

Although the source task is only about music tags, the pre-trained feature in any

layer easily solved the task, suggesting that the nature of music and speech signals in

the dataset is highly distinctive.

6.4.2.4 Task 4. Music emotion prediction

Figure 6.7 shows the results for music emotion prediction (Task 4). The best performing

convnet features achieve 0.633 and 0.415 r2 scores on arousal and valence axes respec-

tively.

On the other hand, the state-of-the-art algorithm reports 0.704 and 0.500 r2 scores

using music features with a recurrent neural network as a classifier [159] that uses 4,777

audio features including many functionals (such as quantiles, standard deviation, mean,

inter peak distances) of 12 chroma features, loudness, RMS Energy, zero crossing rate,
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Figure 6.7: Performances of Task 4a (arousal) and 4v (valence) - Music emotion
prediction of convnet features (with random convnet features in grey),
MFCCs, and the reported state-of-the-art method.

14 MFCCs, spectral energy, spectral roll-off, etc.

For the prediction of arousal, there is a strong dependency on the last layer feature.

All top-7 performances are from the feature vectors that include the fifth layer. The first

layer feature also seems important, since all of the top-5 strategies include the first and

fifth layer features. For valence prediction, the third layer feature seems to be the most

important one. The third layer is included in all of the top-6 strategies. Moreover, ‘3’

strategy was found to be best performing among strategies with single layer feature.

To summarise the results, the predictions of arousal and valence rely on different

layers, for which they should be optimised separately. In order to remove the effect of

the choice of a classifier and assess solely the effect of features, I compare the proposed

approach to the baseline method of [159] which is based on the same 4,777 features with
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Figure 6.8: Performances of Task 5 - Vocal detection of convnet features (with ran-
dom convnet features in grey) and MFCCs.
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Figure 6.9: Performances of Task 6 - Acoustic event detection of convnet features
(with random convnet features in grey), MFCCs, and the reported state-
of-the-art method.

SVM, not a recurrent neural network. The baseline method achieves .541 and .320 r2

scores respectively on arousal and valence, both of which are lower than those achieved

by using the proposed convnet feature. This further confirms the effectiveness of the

proposed convnet features.

6.4.2.5 Task 5. Vocal/non-vocal classification

Figure 6.8 presents the performances on vocal/non-vocal classification using the Jamendo

dataset [143]. There is no known state-of-the-art result, as the dataset is usually used

for frame-based vocal detection/segmentation. Pre-segmented Excerpt classification is

the task I formulate in this chapter. For this dataset, the fourth layer plays the most
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important role. All the 14 combinations that include the fourth layer outperformed the

other 14 strategies without the fourth layer.

6.4.2.6 Task 6. Acoustic event detection

Figure 6.9 shows the results on acoustic event classification using Urbansound8K dataset

[144]. Since this is not a music-related task, there are no common tags between the source

and target tasks, and therefore the final-layer feature is not expected to be useful for the

target task.

The strategy of concatenating ‘12345’ convnet features and MFCCs yields the best

performance. Among convnet features, ‘2345’, ‘12345’, ‘123’, and ‘234’ achieve good

accuracies. In contrast, those with only one or two layers do not perform well. I was not

able to observe any particular dependency on a certain layer.

Since the convnet features are trained on music, they do not outperform a dedicated

convnet trained for the target task. The state-of-the-art method is based on a deep

convolutional neural network with data augmentation [160]. Without augmenting the

training data, the accuracy of convnet in the same work is reported to be 74%, which is

still higher than my best result (71.4%).5

The convnet feature still shows better results than conventional audio features, demon-

strating its versatility even for non-musical tasks. The method in [144] with {minimum,

maximum, median, mean, variance, skewness, kurtosis} of 25 MFCCs and {mean and

variance} of the first and second MFCC derivatives (225-dimensional feature) achieved

only 68% accuracy using the SVM classifier. This is worse than the performance of the

best performing convnet feature.

It is notable again that unlike in the other tasks, concatenating convnet feature and

MFCCs results in an improvement over either a convnet feature or MFCCs (71.4%).

5Transfer learning targeting audio event classification was recently introduced in [72] and achieved a
state-of-the-art performance.
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This suggests that they are complementary to each other in this task.

6.5 Summary

In this chapter, I proposed a transfer learning approach using deep learning and eval-

uated it on six music information retrieval and audio-related tasks. The pre-trained

convnet was first trained to predict music tags and then aggregated features from the

layers were transferred to solve genre classification, vocal/non-vocal classification, emo-

tion prediction, speech/music classification, and acoustic event classification problems.

Unlike the common approach in transfer learning, I proposed to use the features from

every convolutional layer after applying an average-pooling to reduce their feature map

sizes.

