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ABSTRACT
This paper studies the optimal control of a commercial building’s thermostatic load
during off-peak hours as an ancillary service to the power grid. It provides an al-
gorithmic framework that commercial buildings can implement to cost-effectively
increase their electricity demand at night while they are unoccupied, instead of us-
ing standard inflexible setpoint control. Consequently, there is minimal or no impact
on user comfort, while the building manager gains an additional income stream from
providing the ancillary service. By introducing a novel benefit-cost ratio of ancillary
service payment to night-time price of electricity, we are able to study the building’s
capability to provide a service that is both useful to the power grid and profitable
to the building manager. Numerical results show that there can be an economic
incentive to participate even if the payment rate for the ancillary service is less than
the price of electricity.

KEYWORDS
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1. Introduction

1.1. The need for electricity balancing and ancillary services

A secure and stable power grid requires continuous balance between the electricity
supplied and consumed on it. The system operator, an independent entity that is
responsible for the security, stability and, in many cases, the transmission system
of the power grid (Kirschen and Strbac 2004, p. 3), balances electricity supply and
demand by:

• increasing generation or reducing demand when there is a shortfall in supply;
• decreasing generation or increasing demand when there is surplus power.

The latter, which we refer to as decremental actions (Szabó and Martyr 2017), are in-
creasingly relevant for power grids with high levels of intermittent generation from
renewable energy sources (Rothleder and Loutan 2014). In order to carry out its
balancing duties, the system operator procures a variety of ancillary services from
third-party companies (Kirschen and Strbac 2004, p. 106). There is much interest in
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enabling electricity consumers to provide ancillary services (Hirst and Kirby 1998; Var-
dakas, Zorba, and Verikoukis 2015; Paterakis, Erdinç, and Catalão 2017), particularly
commercial buildings due to the large flexible demand from their heating, ventilation
and air conditioning (HVAC) systems (Olivieri et al. 2014; Pavlak, Henze, and Cush-
ing 2014; Lawrence et al. 2016; Kim et al. 2016; De Coninck and Helsen 2016; Blum,
Zakula, and Norford 2017; Jensen et al. 2017; Junker et al. 2018). Replacement re-
serves, which are given more time to respond and are used as back up for faster acting
services, can be most suitable in this case (Hirst and Kirby 1998, p. 32).

This paper is a quantitative study of the potential for a commercial building with
flexible thermostatic load to participate in a decremental replacement reserve (DRR)
initiative that is modelled after a real-world example: Demand Turn Up (National
Grid UK 2018). The setting of this paper is novel in comparison to previous papers
such as De Coninck and Helsen (2016) and Blum, Zakula, and Norford (2017). In the
present work the reserve provider bids a schedule of its reserve capability together
with a fixed utilization payment, rather than a variable payment depending on the
quantity utilized. We provide a mathematical and computational framework, inclusive
of a novel benefit-cost ratio of utilization payment to electricity price, that enables
us to study the commercial building’s capability to provide a useful ancillary service
to the power grid that is also profitable to the building manager. We also focus on
temperature cooling only and note that heating can be treated symmetrically. Data
centres, in particular, are an important example since they account for more than 1%
of global electricity usage, and their cooling infrastructure typically accounts for about
40% to 50% of their electricity usage (Dayarathna, Wen, and Fan 2016).

1.2. Buildings as ancillary service providers

The International Energy Agency (IEA) Energy in Buildings and Communities Pro-
gramme (EBC) Annex 67, “Energy Flexible Buildings”, is a collaboration amongst
participants from 16 countries that aims to systematically assess the energy flexibility
that buildings can offer to energy systems (Jensen et al. 2017; International Energy
Agency (IEA) 2018). One of the key objectives of Annex 67 is the development of
a common terminology and definition of this “energy flexibility” which, according
to Jensen et al. (2017, p. 28), is the building’s ability to “manage its demand and
generation according to local climate conditions, user needs, and energy network re-
quirements”.

Demand response refers to any programme that motivates changes in an electricity
consumer’s normal power consumption, typically in response to incentives regarding
electricity prices (Vardakas, Zorba, and Verikoukis 2015). It is widely considered as a
cost-effective and reliable solution for improving the efficiency, reliability, and safety of
the power grid (Vardakas, Zorba, and Verikoukis 2015; Paterakis, Erdinç, and Catalão
2017). There are several examples of initiatives that incentivize electricity consumers
to reduce their demand, especially during peak hours, as the references Olivieri et al.
(2014); Lawrence et al. (2016); Kim et al. (2016); Jensen et al. (2017); Junker et al.
(2018) all show. Demand response schemes that provide incentives for increased elec-
tricity demand are much rarer. The Demand Turn Up (DTU) service offered by Na-
tional Grid UK, the system operator in Great Britain, is one such scheme. This service
is meant to incentivize large electricity consumers to increase their demand when there
is low overall demand on the network and high output from renewable generation (Na-
tional Grid UK 2018). It is particularly relevant during the off-peak, night-time hours
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of interest to this paper, and below we summarize its key aspects (see National Grid
UK (2018) for further details).

Demand turn up: an off-peak demand response scheme

DTU runs during the British Summer Time (BST) period and can be utilized during
availability windows that last from 23:30 until 08:30 or 09:00 the following day, depend-
ing on the time of year, or on weekends and holidays between 13:00 and 16:00. Addi-
tionally, there are optional windows that cover all other time periods. DTU providers
declare their availability by specifying a schedule for the adjustment in power con-
sumption or generation they can provide, including the payment for utilization of
their service. This is primarily done one week in advance of an availability window.
National Grid UK then sends a contracted DTU provider instructions for the service
according to the capability that was declared. The provider has a deadline for ac-
knowledging receipt of the DTU instruction, then a delivery period for responding as
instructed. In 2017, for instance, the average length of time for advanced notice of
DTU utilization was 6 hours and 40 minutes. A DTU provider which has declared its
availability must be able to deliver the service as instructed or face a penalty.

There two routes to market for DTU candidates:

• Fixed DTU is a medium to long-term procurement process that takes place
months in advance of BST.
• Flexible DTU, known as Optional DTU in 2018, is a rolling short-term procure-

ment process that takes place during BST and closer to the period that requires
the service.

In addition to the utilization payment, successful Fixed DTU candidates receive a
guaranteed payment for their availability according to the price tendered. Although
this availability payment is appealing, Fixed DTU candidates have their utilization
payment capped at tender. This can make Flexible DTU preferable since it gives
candidates more flexibility to adjust their declaration in response to weather and
market conditions.

