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Abstract

What is the core of the human brain is a fundamental question that has been mainly
addressed by studying the anatomical connections between differently specialized areas,
thus neglecting the possible contributions from their functional interactions. While many
methods are available to identify the core of a network when connections between nodes
are all of the same type, a principled approach to define the core when multiple types of
connectivity are allowed is still lacking. Here we introduce a general framework to define
and extract the core-periphery structure of multi-layer networks by explicitly taking
into account the connectivity patterns at each layer. We first validate our algorithm on
synthetic networks of different size and density, and with tunable overlap between the
cores at different layers. We then use our method to merge information from structural
and functional brain networks, obtaining in this way an integrated description of the
core of the human connectome. Results confirm the role of the main known cortical
and subcortical hubs, but also suggest the presence of new areas in the sensori-motor
cortex that are crucial for the intrinsic brain functioning. Taken together these findings
provide fresh evidence on a fundamental question in modern neuroscience and offer new
opportunities to explore the mesoscale properties of multimodal brain networks.
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1. Introduction1

Complex networks are characterized by the existence of non-random structures at2

different topological scales [5–7]. A peculiar structure is the so-called core-periphery3

organization [8], where the network exhibits a group of tightly connected nodes (i.e. the4

core), and a group made by the remaining weakly connected nodes (i.e. the periphery).5

Core-periphery organization has been recognized as a fundamental property of com-6

plex networks to support integration of information [9–16]. A related concept is that7

of rich-club behavior, where the tightly connected nodes are the network hubs, i.e. the8

nodes with a large number of links [17, 18]. A rich-club organization has been observed9

in various real-world systems, such as social, technological and biological networks [17–10

20], including the brain [21–24]. More recently, a refined version of the rich-club analysis,11

based not only on the number of connections of the hubs, but also on their capability to12

bridge different communities, has been shown to be relevant to support the integrative13

properties of the nervous system [25].14

In the human brain, rich-club and rich-core organization, associated to the efficiency15

in communication and distribution of information, have been mainly reported in anatom-16

ical, or structural, connectivity networks obtained experimentally from diffusion tensor17

imaging (DTI) data. It has been conjectured that rich cores, rather than shortest paths,18

may actually be responsible for the efficient integration of information between remote19

brain areas [21], which is a crucial prerequisite for normal cognitive performance [26, 27].20

Current evidence suggests that posterior medial and parietal cortical regions mainly con-21

stitute the core of the human connectome [21, 28], while they are contradictory on the22

role of other areas, such as the medial prefrontal cortex (mPFC) and the sensori-motor23

system, which are basic components of the brain functioning [49]. Because brain regions24

are also characterized by functional interactions inferred from neuroimaging data, such25

as functional magnetic resonance imaging (fMRI) [29, 30], we hypothesize that integrat-26

ing information from both structural and functional networks can give a more accurate27

estimate of the regions that eventually constitute the core of the human cortex.28

Instead of aggregating the two different types of connectivity or analyzing them sep-29

arately, we adopt a multiplex network approach that preserves and exploits the original30

information on how brain regions are structurally and functionally interconnected. In a31

multiplex network, different connectivity types are mathematically represented as net-32

works at different layers. Notably, in a multiplex - a particular case of multilayer network33

- there is a one-to-one correspondence between the nodes at different layers [31–35]. Mul-34

tiplex network theory has been recently used to succesfully extract higher-order proper-35

ties of multimodal [36] and multifrequency brain networks that cannot be retrieved by36

standard approaches [37, 38].37

Interestingly, the detection of core-periphery organization in multiplex networks has38

been poorly explored, with the exception of approaches based on k-core decomposi-39

tion [42, 43]. To address this gap, we introduce a criterion to define and detect core-40

periphery organization in multiplex networks. Our method works for any number of41

layers and is scalable to large networks, being non-parametric and based on local node42

information [20]. In the following, we first introduce the general framework and then we43

validate it on synthetic multiplex networks with tunable core similarity.44

We finally apply our method to integrate information from structural and functional45

brain networks and extract the multiplex core-periphery organization of the human brain.46
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The obtained results point to the main hubs known in the literature, but also allows to47

highlight the central role played by the regions of the sensori-motor system, which has48

been surprisingly neglected by previous studies on core-periphery organization, despite49

being considered a fundamental component of the default-mode network [49].50

Our research shades new light on the emergence of core regions in the human connectome,51

and we hope it will spur further work towards a better understanding of the complex52

relationships in the nervous system.53

2. Results54

2.1. Extracting the rich core of a multiplex network55

Let us consider a multiplex network described by a vector of adjacency matricesM =56

{A[1], . . . , A[M ]}, where all interactions of type α, α = 1, . . . ,M , are encoded in a different57

layer described by the adjacency matrix A[α]. To detect the core-periphery structure of58

a multiplex network, we first compute the multiplex degree vector ki = {k[1]
i , . . . , k

[M ]
i }59

of each node i [34]. From now on, we refer to k
[α]
i , α = 1, . . . ,M, as the richness of node60

i at layer α. Notice that this is the simplest way to define the richness of a node, and61

different measures of richness, such as other measures of node centrality, can be as well62

used.63

For each layer α, we then divide the links of node i in those towards lower richness64

nodes, and those towards higher richness nodes, so that we can decompose the degree of65

node i at layer α as k
[α]
i = k

[α]−
i + k

[α]+
i . Finally, the multiplex richness µi of node i is66

obtained by aggregating single-layer information:67

µi =

M∑
α=1

c[α]k
[α]
i . (1)68

where the coefficients c[α] modulate the relative relevance of each layer and can, for69

instance, be determined by exogenous information. In analogy to the single-layer case,70

we define the multiplex richness of a node towards richer nodes as:71

µ+
i =

M∑
α=1

c[α]k
[α]+
i . (2)72

In the most simple set-up we can assume c[α] = c = 1/M ∀α. More general functional73

forms to aggregate the contributions from different layers, giving rise to alternative mea-74

sures of µi and µ+
i , are presented in the Methods section.75

The nodes of the multiplex are ranked according to their richness µ, so that the node76

i with the best rank, i.e. ranki = 1, is the node with the largest value of µ, the node77

ranked 2 is the one with the second largest value of µ, and so on. We then plot for each78

node i the value of µ+
i as a function of ranki. The value of the rank corresponding to79

the maximum of µ+
i finally determines the core-periphery structure. All nodes with rank80

lower than such a value are assigned to the multiplex core, whereas the remaining ones81

become part of the periphery. We notice that also in the simplest case, when c[α] = c ∀α,82

the multiplex core-periphery partition cannot be obtained by simply combining the cores83
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of the different layers, or by applying the single-layer algorithm on the corresponding84

aggregated network.85

As an illustrative example, we report in Fig. 1 the curve µ+
i as a function of ranki86

obtained in the case of the Top Noordin Terrorist network, a multiplex network of N =87