In the experiments, the pre-trained convnet feature showed good performance over-

all. It outperformed the baseline MFCC feature for all the six tasks, a feature that is

very popular in music information retrieval tasks because it gives reasonable baseline

performance in many tasks. It also outperformed the random-weights convnet features

for all the six tasks, demonstrating the improvement by pre-training on a source task.

Somewhat surprisingly, the performance of the convnet feature is also very competitive

with state-of-the-art methods designed specifically for each task. The most important

layer turns out to differ from task to task, but concatenating features from all the layers

generally worked well. For all the five music tasks, concatenating MFCC feature onto

convnet features did not improve the performance, indicating the music information in

MFCC feature is already included in the convnet feature.

Earlier in the chapter, I mentioned there is a hierarchy among the trained convolution

kernels in a deep convnet. This is a well-known property that is revealed by some

interesting methods to look into a trained network. In the following chapter, I introduce

my extension of one of those methods to music signal.
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Abstract

In this chapter, which is the last chapter of the main body of this thesis, I intro-

duce research about interpreting the neural networks by analysing some trained

networks. Although each experiment in this chapter is based on a specifically

trained network, I focus on the properties that would generalise in (convolutional)

neural networks for music classification including tagging.

By understanding a trained deep neural network, we can expand our knowledge

of how it works, what would be its potential problem, and even the domain, in

our case, music and tags. I propose two methods for this. First, auralisation of

trained features shows what are learned when the network learn to classify music

items. It shows that the early layers learn the low-level, onset-related features

while the deep layers represent some time-frequency patters, or sound textures,

which construct a part of timbre. Second, label vector analysis showed how a

trained network sees the relationships of music tags, revealing some unexpected

similarity between tags.

The works introduced in this chapter are based on my papers, “Auralisation of

Deep Convolutional Neural Networks: Listening to Learned Features” [13] and

“The Effects of Noisy Labels on the Deep Convolutional Neural Networks for

Music Classification” [7].

The auralisation was done with music genre classification, not music tagging,

because it was done during my research internship in 2015 with a private genre

classification dataset of the company and the experiment involves listening many

clips to interpret the learned features.

7.1 Introduction

Deep neural networks are often accused of being ‘black box’ although anyone can inves-

tigate inside the ‘box’ which simply consists of numbers. However, it is not a totally
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false accusation because the problem still exists when there are easily millions of boxes.

The first method is the one that is named ‘auralisation’. As the name indicates, it

is a method to understand a trained convnet by auralising (or sonifying) the trained

kernels of convolutional neural networks. This is an extension of a popular work that

visualises the trained kernels [131] and helps to understand convnets that are trained for

music classification tasks.

The second method utilises ‘label vectors’ which represents how the networks combine

the trained feature to make the predictions in the output layer. This approach directly

interprets the behaviour of a trained network with respect to the output labels.

7.2 Auralisation

7.2.1 Motivation

The mechanism of feature learning in convnets is relatively clear when the target shapes

are known. For example, the convolution filters that are learned for chord recognition

[57] or transcription [58] are not mystified; they are trained to capture certain spectral

distributions of interest. What has not been demystified yet is how convnets work for

tasks such as mood recognition or genre classification. Those tasks are related to sub-

jective, perceived impressions, which are yet in questions. Their relation to acoustical

properties and whether neural networks models can learn a relevant and optimal repre-

sentation of sound that helps to boost performance in these tasks is an open question. As

a result, researchers currently lack in understanding of what is learned by convnets when

convnets are used in those tasks, even if it shows state-of-the-art performance [4, 54].

One effective way to examine convnets was introduced in [131], where the features

in deeper levels are visualised by a method called deconvolution. Deconvolving and un-

pooling layers enable people to see which part of the input image are focused on by
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each filter. However, it does not provide a complete, relevant explanation of convnets on

music. Unlike computer vision, where outlines of images play an important role in many

tasks, spectrograms mainly consist of continuous, smooth gradients. There are not only

local correlations but also global correlations such as harmonic structures and rhythmic

events. These differences inspire to develop a new approach to understand convnets for

music.

7.2.2 Visualisation of convnets

The behaviour of a convnet is not deterministic as the operation of max-pooling varies

by the input. This is why analysing the learned weights of convolutional layers does not

provide satisfying explanations.

