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Abstract

A 2-dimensional framework is a straight line realisation of a graph
in the Euclidean plane. It is quadratically, respectively radically, solv-
able if the vertex coordinates can be expressed as a sequence of square,
respectively integer power, roots of combinations of the squared edge
lengths. Quadratically solvable frameworks are also referred to as be-
ing ruler-and-compass-constructible since they can be drawn in the
plane using only a ruler marked with the edge-lengths and a compass.
We show that the radical/quadratic solvability of a generic frame-
work depends only on its underlying graph and characterise which pla-
nar graphs give rise to radically/quadratically solvable generic frame-
works. We conjecture that our characterisation extends to all graphs.

2010 Mathematics Subject Classification: 05C10, 12F10, 52C25, 68R10.

1 Introduction

Many systems of polynomial equations which are of practical interest can be
represented by a graph. An important example occurs in computer aided
design (CAD) when the location of the geometric elements in a drawing
such as points, lines and circles (corresponding to vertices in the graph)
are determined by relationships between them such as tangency, coincidence
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and relative distances or angles (corresponding to edges in the graph). The
ability to solve such systems of equations rapidly allows a design engineer
to modify input parameters such as the values for the distances or angles
(collectively called ”dimensions” in a dimensioned drawing) and to realise a
computer model for many variants of a basic design [12]. Most modern CAD
systems incorporate the ability to solve these so-called dimensional constraint
equations, see for example [14].

A simple example of dimensional constraint equations is provided by
points in a plane with certain specified relative distances. The system of
equations and a particular solution can both be represented by a framework
(G, p) where G is a graph and p is a vector comprising of all the coordinates
of the points. The graph G has a vertex for each point and an edge for
each specified distance. Since the coordinates of the points are specified in
(G, p) it is a simple matter to determine the relative distance corresponding
to any edge of G. The framework (G, p) therefore represents both a system of
polynomial equations and a particular solution to these equations. We will
call these equations the framework equations - they correspond to the di-
mensional constraint equations referred to above. In general the framework
vector p will be just one of the many possible solutions to the framework
equations. (Estimates on the number of solutions have been obtained by
several authors, see for example [1, 7, 15].)

Efficient algorithms for solving the framework equations are extremely
useful. A particularly desirable case is when there are only a finite number
of solutions, and these solutions can be expressed as a sequence of square,
or integer power, roots of combinations of the squared edge lengths. Such
frameworks are said to be quadratically solvable and radically solvable, re-
spectively. A quadratically solvable framework is referred to as being ruler-
and-compass-constructible in [4] since it can be drawn in the plane with a
ruler marked with the edge-lengths and a compass. We will consider the
problem of determining which generic frameworks are quadratically or radi-
cally solvable.

The conditions that the system of equations defined by a generic frame-
work should have only finitely many solutions, or a unique solution, are equiv-
alent to the statements that the framework is rigid or globally rigid, respec-
tively. These properties have been extensively studied and we refer the reader
to [18] for an excellent survey of the area. In particular characterisations and
recursive constructions for graphs with the property that any generic realisa-
tion is rigid, or globally rigid, are given in [9] and [6], respectively. Previous
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work on quadratic/radical solvability [12, 13] considered generic frameworks
which are minimally rigid i.e. cease to be rigid when any edge is removed. It
was conjectured in [12] that the family of minimally rigid graphs G with the
property that any generic realisation of G is radically/quadratically solvable
is equal to the recursively constructed family Fmin obtained from K2 by re-
cursively choosing three graphs Gi = (Vi, Ei) ∈ Fmin with |Vi ∩ Vj | = 1 and
V1∩V2∩V3 = ∅ = Ei∩Ej , and putting G1∪G2∪G3 ∈ Fmin. This conjecture
was verified for the special case when the underlying graph is 3-connected
and planar in [13].

Theorem 1.1 No generic realisation of a 3-connected planar minimally rigid
graph is quadratically (or radically) solvable.

We will extend the study of quadratic and radical solvability to include
generic frameworks which are rigid but not necessarily minimally rigid. We
first show that quadratic and radical solvability are both generic properties
i.e. they depend only on the underlying graph when the given framework
is generic. This allows us to define a graph as being quadratically, or rad-
ically, solvable if some (or equivalently every) generic realisation has this
property. Our aim is to characterise these graphs. As a first step we show
that a graph G is quadratically solvable if it is globally rigid. We conjec-
ture that globally rigid graphs are the fundamental building blocks for all
quadratically/radically solvable graphs. More precisely, let F be the recur-
sively defined family of graphs obtained by first putting all globally rigid
graphs in F . Then, for any G1 = (V1, E1) and G2 = (V2, E2) in F with
V1 ∩ V2 = {u, v} and |V1|, |V2| ≥ 3 we put:

(a) G1 ∪G2 in F ;

(b) (G1 − e) ∪G2 in F if e = uv ∈ E1;

(c) (G1 − e) ∪ (G2 − e) in F if e = uv ∈ E1 ∩ E2 and G1 − e, G2 − e are
both rigid.

This construction is illustrated in Figure 1. (Note that all 3-connected graphs
in F are globally rigid.)

Conjecture 1.2 A graph is radically (or quadratically) solvable if and only
if it belongs to F .
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Figure 1: Three globally rigid graphs G1, G2, G3 are combined to give a graph
G in F . We first construct G4 = (G1 − st) ∪ G2 using operation (b). We
then construct G = (G4 − uv) ∪ (G3 − uv) using operation (c).

Our main results are to show that all graphs in F are quadratically solv-
able, and that all radically solvable planar graphs belong to F .

An outline of the paper is as follows. We give definitions and preliminary
results on frameworks and radical/quadratic solvability in Section 2. We
show that radical/quadratic solvability are generic properties in section 3.
We prove that all graphs in the family F are quadratically solvable in Section
4 and that all radically solvable planar graphs belong to F in section 5.

2 Definitions and preliminary results

2.1 Rigid and globally rigid frameworks

All graphs considered are finite and without loops or multiple edges. Given
a graph G = (V,E) and two vertices u, v ∈ V we use G + uv to denote the
graph obtained from G by adding the edge uv if it is not already in E.

A real, respectively complex, framework is a pair (G, p) where G is a graph
and p : V → R2, respectively p : V → C2. We will also say that (G, p) is a
realisation of G. Although we are mainly concerned with real frameworks,
we will work with complex frameworks since most of our methods require an
algebraically closed field and our results will still hold for the special case of
real frameworks. A framework (G, p) is generic if the set of all coordinates
of the points p(v), v ∈ V , is algebraically independent over Q.

Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Given a realisation
(G, p) of G and two vertices vi, vj ∈ V with p(vi) − p(vj) = (a, b) put
dp(vi, vj) = a2 + b2 and dp(e) = dp(vi, vj) when e = vivj ∈ E. Two real-
istions (G, p) and (G, q) are equivalent if dp(e) = dq(e) for all e ∈ E, and
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are congruent if dp(vi, vj) = dq(vi, vj) for all vi, vj ∈ V . The rigidity map
dG : C2n → Cm is defined by putting dG(p) = (dp(e1), dp(e2), . . . , dp(em)).
Thus (G, p) and (G, q) are equivalent if and only if dG(p) = dG(q). Note
that, if (G, p) and (G, q) are real frameworks, then they are equivalent if and
only if they have the same edge lengths and they are congruent if and only
if we can transform one to the other by applying an isometry of R2 i.e. a
translation, rotation or reflection of the Euclidean plane.

A real, respectively complex, framework (G, p) is globally real, respec-
tively complex, rigid if all equivalent real, respectively complex, frameworks
are congruent to it. It is real, respectively complex, rigid if there exists an
ǫ > 0 such that every real, respectively complex, framework (G, q) which is
equivalent to (G, p) and satisfies ‖p(v) − q(v)‖2 < ǫ for all v ∈ V , is con-
gruent to (G, p).1 It is known that a real generic framework is real rigid,
respectively globally real rigid, if and only if it is complex rigid, respectively
globally complex rigid, and that both these properties depend only on the
underlying graph when the framework is generic, see [5, 13]. We say that
a graph G is rigid or globally rigid if some, or equivalently every, generic
realisation of G has the same property.

2.2 Radically/quadratically solvable frameworks

Let K,L be fields with K ⊆ L. Then L is a radical extension of K if there
exist fields K = K1 ⊂ K2 ⊂ . . . ⊂ Kt = L such that for all 1 ≤ i < t,
Ki+1 = Ki(xi) with xni

i ∈ Ki for some natural number ni. The field L
is a quadratic extension of K if it is a radical extension with ni = 2 for
all 1 ≤ i < t. The field extension L : K is radically solvable, respectively
quadratically solvable, if L is contained in a radical, respectively quadratic,
extension of K.

A framework (G, p) is radically solvable, respectively quadratically solv-
able, if there exists a congruent framework (G, q) such that Q(q) : Q(dG(q))
is radically, respectively quadratically, solvable. Given a framework (G, p), it
will be useful to identify a congruent framework (G, q) which has the prop-
erty that (G, p) is radically, or quadratically, solvable if and only if Q(q) is
contained in a radical, or quadratic, extension of Q(dG(q)). The following
concept will enable us to do this.

1Equivalently, a real, respectively complex, framework (G, p) is real, respectively com-
plex, rigid if every continuous motion of the points p(v), in R2, respectively C2, which
preserves the ‘edge distances’ dp(e) results in a framework which is congruent to (G, p).
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We say that a framework (G, p) with G = (V,E), V = {v1, v2, . . . , vn}
and n ≥ 2 is in standard position with respect to (v1, v2) if p(v1) = (0, 0) and
p(v2) = (0, y2) with y2 6= 0. It is collinear if p(u)−p(v) ∈ 〈s〉 for all u, v ∈ V ,
for some fixed vector s ∈ C2.

Our first result tells us that most frameworks are congruent to a frame-
work in standard position.

Lemma 2.1 Let (G, p) be a complex framework, v1, v2 be vertices of G with
d(p(v1) − p(v2)) 6= 0, and S be the set of all equivalent frameworks. Then
(G, p) is congruent to a framework in standard position with respect to (v1, v2).
Furthermore:
(a) if (G, p) is not collinear, then each congruence class in S has exactly four
realisations (G, qi), 1 ≤ i ≤ 4, in standard position with respect to v1, v2, and
Q(qi) = Q(qj) for all 1 ≤ i < j ≤ 4.
(b) if (G, p) is collinear, then each congruence class in S has exactly two
realisations (G, qi), 1 ≤ i ≤ 2, in standard position with respect to v1, v2, and
Q(q1) = Q(q2).

Proof. The assertions that (G, p) is congruent to a framework in standard
position with respect to (v1, v2) and that there are exactly four, respectively
two, such realisations (G, qi) when (G, p) is not collinear, respectively is
collinear, follow from [7, Lemma 3.1]. The assertion that Q(qi) = Q(qj) for
1 ≤ i ≤ 4 in case (a) follows from the fact that we can order the qi such that,
if q1(vk) = (xk, yk) for all vk ∈ V , then q2(vk) = (−xk, yk), q3(vk) = (xk,−yk)
and q4(vk) = (−xk,−yk) for all vk ∈ V . A similar proof holds in case (b). •

We can use this lemma to deduce that a framework (G, p) with dp(u, v) 6=
0 for some pair of vertices u, v is radically, or quadratically, solvable if and
only if it is congruent to a framework (G, q) in standard position and such
that Q(q) is contained in a radical, or quadratic, extension of Q(dG(q)).

Lemma 2.2 Suppose that (G, p) is a complex framework with, G = (V,E),
V = {v1, v2, . . . , vn} and dp(v1, v2) 6= 0. Let (G, q) be a congruent realisa-
tion in standard position with respect to (v1, v2). Then (G, p) is radically,
respectively quadratically, solvable if and only if Q(q) : Q(dG(q)) is radically,
respectively quadratically, solvable.

Proof. Sufficiency follows immediately from the definition of radical, re-
spectively quadratic, solvability. To prove necessity we suppose that (G, p) is
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radically, respectively quadratically, solvable. Replacing (G, p) by a congru-
ent framework if necessary, we may assume that Q(p) is itself contained in a
radical, respectively quadratic, extension L of Q(dG(p)). We can construct a
framework (G, q) which is congruent to (G, p) and in standard position with
respect to (v1, v2) by putting q̃(vi) = p(vi)− p(v1) for all vi ∈ V , and

q(vi) =

(

y/d0 −x/d0
x/d0 y/d0

)

q̃(vi)

for all vi ∈ V (G), where q̃(v2) = (x, y) and d20 = x2 + y2. By Lemma 2.1, it
will suffice to show that for this q, Q(q) is contained in a radical, respectively
quadratic, extension of Q(dG(q)). Let K = Q(p, d0). The definitions of q̃ and
q imply that Q(q̃) ⊆ Q(p) and hence that Q(q) ⊆ K. We have [K : Q(p)] ≤ 2
since d20 = x2 + y2 and x, y ∈ Q(p). Hence L(d0) is a radical, respectively
quadratic, extension of Q(dG(p)) which contains K. Since Q(q) ⊆ K and
dG(p) = dG(q), Q(q) : Q(dG(q)) is radically, respectively quadratically, solv-
able. •

Remarks
1. If (G, p) is a real framework then the congruent framework (G, q) con-
structed in Lemma 2.2 will also be real.
2. The condition that dp(v1, v2) 6= 0 is equivalent to p(v1)− p(v2) 6= (z,±iz)
for all z ∈ C. When (G, p) is real this reduces to p(v1) 6= p(v2).
3. If (G, p) is a framework with dp(u, v) = 0 for all pairs of vertices u, v then
(G, p) is quadratically solvable since it is congruent to the framework (G, q)
with q(v) = 0 for all v ∈ V .