78 individuals with three layers (encoding information about mutual trust, common88

operations and exchanged communication between terrorists), which has been used as a89

benchmark to test measures and models of multiplex networks [34].90

Coefficients c[α] were chosen, in this case, to be inversely proportional to K [α] to91

compensate for the different densities of the three layers. The resulting multiplex rich92

core integrates information from all the layers and looks different from the rich cores93

obtained at each of the three layers by a standard single-layer rich core analysis. More94

details about the results of this analysis are reported in Table S1.95

2.2. Testing the method on multiplex networks with tunable core similarity96

A network with a well defined core-periphery structure has a high density of links97

among core nodes. With a suitable labeling of the nodes, the adjacency matrix of the98

network can be decomposed into four different blocks: a dense diagonal block encoding99

information on core-core links, a sparser diagonal block describing links among peripheral100

nodes, and two off-diagonal blocks encoding core-periphery edges. The key feature of such101

block-structure is that ρ1 � ρ3, i.e. the density ρ1 of the core-core block is much higher102

than that of the periphery-periphery block, ρ3. As first noted by Borgatti and Everett [8],103

the density ρ2 of the off-diagonal blocks is typically not a crucial factor to characterize104

a core-periphery structure.105

To test how our method works on multiplex networks with different structures, we106

have introduced a model to produce synthetic multiplex networks with tunable core107

similarity. In particular, we have constructed multiplexes where each of the M = 2108

layers contain N = 250 nodes and only Nc = 50 of them belong to the core. Each layer109

has the same average node degree 〈k〉 = 10, and the same set of parameters ρ1 > ρ2 > ρ3110

to describe its core-periphery structure. Our model allows to control the number of nodes111

that are both in the core of layer 1 and 2. (see Methods for more details).112

To quantify the similarity among cores at different layers, we introduce the core113

similarity S
[α]
c of layer α with respect to the other layers as:114

S[α]
c =

1

(M − 1)

M∑
β 6=α

I
[αβ]
c

N
[α]
c

, (3)115

where I
[αβ]
c is the number of nodes in the core of both layer α and layer β, whereas N

[α]
c116

is the size of the core at layer α. The core similarity S
[α]
c ranges in [0, 1]. When layer α117

does not share core nodes with any other layers we have S
[α]
c = 0, when all its core nodes118

also belong to the cores of the other layers S
[α]
c = 1, and when on average only half of119

them are part of the cores on each other level S
[α]
c = 1/2. The average core similarity of120

the multiplex can then be computed as Sc = (1/M)
∑M
α=1 S

[α]
c .121

In Fig. 2 we show the results for three multiplex networks with different core similarity.122

In the left column of Fig. 2 we consider a multiplex with Sc = 0. The cores of the two123

layers are not overlapping, as shown in panel (a). As a consequence, many nodes with124

high degree in one layer have low degree in the other one. When c[1] = c[2] = 0.5, the125
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multiplex core of the system is formed by those nodes with sufficiently high multiplex126

richness, as shown in panel (b). In panel (c) we show the changes in the multiplex core127

when we partially (c[1] = 0.75, c[2] = 0.25, left subplot) or completely (c[1] = 1, c[2] = 0,128

right subplot) bias the algorithm towards the first layer.129

In the central column of Fig. 2 we consider a multiplex with Sc = 1/2. Half of the130

core nodes are in common to both layers while half are typical of each layer. The block131

structure of the two layers is partially overlapping, and the nodes are spread uniformly132

over the k
[2]
i vs k

[1]
i plane. In the unbiased case the multiplex core of the system is133

formed by nodes which are part of the core on both layers, but also by nodes scoring134

extremely high in one layer, despite being in the periphery in the other one (panel b).135

When c[1] > c[2], this is particularly true for nodes which have high richness in the first136

layer and low richness in the second, while the opposite is much more unlikely (panel c).137

In the right column of Fig. 2 we consider a multiplex with Sc ≈ 1. The block structure138

of the two layers is now almost identical; the node degrees k[1] and k[2] are correlated139

and most of the nodes belonging to each core are in the multiplex core (panel b). As140

the core structure at the two layers are extremely similar, the biased cases do not differ141

significantly from the unbiased one (panel c).142

2.3. Merging structure and function to extract the connectome’s core143

We have applied our method to investigate the human connectome by considering, at144

the same time, structural and functional information. We have therefore constructed a145

multiplex brain network formed by one structural layer and one functional layer. The two146

layers were obtained by first averaging brain connectivity matrices estimated respectively147

from DTI and fMRI data in 171 healthy individuals. Each of the two layers is then148

thresholded by fixing the average node degree 〈k〉. We have focused our analysis on 158149

regions of interest (ROIs) of the cortex (see Methods for more details).150

In Fig. 3 we report the cores found by analyzing separately the two layers, as well151

as the multiplex core obtained with our method. The figure refers to the case of a152

representative threshold corresponding to an average node degree 〈k〉 = 7. We notice153

that the cores of the structural and functional layers are only partially overlapping, with154

a value of core similarity of Sc = 0.15. For the sake of completeness, we also report155

the Sc values for the the entire threshold range (Fig. S1). A detailed analysis on the156

robustness of the multiplex core detection in presence of random fluctuations is reported157

in the Supplementary text S1.158

As shown in Fig. 3, ventral brain areas tend in general to form the structural core,159

while more dorsal regions appear in the functional core. Notably, brain regions of interest160