Instead, a way to understand a convnet is to visualise the features given different

inputs. Visualisation of convnets was introduced in [131], which showed how high-level

features (postures/objects) are constructed by combining low-level features (lines/curves),

as illustrated in Figure 7.1. In the figure, the shapes that features represent evolve. In the

first layers, each feature simply responds to lines with different directions. By combining

them, the features in the second and third layers can capture certain shapes - a circle,

textures, honeycombs, etc. During this forward path, the features not only become more

complex but also allow slight variances, and that is how the similar but different faces

of dogs can be recognised by the same feature in Layer 5 in Figure 7.1. Finally, the

features in the final layer successfully capture the outlines of the target objects such as

cars, dogs, and human faces.

7.2.3 Auralisation of convnets

Although we can obtain spectrograms by deconvolution, deconvolved spectrograms do

not necessarily facilitate an intuitive explanation. This is because seeing a spectrogram

does not necessarily provide clear intuition that is comparable to observing an image.
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Figure 7.1: Deconvolution results of convnets trained for image classification.
In each layer, the responses of the filters are shown on the left
with gray backgrounds and the corresponding parts from images
are shown on the right. Image is courtesy of [131].

To solve this problem, I propose to reconstruct audio signals from deconvolved spec-

trograms, which is called auralisation. This requires an additional stage for inverse-

transformation of a deconvolved spectrogram. The phase information is provided by the

phase of the original time-frequency representations, following the generic approach in

spectrogram-based sound source separation algorithms. STFT is therefore recommended

as it allows us to obtain a time-domain signal easily.

A pseudo code of the auralisation is described in Listing 7.2.3. Line 1 indicates that

we have a convolutional neural network that is trained for a target task. In line 2-4,

an STFT representation of a music signal is provided. Line 5 computes the weights of

the neural networks with the input STFT representation and the result is used during

the deconvolution of the filters in line 6 ([131] for more details). Line 7-9 shows that

the deconvolved filters can be converted into time-domain signals by applying the phase

information and inverse STFT.
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1 convnet_model = train_convnets (*args) # convnet model

2 src = load(wavfile)

3 SRC = stft(src)

4 weights = unpool_info(convnet_model , SRC.mag)

5 deconved_imgs = deconv(weights , SRC.mag) # deconvolution

6 for img in deconved_imgs:

7 signal = inverse_stft(img * SRC.phase) # apply inverse STFT

8 wav_write(signal) # output the auralised signal

Listing 7.1: A pseudo-code of auralisation procedure

7.2.4 Experiments and discussions

I implemented a convnet for music genre classification with a dataset obtained from Naver

Music 1. All audio signal processing was done using Librosa [161]. Three genres (ballad,

dance, and hip-hop) were classified using 8,000 songs in total. In order to maximally

exploit the data, 10 clips of 4 seconds were extracted for each song, generating 80,000 data

samples by STFT. STFT is computed with 512-point windowed Fast Fourier Transform

with 50% hop size and sampling rate of 11,025 Hz. 6,600/700/700 songs were designated

as training/validation/test sets respectively.

The convnet architecture consists of 5 convolutional layers of 64 feature maps and

3-by-3 convolution kernels, max-pooling with size and stride of (2,2), and two fully

connected layers as illustrated in the Figure 7.2. It is similar to Compact-convnet. This

system showed 75% of the classification accuracy on average.

It is noteworthy that the homogeneous size of convolutional kernels (3×3) results in

the different effective widths and heights by layer. This is due to the subsampling and

summarised in the table 7-A.

1http://music.naver.com, a Korean music streaming service
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Figure 7.2: A block diagram of the trained convnet for genre classification.

Layer Convolution Effective width Effective height

1 3×3 93 ms 86 Hz

2 3×3 162 ms 151 Hz

3 3×3 302 ms 280 Hz

4 3×3 580 ms 538 Hz

5 3×3 1137 ms 1270 Hz

Table 7-A: The effective sizes of convolutional kernels

7.2.4.1 Deconvolved results with music excerpts

The deconvolution-based approach is example-based. In this chapter, I selected four

music signals; a piano solo piece by Bach, a Korean popular song with a female vocalist

by Lena Park (Dream), another Korean popular song with a male vocal by Toy, and a

rap song by Eminem. Table 7-B provides more information about the music items. In the

following section, several selected examples of deconvolved spectrograms are illustrated

with descriptions.2 In each figure, the selected features are presented with a musical

interpretation. During the overall process, listening to auralised signals helped to identify

patterns in the learned features.