While our subsequent analysis only accounts for the utilization payment, we ac-
knowledge that nearly all of the contracts in 2017 were for Fixed DTU. Inclusion
of the availability payment merely strengthens our case for profitable participation
in DTU. It is also important to note that the availability payment for Fixed DTU
providers is typically small in relation to the utilization payment. For instance, the
average utilization payment for 2017 was 67.50 £/MWh or, equivalently, 6.75 p/kWh,
whilst the average accepted availability payment was 1.51 £/MW/h or, equivalently,
0.151 p/kW/h (National Grid UK 2018). Besides cost, the magnitude and sustainabil-
ity of a response are important in the assessment of an offer to provide DTU. The
current entry threshold is 1 MW, which can be aggregated from sources of at least 0.1
MW (equivalently, 100 kW). Regarding sustainability, in 2017 the average duration of
a single DTU request was 3 hours and 34 minutes (National Grid UK 2018). Therefore,
both power and energy are important for the DTU service.

Settlement is the process of compensation for successful provision of the DTU ser-
vice. A provider has two options for settlement, forecast or baseline, and its choice is
fixed for the contract’s duration. Both options produce a reference schedule to which
the actual metered electricity consumption or generation is compared, and the differ-
ence is settled against the DTU service instruction that was sent. The forecast method
uses the provider’s prediction for electricity consumption or generation during that ser-
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vice period, whereas the baseline method uses the average metered output from recent
entries for that day and time in which the provider did not render a DTU service.

Quantifying a building’s potential to provide an ancillary service

As mentioned previously, commercial buildings have significant potential to provide
ancillary services to the system operator. According to Blum, Zakula, and Norford
(2017, p. 1266), capacity and performance are the two main components of this an-
cillary service provision, each of which has a magnitude and cost. Capacity refers to
the capability of the building’s HVAC system to provide the ancillary service, whereas
performance refers to the work that the HVAC system does to provide the ancillary
service in response to the system operator’s instructions. Similarly, Jensen et al. (2017)
report three general properties of energy flexibility in buildings:

• the time over which energy and power can be altered
• the amount of energy or power that can altered
• the cost associated with this energy or power alteration.

Several papers have argued that buildings can be incentivized to participate in ancil-
lary services markets, despite high energy prices or less efficient operating conditions,
provided they are adequately compensated (Olivieri et al. 2014; Pavlak, Henze, and
Cushing 2014; Lawrence et al. 2016; De Coninck and Helsen 2016; Blum, Zakula, and
Norford 2017).

Blum, Zakula, and Norford (2017) propose a methodology for quantifying the op-
portunity costs arising from the provision of ancillary services by buildings’ HVAC sys-
tems. The authors identify sources of these opportunity costs, and develop a method
of accounting for them through time that is consistent with current practice for gen-
erators. This is done by recognizing the impacts of ancillary service provision on daily
energy efficiency and costs. De Coninck and Helsen (2016) previously addressed a
similar problem. However, unlike Blum, Zakula, and Norford (2017) they focused on a
building’s capability to alter its total energy use over a period of time, and the method-
ology put forward was not intended for real-time dynamic operations (De Coninck and
Helsen 2016, p. 654). Both papers use optimal control to determine the building’s ca-
pability to provide a given level of reserve and the associated opportunity cost. In that
setting, an opportunity cost curve can be constructed by varying the level of reserve,
and this cost curve can be used in the ancillary services market for the purpose of
dispatch by the system operator, or for bidding purposes by the building manager.

1.3. Aim of this work

In this paper we study the potential for a commercial building to participate in an
ancillary service scheme such as Demand Turn Up by controlling the electricity it
consumes for temperature cooling at night, which is the longest possible period for
providing this service. Unlike the setting studied in De Coninck and Helsen (2016)
and Blum, Zakula, and Norford (2017), the reserve provider bids a schedule of its
reserve capability (in kW) together with a fixed utilization payment (per kWh), rather
than a variable payment depending on the quantity utilized. Our main contribution
is an analysis of the building manager’s incentives in this novel setting by using the
benefit-cost ratio of utilization payment to night-time price of electricity. By varying
this ratio, we can see how it affects the magnitude of reserve power offered for the
ancillary service.
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We approach the overall problem of economically providing the ancillary service by
breaking it up into three smaller problems:

(1) Reference: determine an optimal reference control schedule to use for settlement
of the service.

(2) Capability: using a prospective control schedule, determine an optimal offer of
reserve relative to the reference schedule obtained from the previous step.

(3) Delivery: determine an optimal control schedule for delivering given service in-
structions that agree with the capability identified in the previous step.

We formulate each of these problems as a constrained optimal control problem (Clarke
2013), and use the control parametrization method (Teo and Goh 1991) to obtain ap-
proximate numerical solutions for different scenarios. Optimal control is one of several
mathematical techniques that can be used to optimize the provision of an ancillary
service from a commercial building (Wang and Ma 2008; Olivieri et al. 2014; Deng
et al. 2015; Jensen et al. 2017). Moreover, it can be an effective solution for control of
the building’s thermostatic load (Vardakas, Zorba, and Verikoukis 2015, p. 158).

Our methodology is suitable for assessing the building’s ability to participate in any
demand response scheme, for either incremental or decremental reserve, where the uti-
lization payment is fixed and the reserve provider bids capacity curves. We are able
to identify the incentives that drive the optimal actions, leading to recommendations
that are intuitive and implementable using a variety of control architectures. Con-
sistent with previous studies (Olivieri et al. 2014; Pavlak, Henze, and Cushing 2014;
Lawrence et al. 2016; De Coninck and Helsen 2016; Blum, Zakula, and Norford 2017),
we find that, besides the dynamics and constraints for the internal temperature, the
level of participation in the ancillary service depends on how well the building manager
is compensated relative to the additional cost incurred.

On the one hand, our numerical results for the optimal reference and delivery control
schedules are intuitive and show that these schedules both minimize the overall cost
of consuming power to satisfy the corresponding operational constraints. On the other
hand, our numerical results for the optimal prospective control schedule, which is used
to determine the optimal level of reserve to bid, are more nuanced as they show that
there is an economic incentive to participate in the ancillary service even when the
utilization payment R is less than the night-time price of electricity P . The optimal
prospective control schedule’s structure depends crucially on the benefit-cost ratio R

P .