(ROIs, Table S2) that are in the core of both structural and functional layers also tend to161

be in the core of the multiplex. Instead, ROIs being in the periphery of both layers tend162

to be excluded from the multiplex core. However, exceptions may exist depending on the163

multiplex richness of the nodes. For example, the posterior part of the right precentral164

gyrus (RCGa3), which is in the periphery of both the structural and functional layer,165

is eventually assigned to the multiplex core, because of its relatively high rank score in166

the two layers. The situation appears even less predictable for ROIs that are in the167

core of one layer and in the periphery of the other layer. Only occasionally these will168

belong to the multiplex core. This is the case, for example, of the anterior part of right169

precentral gyrus (RCGa2) which exhibits a relatively low structural richness but high170
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functional richness, i.e. ranked seventh in the functional core, or of the anterior part of171

the right parietal operculum (RPOC1), which has the highest structural richness but a172

low functional richness.173

2.4. Revealing new core regions of the human brain174

We have extracted the multiplex core-periphery structure of the human brain for175

the full range of available thresholds 〈k〉 = 1, 2, . . . , 120 (see Methods for more details).176

In this way, we have been able to calculate the coreness Ci of each node i, defined as177

the normalized number of thresholds at which the corresponding ROI is present in the178

rich core. This allows us to rank ROIs according to their likelihood to be part of the179

multiplex core and to compare these to the rankings obtained separately for structural180

and functional layers. We note that the same approach of investigating the persistence181

across a set of different filtering thresholds can be applied to any node property. This182

can turn useful for statistical validation in the case no threshold is universally accepted,183

as often happens for brain networks [44–46].184

Parietal (pre/cuneus PCU/LOC, superior parietal lobe SPL), cingulate (anterior Ca,185

posterior Cp), temporal (superior temporal gyrus), insular (insular cortex IC), as well186

as frontal ROIs (paracingulate PC) mainly constitute the structural core, as shown in187

Fig. S2. While some overlap exists between the structural and the functional cores, the188

latter rather tends instead to include occipital (occipital fusiform gyrus OFG, temporo-189

occipital fusiform cortex TOFC) and central (pre/post central gyrus CGa/CGp) ROIs190

and, notably, to exclude regions in the frontal lobe (top 25% ROIs, Fig. S3).191

Fig. 4 shows the coreness of the multiplex network. As expected, ROIs that are192

peripheral (i.e., low coreness) in both layers are also peripheral in the multiplex, while193

ROIs with both a high structural and high functional coreness are typically observed in194

the multiplex core (e.g., TOFC, OFG, Ca, Cp). Interesting behaviors emerge for those195

regions typically characterized by high coreness in one layer and low coreness in the other196

layer. In fact, some of these ROIs are part of the multiplex core, while others are usually197

found in the multiplex periphery, as shown Fig. 5a. For areas with a different assignment198

in the two layers, we note that the main contribution to the multiplex richness µi comes199

from the richness in the layer where node i is identified as core. Interestingly, not only200

the average richness of the node in the core layer is higher than the one in the peripheral201

layer, but also its fluctuations around the mean.202

As a consequence, among regions that are core in the structural layer but peripheral203

in the functional one, those with relatively higher structural richness (degree), such as204

precuneus PCU, insular cortex IC and posterior cingulate Cp, finally tend to join the205

multiplex core no matter the exact value of their functional richness (upper right corner of206

Fig. 5a). Conversely, ROIs with relatively lower structural degree are usually peripheral207

in the multiplex, and typically located in the pre-frontal cortex PC and frontal lobe FP208

(lower right corner of Fig. 5a), as illustrated in Fig. 5b,c. Similarly, among areas in the209

functional core, those with relatively higher functional degree, such as precentral gyrus210

CGa and central operculum COC, tend to join the multiplex core (upper left corner of211

Fig. 5a). In contrast, ROIs with relatively lower functional degree, are mostly peripheral212

in the multiplex, and are located in the parietal operculum POC and superior frontal213

gyrus SFG (lower left corner of Fig. 5a).214

In a separate analysis, we have extracted the multiplex brain coreness from each215

individual and we show that, despite a normal inter-subject variability, the average mul-216
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tiplex brain coreness is very similar to the multiplex coreness of the group-averaged brain217

networks (Fig. S4). Finally, we have evaluated the robustness of the results when also in-218

cluding subcortical ROIs in the brain networks. We report that thalamus, putamen and219

hippocampus are among the regions with highest coreness and therefore become part of220

the multiplex core (Fig. S5). Interestingly, their presence does not significantly alter the221

coreness of the other ROIs (Fig. S6), suggesting an assortative structure where highly222

connected subcortical regions preferentially get connected with regions in the cortex.223

3. Discussion224

The existence of a network core in the brain is a prerequisite for neural functioning225

and cognition, and damages to the core have been associated with several neurological226

or psychiatric diseases [23, 47, 48]. Finding the router regions that ensure integration227

between the different brain modules and communication in the system is therefore a228

fundamental question in neuroscience. Previous studies have addressed the question by229

considering only the structural connectivity of the brain through disparate techniques,230

such as k-core decomposition, centrality measures, and rich-club analysis [21, 28]. While231

the obtained results agree on the implication of posterior medial and parietal cortical232

regions - as well as subcortical thalamus, putamen and hippocampus - in the network233

core [21, 28], they neglect the possible role of other areas which are crucial from a234

functional perspective, such as those in the default-mode network (DMN) [49].235

To integrate information from both structural and functional brain connectivity at236

the network level, we introduce a general criterion to define and extract the core when237

nodes are connected through links which can vary in meaning and nature, and the whole238

system can be described as a network with multiple layers [31–35]. Compared to standard239

approaches, this method has the theoretical advantage to provide a more robust solution,240

taking into account the relative importance of the nodes at each layer, rather than simply241

considering the union or intersection of the cores across layers, or extracting the core from242

the aggregated network.243

The obtained results shed new light on the role of the regions characterizing the244

intrinsic brain function to eventually shape the core of the human brain. First, we show245

that mPFC (e.g., PC and FP), exhibiting a high structural but low functional coreness,246

is eventually assigned to the periphery (Fig. 5a, lower-right corner). This outcome can247

be predicted by the lower multiplex richness and relatively low structural degree, and not248

by the solely attitude of frontal areas to be peripheral in the functional brain network249