2The results are demonstrated on-line at http://wp.me/p5CDoD-k9. An example code of the deconvo-
lution procedure is released at https://github.com/keunwoochoi/Auralisation

http://wp.me/p5CDoD-k9
https://github.com/keunwoochoi/Auralisation
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Name Summary

Bach Classical, piano solo

Dream Pop, female vocal, piano, bass guitar

Toy Pop, male vocal, drums, piano, bass guitar

Eminem Hip-hop, male vocal, piano, drums, bass guitar

Table 7-B: Descriptions of the four selected music items

Bach
Original

Dream Toy Eminem

Bach
[Feature 1-9], Crude onset detector

Dream Toy Eminem

Bach
[Feature 1-27], Onset detector

Dream Toy Eminem

Figure 7.3: Spectrograms of deconvolved signal in Layer 1

7.2.4.2 Layer 1

(a) Feature 1-9 (b) Feature 1-27
0.25

0.15

0.00

0.15

Figure 7.4: The learned weights of Features (a) 1-9 and (b) 1-27. The distri-
butions along rows and columns roughly indicate high-pass filter
behaviours along x-axis (time axis) and low-pass filter behaviours
along y-axis (frequency axis). As a result, they behave as onset
detectors.

In Layer 1, I selected two features to present their deconvolved spectrograms as well
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as the corresponding weights. Because the weights in the first layer are applied to the

input directly without max-pooling, the mechanism are determined and can be analysed

by inspecting the weights regardless of input. For instance, Feature 1-9 (9th feature in

Layer 1) and Feature 1-27, works as an onset detector. The learned weights are shown

in Figure 7.4. By inspecting the numbers, it can be easily understood that the network

learned to capture vertical lines. In spectrograms, vertical lines often correspond to the

time-frequency signature of percussive instruments.

The roles of learned features are not mutually exclusive in Layer 1. For example, many

features in Layer 1 turn out to learn to represent onset detectors or suppressors. It is

a similar result to the result that is often obtained in visual image recognition, where

convnets learn line detectors with various directions (also known as edge detectors).

With spectrograms, however, the network focuses on detecting horizontal and vertical

edges rather than diagonal edges. This may be explained by the energy distribution

in spectrograms. Horizontal and vertical lines are main components of harmonic and

percussive instruments, respectively, while diagonal lines mainly appear in the case of

frequency modulation, which is probably less common.
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Bach
Original

Dream Toy Eminem

Bach
[Feature 2-0], Good onset detector

Dream Toy Eminem

Bach
[Feature 2-1], Bass note selector

Dream Toy Eminem

Bach
[Feature 2-10], Harmonic selector

Dream Toy Eminem

Bach
[Feature 2-48], Melody (large energy)

Dream Toy Eminem

Figure 7.5: Spectrograms of deconvolved signal in Layer 2

7.2.4.3 Layer 2

Layer 2 shows more evolved, complex features compared to Layer 1. Feature 2-0 is

an advanced (or stricter) onset detectors than the onset detectors in Layer 1. This

improvement can be explained from two perspectives, which are not mutually exclusive.

First, as the features in Layer 2 can cover a wider range both in time and frequency axis
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than in layer 1, non-onset parts of signals can be suppressed more effectively. Second,

the multiple onset detectors in Layer 1 can be combined, enhancing their effects.

Feature 2-1 (bass note), roughly selects the lowest fundamental frequencies given

harmonic patterns. Feature 2-10 behaves as a harmonic component selector, excluding

the onset parts of the notes. Feature 2-48 is another harmonic component selector with

small differences. It behaves as a short melodic fragments extractor, presumably by

extracting the most salient harmonic components.

7.2.4.4 Layer 3

The patterns of some features in Layer 3 are similar to that of Layer 2. However, some

of the features in Layer 3 contain higher-level information e.g. focusing on different

instrument classes.

The deconvolved signal from Feature 3-1 consists of onsets of harmonic instruments,

being activated by voices and piano sounds but not highly activated by hi-hats and

snares. The sustain and release parts of the envelopes are effectively filtered out in this

feature. Feature 3-7 is similar to Feature 2-48 but it seems more accurate at selecting the

fundamental frequencies of top notes. Feature 3-38 extracts the sounds of kick drum with

a very good audio quality. Feature 3-40 effectively suppresses transient parts, resulting

in softened signals.

The learned features imply that the roles of some learned features are analogous to

tasks such as harmonic-percussive separation, onset detection, and melody estimation.

7.2.4.5 Layer 4

Layer 4 is the second last layer of the convolutional layers in the architecture and expected

to represent high-level features. In this layer, a kernel covers a large area (580 ms×538

Hz) and the size affects the deconvolved spectrograms. The activation is rather sparse



Chapter 7. Understanding Convnets for Music Classification 112

Bach
Original

Dream Toy Eminem

Bach
[Feature 3-1], Better onset detector

Dream Toy Eminem

Bach
[Feature 3-7], Melody (top note)

Dream Toy Eminem

Bach
[Feature 3-38], Kick drum extractor

Dream Toy Eminem

Bach
[Feature 3-40], Percussive eraser

Dream Toy Eminem

Figure 7.6: Spectrograms of deconvolved signal in Layer 3

due to combined ReLU activations are applied to a larger area. It becomes trickier

to name the features by their characteristics, although their activation behaviours are

consistent. Feature 4-11 removes vertical lines and captures another harmonic texture.