We close this section by showing that every globally complex rigid frame-
work (G, p) is quadratically solvable. Given a field K we use K to denote
the algebraic closure of K, K[X1, X2, . . . , Xn] to denote the ring of poly-
nomials in the indeterminates X1, X2, . . . , Xn with coefficients in K and
K(X1, X2, . . . , Xn) to denote its field of fractions.

We will need the result from algebraic geometry that if I is a zero-
dimensional ideal ofK[X1, X2, . . . , Xn] and b1 is a zero of I∩K[X1] inK, then
b1 can be extended to a zero (b1, b2, . . . , bn) of I in K

n
. This follows implicitly

from Buchberger’s algorithm for solving systems of polynomial equations [2],
or from the following more explicit result of Kalkbrener [8, Theorem 3].
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Theorem 2.3 LetK be a field, I be a zero-dimensional ideal of K[X1, X2, . . . , Xn]

and b be a zero of I ∩K[X1, X2, . . . , Xm−1] in K
m−1

for some m ≥ 2. Then
there exists a polynomial f ∈ I ∩K[X1, X2, . . . , Xm] such that f(b,Xm) is a
non constant polynomial which generates {h(b,Xm) : h ∈ I∩K[X1, X2, . . . , Xm]}.

This result implies that b = (b1, b2, . . . , bm−1) can be extended to a zero
(b1, b2, . . . , bm) of I ∩ K[X1, X2, . . . , Xm] by choosing bm to be a zero of
f(b1, b2, . . . , bm−1, Xm) in K. Applying this recursively, we may deduce that
b1 can be extended to a zero of I.

We will also need the following concept from rigidity theory. Two ver-
tices vi, vj of a framework (G, p) are globally linked if for every equivalent
realisation (G, q) we have dp(vi, vj) = dq(vi, vj).

Lemma 2.4 Let (G, p) be a complex realisation of a graph G = (V,E) with
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Suppose that (G, p) has only
finitely many equivalent non-congruent realisations and that v1, v2 are globally
linked in (G, p). Then dp(v1, v2) ∈ Q(dG(p)).

Proof. The lemma is trivially true if dp(v1, v2) = 0. Hence we can suppose
that dp(v1, v2) 6= 0. By Lemma 2.1 we may assume that (G, p) is in stan-
dard position with respect to (v1, v2). Let K = Q(dG(p)). We again asso-
ciate a pair of indeterminates (X2i−1, X2i) with each vertex vi ∈ V , putting
X1 = X2 = X3 = 0 to represent a framework in standard position. Let
fi = (X2j−1−X2k−1)

2+(X2j−X2k)
2−d((p(vj)−p(vk)) for each ei = vjvk ∈ E.

We introduce a new indeterminate X2n+1 which represents the ‘distance’ be-
tween v1 and v2 and put fm+1 = X2n+1 −X2

4 . Let X = (X4, X5, . . . , X2n+1).
Let I be the ideal of K[X ] generated by the polynomials f1, f2, . . . , fm+1.
Then I is zero-dimensional since (G, p) has only finitely many equivalent
non-congruent realisations. In addition I2n+1 = I ∩K[X2n+1] is a principal
ideal and hence is generated by a single polynomial h2n+1 ∈ K[X2n+1]. The-
orem 2.3 now implies that every zero of h2n+1 in K extends to a zero of I

in K
2n+1

. Since v1, v2 are globally linked in G, dp(v1, v2) must be the unique
zero of h2n+1. Thus h2n+1 = (X2n+1 − dp(v1, v2))

t for some positive integer t.
Since h2n+1 ∈ K[X2n+1] this implies that dp(v1, v2) ∈ K. •

Theorem 2.5 Suppose that (G, p) is a globally complex rigid framework.
Then (G, p) is quadratically solvable.
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Proof. We have already seen that every framework (G, p) with dp(u, v) = 0
for all vertices u, v is quadratically solvable. Hence we may assume that
G = (V,E) with V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em} and dp(v1, v2) 6= 0.
By Lemma 2.1, we may suppose that (G, p) is in standard position with re-
spect to (v1, v2). Let p(v2) = (0, y2), K = Q(dG(p)) and K1 = K(y2). Since
y2 satisfies the quadratic equation y22−dp(v1, v2) = 0, and since dp(v1, v2) ∈ K
by Lemma 2.4, we have [K1 : K] ≤ 2. Let p(vi) = (xi, yi) for all 3 ≤ i ≤ n.
Then x2

i + y2i = dp(vi, v1) and x2
i + (yi − y2)

2 = dp(vi, v2). Since G is globally
rigid, vi is globally linked to both v1 and v2 in G and hence, by Lemma 2.4,
{dp(vi, v0), dp(vi, v1)} ⊂ K. This implies that yi ∈ K1 and x2

i ∈ K1. Since
this holds for all 3 ≤ i ≤ n, (G, p) is quadratically solvable. •

3 Radical and quadratic solvability of generic

frameworks

We will show in this section that radical and quadratic solvability are generic
properties. We first recall some definitions and results from Galois theory.
We adopt the notation of [16] and refer the reader to this text for further
information on the subject.

Given a field extension L : K we use [L : K] to denote the degree of the
extension i.e. the dimension of L as a vector space over K. The extension
is finite if it has finite degree. It is normal if L is the splitting field of some
polynomial over K. When L : K is finite, a normal closure of L over K
is a field N such that L ⊆ N , N : K is normal, and, subject to these
conditions, N is minimal with respect to inclusion. It is known that normal
closures exist, are finite, and are unique up to isomorphism, see [16, Theorem
11.6]. The Galois group Γ(L : K) is the group of all automorphisms of L
which leave K fixed. Galois theory gives us the following close relationship
between radically/quadratically solvable extensions and Galois groups, see
[16].

Theorem 3.1 Let K be a field of characteristic zero, L : K be a finite
field extension and N be a normal closure of L over K. Then the following
statements are equivalent:
(a) L : K is radically, respectively quadratically, solvable;
(b) N : K is radically, respectively quadratically, solvable;
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(c) Γ(N : K) is a solvable group, respectively a 2-group (i.e. |Γ(N : K)| = 2m

for some non-negative integer m).

A framework is said to be quasi-generic if it is congruent to a generic
framework. We first show that if (G, p) is a quasi-generic rigid framework
and is in standard position then Q(p) : Q(dG(p)) is a finite field extension.
We will need one more result from [7] to prove this.