(Fig. 5b,c). The exclusion of the mPFC from the rich core supports the hypothesis that250

default-mode network activity may be mainly driven from highly coupled areas of the251

posterior medial and parietal cortex, which in turn link to other highly connected regions,252

such as the medial orbitofrontal cortex [28].253

Second, while frontal ROIs are excluded, new regions gain importance and become254

part of the core because of their higher multiplex richness (see Fig. 5a, upper left255

corner). Among them, we report areas of the central gyrus (CGa, CGp to a minor256

extent), which are characterized by a low structural but relatively high functional degree,257

as shown in Fig. 5b,c. These regions are part of the primary sensori-motor cortex, which258

has been shown to be the most extensive of the resting-state components, or networks259

(out of 8 [50]), covering 27% percent of the total gray matter in the brain [51]. The260

primary sensori-motor component has a high degree of integration (overlap and activity261
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coupling) with all other resting-state networks (e.g., DMN), which is consistent with the262

increased synchronization of neural activity in cortical regions during sensory processing263

[52]. Notably, ongoing functional connectivity in the primary sensori-motor network,264

originally revealed by seed-based analysis [53, 54], has been extensively verified by ICA265

and clustering methods [55, 56].266

Our method provides an effective tool to integrate mesoscale topological informa-267

tion in brain networks derived from multimodal neuroimaging data. Multimodal inte-268

gration of brain networks is gaining more and more interest [57–60] due, on the one269

hand, to the increasing availability of large heterogenous datasets (e.g. HCP http:270

//www.humanconnectomeproject.org, ADNI http://adni.loni.usc.edu) and, on the271

other hand, to the need of principled ways to characterize multiscale neural mechanisms272

(e.g., cross-frequency coupling) and provide predictive diagnostics for multifactor brain273

diseases, such as Alzheimer’s disease.274

It is important to note, that our analysis of the human connectome relies on the275

assumption that each layer contributes with the same intensity to the definition of the276

multiplex core. In general, however, the contribution of a layer α can be weighted277

differently through an opportune choice of the parameter c[α], and this can be used to278

enhance or reduce the importance of the different types of connectivity. A larger value279

of c[α] increases the relevance of the corresponding layer until when, in the limit in which280

c[α] → 1 and the coefficients of all the other layers go to zero, the multiplex core is not281

any more defined by the topology of all the M layers, but coincides with the core at layer282

α. For instance, setting c[structural] = 1 and c[functional] = 0 returns a core based on283

the anatomical information only, and in agreement with most of the previous literature284

on such topic (see Fig. S2). As an unbiased way to characterize the multiplex core of285

the human brain, we have focused our analysis on the simplest and symmetric case,286

c[structural] = c[functional] = 0.5. We show in Fig. S7 that the results are relatively stable287

for small perturbations around this unbiased condition. However, other combinations288

are in general possible and should be adopted if supported by a plausible rationale. For289

example, in the case of multifrequency brain networks, one could assign stronger weights290

to higher frequency layers in order to compensate for 1/f frequency scaling of power291

spectra [61].292

From an operative point of view, the proposed method to detect the core-periphery293

organization in multiplex networks has two clear advantages: i) it is fast and scalable,294

since it works using only local information; ii) it is non-parametric, e.g. no need to295

input a-priori information such as the core size. Moreover, it can be generalized in296

a straightforward way to the case of directed networks. A drawback of the method297

is that it focuses on highly connected rich nodes, and neglects the possible important298

role of the so-called connectors, i.e. central nodes with low degree [62]. We note that299

alternative core-periphery structures which include connectors can be detected by more300

computationally demanding methods such as those based on stochastic block models,301

which have been recently proposed to extract the mesoscale structure of time-varying302

and multilayer networks [63]. We hope that our work can trigger further developments303

in the exploration of core-periphery structure of real-world large-scale multiplex networks.304

To conclude, our method to investigate multiplex core-periphery organization in com-305

plex networks suggests that the core of the human cortex is made up of known cortical306

and subcortical hubs, as well as of areas in the sensori-motor system that were previously307

overlooked by standard approaches, but that are crucial for the brain functioning. Our308

8

http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://adni.loni.usc.edu


findings offer an augmented definition of the rich core of the human brain, which takes309

into account not only the anatomical structure but also its function.310

We hope that our work will contribute to advance our understanding of the mesoscale311

connectivity mechanisms in multiplex brain networks, in an effort to better integrate the312

one-to-many relationships that exist between structure and function in the human brain313

[29].314

4. Methods315

4.1. Multiplex stochastic block model with tunable core similarity316

Stochastic block models for multiplex networks have been recently introduced by317

Peixoto [63]. Here, we introduce a stochastic block model that allows to sample multiplex318

networks with an assigned value of core similarity SC (see Eq. 3). Suppose we have N319

nodes and we want to construct a multiplex network having a core-periphery structure320

at each layer α = 1, . . . ,M , with N
[α]
c nodes in the core of layer α.321

In particular, we set M = 2, N = 250, N
[1]
c = N

[2]
c = Nc = 50, and we create at each322

layer a core-periphery structure with the same set of densities: ρ1 = 0.2, ρ2 = 0.04 and323

ρ3 = 0.03. Namely, for each of the two layers, we connect with a probability ρ1 two nodes324

both in the core, with probability ρ2 a node in the core and a node in the periphery,325

and finally with probability ρ3 two peripheral nodes. The values of the three parameters326

were chosen in a way that 〈k〉 = 10 on both layers, and the core-periphery structure of327

each layer is sufficiently strong to be detected with good accuracy, as discussed in the328