Although the coverages of the kernels increase, the features in Layer 4 try to find patterns

more precisely rather than simply respond to common shapes such as edges as done in

the early layers. As a result, the activations become more sparse because a feature
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Bach
Original

Dream Toy Eminem

Bach
[Feature 4-5], Lowest notes selector

Dream Toy Eminem

Bach
[Feature 4-11], Vertical line eraser

Dream Toy Eminem

Bach
[Feature 4-30], Long horizontal line selector

Dream Toy Eminem

Figure 7.7: Spectrograms of deconvolved signal in Layer 4

responds only if a certain, unusual pattern.

7.2.4.6 Layer 5

This is the final convolutional layer of the convnet and therefore it represents the highest-

level features among all the learned features. At this stage, naming the feature is tricky

by either listening to auralised signals or seeing deconvolved spectrograms. Feature 5-11,

5-15, and 5-33 are therefore named as textures. Feature 5-56, harmo-rhythmic texture,

is activated almost only if strong percussive instruments and harmonic patterns overlap.

Feature 5-33 is completely inactivated with the fourth excerpt, which is the only Hip-Hop
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Bach
Original

Dream Toy Eminem

Bach
[Feature 5-11], texture 1

Dream Toy Eminem

Bach
[Feature 5-15], texture 2

Dream Toy Eminem

Bach
[Feature 5-56], Harmo-Rhythmic structure

Dream Toy Eminem

Bach
[Feature 5-33], texture 3

Dream Toy Eminem

Figure 7.8: Spectrograms of deconvolved signal in Layer 5

music, suggesting it may be useful for classification of (non-)Hip-Hop.
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7.2.5 Limitations

The proposed approach have some limitations, which is summarised as below.

• Auralisation requires listening, therefore it has some limitations that are common

in audio listening tests. Listening is time-consuming and subjective.

• Although the motivation was to listen instead of to see, sometimes the characteris-

tics of the deconvolved item are subtle and easier to find by visual inspection than

aural inspection.

• The auralising process itself is scalable but listening the result is not. This problem

may be address by pruning less-important kernels before auralisation so that the

number of items to listen to can be reduced.
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7.3 Label vector analysis

7.3.1 Introduction

In the previous sections, I investigated the learned features by feeding the network with

spectrograms, focussing on the input side of the network. In this section, I present label

vector analysis, which is more about the network and the output label.

It is worth considering how the groundtruth is distilled into the network after train-

ing, and whether we can leverage the trained network beyond our particular task. To

answer these questions we use the trained network weights to assess how the network

‘understands’ music content by its label. This analysis also provides a way to discover

unidentified relationships between labels and the music. The goal of label vector anal-

ysis is to better understand network training as well as assess its capacity to represent

domain knowledge, i.e., relationships between music tags that is not explicitly shown in

the data.

7.3.2 Compact-convnet and LVS

I use the Compact-convnet that introduced in Section 2.4 and described again in Table

2-B. To remind the details, it was trained for predicting 50 music tags. In Compact-

convnet the output layer has a dense connection to the last convolutional layer. The

weights are represented as a matrix W ∈ RN×50, where N is the number of feature maps

(N=32 for our case) and 50 is the number of the predicted labels.

Figure 7.9: Label vector
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What really matters in this chapter is the method to analyse the network after train-

ing. In the prediction phase, the columns of W can be interpreted as N -dimensional

latent vectors since they represent how the networks combine information in the last

convolutional layer to make the final prediction. We call these label vectors.

The pairwise label vector similarity (LVS) is computed using the dot product, i.e.,

S(i, j) = w(i) · w(j) where i, j ≤ 50 or equivalently:

S = W> ·W, (7.1)

which yields a 50×50 symmetric matrix.

7.3.3 Results

LVS is illustrated in Figure 7.10. The pattern is similar to the values in NCO (normalised

co-occurrence, denoted as C(i, j)) shown in Figure 7.11 (see Chapter 3) which shows

the co-occurrence pattern in the groundtruth that the network is trained against. On

average, the similarities in S(i, j) are higher than those in C(i, j). In S, only four pairs

show negative values, ‘classic rock’ – ‘female vocalists’, and ‘mellow’ – {‘heavy metal’,

‘hard rock’, and ‘dance’}. In other words, label vectors are distributed in a limited space

corresponding to a 32 dimensional vector space, where the angle θ between w(i) and w(j)

is smaller than π/2 for most of the label vector pairs. This result can be interpreted in

two ways: how well the convnet reproduce the co-occurrence that was provided by the

training set; and if there is additional insight about music tags in the trained network.