Lemma 3.2 [7, Lemmas 3.4, 3.5] Suppose that (G, p) is a quasi-generic
realisation of a rigid graph G = (V,E) where V = {v1, v2, . . . , vn} and p(vi) =
(xi, yi) for 1 ≤ i ≤ n. Suppose further that (G, p) is in standard position
with respect to (v1, v2), i.e. x1 = y1 = x2 = 0. Then {y2, x3, y3, . . . , yn} is
algebraically independent over Q, and Q(p) = Q(dG(p)).

Lemma 3.3 Suppose that G = (V,E) is a rigid graph and that (G, p) is a
quasi-generic realisation of G in standard position with respect to two vertices
v1, v2 ∈ V . Then Q(p) : Q(dG(p)) is a finite field extension.

Proof. It is easy to see that Q(dG(p)) ⊆ Q(p). By Lemma 3.2, Q(p) and
Q(dG(p)) have the same algebraic closure. This implies that each coordi-
nate of p is a root of a polynomial with coefficients in Q(dG(p)) and hence
[Q(p) : Q(dG(p))] is finite. •

Lemma 3.4 Suppose (G, q) and (G, q′) are two quasi-generic realisations of
a rigid graph G = (V,E) in standard position with respect to two vertices
v1, v2 ∈ V . Let Nq and Nq′ be normal closures of Q(q) : Q(dG(q)) and Q(q′) :
Q(dG(q

′)), respectively. Then Γ(Nq : Q(dG(q))) and Γ(Nq′ : Q(dG(q
′))) are

isomorphic groups.

Proof. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Let q(vi) =
(x2i−1, x2i) and q′(vi) = (x′

2i−1, x
′
2i) for 1 ≤ i ≤ n. We associate a pair of inde-

terminates (X2i−1, X2i) with each vertex vi ∈ V , putting X1 = X2 = X3 = 0
to represent a framework in standard position. Let X = (X4, X5, . . . , X2n)
and DG(X) = (f1, f2, . . . , fm) where fi = (X2j−1 − X2k−1)

2 + (X2j − X2k)
2

when ei = vjvk. Since (G, q) and (G, q′) are quasi-generic, Lemma 3.2 im-
plies that {x3, x4, . . . , x2n} and {x′

3, x
′
4, . . . , x

′
2n} are both algebraically in-

dependent over Q. Hence Q(q) : Q(dG(q)) and Q(q′) : Q(dG(q
′)) are both

isomorphic to Q(X) : Q(DG(X)).
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Let NX be the normal closure of Q(X) : Q(DG(X)). Then Nq : Q(dG(q))
and Nq′ : Q(dG(q

′)) are both isomorphic to NX : Q(DG(X)) and hence are
isomorphic to each other. It follows that Γ(Nq : Q(dG(q))) and Γ(Nq′ :
Q(dG(q

′))) are isomorphic groups. •

Theorem 3.1 and Lemmas 2.2, 3.4 imply that radical/quadratic solvability
are generic properties. This allows us to define a rigid graph to be radically,
respectively quadratically, solvable if some (or equivalently every) generic
realisation of G is radically, respectively quadratically, solvable. Note that
Lemmas 2.2 and 3.4 also imply that this definition agrees with the one given
for the radical and quadratic solvability of minimally rigid graphs in [13,
Definition 3.1].

4 A family of quadratically solvable graphs

We will show that each of the graphs in the family F defined immediately
before Conjecture 1.2 are rigid and quadratically solvable. We will need the
following rather technical lemmas to determine whether generic realisations
of rigid graphs with small separating sets of vertices are radically or quadrat-
ically solvable. We will delay their proofs until the appendix.

Lemma 4.1 Let L : K be a finite field extension with Q ⊆ K ⊆ L ⊂ C,
and N be the normal closure of L : K in C. Let X = (X1, X2, . . . , Xn) be
a vector of indeterminates. Then N(X) is a normal closure of L(X) over
K(X) and Γ(N : K) is isomorphic to Γ(N(X) : K(X)). Furthermore, L : K
is radically, respectively quadratically, solvable if and only if L(X) : K(X) is
radically, respectively quadratically, solvable.

Lemma 4.2 Suppose that X = (X1, X2, . . . , Xr), Y = (Y1, Y2, . . . , Ys) and
Z = (Z1, Z2, . . . , Zt) are vectors of indeterminates, f = (f1, f2, . . . , fm) ∈
Q[X, Y ]m, g = (g1, g2, . . . , gn) ∈ Q[Y, Z]n, and Q(X, Y, Z) is a finite exten-
sion of Q(f, g). Then Q(X, Y, Z) : Q(f, g) is radically, respectively quadrat-
ically, solvable if and only if Q(f, Y, Z) : Q(f, g) and Q(X, Y ) : Q(f, Y ) are
both radically, respectively quadratically, solvable.

Lemma 4.3 Let G be a rigid graph with G = H1 ∪ H2 for two subgraphs
H1 = (V1, E1) and H2 = (V2, E2) with V1 ∩ V2 = {v1, v2} and E1 ∩ E2 = ∅.
(a) Suppose that H1, H2 are both rigid. Then G is radically, respectively
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quadratically, solvable if and only if H1 + v1v2, H2 + v1v2 are both radically,
respectively quadratically, solvable.
(b) Suppose that H1 is not rigid. Then H1 + v1v2 and H2 are both rigid.
Furthermore:
(i) if H1 + v1v2 and H2 are both radically, respectively quadratically, solvable
then G is radically, respectively quadratically, solvable;
(ii) if G is radically, respectively quadratically, solvable then H1 + v1v2 and
H2 + v1v2 are both radically, respectively quadratically, solvable.
(iii) if G is radically, respectively quadratically, solvable and H1+v1v2 is min-
imally rigid, then H1 + v1v2 and H2 are both radically, respectively quadrati-
cally, solvable.

Proof. Choose a quasi-generic realisation (G, p) of G with p(v1) = (0, 0)
and p(v2) = (0, y) for some y ∈ C.

(a) Suppose that H1 + v1v2 and H2 + v1v2 are both radically, respectively
quadratically, solvable. Then Q(p|Vi

) is a radically, respectively quadrati-
cally, solvable extension of Q(dHi+v1v2(p)) for i = 1, 2. It follows that Q(p) is
a radically, respectively quadratically, solvable extension of Q(dG+v1v2(p)).
Since H1, H2 are both rigid, [7, Lemma 8.2] implies that v1 and v2 are
globally linked in (G, p). By Lemma 2.4, dp(v1, v2) ∈ Q(dG(p)) and hence
Q(dG+v1v2(p)) = Q(dG(p)). Thus Q(p) is a radically, respectively quadrati-
cally, solvable extension of Q(dG(p)) and G is radically, respectively quadrat-
ically, solvable.