Supplementary text S2.329

Different levels of core similarity are achieved by varying the overlap between core330

nodes at the two layers. When the two sets of core nodes are completely overlapping,331

Sc = 1, whereas when the two sets are disjoint Sc = 0. Despite other related formulations332

of Sc are possible, our definition reflects the intuition that when two layers with equal333

core size share half of the core nodes, then Sc = 1/2.334

4.2. Multiplex richness µi and µ+
i335

The multiplex richness µi and µ+
i introduced in Eqs. 1 and 2 are obtained by mean336

of a simple aggregation of information based on the single layers. In the simplest set-up337

c[α] = c = 1/M for α = 1, . . . ,M , and the multiplex richness µi of a node i is simply338

proportional to its overlapping degree oi [34]. A layer with higher density weighs more339

in the computation of the multiplex core of a network.340

In general, coefficients c[α] can be used to modulate the relevance to the layers of the341

network in order to extract its core. If one wants to have equal contributions to µi and342

µ+
i from all the layers but their number of links K [α] is different - for instance because343

in some layers it might be easier to establish or measure a connection than in others - a344

natural choice is to set c[α] to be proportional to 1/K [α]. In other cases, independently345

from their density, it might be reasonable to assign different importance to different346

layers, because of exogenous information. Once again this can be achieved by assigning347

different values of the coefficients c[α].348
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At last, we notice that Eq. 1 is a particular choice of a more general scenario, where349

the multiplex richness µi is a generic function f of the degree of a node at the different350

layers:351

µi = f(k
[1]
i , . . . , k

[M ]
i ). (4)352

and µ+
i is a function of a generic function g:353

µ+
i = g(k

+[1]
i , . . . , k

+[M ]
i ). (5)354

4.3. Multimodal brain networks355

We have considered 171 healthy human subjects from the NKI Rockland dataset356

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html. We have used diffusion357

weighted magnetic resonance imaging (dwMRI) and functional magnetic resonance imag-358

ing (fMRI) to derive respectively structural and functional brain networks in each subject.359

We have gathered the corresponding connectivity matrices from the USC Multimodal360

Connectivity Database (http://umcd.humanconnectomeproject.org) [64].361

In particular, structural connectivity have been obtained using anatomical fiber as-362

signment through the continuous tracking (FACT) algorithm [65]. Functional connectiv-363

ity has been computed by means of the Pearson’s correlation coefficient between fMRI364

signals recorded during a 10 minute resting state (RS). RS-based functional connectivity365

measures the amount of interaction - or temporal dependence - between different brain366

areas during spontaneous brain activity [30]. More details about the processing steps can367

be found here [66]. A total number of N = 188 regions of interest (ROIs) are available368

for both structural and functional brain networks, thus resulting in connectivity matrices369

of size N ×N , spatially matched with the MNI152 template [67].370

Because we are mainly interested in cortical networks, we focused our analysis on the371

network obtained by removing all subcortical ROIs and obtained connectivity matrices372

of size 158× 158. The results for all the ROIs are reported for the sake of completeness.373

The full name and acronym for all the ROIs can be found in Table S1. We have then374

averaged the resulting connectivity matrices (after Fisher transformation) across subjects375

in order to have a population-level representation. At the end, we have obtained a struc-376

tural weighted connectivity matrix S, whose entry sij = sji contained the group-average377

number of axonal fibers between ROIs i and j, and a functional weighted connectivity378

matrix F , whose entry fij = fji corresponded to the group-average correlation coefficient379

between the fMRI signals of ROIs i and j.380

We have used density-based thresholding to derive structural and functional brain381

networks by removing the lowest values from the connectivity matrices and binarizing the382

remaining ones [30]. We have considered a full range of density thresholds, corresponding383

to an increasing average node degree 〈k〉 = 1, 2, .., 120. The last value was given by the384

maximal 〈k〉 observed in the native structural connectivity matrices, which are originally385

not fully connected. After filtering, for each threshold we have combined the resulting386