• When R
P < 1 the optimal prospective control schedule has a complicated struc-

ture with time-shifts in consumption causing intermittent periods of constant
reserve which are too short to be useful in practice. Nevertheless, this schedule
ends with a sufficiently long interval of constant reserve which can be offered for
the ancillary service.
• When R

P = 1 the optimal prospective control schedule also has a complicated
structure which lacks sufficiently long periods of constant reserve. Nevertheless, it
ends with a relatively long interval where the level of reserve steadily increases.
The totality of this additional energy usage can be offered for the ancillary
service, if allowed.
• When R

P > 1 the optimal prospective control schedule has the least complicated
structure and sustains constant reserve for long periods throughout the night-
time period. It can consist entirely of two contiguous intervals of constant reserve,
at two different power levels, which is consistent with current practice (National
Grid UK 2018).
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In the first two cases, the strikingly complicated optimal prospective control schedules
result from the need to use highly variable power consumption to maximize profit
when there is insufficient compensation for deviating from the reference schedule. The
extremity of this behaviour is also a consequence of the continuous-time setting of our
optimal control problem. While the optimal prospective control schedule in this case
may not be entirely practicable for an ancillary service such as DTU, a suboptimal
one can be derived from it which is both practicable and profitable to the building
manager. It is also possible that an ensemble of buildings can be used to obtain a less
variable and practicable optimal prospective control schedule in aggregate.

In the following section we present our mathematical framework for optimizing the
reference, capability and delivery control schedules for the reserve service. This frame-
work uses the building’s internal temperature as a controlled variable. In principle, any
model that describes the temperature dynamics using ordinary differential equations
can be used, and for our study a simple linear model suffices. For realistic applications,
the temperature relaxation behaviour of a given building is measured and used as in-
put to the optimal control scheme. However, modelling the fine details of temperature
evolution and building characteristics is beyond the scope of this paper. In Section 2.1
we present the model for temperature dynamics, which is used to obtain the numerical
solutions to the optimization problems presented in Section 3. The paper concludes
with a summary of the main results and practical recommendations in Section 4.

2. Optimal control problems for off-peak demand response from
thermostatic load

The control horizon is a period of time during which the building’s internal tem-
perature is controlled for the ancillary service. In this paper, the control horizon is
included within the night-time availability window for DTU that lasts for 9 or 9.5
hours starting from 23:30. Let T > 0 denote the control horizon’s length in minutes
and x = (x(t))0≤t≤T denote the building’s internal temperature in ◦C during this
time.

2.1. Internal temperature modelling

We assume that the internal temperature x evolves according to the following linear
dynamics (Ihara and Schweppe 1981; Tindemans, Trovato, and Strbac 2015):

ẋ(t) = −1

τ
[x(t)−Xoff + (Xoff −Xon)u(t)] ,

x(0) ∈ [Xon, Xoff ],
(1)

where ẋ is the time derivative of x and,

• Xon and Xoff are the asymptotic temperatures reached when the cooling equip-
ment operates in the “on” and “off” states respectively;
• τ > 0 is the thermal time constant;
• u(t) ∈ [0, 1], the normalized cooling control power, is the fraction of actual power
C(t) consumed at time t,

u(t) =
C(t)

Cmax
,
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where Cmax (kW) is the maximum power consumption of the cooling equipment.

Definition 2.1. Let U denote the set of normalized control schedules
(
u(t)

)
0≤t≤T

where u : [0, T ]→ [0, 1].

Suppose u ∈ U is a step function of the form,

u(t) =

np∑
k=1

uk1[tk−1,tk)(t), t ∈ [0, T ], (2)

where np > 1 is an integer, {tk}npk=0 is a sequence of time points 0 = t0 < . . . < tnp = T
that partition the control horizon [0, T ] into np contiguous subintervals, and 1[tk−1,tk) is
the indicator function of the set [tk−1, tk). There is a unique solution to the differential
equation (1) corresponding to such a schedule u, which is also a continuous function
of time (see Theorem 6.5 of Adkins and Davidson (2012), for example). Moreover,
since equation (1) is a first-order linear ordinary differential equation with constant
coefficients, Adkins and Davidson (2012, p. 47), for example, shows that it can be
solved explicitly on each subinterval [tk−1, tk) to get,

x(t) = e−
t−tk−1

τ x(tk−1) +
(

1− e−
t−tk−1

τ

)(
Xoff + (Xon −Xoff )uk

)
,

tk−1 ≤ t < tk, 1 ≤ k ≤ np.
(3)

This solution can be verified by showing that it solves the differential equation (1)
with control (2).

Constraints for the internal temperature. We suppose that the internal tem-
perature must be kept between lower and upper limits Xmin and Xmax overnight,

Xmin ≤ x(t) ≤ Xmax, t ∈ [0, T ], (4)

where Xon < Xmin < Xmax < Xoff . A pre-cooling operational strategy refers to the
act of increasing cooling power and using the building’s thermal inertia to reduce the
need for cooling power at later periods (Reddy, Norford, and Kempton 1991; Roth,
Dieckmann, and Brodrick 2009). We include pre-cooling in our framework by imposing
a constraint on the final temperature value x(T ) as follows,

Xmin ≤ x(T ) ≤ X̂, (5)

where X̂ in [Xmin, Xmax] is set by the building manager. Maximum pre-cooling is

achieved by setting X̂ = Xmin.

2.2. Three optimal control problems for off-peak decremental
replacement reserve provision

In this section we discuss our mathematical framework for analysing the economic
provision of off-peak decremental replacement reserve which determines,

(1) the optimal reference control schedule Cref to use for settlement of this ancillary
service,
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(2) an optimal offer of instantaneous reserve capability Ccap from a prospective
schedule Cpro as follows,

Ccap(t) = Cpro(t)− Cref (t), t ∈ [0, T ]. (6)

(3) the optimal delivery control schedule Cdel that fulfils reserve service instructions
that are compatible with the declared reserve capability Ccap.