Suppose on the other hand that G is radically, respectively quadratically,
solvable. Then Q(p) is a radically, respectively quadratically, solvable exten-
sion of Q(dG(p)). Since (G, p) is quasi-generic, the non-zero components of
p are algebraically independent over Q. Hence we may treat them as if they
were indeterminates and apply Lemma 4.2 with f = dH1

(p), g = dH2
(p),

X = p|V1\{v1,v2}, Y = y, and Z = p|V2\{v1,v2} to deduce that Q(p|V1
) is

a radically, respectively quadratically, solvable extension of Q(dH1
(p), y).

Thus Q(p|V1
) is a radically, respectively quadratically, solvable extension of

Q(dH1+v1v2(p)) and so H1 + v1v2 is radically, respectively quadratically, solv-
able. By symmetry, H2 + v1v2 is also radically, respectively quadratically,
solvable.

(b) The fact that H1 + v1v2 and H2 are both rigid follows from [7, Lemma
8.5].

Suppose that H1 + v1v2 and H2 are both radically, respectively quadrat-
ically, solvable. Then Q(p|V2

) is a radically, respectively quadratically, solv-
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able extension of Q(dH2
(p)). We also have Q(p|V1

) is a radically, respectively
quadratically, solvable extension of Q(dH1+v1v2(p)). Since y ∈ Q(p|V2

), we
have Q(p|V1

, p|V2
)) is a radically, respectively quadratically, solvable exten-

sion of Q(dH1
(p), p|V2

). Thus Q(p) is a radically, respectively quadratically,
solvable extension of Q(dG(p)) and G is radically, respectively quadratically,
solvable. Hence (i) holds.

Suppose on the other hand that that G is radically, respectively quadrat-
ically, solvable. Then Q(p) is a radically, respectively quadratically, solvable
extension of Q(dG(p)). We may apply the argument used in the second
part of the proof of (a) to deduce that Q(p|V1

) is a radically, respectively
quadratically, solvable extension of Q(dH1+v1v2(p)), and Q(p|V2

) is a radi-
cally, respectively quadratically, solvable extension of Q(dH2+v1v2(p)). Hence
(ii) holds.

To prove (iii) we need to show that y belongs to a radical, respectively
quadratic, extension of Q(dH2

(p)) when H1 + v1v2 is minimally rigid. In this
case [7, Lemma 5.6] implies that X = dH1

(p) is algebraically independent
over Q(dH2+v1v2(p)). Let K = Q(dH2

(p)) and L = K(y). Since G is radically,
respectively quadratically, solvable, L(X) : K(X) is radically, respectively
quadratically, solvable. Since X is algebraically independent over L, Lemma
4.1 implies that L : K is radically, respectively quadratically, solvable. Part
(iii) now follows since y ∈ L. •

We do not know whether the hypothesis that H1+v1v2 is minimally rigid
can be removed from Theorem 4.3(b)(iii). The difficulty in extending the
above proof when H1 + v1v2 is not minimally rigid is that dH1

(p) will not
be algebraically independent over Q(dH2+v1v2(p)). So it is conceivable that
Q(dH1

(p)) may contain algebraic numbers which enable y to belong to a radi-
cal extension of Q(dG(p)) but not to a radical extension of Q(dH2

(p)). On the
other hand, we will see in the next section that we can side step this problem
and still obtain a characterization of radically solvable rigid planar graphs.
We will accomplish this by only considering certain separations (H1, H2) of
G and applying the following result.

Corollary 4.4 Let G be a rigid graph with G = H1 ∪H2 ∪H3 for subgraphs
Hi = (Vi, Ei) with Vi ∩ Vj = {vk} and V1 ∩ V2 ∩ V3 = ∅ = Ei ∩ Ej for all
{i, j, k} = {1, 2, 3}. Then H1, H2, H3 are rigid. Furthermore, G is radically,
respectively quadratically, solvable if and only if H1, H2, H3 are radically, re-
spectively quadratically, solvable.
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Proof. Since G = (H1∪H2)∪H3 is rigid and H1∪H2 is not rigid, Theorem
4.3(b) implies that H3 is rigid. We may now use symmetry to deduce that
H1, H2 are also rigid.

Suppose G is radically, respectively quadratically, solvable. By Theorem
4.3(b)(ii), (H1 ∪H2) + v1v2 is radically, respectively quadratically, solvable.
Since (H1 ∪H2) + v1v2 = H1 ∪ (H2 + v2 + v1v2) we may again use Theorem
4.3(b)(ii) to deduce thatH2+v2+v2v3+v1v2 is radically, respectively quadrat-
ically, solvable. We can now express H2+v2+v2v3+v1v2 as (K3−v1v3)∪H2

where V (K3) = {v1, v2, v3}. Since K3 is minimally rigid, we may apply The-
orem 4.3(b)(iii) to deduce that H2 is radically, respectively quadratically,
solvable. By symmetry H1, H3 are also radically, respectively quadratically,
solvable.

Suppose on the other hand that H1, H2, H3 are radically, respectively
quadratically, solvable. LetK3 be a complete graph with V (K3) = {v1, v2, v3}.
Then K3 is globally rigid and hence quadratically solvable, so by Theorem
4.3(b)(i), F1 = (K3 − v1v3)∪H2 is radically, respectively quadratically, solv-
able. We may now apply Theorem 4.3(b)(i) to F2 = (F1 − v2v3) ∪ H1 to
deduce that F2 is radically, respectively quadratically, solvable. Finally we
apply Theorem 4.3(b)(i) to G = (F2−v1v2)∪H3 to deduce that G is radically,
respectively quadratically, solvable. •

Theorem 4.5 Every graph in F is rigid and quadratically solvable.

Proof. Suppose G ∈ F . We show that G is rigid and quadratically solvable
by induction on |E|. If G is globally rigid then G is rigid, and is quadratically
solvable by Theorem 2.5. Hence we may suppose that G is not globally rigid.
The definition of F now implies that there exist graphs G1 = (V1, E1) and
G2 = (V2, E2) in F with V1 ∩V2 = {u, v} and such that either: G = G1 ∪G2;
or G = (G1 − e) ∪ G2 for e = uv ∈ E1; or G = (G1 − e) ∪ (G2 − e) for
e = uv ∈ E1 ∩E2 and G1− e, G2− e both rigid. By induction G1 and G2 are
both rigid and quadratically solvable.

We first show that G is rigid. Since G1, G2 are rigid and |V1 ∩ V2| ≥ 2,
G1 ∪G2 is rigid. Furthermore, if e = uv ∈ E1 then e is a redundant edge in
G1 ∪ G2, so (G1 − e) ∪ G2 is also rigid. Finally, if e ∈ E1 ∩ E2 and G1 − e
and G2 − e are both rigid then (G1 − e)∪ (G2 − e) is rigid. Hence G is rigid.