structural and functional brain networks into a multiplex network M = {S,F}.387
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Figure 1: An illustrative example of the multiplex rich core analysis. In panel (a) we show a
multiplex social network obtained from the Top Noordin Terrorists’ contacts, with N = 78 nodes, M = 3
layers and K[1] = 259, K[2] = 437 and K[3] = 200, for the three layers respectively. Panel b) shows the
curve µ̃+i = µ+i /max(µ+i ) as a function of ranki. All nodes from rank equal to 1 up to the node with
maximum µ̃+ are part of the core of the multiplex, which is shown in red color in panel (c), first column.
The cores obtained at each layer by the standard single-layer analysis are reported in yellow for the sake
of comparison in the second column. The percentages of core nodes in the single layers that are in the
multiplex core are respectively 83.3% for layer 1, 66.7% for layer 2, and 58.3% for layer 3
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Figure 2: Core-periphery structure in synthetic multiplex networks with different core sim-
ilarity. In panel (a) we sketch multiplex networks with M = 2 layers, N = 250 nodes and different levels
of core similarity, namely Sc = 0 (left column), Sc = 1/2 (central column) and Sc = 1 (right column).
In panel (b) the nodes are placed in a two dimensional plane according to their degree at each layer.
The size of each dot is proportional to the multiplex richness µi of the node (with c[1] = 1, c[2] = 0).
Nodes belonging to the multiplex cores are usually placed in the right-top corner of the plots and are
colored orange, while the multiplex periphery is in blue. In panel (c) we report results obtained for two
cases with c[1] 6= c[2], namely: (c[1] = 0.75, c[2] = 0.25) where the core is biased towards the important
nodes of the first layer (left), and (c[1] = 1, c[2] = 0), where the core corresponds to the core of the first
layer (right).
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Figure 3: Extracting the multiplex core of the human brain from structural and functional
information. Panel a) The structural and functional brain networks filtered with an average node
degree 〈k〉 = 7 are shown respectively on the left and right side. They are represented from above
with the frontal lobe pointing upward. The position of the nodes corresponds to the actual location
of the brain regions of interests (ROIs, Table S2). Yellow and large nodes represent the brain regions
belonging to the core according to the standard single-layer method. Blue and small nodes code for
the ROIs in the periphery. Links are yellow and thick if they connect two ROIs in the core, while they
are blue and thin if they connect two peripheral nodes. Panel b) ROIs are ranked from top to bottom
according to their richness in the structural (left column), functional (right column) and multiplex
network (central column). In each column, the labels in bold/normal font stand for the ROIs that are
in the core/periphery. For the sake of simplicity, only ROIs that are at least in one core (structural,
functional or multiplex) are listed in the three columns. Red/blue and thick/thin lines identify ROIs
that go into the core/periphery according to the multiplex approach.
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Figure 4: The multiplex core of the human connectome. Panel (a) shows the human brain,
where regions of interest (ROIs) are highlighted based on their multiplex coreness. The color and size
of the nodes are associated to the percentiles of multiplex coreness in each brain region, so that core
nodes are larger in size and coloured in red. Left side shows the lateral view of the left hemisphere
(top=dorsal, bottom=ventral). Right side shows the lateral view of the right hemisphere (top=dorsal,
bottom=ventral). In the middle, the brain is shown from above, with the frontal lobe pointing upward.
In panel (b) we report the ROIs corresponding to the 25% highest values of multiplex coreness. The
color follows the same legend as in panel (a).
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Figure 5: Emergent non-trivial core regions in the multiplex brain. Panel (a) shows the scatter
plot of the structural, functional and multiplex coreness of the regions of interest (ROIs) in the brain.
The color and size of the nodes are associated to the percentile of multiplex coreness across the set of
brain regions, as in Fig. 4. Panel (b) reports the average value of multiplex richness 〈µi〉 across the
different thresholds for the ROIs with the strongest differences in structural and functional coreness.
The color follows the same legend as in panel (a). Panel (c) illustrates the distribution of the ROIs
(black points) as a function of their averaged structural and functional degree across all the thresholds.
Only the ROIs listed in panel (b) are highlighted according to the same color legend as in panel (a).
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Supplementary text568

S1. Robustness of the rich-core detection569

To test the robustness of our method, we have implemented a simulation model570

allowing random fluctuations in the distributions of values of the multiplex richness571

µ+. In particular, we have modified the value of each node i so that the new µ+
i =572

µ+
i + ηiµ

+
i,max. Here, µ+

i,max is the maximum value of the original richness and ηi is573

a random variable within the range [−ηmax, ηmax], where ηmax is a tunable parameter574

ranging from 0 to 1. Hence, when ηmax = 0, the richness of the nodes is not altered;575

when ηmax = 1, the richness of the nodes is independently and maximally altered by a576

random factor within the range [−µ+
i,max, µ

+
i,max].577

We have applied this simulation model to the multiplex richness values of the brain578

networks illustrated in the Figure 3 of the main text and we have checked the composition579

(i.e., the size) of the core as a function of ηmax. Notably, for each value of ηmax we generate580

100 random samples. Results show that the average core size is relatively stable for a581

broad range of ηmax values (Fig. 1a). Notably, fluctuations are completely negligible582

until ηmax = 0.04, and have a high chance to significantly modify the identified rich core583

only when they are larger than 0.1 (Fig. 1b).584

(a) (b)

Figure 1: (a) Average core size in the multiplex brain network with 〈k〉 = 7 as a function of the
fluctuations parameter ηmax. (b) Cumulative density function of the core size for four selected values in
the range 0.01 ≤ ηmax ≤ 0.1.

Finally, we have compared the main results with those obtained through an alter-585

native approach where the core-periphery threshold is selected according to a statistical586

criterion. To this purpose, we have generated 100 degree-constrained random networks587

from both structural and brain networks. We have then normalized the actual µ+ val-588

ues with respect to those obtained from the random samples according to a standard589

Z-score z(µ+
i ) =

µ+
i −µ̄

+

σ(µ+) . We eventually report that the regional coreness (on which all590

the main results are based) is relatively stable regardless whether we have considered the591

maximum from the actual or normalized values of µ+ (Fig. 2).592
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Figure 2: Scatterplot of the multiplex coreness obtained by looking at the maximum values of µ+ and
that obtained from the maximum of the corresponding Z-scores (Coreness z). The two measures are
extremely correlated, ρs = 0.97, p = 1.04× 10−80.

S2. Stochastic block model for rich cores in single-layer networks593

Suppose we have N nodes and we want to construct a single-layer network from which594

we can identify a partition into two sets: a core of size Nc < N and a periphery of size595

Np = N −Nc. Here we test the performance of the single-layer algorithm to detect rich596

cores [20] on a simple stochastic block model.597

Let us consider N nodes from which Nc drawn at random are chosen to be part598

of the network core, whereas the remaining Np are part of the periphery. A network599

with core-periphery structure is such that its adjacency matrix can be decomposed into600

four different blocks: a dense diagonal block encoding information on core-core links,601

a sparser diagonal block describing links among peripheral nodes, and two off-diagonal602

blocks encoding core-periphery edges.603

In our block model, we connect two nodes with probability ρ1 if they both belong to604

the core, with probability ρ2 if one of them belongs to the core and one to the periphery,605

and with probability ρ3 if they both belong to the periphery, ρ1 ≥ ρ2 ≥ ρ3. Given a606

stochastic realization of the block model, we can extract the rich core of the network607

and compare it with the ground-truth, i.e. the set of nodes originally labeled as core608

nodes. In particular, we can test the accuracy of the algorithm for different choice of the609

parameters ρ1, ρ2 and ρ3.610

Given the three probabilities, the expected total number of edges connecting two core611

nodes is Kcc = ρ1[(Nc − 1) ∗Nc/2], the expected total number of edges connecting two612

peripheral nodes is Kpp = ρ3[(N−Nc−1)∗(N−Nc)/2], and the expected total number of613

edges connecting a node in the core and a node in the periphery Kcp = ρ2[Nc ∗(N−Nc)].614