If the right-hand side of (6) is negative then the building is unable to deliver instan-
taneous decremental reserve at that time. Negative instantaneous reserve exemplifies
a possible consequence of demand response, which some authors call the payback ef-
fect, where operational constraints enforce a period of recovery subsequent to demand
response provision (Tindemans, Trovato, and Strbac 2015; Jensen et al. 2017). It is im-
portant to note that despite occurrences of negative instantaneous reserve, the building
can still deliver total decremental reserve over the control horizon, provided∫ T

0
Ccap(t)dt > 0.

Problem 1. Optimal reference power consumption

Suppose there is no request for decremental reserve during [0, T ] and the building man-
ager implements the reference schedule Cref . Letting P (p/kWh), where “p” stands
for pence, denote the positive and constant night-time price of electricity, the total
cost to the building manager is,

1

60

∫ T

0
PCref (t)dt, (7)

where we divide by 60 since T is given in minutes. In this case it is reasonable to
assume that the building manager aims for energy efficiency, so that Cref minimizes
(7) subject to the internal temperature constraints. This reasoning is consistent with
related studies such as De Coninck and Helsen (2016); Blum, Zakula, and Norford
(2017) and forms the basis for the following optimal control problem.

minimize

∫ T

0

[
uref (t) + αref

(
uref (t)

)2]
dt over uref ∈ U subject to:

(i) ẋ(t) = f(t, x(t), uref (t)) given by (1),

(ii) Xmin ≤ x(t) ≤ Xmax, t ∈ [0, T ],

(iii) x(0) ∈ [Xmin, Xmax] and x(T ) ∈ [Xmin, X̂],

(8)

where uref is the normalized reference control schedule, and αref > 0 is a constant that

weighs the importance of the regularization term
(
uref (t)

)2
. This regularizer is used in

the control problem (8) to disfavour solutions where uref alternates rapidly between
its minimum and maximum possible values. In the absence of this regularizer, theory
states that this unwanted behaviour can be optimal in (8) since the control variable
uref then appears linearly in both the cost criterion and state dynamics (Maurer 1977).

8



Problem 2. Optimal prospective power consumption

Let R (p/kWh) denote the positive utilization payment received as a reward for the
electricity consumed in excess of the reference level Cref . When decremental reserve
is being delivered according to a prospective schedule Cpro, the instantaneous net cost
is,

PCpro(t)−R
(
Cpro(t)− Cref (t)

)+
,

where y+ = max(y, 0). The total net cost is therefore,

1

60

∫ T

0

[
PCpro(t)−R

(
Cpro(t)− Cref (t)

)+]
dt. (9)

Assuming that the system operator will utilize all of the decremental reserve provided
by the prospective schedule, it is reasonable to choose Cpro so that it minimizes the
total net cost (9) subject to the internal temperature constraints. We therefore for-
mulate an optimal control problem to achieve this. Given the normalized reference
control schedule uref , night-time electricity price P , and utilization payment R,

minimize J(upro ; uref , P,R) over upro ∈ U subject to:

(i) ẋ(t) = f(t, x(t), upro(t)) given by (1),

(ii) Xmin ≤ x(t) ≤ Xmax, t ∈ [0, T ],

(iii) x(0) ∈ [Xmin, Xmax] and x(T ) ∈ [Xmin, X̂],

(iv)

∫ T

0

[
upro(t)− uref (t)− R

P

(
upro(t)− uref (t)

)+]
dt ≤ 0,

(10)

where upro is the normalized prospective control schedule, the cost criterion
J(upro ; uref , P,R) is given by,

J(upro ; uref , P,R) =

∫ T

0

[
upro(t)− R

P

(
upro(t)− uref (t)

)+]
dt

+ αpro

∫ T

0

(
upro(t)

)2
dt,

(11)

and, similar to (8) above, αpro > 0 is a constant used to weigh the importance of a
quadratic regularizer. The effect this parameter can have on the results is illustrated in
Section 3 below. Constraint (10)-(iv) ensures that the building manager is not worse off
financially by following upro instead of uref , and is always satisfied when R ≥ P . If “0”
on the right-hand side of (10)–(iv) is replaced by “−γ” where γ ≥ 0, then a solution to
(10) guarantees the building manager a minimum total net profit of γ

(
CmaxP

60

)
pence

relative to the reference schedule’s cost.

Problem 3. Optimal reserve service delivery

Reserve service instructions are described by a control schedule Cask that indicates
how much additional power the building should consume relative to the reference level
Cref . The schedule Cask is a non-negative function of time that should not exceed the
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declared reserve capability Ccap (cf. (6)) whenever the latter is positive,

0 ≤ Cask(t) ≤ max(Ccap(t), 0), t ∈ [0, T ].

We suppose furthermore that Cask is of the form,

Cask(t) =

N∑
i=1

Ci,ask1[si,ei)(t),

where {(Ci,ask, si, ei)}i=1,...,N with N ≥ 1 is a sequence of instructions, each consisting
of a delivery amount Ci,ask (kW), delivery start time si (min), and delivery end time
ei (min), satisfying

(i) 0 ≤ si < ei ≤ T for i ∈ {1, . . . , N},
(ii) ei = si+1 for N ≥ 2 and i ∈ {1, . . . , N − 1}.

Therefore, at any time t ∈ [si, ei) the building’s power consumption must be at least
Ci,ask (kW) more than the reference level Cref (t). This leads to the following constraint
on any delivery schedule Cdel that satisfies the reserve service instructions,

Cdel(t) ≥ Cref (t) + Ci,ask, si ≤ t < ei, i = 1, . . . , N. (12)

For computations and illustrations, it is convenient to represent the constraint (12) by
its equivalent form,

Cdel(t) ≥ Cmin(t), t ∈ [0, T ],

where Cmin is the schedule of minimal instructed power consumption,

Cmin(t) =

N∑
i=1

[
Cref (t) + Ci,ask

]
1[si,ei)(t),

and we used the non-negativity of Cdel.
We assume that the building’s instantaneous consumption can be less than the ref-

erence level outside of the reserve service instructions’ times, allowing it to recover
from providing the service as needed. Since the building manager is only compensated
for the additional demand as instructed, it is reasonable to require that the building
uses no more power than that needed to satisfy the reserve instructions and inter-
nal temperature constraints. Using the normalized schedules udel, uref and uask, we
formulate the reserve service delivery problem as follows.

minimize

∫ T

0

[
udel(t) + αdel

(
udel(t)

)2]
dt over udel ∈ U subject to:

(i) ẋ(t) = f(t, x(t), udel(t)) given by (1),

(ii) Xmin ≤ x(t) ≤ Xmax, t ∈ [0, T ],

(iii) x(0) ∈ [Xmin, Xmax] and x(T ) ∈ [Xmin, X̂],

(iv) udel(t) ≥ uref (t) + ui,ask, si ≤ t < ei, i = 1, . . . , N,

(13)
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where, similar to (8) above, αdel > 0 is a constant used to weigh the importance of
the quadratic regularizer.