First, the Pearson correlation coefficient of the rankings by LVS and NCO is 0.580.3.

The top 20 most similar label pairs are sorted and described in Table 7-C. The second

row of the table shows similar pairs according to the label vectors estimated by the net-

work. Eleven out of 20 pairs overlap with the top 20 NCO tuples shown in the top row

of the table. Most of these relations can be explained by considering the genre hierarchy.

3Because of the asymmetry of C(i, j), rankings of max(C(i, j), C(y, y)) are used.
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Figure 7.10: Label vector similarity matrix by Eq. 7.1 (of manually selected
23 tags, same in Figure 7.11, where symmetric components are
omitted and numbers are ×100 after dot product for visual clar-
ity.
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Figure 7.11: Normalised tag co-occurrence pattern of the selected 23 tags from
the training data. For the sake of visualisation, we selected 23
tags out of 50 that have high co-occurrences and represent dif-
ferent categories; genres, instruments and moods. The values are
computed using Eq. 3.1 (and are multiplied by 100, i.e., shown
in percentage), where yi and yj respectively indicate the labels
on the x-axis and y-axis. (This is an identical figure to Figure )
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Table 7-C: Top-20 Similar tag tuples by two analysis approaches. The first row
is by analysing co-occurrence of tags in groundtruth. The second
row is by the similarity of trained label vector (see 7 for details).
Common tuples are annotated with matching symbols.

Similar tags
by

groundtruth
labels

(alternative rock, rock)§ (indie rock, indie)# (House, dance)‡‡

(indie pop, indie) (classic rock, rock) (electronica, electronic)*

(alternative, rock) (hard rock, rock) (electro, electronic)**

(House, electronic) (alternative rock, alternative)¶ (catchy, pop)
(indie rock, rock) (60s, oldies)†† (heavy metal, metal)§§

(rnb, soul) (ambient, electronic) (90s, rock)

(heavy metal, hard rock)‡ (alternative, indie)‖

Similar tags
by

label
vectors

(electronica, electronic)* (indie rock, indie)# (female vocalist, female vocalists)
(heavy metal, hard rock)‡ (indie, indie pop) (sad, beautiful)
(alternative rock, rock)§ (alternative rock, alternative)¶ (happy, catchy)

(indie rock, alternative) (alternative, indie)‖ (rnb, sexy)

(electro, electronic)** (sad, Mellow) (Mellow, beautiful)
(60s, oldies)†† (House, dance)‡‡ (heavy metal, metal)§§

(chillout, chill) (electro, electronica)

Besides, pairs such as (‘female vocalists’, ‘female vocalists’) and (‘chillout’, ‘chill’) cor-

respond to semantically similar words. Overall, tag pairs showing high similarity (LVS)

reasonably represent musical knowledge and correspond to high NCO values computed

from the ground truth. This confirms the effectiveness of the network to predict subjec-

tive and high-level semantic descriptors from audio only – the LVS, which is computed

from audio-based feature, approximated the NCO.

Second, there are several pairs that are i) high in LVS, ii) low in NCO, and iii) pre-

sumably music listeners would reasonably agree with their high similarity. These pairs

show the extracted representations of the trained network can be used to measure tag-

level musical similarities even if they are not explicitly shown in the groundtruth. For

example, pairs such as (‘sad’, ‘beautiful’), (‘happy’, ‘catchy’) and (‘rnb’, ‘sexy’) are in

the top 20 of LVS (6th, 9th, and 12th similarities with 0.88, 0.86, and 0.82 of similar-

ity values respectively). On the contrary, according to the ground truth, they are only

129th, 232nd, 111th co-occurring with 0.13, 0.08, and 0.14 of co-occurrence likelihood

respectively.
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7.4 Summary

In this chapter, I introduced two methods and experiments results, both of which aim

to explain the trained convnets.

The first approach, auralisation, is an example-based investigation of a convnet that

is extended to music signals. This is done by inverse-transformation of deconvolved

spectrograms to obtain time-domain audio signals. Listening to the audio signal enables

researchers to understand the mechanism of convnets that are trained with audio signals.

In the experiments, I trained a 5-layer convnet to classify genres. Selected learnt features

are reported with interpretations from musical and music information aspects.

The second approach, label vector analysis, is a more direct investigation of a trained

convnet regardless of the input signals. The analysis based on LVS indirectly validates

that the network learned meaningful representations that correspond to the groundtruth.

Moreover, we found several pairs that are considered similar by the network which may

help to extend our understanding of the relation between music and tags.