The total number of links is K = Kcc +Kcp +Kpp.615
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In the case ρ1 = ρ2 = ρ3 = ρ the nodes are statistically indistinguishable from a616

structural point of view, the network lacks a core-periphery structure and specifying the617

value of ρ simply sets the expected average degree of the network 〈k〉 = Nρ. For instance,618

for N = 250 and ρ = 0.04 we obtain 〈k〉 = 10 and K = 1250. Of the different blocks of619

the adjacency matrix, the exact value of the density of the block encoding links between620

core and periphery nodes does not play a significant role [8]. For such a reason here we621

set ρ2 = 0.04, and study the core-periphery structure of the network as a function of622

ρ1, with ρ1 > ρ2. The higher the value of ρ1, the stronger the core-periphery structure623

of the system. In order to control for the density of the network, as we increases ρ1 we624

have to opportunely decrease the value of ρ3. The average degree 〈k〉 can be kept fixed625

by setting626

ρ3 =
2

(Np) ∗ (Np− 1)

(
K −Kcc −Kcp

)
. (1)627

In our case with N = 250 and 〈k〉 = 10, we have K = 1250 whereas Kcc and Kcp628

are set once we fix the core size Nc and the value of ρ1. In Fig. 3 we show the average629

Jaccard index J computed for the ground-truth partition and the partition extracted630

by the algorithm on the stochastic realizations of the network as a function of different631

values of ρ1 for different core size.632

As shown, J increases quickly until ρ1 = 0.2 and only mildly after this point. This633

indicates that ρ1 = 0.2, corresponding to a value of ρ3 = 0.03, can be considered as634

the smallest density of the core-core block at which the core-periphery structure of the635

network is sufficiently well-defined. For this reason, in the stochastic block model for636

multiplex networks with different values of core similarity Sc described in Fig. 1 of the637

main text, where we have N = 250 and Nc = 50 we set ρ1 = 0.2.638

Given the set of parameters ρ1, ρ2 and ρ3 we can also compute the average degree639

〈kc〉 of core nodes640

〈kc〉 = ρ1(Nc − 1) + ρ2(Np), (2)641

the average degree 〈kp〉 of the peripheral nodes642

〈kp〉 = ρ3(Np − 1) + ρ2(Nc). (3)643

so that we have644

〈k〉 =
Nc〈kc〉+Np〈kp〉

N
. (4)645

In Fig. 4 we show the average Jaccard index J computed for the ground-truth partition646

and the partition extracted by the algorithm as a function of 〈kc〉/〈kp〉. The Jaccard index647

J is defined as648

J =
I

[αβ]
c

N
[α]
c +N

[β]
c − I [αβ]

c

, (5)649

where N
[α]
c is the number of core nodes at layer α, N

[β]
c is the number of core nodes at650

layer β and I
[αβ]
c is the number of nodes that are part of the core at both layers α and651

β.652
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Figure 3: Jaccard index J for the groundtruth core-periphery partition and the partition obtained by
the algorithm on realizations of the stochastic block model as a function of ρ1 and for different core sizes
Nc.
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Figure 4: Jaccard index J for the ground-truth core-periphery partition and the partition obtained by
the algorithm on realizations of the stochastic block model as a function of 〈kc〉/〈kp〉 and for different
core sizes Nc.
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Supplementary figures653
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Figure S1: Core similarity Sc for the structural and functional brain networks thresholded at different
values of average degree 〈k〉.
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Figure S2: Panel a) shows the node structural coreness from different points of view: external view in
the top row, internal view in the bottom row. The color and size of each node code for the percentile
to which it belongs as specified in the legend. In panel (b) we report the value of structural coreness of
the nodes beyond the 75th percentile with the same color code.
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Figure S3: Panel a) shows the functional coreness from different points of view: external view in the top
row, internal view in the bottom row. The color and size of each node code for the percentile to which it
belongs as specified in the legend. In panel (b) we report the value of functional coreness for the nodes
beyond the 75th percentile with the same color code.
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Figure S4: Coreness of the average as a function of average of the coreness. Each point corresponds
to a brain region. On the y-axis we show the multiplex coreness of the group-averaged brain networks.
On the x-axis we show the average of the multiplex coreness extracted from each indivdual. Error bars
stand for standard error means. The corresponding Spearman’s correlation coefficient is ρs = 0.960,
p = 2.72× 10−88.
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Figure S5: Scatterplot of the multiplex coreness of each ROI computed from brain networks with and
without and without subcortical regions. The corresponding Spearman’s correlation coefficient is ρs =
0.95, with a p = 1.7× 10−78.
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Figure S6: Panel a) shows the spatial position of the subcortical ROIs (n = 38). The size and color of
the nodes code for the percentiles associated to their coreness with respect to all the ROIs (n = 188).
Acronym : B = Brain stem; C = Caudate; CI = Crus; T = Thalamus; Pu = Putamen; Pa = Pallidum;
V = Visual; H = Hippocampus. L = Left hemisphere; R = Right hemisphere; The number in the
acronyms indicate the longitudinal position of ROIs. Panel b) shows the coreness of each subcortical
ROI. The color codes for the percentile associated to their coreness with respect to all the other ROIs.
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Figure S7: Sensitivity analysis for the multiplex brain coreness. We considered different coefficients c[α]

for the structural and functional layer. Specifically, c[structural] ∈ [0, 1] with c[functional] = 1−c[structural].
We analyzed the similarity (in terms of Spearman correlation) between the unbiased multiplex coreness
and the structural (DTI), functional (fMRI) and multiplex coreness as a function of c[structural]. The
multiplex coreness is relatively stable across different coefficients around the unbiased case c[structural] =
c[functional] = 0.5 (black curve); In addition, c[structural] = 0.5 leads to a multiplex coreness which is
slightly more similar to the functional coreness (green curve), highlighting that the multiplex core is
more than the sum of the cores at the different layers.
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Supplementary tables654

Layer Nc

1 17
2 17
3 12

Multiplex 12

Layer Layer IC

1 2 6
1 3 5
2 3 6

Multiplex 1 10
Multiplex 2 8
Multiplex 3 7

Table S1: In the left table we report the size Nc of the cores of the three layers (mutual trust, common
operations, exchanged communications) of the Top Noordin Terrorists network [34] and of the multiplex
core shown in Fig. 1 of the main text. In the right table we report the number of common core nodes
Ic belonging to the different pairs of layers. The network is characterized by a core similarity Sc = 0.38

(S
[1]
c = 0.32, S

[2]
c = 0.35, S

[1]
c = 0.46. See Eq. 3 in the main text). We also report the number of

common core nodes for the multiplex and each layer.
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ROI label Abbrev. ROI label Abbrev.