3. Numerical simulations

Theory, for example Cesari (1983); Clarke (2013), guarantees the existence of a solution
to each of the problems (8), (10), and (13). In this section we present results of the
associated numerical solutions, which we obtained using the control parametrization
method (Teo and Goh 1991) outlined in Appendix A. Table 1 lists values for some of
the parameters used to generate the numerical results.

Table 1. Parameters for numerical simulations.

Parameter Value Units

T 360 min

τ 120 min

Xoff 35 ◦C

Xon 10 ◦C

x(0) 27 ◦C

Xmin 18 ◦C

Xmax 27 ◦C

The hypothetical building for the experiments has computing equipment that gen-
erates a significant amount of electricity demand for temperature cooling. We do not
investigate specifics of the building here, but have chosen the parameters in Table 1 to
produce sensible temperature values according to the dynamics (1). We note that the
chosen internal temperature range agrees with the recommended range in ASHRAE
Standard 90.4-2016 for data centres (ASHRAE 2016). The control horizon’s length,
T = 360, corresponds to the night-time period 00:00 to 06:00. Although papers similar
to ours such as Blum, Zakula, and Norford (2017); De Coninck and Helsen (2016) tend
to have longer control horizons, say twenty-four hours, the short horizon we consider
accurately reflects the costs and benefits accrued from providing a night-time ancillary
service such as DTU. Moreover, the operational constraints for temperature regulation
do not permit a large range of time for intra-day electricity demand shifting. Never-
theless, our analysis can be made consistent with another one that occurs over a longer
control horizon by appropriately specifying the terminal temperature constraint (5).

3.1. Optimal reference power consumption

In this section we highlight important characteristics of the control and temperature
trajectories corresponding to an optimal reference control schedule uref . These tra-
jectories, displayed in Figure 1, are intuitive and show that the optimal control uses
minimal energy to satisfy the temperature constraints. In particular,

(1) Starting at the maximum allowed level Xmax, the temperature is kept constant
at this level until a time t̄1 ∈ (0, T ).

(2) From time t̄1 until t̄2 ∈ (t̄1, T ), the power consumption is increased quickly at
a constant rate until it reaches the maximum level uref = 1. Furthermore, the

11
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Figure 1. Optimized reference control schedule uref (dash-dotted line) and internal temperature xref (solid

line) corresponding to two different values for the pre-cooling temperature X̂. The schedule uref keeps the
temperature constant at the maximum level for some time, and then quickly ramps up to full power around time

t̄2 (vertical dashed line) so that the temperature hits X̂ exactly at the terminal time. The initial temperature

is x(0) = 27 and the regularizer weight is αref = 0.01. Control and temperature constraints are shown using
dotted horizontal lines.

difference between t̄1 and t̄2 is negligible.
(3) Maximum power is used from time t̄2 until T to steer the temperature to X̂, the

upper limit of allowed values at time T .

Consequently, if the optimal reference schedule uref is used then the building is unable
to provide decremental reserve after t̄2 as uref already consumes maximum power. Note
that these optimal characteristics are sensible for temperature dynamics other than
the linear one (1).

The linear model allows for easy approximation of the terms described above. For
example, if the temperature x is constant over an interval [t̄0, t̄1] with 0 ≤ t̄0 < t̄1 ≤ T ,
then setting ẋ(t) = 0 in (1) shows that any control ū ∈ U that achieves this condition
satisfies,

−1

τ
[x(t̄0)−Xoff + (Xoff −Xon)ū(t)] = 0, t ∈ [t̄0, t̄1],

and, after a rearrangement of the terms,

ū(t) =
Xoff − x(t̄0)

Xoff −Xon
, t ∈ [t̄0, t̄1]. (14)

Using (14) with t̄0 = 0 and x(0) = Xmax, we see that the control uref approximately
satisfies,

uref (t) =
Xoff −Xmax

Xoff −Xon
, t ∈ [0, t̄1]. (15)

Using the explicit representation (3) for the temperature schedule corresponding to a
step control, the time t̄2 in the description approximately satisfies,

X̂ =
(
e−

T−t̄2
τ

)
Xmax +

(
1− e−

T−t̄2
τ

)
Xon,

12



which we solve to get,

t̄2 = T − τ log

(
Xmax −Xon

X̂ −Xon

)
. (16)

Since the difference between t̄1 and t̄2 can be made negligible, we only need to calculate
t̄2 in practice. Nevertheless, the time t̄1 can be determined by calculating how long
it takes to increase power from the normalized level uref (t̄1) = Xoff−Xmax

Xoff−Xon at t̄1 to

the maximum level uref (t̄2) = 1 at t̄2 for a given rate of increase. Using (16) we see
that the duration of unavailability, T − t̄2, is proportional to the building’s thermal
time constant τ , and also increases with the level of pre-cooling at time T , which is
controlled by the parameter X̂.

3.2. Optimal reserve level capability

This section illustrates the numerical results for the reserve capability problem (10).
For the simulations we set the utilization payment R at either 75%, 100% or 125% of
the night-time electricity price P . Figure 2 shows the prospective and reserve power
schedules corresponding to these three different values of R

P , whilst Table 2 further
describes the observed reserve power schedules. Figure 2 also shows the normalized
net profit relative to the reference schedule for the three cases, which is defined as the
negative of constraint (10)-(iv),

NNP (upro;uref , R, P ) =

∫ T

0

[
uref (t)− upro(t) + R

P

(
upro(t)− uref (t)

)+]
dt.

Multiplying this value by
(
CmaxP

60

)
gives the total net profit relative to the reference

schedule in pence. The results in this section demonstrate how crucial the benefit-cost
ratio R

P is in incentivizing practicable participation in the reserve service.