It remains to show that G is quadratically solvable. Since G1 and G2

are quadratically solvable, G1 + uv and G2 + uv are quadratically solvable.
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Hence G1 ∪ G2 is quadratically solvable by Theorem 4.3(a). Suppose that
e = uv ∈ E1 and let H1 = G1 − e and H2 = G2. We can deduce that
G = H1∪H2 is quadratically solvable by applying Theorem 4.3(a) to H1 and
H2+uv if H1 is rigid, and by applying Theorem 4.3(b)(i) to H1 and H2 if H1

is not rigid. Thus (G1− e)∪G2 is quadratically solvable. Finally we suppose
that e ∈ E1 ∩E2 and G1− e, G2− e are both rigid. Then (G1− e)∪ (G2− e)
is quadratically solvable by Theorem 4.3(a). •

5 Radically solvable planar graphs

We will show that all radically solvable planar graphs belong to F . Our proof
splits into two cases depending on the connectivity of the graph.

5.1 Graphs of connectivity at least three

Conjecture 1.2 implies that a 3-connected graph is radically (or quadratically)
solvable if and only if it is globally rigid. We will verify this statement for
3-connected planar graphs. Our proof uses the following lemma to reduce
to the case of minimally rigid graphs and then applies Theorem 1.1. The
lemma is illustrated in Figure 2.

Lemma 5.1 Let G1 = H0 ∪H1 and G2 = H0 ∪H2 be graphs with V (H0) ∩
V (H1) = V (H0) ∩ V (H2) = V (H1) ∩ V (H2) = U , |U | ≥ 2, and E(H0) ∩
E(H1) = E(H0) ∩E(H2) = ∅. Suppose that G1 and H2 are both rigid. Then
(a) G2 is rigid.
(b) If G1 and H2 are both radically, respectively quadratically, solvable then
G2 is radically, respectively quadratically, solvable.

Proof. Choose v1, v2 ∈ U and let (G1 ∪ G2, p) be a quasi-generic real reali-
sation of G1 ∪G2 with p(v1) = (0, 0) and p(v2) = (0, y) for some y ∈ R. Let
Vi = V (Hi) \ U for 0 ≤ i ≤ 2.

Suppose that G2 is not rigid. Since H2 is rigid, there exists a non-zero
infinitesimal motion z2 of (G2, p) in R2 which keeps H2 fixed. Then z1 :
V (G1) → R2 by z1(v) = (0, 0) for v ∈ V (H1) and z1(v) = z2(v) for v ∈
V (H0) is a non-zero infinitesimal motion of G1 which keeps H1 fixed. This
contradicts the hypothesis that G1 is rigid and completes the proof of (a).
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Figure 2: The graphs G1 and G2 of Lemma 5.1 when |U | = 4.

Suppose that G1 and H2 are both radically, respectively quadratically,
solvable. The first assumption implies that Q(p|V0

, p|U , p|V1
) is a radically,

respectively quadratically, solvable extension of Q(dH0
(p), dH1

(p)). Since the
components of (p|V0

, y, p|U\{v1,v2}, p|V1
) are algebraically independent over Q

we may treat them as if they were indeterminates and apply Lemma 4.2
with X = p|V0

, Y = (y, p|U\{v1,v2}), Z = p|V1
, f = dH0

(p), and g = dH1
(p)

to deduce that Q(p|V0
, p|U) is a radically, respectively quadratically, solv-

able extension of Q(dH0
(p), p|U). We also have Q(p|U , p|V2

) is a radically,
respectively quadratically, solvable extension of Q(dH2

(p)) by the second as-
sumption. Hence Q(dH0

(p), p|U , p|V2
) is a radically, respectively quadrat-

ically, solvable extension of Q(dH0
(p), dH2

(p)). Since the components of
(p|V0

, y, p|U\{v1,v2}, p|V2
) are algebraically independent over Q, we may again

apply Lemma 4.2, with X = p|V0
, Y = (y, p|U\{v1,v2}), Z = p|V2

, f = dH0
(p),

and g = dH2
(p), to deduce that Q(p|V0

, p|U , p|V2
) is a radically, respectively

quadratically, solvable extension of Q(dH0
(p), dH2

(p)). Thus G2 is radically,
respectively quadratically, solvable and (b) holds. •

We also need a result on graph connectivity due to W. Mader.

Lemma 5.2 [10, Satz 1] Let G be a k-connected graph and C be a cycle in
G such that each vertex of C has degree at least k + 1 in G. Then G− e is
k-connected for some e ∈ E(C).

For n ≥ 4, the wheel on n vertices is the graph W = (V,E) with V =
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{v, u1, . . . , un−1} and E = {vu1, vu2, . . . , vun−1} ∪ {u1u2, u2u3, . . . , un−1u1}.
We refer to the cycle C = u1u2 . . . un−1u1 as the rim of W , and to the vertices
of C as the rim vertices of W .

Lemma 5.3 Let H0, H1 be graphs with V (H0) ∩ V (H1) = U , |U | ≥ 3, and
E(H0) ∩ E(H1) = ∅. Let H2 be a wheel with U as its set of rim vertices,
V (H0) ∩ V (H2) = U and E(H0) ∩ E(H2) = ∅. Put G1 = H0 ∪ H1 and
G2 = H0∪H2. Suppose that G1 is 3-connected and that each vertex of U has
degree at least four in G2. Then G2 − e is 3-connected for some edge e on
the rim of H2. Furthermore, if G1 is planar and H1 is connected, then we
may choose H2 in such a way such that G2 − e is planar and 3-connected.

Proof. We first show that G2 is 3-connected. Suppose not. Then G2 − T
is disconnected for some T ⊆ V (G2) with |T | ≤ 2. Since H2 is 3-connected,
H2 − T is connected. Hence H2 − T is contained in a single connected
component of G2 − T . This implies that G1 − (T ∩ V (G1)) is disconnected
and contradicts the hypothesis that G1 is 3-connected.

We may now use Lemma 5.2 and the hypothesis that each vertex of U
has degree at least four in G2 to deduce that G2 − e is 3-connected for some
edge e of C.

Finally, we suppose that G1 is planar and H1 is connected. Then the ver-
tices of U must lie on the same face F of G− (V (H1)−U). If we choose H2

such that, in the above definition of a wheel, the rim vertices u1, u2, . . . , un−1

occur in this order around F , then the resulting G2 will be planar. •

Lemma 5.4 Let G be obtained by deleting an edge from the rim of a wheel
on n ≥ 4 vertices. Then G is both minimally rigid and quadratically solvable.

Proof. It is easy to check that G can be obtained from K3 by recursively
adding vertices of degree two. The lemma now follows since K3 is minimally
rigid and quadratically solvable, and the operation of adding a vertex of de-
gree two is known to preserve the properties of being minimally rigid, see
[18], and quadratically solvable [12]. •

A graph G = (V,E) is redundantly rigid if G − e is rigid for all e ∈ E.
A non-trivial redundantly rigid component of G is a maximal redundantly
rigid subgraph of G. Edges e of G such that G− e is not rigid belong to no
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redundantly rigid subgraphs of G. We consider the subgraph consisting of
such an edge e and its end-vertices to be a trivial redundantly rigid component.
Thus G is minimally rigid if and only if all its redundantly rigid components
are trivial and, when |V | ≥ 3, G is redundantly rigid if and only if it has
exactly one redundantly rigid component.