Both of the approaches help us to understand the ‘black boxes’ of deep neural net-

works when they are trained for music classification. The auralisation results showed

the different levels of abstraction in the layers of the deep convnet which is trained for

music genre classification. The label vector analysis showed the convnet reproduce the

provided groundtruth and the training even yield a network that can analyse the musical

content that are not explicitly given by the training data.
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Conclusion

8.1 Summary

I have presented various topics that are related to music tagging and deep neural net-

works. Through chapters 3 to 7, I have proposed motivations, methods, and experiments

and showed results that contribute to understanding, utilising, comparing, and re-using

convnet-based music taggers.

In Chapter 3, I quantified the noise on the labels of the largest public music tagging

dataset, the million song dataset, as well as its effect on the training and evaluation of

convnet-based music taggers. I could observe considerable label noise, even over 50%

of error rates for certain labels. Based on the observation, I defined tagability which i)

indicates how a tag is likely to be positively labelled under the weakly-labelling scheme

and ii) is shown to be a measure of the performance degradation per tag. I observed

that label noise was negatively correlated with tagability which is positively correlated

to the classification performance. I could draw a conclusion that low unusualness (which

is positively correlated to tagability) results in the noisy label, which then harms the

training.

121
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In Chapter 4, I proposed a convolutional neural network structure for music tagging.

Its performance was extensively compared with the performance of other structures.

The comparison was done by controlling the number of parameters. With the results,

the performances were presented against i) the number of parameters (∼ the memory

usage) and ii) training time (∼ the computation complexity). In the experiment, 2D

convnet and convolutional recurrent neural networks achieved the best performances with

fixed sizes of parameters, showing a trade-off between computation time and memory

usage. The results showed that recurrent layers can be used for better performance

while a simpler, fully convolutional network may be preferred for a quicker training and

prediction.

In Chapter 5, I showed the comparison results of convnet-based music tagger with

varying the audio signal processing methods. The experiment result showed a logarithmic

mapping of the time-frequency magnitude is crucial while the network turned out to be

resilient to other distortions.

In Chapter 6, I proposed a transfer learning method based on convnet music tagger.

Transfer learning is to use features from a trained deep neural network to a problem with

a smaller dataset (which is the case of many MIR problems) and/or for those who cannot

utilise a hardware resource for training deep neural networks. Unlike usual transfer

learning approaches, I proposed to use the feature maps of all layers. The proposed

feature resulted in strong performances in the five selected MIR tasks, outperforming

MFCCs and many audio descriptors.

In Chapter 7, I presented two methods to investigate and explain convnets for music

classification. The first method is auralisation, which consists of converting the learned

features into audio signals so that we can attempt to understand them by listening.

The second method is label vector analysis, which showed the relationship between the

classes from the perspective of the trained neural network. With auralisation results I

showed that there are some low-level, local features learned in the earlier layers, some of

which are related to onsets; while there are high-level features learned in the following
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layers, overall, constituting a feature hierarchy, which would be worth analysing deeper.

With label vector analysis, I could find that the neural networks can deal with synonym

problem well although the label did not necessarily co-occur. This is done by the net-

work being able to learn some representations that are linked to the audio content that

contributes to the label.

8.2 Conclusion

Let’s recall the fundamental hypothesis presented in Chapter 1.

We find effective deep learning practices for the task of music tagging that

improves the classification performance

I have been providing a good evidence to show that with the appropriate archi-

tecture, the appropriate input preprocessing, understanding of the dataset, and

understanding of neural networks, we can automatically tag music audio signals

in a meaningful and useful way.

By appropriate architecture, the convolutional recurrent neural network archi-

tecture introduced in Chapter 4 achieved a better performance than existing archi-

tectures.

By appropriate input preprocessing, the logarithmic compression of time-frequency

magnitude turns out to be effective while other preprocessing methods did not

result in affecting the performance as in Chapter 5.

By understanding of the dataset, the label noise and its effects turn out to

depend on human annotator’s subjective bias on whether labels are worth to tag,

which was defined as ‘tagability’ as in Chapter 3.

By understanding of neural networks, the trained feature hierarchy and their
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relationship to the audio input were analysed in Chapter 7. Based on the insights,

a novel transfer learning method was proposed to use all of the convolutional layers

as in Chapter 6.

Although deep learning is occasionally referred to ‘end-to-end’ learning, domain

knowledge is still required by practitioners to efficiently use the given resources

(data, hardware, and time). To elaborate, it is important to let the learning focus

on the most training-worthy part, e.g., layers that connects the time-frequency

representations to the target label, while the rest (e.g., input data preprocessing

and designing network structures) can be decided based on the domain knowledge.