Case 1: R
P = 3

4

In Figure 2(a) the benefit-cost ratio satisfies R
P < 1, and the optimal control tends

to use short bursts of pre-cooling to minimize the cost of providing reserve power.
Consequently, there are many intervals during which the building is either unavailable
for decremental reserve, or available for short periods at the maximum level. The
longest period of sustained maximal reserve power occurs just before time t̄2 when
the reference schedule’s power consumption is at its highest. The normalized level of
sustained reserve power during this time is approximately,

ucap(t) = 1− Xoff −Xmax

Xoff −Xon

=
Xmax −Xon

Xoff −Xon
, t ∈ [t̂, t̄2],

13
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(c) R
P

= 5
4

3
4 1 5

4
R
P

0

20

40

60

N
N
P
(u

p
ro
;u

re
f,
R
,P

)

(d) Normalized net profit

Figure 2. Optimized reserve power ucap and prospective power consumption and internal temperature, upro
and xpro, corresponding to three different values for the benefit-cost ratio R

P
. Solid lines with star (respectively,

circle) markers indicate the prospective (respectively, reference) schedules. The shaded region highlights where

there is a positive value of instantaneous reserve power. Also shown in each case is the approximate time t̄2
from which the reference schedule is at maximum power. In (a) R

P
= 3

4
and the building tends to be available

for decremental reserve at maximum level on short intervals. The longest duration of reserve occurs on an

interval [t̂, t̄2] where the temperature is cooled from the maximum allowed value to the minimum one. In (b)
R
P

= 1 and there is an initial period of highly variable decremental reserve, followed by a longer period in

which decremental reserve is stable but mainly below the maximum level. In (c) R
P

= 5
4

and the building is

mostly available for decremental reserve. Maximum power is applied until the time ť that the temperature first

hits the minimum allowed value, then near constant power is applied to keep the temperature at this level
until t̄2. Figure (d) shows that, as expected, the normalized net profit increases with R

P
. Parameter values are

x(0) = 27 for the initial temperature, X̂ = 18 for the pre-cooling value, and αref = αpro = 0.01 for the control
regularizer weights. Temperature and control constraints are shown using dotted horizontal lines.

where, similar to (16) above for the reference schedule, t̂ is given by,

t̂ = t̄2 − τ log

(
Xmax −Xon

Xmin −Xon

)
= T − τ log

(
(Xmax −Xon)2

(X̂ −Xon)(Xmin −Xon)

)
. (17)

Using the expression for t̄2 in (16) and setting X̂ = Xmin in (17) shows that for Figure
2(a),

t̄2 − t̂ = T − t̄2,

14



Table 2. Summary description of the reserve power schedules shown in Figure 2 based on the values used

for the parameters. In all cases, the building is unable to provide reserve for a period of 90.5 minutes from

t̄2 = 269.5 to T = 360 since the reference power is at maximum level uref (t) = 1 during this time.

R
P

Summary

3
4

There are few intervals of sustained decremental reserve, the longest
of which is a period of 90.5 minutes from t̂ = 179 to t̄2 = 269.5 with
an approximate normalized reserve power value ucap(t) = 0.68.

1

There is an initial period of highly variable decremental reserve, fol-
lowed by a longer period of stable decremental reserve. During the
latter period, reserve power ucap starts at a value near 0 and increases
slowly to the maximum possible value 0.68.

5
4

There are two contiguous periods of sustained decremental reserve.
These periods are bordered by the time ť = 90.5 that the temperature
first hits the minimum allowed value Xmin = 18 after starting from
x(0) = 27 and being cooled using maximum power. From ť to t̄2,
which is a period of 179 minutes, reserve power hovers around the
value 0.36 while the temperature is steady at its minimum allowed
level. Decremental reserve is provided uninterruptedly for 4.5 hours
in this case, which is almost an hour longer than the average duration
of a single DTU request in 2017 (National Grid UK 2018).

and upro essentially time-shifts the final period of maximum consumption that occurred
under the reference schedule uref .

These numerical results indicate that even if the benefit-cost ratio R
P is less than 1, it

is still possible to obtain a prospective control schedule that is profitable and suitable
for a decremental reserve service such as DTU, at least on the interval [t̂, t̄2]. It is
important to note, however, that the net cost of providing maximum reserve power
increases as R decreases. In the presence of thermal losses, this means there may no
longer be any profitable solutions to (10) of this form if R is too low. In this case it
may be beneficial for profitability, and also practicality, to aggregate the decremental
reserve from multiple buildings.

Case 2: R = P

In Figure 2(b) the benefit-cost ratio satisfies R
P = 1 and the prospective schedule upro

exhibits complex bang-bang behaviour early within the control horizon. This complex
behaviour can be explained by noticing that when R

P = 1 the instantaneous cost in
(11) satisfies,

upro(t)−
(
upro(t)− uref (t)

)+
+ αpro

(
upro(t)

)2
= min

(
upro(t), uref (t)

)
+ αpro

(
upro(t)

)2
.

(18)

The term min
(
upro(t), uref (t)

)
can dominate (18) when αpro is low, incentivizing upro

to use bang-bang control behaviour in order to be more energy efficient than the
reference schedule uref , which already uses minimal energy to satisfy the temperature
constraints. This line of reasoning also helps explain the complexity of upro in the case
R
P < 1. Figure 3 shows furthermore that the fluctuations of upro increase in magnitude
as αpro decreases. The prospective schedule upro shown in Figure 2(b) may not be
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Figure 3. Optimized reserve power ucap and prospective power consumption and internal temperature, upro
and xpro, corresponding to the benefit-cost ratio R

P
= 1 and decreasing values for the regularizer weight

αpro ∈ {10, 1, 1
10
, 1
100
}. Solid lines with star (respectively, circle) markers indicate the prospective (respectively,

reference) schedules. The shaded region highlights where there is a positive value of instantaneous reserve ucap.
When αpro is large, the prospective schedule upro tries to minimize the overall cost of consumption subject

to the temperature constraints, similarly to the reference schedule uref . However, as αpro decreases upro
increasingly tries to stay below uref , leading to rapid bang-bang control behaviour. Parameter values are

x(0) = 27 and X̂ = 18 for the initial and pre-cooling temperatures respectively. Temperature and control

constraints are shown using dotted horizontal lines whilst t̄2, the approximate time from which the reference

schedule is at maximum power, is shown using the dashed vertical line.

suitable for a decremental reserve service such as DTU since it is too variable and
does not sustain a high level of reserve. Nevertheless, it may be possible to obtain a
practicable and profitable prospective control schedule by using a less variable sub-
optimal control schedule, or by aggregating the decremental reserve from multiple
buildings to obtain a smoother control signal, a topic which is outside the scope of
this work. We also note that the prospective control schedule in Figure 2(b) can still
provide some total decremental reserve, albeit not with constant power, during the
relatively long period where it is more regular.