We can now characterise quadratic/radical solvability in 3-connected pla-
nar graphs. We use the fact that a rigid graph G = (V,E) is minimally rigid
if and only if |E| = 2|V | − 3, see [18].

Theorem 5.5 Let G = (V,E) be a rigid 3-connected planar graph. Then
the following statements are equivalent.
(a) G is quadratically solvable.
(b) G is radically solvable.
(c) G is redundantly rigid.
(d) G is globally rigid.

Proof. If G is redundantly rigid then G is globally rigid by [6] and hence is
quadratically solvable by Theorem 2.5. Hence (c) implies (d) and (d) implies
(a). Clearly (a) implies (b). It remains to show that (b) implies (c). We will
prove the contrapositive.

Suppose that G is not redundantly rigid. We show by induction on
|E| − 2|V | + 3 that G is not quadratically solvable. Since G is rigid we
have |E| − 2|V | + 3 ≥ 0. If equality holds then G is minimally rigid and
Theorem 1.1 implies that G is not radically solvable. Hence we may suppose
that |E| > 2|V | − 3. Then some redundantly rigid component H1 = (V1, E1)
of G is non-trivial. Let U be the set of vertices of H1 which are incident
to edges of E \ E1 and put H0 = (G − E1) − (V1 \ U). By Lemma 5.3,
we can choose a wheel W with rim vertices U and an edge e on the rim
of W such that G′ = H0 ∪ (W − e) is 3-connected and planar. Lemmas
5.1(a) and 5.4 imply that G′ is rigid. Since G′ is not redundantly rigid and
|V (G′)| − 2|E(G′)| + 3 < |E| − 2|V | + 3, we may apply induction to deduce
that G′ is not radically solvable. Lemmas 5.1(b) and 5.4 now imply that G
is not radically solvable. •

5.2 Graphs of connectivity two

We will complete our proof that Conjecture 1.2 holds for planar graphs. We
first need to describe a technique for decomposing a rigid graph into ‘3-
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connected rigid pieces’. This is a special case of a more general theory of
Tutte [17] which decomposes 2-connected graphs into ‘3-connected pieces’.

Every 2-connected graph G which is distinct from K3 and is not 3-
connected has a pair of edge-disjoint subgraphs H1 = (V1, E1) and H2 =
(V2, E2) such that H1 ∪H2 = G, |V1 ∩ V2| = 2, and V1 \ V2 6= ∅ 6= V2 \ V1. We
refer to such a pair of subgraphs (H1, H2) as a 2-separation of G and to the
vertex set V1 ∩ V2 as a 2-separator of G.

Given a rigid graphG with at least three vertices, we recursively construct
the set CG of cleavage units of G as follows. If G is 3-connected or G = K3

then we put CG = {G}. Otherwise G has a 2-separation (H1, H2), where
V (H1) ∩ V (H2) = {u, v}. In this case G1 = H1 + uv and G2 = H2 + uv are
both rigid by Theorem 4.3(b), and we put CG = CG1

∪ CG2
.2 Note that the

cleavage units of G may not be subgraphs of G since G1 and G2 may not
be subgraphs of G. (We have uv ∈ E(G1) ∩ E(G2) but we may not have
uv ∈ E(G). For example the cleavage units of the graph G in Figure 1 are
G1, G2 + st and G3, and none of these are subgraphs of G.)

Lemma 5.6 Let G be a rigid graph on at least three vertices. Then every
cleavage unit of G is either equal to K3 or is 3-connected and rigid. Fur-
thermore, if G is radically, respectively quadratically, solvable, then every
cleavage unit of G is radically, respectively quadratically, solvable.

Proof. If G itself is K3 or is 3-connected then the lemma is trivially true.
Hence we may suppose that G has a 2-separation (H1, H2), where V (H1) ∩
V (H2) = {u, v}. Theorem 4.3 implies that H1 + uv,H2 + uv are both rigid,
and are radically, respectively quadratically, solvable if G is radically, re-
spectively quadratically, solvable. The lemma now follows by induction on
|V (G)| using the fact that CG = CH1+uv ∪ CH2+uv. •

We can now obtain our promised characterization of quadratic/radical
solvability for planar graphs.

Theorem 5.7 Let G be a rigid planar graph. Then the following statements
are equivalent.

2In order to obtain a unique decomposition of a 2-connected graphG into cleavage units
Tutte [17] only considers excisable 2-separations i.e. 2-separations (H1, H2) such that at
least one of H1, H2 is 2-connected. When G is rigid, Theorem 4.3(b) tells us that for every
2-separation (H1, H2), at least one of H1, H2 will be rigid (and hence 2-connected) so all
2-separations of a rigid graph are excisable.

19



(a) G is quadratically solvable.
(b) G is radically solvable.
(c) G belongs to the family F defined immediately before Conjecture 1.2.

Proof. We have (c) implies (a) by Lemma 4.5, and (a) implies (b) by defini-
tion. It remains to show that (b) implies (c). We proceed by contradiction.
Suppose there exists a radically solvable rigid planar graph G such that
G 6∈ F . We may assume that G is chosen to have as few vertices as possi-
ble (and hence every radically solvable rigid planar graph with fewer vertices
than G belongs to F). Since G 6∈ F , G 6= K2, K3. If G were 3-connected then
G would be globally rigid by Theorem 5.5 and hence we would have G ∈ F .
Thus G is not 3-connected and we may choose a 2-separation (H1, H2) of
G, where V (H1) ∩ V (H2) = {u, v}. By Theorem 4.3, H1 + uv,H2 + uv
are both rigid and radically solvable. Since they are also planar and have
fewer vertices than G we have H1 + uv,H2 + uv ∈ F . If uv ∈ E(G) then
G = (H1+uv)∪(H2+uv) ∈ F by operation (a) in the definition of F . Hence
uv 6∈ E(G). If H1, H2 are both rigid then G = H1 ∪H2 ∈ F by operation (c)
in the definition of F . Thus, for every 2-separator {u, v} of G, uv 6∈ E(G),
and for every 2-separation (H1, H2) of G, one of H1 and H2 is not rigid.

We now modify our choice of the 2-separation (H1, H2) if necessary so
that H1 is not rigid and, subject to this condition, H1 has as few vertices as
possible. We continue to assume that V (H1) ∩ V (H2) = {u, v}.

Claim 1 There exists a unique cleavage unit G1 of G with {u, v} ⊂ V (G1) ⊆
V (H1). In addition we have G1 = K3.