In this manner, the knowledge and insights presented in this thesis will help the

community to build a successful music classifier based on deep neural networks by

providing new domain knowledge of music in deep learning. Lastly, however, it

is worth noting that in general, the research community is moving towards more

‘end-to-end’ approaches, e.g., audio sample-based music tagger [77].

8.3 Outlook

8.3.1 On music classification

The experience of using deep neural networks led me to realise the limitations

of the current approaches. Among many aspects of music signals, 2-dimensional

convnets seem to focus on the ‘sound texture’, which is merely an aspect of tim-

bre, while unpurposedly ignoring other musical components – temporal envelope,

tempo, rhythms, chords, or melodies. My preliminary experiments on music sim-

ilarity with convnet features resulted in giving me a similar impression and [162]

also showed that low-level statistics (the texture) play an important role in visual

image recognition. Although exploiting the current approach is providing even
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better performance [77], in a long term, the research would explore to take advan-

tage of diverse aspects of music, parting from computer vision-motivated methods.

Recently, there have been some attempts at rhythm [76], [163] and multi-modal

music classification [164], and I believe there is a huge potential to explore in this

direction.

8.3.2 On MIR task formulation

So far, many MIR problems have been naturally proposed and formulated to auto-

mate existing music-related tasks. For example, genre classification or music tran-

scription are conventional tasks that were only done manually, and methods have

been developed to automate the job. Apparently, this means that solving those

tasks are meaningful. However, they require manual annotation which is not scal-

able. This makes it hard to address them with data-driven approaches or to adopt

them as intermediate/source tasks for other MIR problems. Tagging is relatively

free from this problem and that is why it has been a popular topic since deep

learning became widely used in the field. Moreover, many tasks involve subjective

annotation, e.g., mood prediction, which raises a fundamental question of the glass

ceiling of the performance.

I expect people would be interested in finding a new solution for a better transfer

learning by explicitly relying on large-scale data. For example, instrument recog-

nition is a mid-level MIR task, which may help to solve higher-level tasks such as

genre classification. The training samples can be quickly synthesised by mixing two

labelled music signals - while they might be musically pleasing or even plausible,

they can be used to build a large dataset for a proxy task. Music source separation

can be done in a similar fashion, therefore would be one of the candidates. There

are open issues such as how the synthesising should be done to make the task mean-

ingful enough and this would be already a big research topic. Still, this can be less
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challenging than obtaining order-of-magnitude bigger datasets compared to ones

we currently have, or developing algorithms that only requires order-of-magnitude

smaller datasets than deep neural networks are currently demanding.
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[118] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller,

“Efficient backprop,” in Neural networks: Tricks of the trade, pp. 9–48.

Springer, 2012.

[119] Brian McFee, Matt McVicar, Colin Raffel, Dawen Liang, Oriol Nieto, Eric

Battenberg, Josh Moore, Dan Ellis, Ryuichi YAMAMOTO, Rachel Bittner,

Douglas Repetto, Petr Viktorin, João Felipe Santos, and Adrian Holovaty,

“librosa: 0.4.1,” Oct. 2015.

[120] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Delving deep

into rectifiers: Surpassing human-level performance on imagenet classifica-

tion,” in Proceedings of the IEEE international conference on computer

vision, 2015, pp. 1026–1034.

[121] Malcolm Slaney, “Auditory toolbox,” Interval Research Corporation, Tech.

Rep, vol. 10, pp. 1998, 1998.

[122] Samuel F. Dodge and Lina J. Karam, “Understanding how image quality

affects deep neural networks,” CoRR, vol. abs/1604.04004, 2016.

[123] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M Schmidt, Andreas F

Ehmann, and Xavier Serra, “End-to-end learning for music audio tagging at

scale,” arXiv preprint arXiv:1711.02520, 2017.

[124] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic, “Learning and

transferring mid-level image representations using convolutional neural net-

works,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, 2014, pp. 1717–1724.

[125] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient esti-

mation of word representations in vector space,” arXiv preprint arXiv:1301.3781,

2013.

[126] Quoc V Le and Tomas Mikolov, “Distributed representations of sentences

and documents.,” in International Conference on Machine Learning, 2014,



Chapter 8. Conclusion 141

vol. 14, pp. 1188–1196.

[127] Jason Weston, Samy Bengio, and Nicolas Usunier, “Wsabie: Scaling up

to large vocabulary image annotation,” International Joint Conference on

Artificial Intelligence, 2011.

[128] Adam Coates and Andrew Y Ng, “Learning feature representations with

k-means,” in Neural Networks: Tricks of the Trade, pp. 561–580. Springer,

2012.
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