Case 3: R
P = 5

4

In Figure 2(c) the benefit-cost ratio satisfies R
P > 1. The control upro initially applies

maximum power to steer the internal temperature to its minimum allowed value Xmin.
Let ť denote the first time that the temperature hits Xmin. Analogous to (17), ť is
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given approximately by,

ť = τ log

(
Xmax −Xon

Xmin −Xon

)
.

The control upro keeps the temperature at Xmin from ť until the time t̄2 by applying
power that is on average approximately equal to (cf. (14)),

upro(t) =
Xoff −Xmin

Xoff −Xon
, t ∈ [ť, t̄2].

This prospective schedule provides two contiguous periods of constant reserve power
at two different levels,

ucap(t) =

{
1, t ∈

[
0, ť
]
,

Xmax−Xmin
Xoff−Xon , t ∈

[
ť, t̄2

]
,

and is thus suitable for a decremental reserve service such as DTU.

3.3. Optimal reserve service delivery
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Figure 4. Optimized internal temperature x and delivery, reference, and minimum instructed control sched-
ules, udel, uref and umin, corresponding to two different values for the pre-cooling temperature X̂. Delivery

(respectively, reference) schedules are displayed using solid lines with circle (respectively, star) markers. The

shaded region highlights the additional normalized power that is delivered. Reserve service instructions call
for an increase in normalized power by 0.5 between minutes 15 and 75, then 0.2 between minutes 75 and 240.

The schedule udel uses minimal power to satisfy the temperature constraints and reserve service instructions.

Moreover, the building is pre-cooled after the service has been delivered. Parameters values are x(0) = 27 for
the initial temperature and αref = αdel = 0.01 for the regularizer weights. Temperature and control constraints

are shown using dotted horizontal lines.

In this section we summarize the numerical results for the optimal reserve service
delivery problem (13). As Figure 4 illustrates, the optimized delivery schedule uses
minimal power to satisfy the temperature constraints and reserve service instructions.
After delivering the service, the internal temperature is lower than the reference level,
and the cooling equipment can be turned off temporarily while the temperature rises
within its permitted range. The cooling equipment remains off for a longer duration if
less pre-cooling is required at the control horizon’s end.
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4. Summary and recommendations

As the energy transition transforms power grids across the globe, high levels of in-
termittent renewable generation complicate the job of continuously balancing power
supply and demand, which is necessary for the grid’s stability. New ancillary services
have emerged in this regard, such as National Grid UK’s Demand Turn Up (DTU)
(National Grid UK 2018), which is a reserve service that incentivizes large energy
consumers to increase their electricity demand, for example during overnight periods
of high output from renewable generation and low overall demand. In this paper we
explore the optimal participation of a commercial building, through the control of
its temperature cooling equipment, in such an ancillary service initiative. We pro-
vide a computational framework for solving this problem that takes into account the
economic incentives given. The framework has three main outputs:

(1) an optimal reference night-time control schedule for the cooling system when it
does not provide DTU.

(2) an optimal schedule of DTU reserve power relative to the reference for a given
remuneration.

(3) an optimal night-time control schedule to fulfil DTU instructions.

The framework also takes into account the building’s relaxation dynamics, so that DTU
requests are used as an opportunity to optimally pre-cool the building. In addition to
the DTU payment, this pre-cooling reduces energy consumption during the subsequent
morning peak period, which is a financial benefit to the customer and also reduces
stress on the grid.

The optimal control schedule used as reference or to fulfil the DTU instructions is
intuitive and satisfies the temperature and power constraints with minimal cost. Con-
sistent with previous studies, we find that the level of participation in the ancillary
service is affected by the dynamics and constraints for the internal temperature, and
how well the building manager is remunerated. Moreover, participation in DTU can
be profitable even in a case where the utilization payment is lower than the night-time
electricity price. This is because simply shifting pre-planned HVAC operation to a
time earlier in the night leads to increased demand at the earlier time, attracting com-
pensation under DTU. However, the optimal control strategy becomes more complex
as the night-time electricity price further exceeds the utilization payment, fluctuating
more frequently between minimum and maximum power as it “hunts” for profit. Rapid
power fluctuations may be problematic for system stability, and frequent or prolonged
demand reductions are undesirable as they undermine the purpose of DTU. Therefore,
in order to economically incentivize a building manager to provide DTU practicably,
the level of remuneration must be sufficiently high.

Possible future extensions of our work would include controlling an ensemble of
possibly heterogeneous thermostatic loads (Tindemans, Trovato, and Strbac 2015)
and considering measured temperature relaxation dynamics for each member of the
ensemble. Heterogeneity, which can come from different zones in a single building or
from an aggregation of buildings, may be exploited to obtain a less variable and prac-
ticable aggregate response for the ancillary service. Our model may also be extended
to consider the uncertainty in parameters affecting the internal temperature, such as
the external weather conditions, or the uncertainty in being called to provide DTU.
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Notation

Constant quantities
Notation Description Units

T length of control horizon, the period of time during
which the building’s temperature is controlled for
the ancillary service

min

P night-time electricity price p/kWh
R utilization payment p/kWh

Xmin night-time lower temperature limit ◦C
Xmax night-time upper temperature limit ◦C

X̂ temperature limit used for pre-cooling at time T ◦C
Xoff asymptotic temperature for the building “off” state ◦C
Xon asymptotic temperature for the building “on” state ◦C
τ thermal time constant min

Cmax maximum power limit for the building kW
α importance weighting for a regularization term in

the control problem, distinguished by a subscript
(αref , for example)

1

U set of normalized cooling power consumption vari-
ables u

–

Variable quantities
Notation Description Units

1A(t) indicator function of a set A: 1A(t) = 1 if t ∈ A and
1A(t) = 0 if t /∈ A

–

x(t) building internal temperature at time t ◦C
C(t) power consumption of the cooling equipment kW
Cref (t) reference cooling power consumption kW
Cpro(t) prospective power consumption used to calculate

the reserve capability relative to Cref

kW

Ccap(t) declared level of reserve capability kW
Cask(t) reserve service instructions, a schedule of additional

power consumption which must be delivered
kW

Cdel(t) power consumption when delivering the reserve ser-
vice according to the instructions Cask

kW

u(t) normalized power cooling consumption 1
uref (t) normalized reference cooling power consumption 1
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upro(t) normalized prospective cooling power consumption 1
udel(t) normalized delivery cooling power consumption 1
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Appendix A. Description of the control parametrization method

In this section we describe the control parametrization method for solving optimal
control problems of the form,

minimize J(u) =

∫ T

0
Ψ0(t, x(t), u(t))dt+ Φ0(x(T )) subject to:

i) ẋ(t) = f(t, x(t), u(t)), x(0) = x0;

ii) u ∈ U ;

iii) Cη(u) ≤ εη for η = 1, . . . , N.