Proof. Suppose that there are two distinct cleavage units G3, G4 of G with
{u, v} ⊂ V (Gi) ⊆ V (H1) for i = 3, 4. Then H1 has a 2-separation (H3, H4)
with V (H3) ∩ V (H4) = {u, v} and V (Gi) ⊆ V (Hi) for i = 3, 4, see Figure
3(a). Since H1 = H3 ∪ H4 is not rigid, at least one of H3 and H4, say H3,
is not rigid. Then (H3, H2 ∪ H4) is a 2-separation of G in which H3 is not
rigid and has fewer vertices than H1. This contradicts the choice of (H1, H2).
Hence there is a unique cleavage unit G1 of G with {u, v} ⊂ V (G1) ⊆ V (H1).

Suppose G1 6= K3. Then G1 is 3-connected and radically solvable by
Lemma 5.6. Since G1 is planar, Theorem 5.5 now implies that G1 is redun-
dantly rigid and hence that G1 − uv is rigid. Let {ui, vi}, 1 ≤ i ≤ m, be
the 2-separators of H1 + uv with {ui, vi} ⊂ V (G1). Then uivi ∈ E(G1) for
1 ≤ i ≤ m, see Figure 3(b). For each 1 ≤ i ≤ m we may choose a 2-separation
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Figure 3: Proof of Claim 1. (a) The case when there are two distinct cleavage
units G3, G4 of G with {u, v} ⊂ V (Gi) ⊆ V (H1) for i = 3, 4. (b) The case
when G1 6= K3.

(Fi, F
′
i ) of H1 + uv with V (G1) ⊂ V (F ′

i ). Then (Fi, (F
′
i − uv) ∪ H2) is a 2-

separation of G. The choice of H1 and the fact that Fi is properly contained
in H1 now implies that Fi is rigid for all 1 ≤ i ≤ m. Since G1 − uv is rigid,
this implies that

H1 = [(G1 − uv)− {uivi : 1 ≤ i ≤ m}] ∪
m
⋃

i=1

Fi

is rigid. This contradicts the choice of H1. Thus G1 = K3. •

We can now complete the proof of the theorem. Since G1 = K3 we can
express G as G = H ′

1∪H ′′
1 ∪H2 where H

′
1∪H ′′

1 = H1, V (H ′
1)∩V (H2) = {u},

V (H ′′
1 ) ∩ V (H2) = {v}, V (H ′

1) ∩ V (H ′′
1 ) = {w} for some w ∈ V (H1) \ {u, v},

and H ′
1, H

′′
1 , H2 are pairwise edge-disjoint. Corollary 4.4 now implies that

H ′
1, H

′′
1 , H2 are rigid and radically solvable. Since they are planar and have

fewer vertices than G, we have H ′
1, H

′′
1 , H2 ∈ F . Since G can be obtained

from K3, H
′
1, H

′′
1 , H2 by applying operations (a) and (b) in the definition of

F at most three times, we have G ∈ F . This contradicts the choice of G. •
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Since the operations (a), (b) and (c) used in the construction of F pre-
serve planarity, Theorem 5.7 implies that the family of quadratically solvable
planar graphs can be constructed recursively from the family of globally rigid
planar graphs by applying operations (a), (b) and (c).

6 Closing remarks

1. The proof technique of Theorems 5.5 and 5.7 can be used to show that
Conjecture 1.2 is equivalent to the conjecture of the second author mentioned
in the Introduction, that a minimally rigid graph is radically (or quadrat-
ically) solvable if and only if it belongs to Fmin. We have verified both
conjectures for the smallest 3-connected non-planar minimally rigid graph
by showing that K3,3 is not radically solvable using a similar proof technique
to that used for the prism, or doublet, graph in [13, Theorem 8.4].

2. Since the radical solvability of a graph is preserved by the addition of
edges, it is tempting to conjecture that a graph is radically solvable if and
only if it has a spanning subgraph in Fmin. This is not the case however.
The complete bipartite graph K3,4 is globally rigid and hence quadratically
solvable, but for each edge e, K3,4− e is minimally rigid and does not belong
to Fmin. In addition, we can use Theorem 4.3(b)(iii) and the fact that K3,3

is not radically solvable to deduce that K3,4 − e is not radically solvable, so
K3,4 is ‘minimally radically solvable’ but not minimally rigid.

Acknowledgement We would like to thank John Bray for helpful com-
ments. We would also like to thank the Fields Institute for support during
its 2011 thematic programme on Discrete Geometry and Applications.

Appendix: Proofs of Lemmas 4.1 and 4.2

The definitions of radically and quadratically solvable field extensions imme-
diately imply the following result.

Proposition 1 Let K ⊆ L ⊆ M be fields. Then M : K is radically, re-
spectively quadratically, solvable if and only if M : L and L : K are both
radically, respectively quadratically, solvable.

Suppose M,N are field extensions of a field K which are both contained
in a common extension P of K. Then MN denotes the smallest subfield of
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Figure 4: The field extensions of Proposition 2 and Lemma 4.1

P which contains both M and N . We will need the following result from
Galois Theory, see for example [11, Proposition 3.18].

Proposition 2 Let K be a field of characteristic zero and M,N be field
extensions of K which are both contained in a common extension of K. Sup-
pose that N is a normal extension of K. Then MN : M and N : M ∩ N
are normal extensions, and Γ(MN : M) and Γ(N : M ∩ N) are isomorphic
groups.

Proof of Lemma 4.1 Let a1, a2, . . . , am be a basis for L : K, fi be the
minimum polynomial of ai over K, Ri be the set of all complex roots of
fi, and R =

⋃m

i=1
Ri. Then N = L(R) is the normal closure of L over

K in C. Since X1, X2, . . . , Xn are indeterminates, a1, a2, . . . , am is also a
basis for L(X) : K(X) and fi is the minimum polynomial of ai over K(X).
Thus L(R)(X) = N(X) is a normal closure of L(X) : K(X). We now
apply Proposition 2 with M = K(X). We have NK(X) = N(X) and
N ∩K(X) = K. Hence Γ(N : K) is isomorphic to Γ(N(X) : K(X)).

The final part of the lemma now follows from Theorem 3.1 and Proposi-
tion 2. •

Proof of Lemma 4.2 This follows from Proposition 1 (which tells us that
Q(X, Y, Z) : Q(f, g) is radically, respectively quadratically, solvable if and
only if Q(f, Y, Z) : Q(f, g) and Q(X, Y, Z) : Q(f, Y, Z) are both radically,
respectively quadratically, solvable) and Lemma 4.1 (which tells us that
Q(X, Y, Z) : Q(f, Y, Z) is radically, respectively quadratically, solvable if and
only if Q(X, Y ) : Q(f, Y ) is radically, respectively quadratically, solvable). •
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