(A1)

where f(t, x(t), u(t)) governs the dynamics of x according to (1), each Cη(u) is the
canonical form of a loss function associated with a constraint,

Cη(u) =

∫ T

0
Ψη(t, x(t), u(t)) dt+ Φη(x(T )), (A2)

and each εη ≥ 0 is a sufficiently small tolerance parameter. For more details on this
numerical method please see the textbook Teo and Goh (1991) and the survey Lin,
Loxton, and Teo (2014).
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Let Sp, where p ≥ 1 is an integer, denote a finite subset of the control horizon [0, T ]
consisting of np + 1 partitioning points tp0, . . . , t

p
np ,

tp0 = 0, tpnp = T, and tpk−1 < tpk for k = 1, . . . , np.

An increasing sequence of sets {Sp}∞p=1 is formed by taking successive refinements of
partitioning points, and these sets should become dense in [0, T ] as p tends to infinity,

lim
p→∞

max
k=1,...,np

|tpk − t
p
k−1| = 0.

For instance, we can use equidistant partitioning points, tpk = k
np
T for k = 0, . . . , np,

with the ratio np+1

np
, p ≥ 1, being a constant integer that is greater than 1 (a common

choice is np+1

np
= 2). We define Up as the subset of control variables up ∈ U that are

step functions and consistent with Sp in the following sense,

up(t) =

np∑
k=1

upk1[tpk−1,t
p
k)(t), upk ∈ [0, 1].

Each control up is parametrized by an element Up of the np-dimensional space Up =∏np
k=1[0, 1]. This induces equivalent state dynamics f̃ , costs J̃ and constraints C̃η that

are dependent on the parameter Up,

ẋ(t) = f̃(t, x(t),Up) = f(t, x(t), up(t)),

J̃(Up) = J(up),

C̃η(U
p) = Cη(u

p).

An approximate solution to the infinite dimensional optimal control problem (A1) is
obtained by solving the following non-linear finite dimensional optimization problem.

minimize J̃(Up) subject to:

i) ẋ(t) = f̃(t, x(t),Up), x(0) = x0;

ii) Up ∈ Up;
iii) C̃η(U

p) ≤ εη for η = 1, . . . , N.

(A3)

An optimization algorithm such as sequential quadratic programming can be used to
solve this approximate problem. Such optimization algorithms are typically iterative,
and the main computations carried out during each iteration are outlined below (see
Section 6.6 of Teo and Goh (1991) for further details):

(1) Obtain a trajectory for the state variable x by numerically integrating its dy-
namics forward in time on the partitioning points Sp.

(2) Evaluate the cost J̃(Up) and constraints C̃η(U
p) using numerical integration.

(3) Compute the gradients of the cost J̃(Up) and constraints C̃η(U
p) according to

the formulas given in Section 6.6 of Teo and Goh (1991).
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The gradient of the cost J̃(Up), for example, involves computation of the gradient of
a Hamiltonian function H̃0 with respect to the parameter Up,

∂J̃(Up)

∂Up =

∫ T

0

∂H̃0(t, x(t),Up, z(t))

∂Up dt,

where z is the costate variable associated to the cost. The Hamiltonian is defined by,

H̃0(t, x(t),Up, z(t)) = Ψ0(t, x(t), up(t)) + z(t)f(t, x(t), up(t)).

Dynamics for this costate variable are given by,ż(t) = −∂H̃0(t, x(t),Up, z(t))

∂x
z(T ) = d

dxΦ0(x(T )),

and this differential equation is solved numerically backwards in time given a trajectory
for x. A costate variable for each constraint function (A2) is defined similarly.

Loss functions for state and control constraints

Here we describe our specification of the constraint loss functions (A2), only presenting
those for the reserve service delivery problem (13) since those for the other optimal
control problems can be formulated analogously. First define (t, x, u) 7→ ψ1(t, x, u) and
x 7→ φ1(x) by, {

ψ1(t, x, u) = (Xmax − x)(x−Xmin)

φ1(x) = (X̂ − x)(x−Xmin)
(A4)

By definition, we say that the integral constraint ψ1 is satisfied at (t, x, u) if and only
if ψ1(t, x, u) ≥ 0. Similarly, the terminal constraint φ1 is satisfied at x if and only if
φ1(x) ≥ 0. Equation (A4) corresponds to the time-dependent pure state constraints
on the internal temperature over [0, T ] (cf. (4)) and at time T (cf. (5)). In a similar
way we define integral and terminal constraints for DTU,{

ψ2(t, x, u) = u−∑N
i=1

[
uref (t) + ui,ask

]
1[si,ei)(t)

φ2(x) = 0

Using these constraints we define loss rate functions (t, x, u) 7→ Ψη(t, x, u) and
terminal loss functions x 7→ Φη(x), η ∈ {1, 2}, by,{

Ψη(t, x, u) = (min(0, ψη(t, x, u)))2

Φη(x) = λη (min(0, φη(x)))2

where λη > 0 is a weighting parameter. The loss functions Ψη and Φη are combined
to create the total loss Cη(u) for the constraint (cf. (A2)). The total loss Cη is non-
negative by construction and is equal to zero if, equivalently, the relevant constraints
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are satisfied on [0, T ]. We relax this condition by requiring,

Cη(u) ≤ εη, η ∈ {1, 2}.

The SLSQP routine that we use to solve the optimization problem (A3) requires
derivative information as input. However, some of the constraints and costs are ex-
pressed in terms of indicator and ramp (maximum) functions that are not smooth.
Therefore, where necessary we approximate these functions smoothly as follows:

1[0,∞)(y) ≈ eθy

1 + eθy
, 1[a,b](y) ≈

(
eθ(y−a)

1 + eθ(y−a)

)(
eθ(b−y)

1 + eθ(b−y)

)
for a < b,

max(0, y) ≈ 1

θ
log(1 + eθy),

where θ > 0 is a sufficiently large parameter.
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