Left Angular LAG Right Central Opercular RCOC
Left Central Opercular LCOC Right Cingulate anterior 1 RCa1
Left Cingulate anterior LCa Right Cingulate anterior 2 RCa2
Left Cingulate posterior LCp Right Cingulate posterior 1 RCp1
Left Frontal Medial LFMC Right Cingulate posterior 2 RCp2
Left Frontal Orbital 1 LFOC1 Right Frontal Orbital RFOC
Left Frontal Orbital 2 LFOC2 Right Frontal Pole 1 RFP1
Left Frontal Pole 1 LFP1 Right Frontal Pole 10 RFP10
Left Frontal Pole 10 LFP10 Right Frontal Pole 2 RFP2
Left Frontal Pole 2 LFP2 Right Frontal Pole 3 RFP3
Left Frontal Pole 3 LFP3 Right Frontal Pole 4 RFP4
Left Frontal Pole 4 LFP4 Right Frontal Pole 5 RFP5
Left Frontal Pole 5 LFP5 Right Frontal Pole 6 RFP6
Left Frontal Pole 6 LFP6 Right Frontal Pole 7 RFP7
Left Frontal Pole 7 LFP7 Right Frontal Pole 8 RFP8
Left Frontal Pole 8 LFP8 Right Frontal Pole 9 RFP9
Left Frontal Pole 9 LFP9 Right Heschls RHG
Left Inferior Frontal pars triangularis LIFGpt Right Inferior Frontal pars triangularis RIFGpt
Left Inferior Temporal posterior 1 LITGp1 Right Inferior Temporal posterior 1 RITGp1
Left Inferior Temporal posterior 2 LITGp2 Right Inferior Temporal posterior 2 RITGp2
Left Inferior Temporal occipital LITGt Right Inferior Temporal occipital RITGt
Left Insular 1 LIC1 Right Insular 1 RIC1
Left Insular 2 LIC2 Right Insular 2 RIC2
Left Insular 3 LIC3 Right Intracalcarine RICL
Left Lateral Occipital inferior 1 LLOCi1 Right Juxtapositional Lobule RJL
Left Lateral Occipital inferior 2 LLOCi2 Right Lateral Occipital inferior 1 RLOCi1
Left Lateral Occipital superior 1 LLOCs1 Right Lateral Occipital inferior 2 RLOCi2
Left Lateral Occipital superior 2 LLOCs2 Right Lateral Occipital inferior 3 RLOCi3
Left Lateral Occipital superior 3 LLOCs3 Right Lateral Occipital superior 1 RLOCs1
Left Lateral Occipital superior 4 LLOCs4 Right Lateral Occipital superior 2 RLOCs2
Left Lateral Occipital superior 5 LLOCs5 Right Lateral Occipital superior 3 RLOCs3
Left Lateral Occipital superior 6 LLOCs6 Right Lateral Occipital superior 4 RLOCs4
Left Lingual 1 LLG1 Right Lateral Occipital superior 5 RLOCs5
Left Lingual 2 LLG2 Right Lateral Occipital superior 6 RLOCs6
Left Middle Frontal 1 LMFG1 Right Lingual 1 RLG1
Left Middle Frontal 2 LMFG2 Right Lingual 2 RLG2
Left Middle Frontal 3 LMFG3 Right Middle Frontal 1 RMFG1
Left Middle Temporal anterior LMTGa Right Middle Frontal 2 RMFG2
Left Middle Temporal posterior 1 LMTGp1 Right Middle Frontal 3 RMFG3
Left Middle Temporal posterior 2 LMTGp2 Right Middle Frontal 4 RMFG4
Left Middle Temporal occipital LMTGt Right Middle Temporal anterior RMTGa
Left Occipital Fusiform 1 LOFG1 Right Middle Temporal posterior RMTGp
Left Occipital Fusiform 2 LOFG2 Right Middle Temporal occipital 1 RMTGt1
Left Occipital Pole 1 LOP1 Right Middle Temporal occipital 2 RMTGt2
Left Occipital Pole 2 LOP2 Right Occipital Fusiform ROFG
Left Occipital Pole 3 LOP3 Right Occipital Pole 1 ROP1
Left Occipital Pole 4 LOP4 Right Occipital Pole 2 ROP2
Left Paracingulate 1 LPC1 Right Occipital Pole 3 ROP3
Left Paracingulate 2 LPC2 Right Paracingulate 1 RPC1
Left Parahippocampal posterior LPHp Right Paracingulate 2 RPC2
Left Parietal Operculum LPOC Right Parahippocampal posterior RPHp
Left Planum Temporale 1 LPT1 Right Parietal Operculum 1 RPOC1
Left Planum Temporale 2 LPT2 Right Parietal Operculum 2 RPOC2
Left Postcentral 1 LCGp1 Right Planum Polare RPP
Left Postcentral 2 LCGp2 Right Postcentral 1 RCGp1
Left Postcentral 3 LCGp3 Right Postcentral 2 RCGp2
Left Postcentral 4 LCGp4 Right Postcentral 3 RCGp3
Left Precentral 1 LCGa1 Right Postcentral 4 RCGp4
Left Precentral 2 LCGa2 Right Precentral 1 RCGa1
Left Precentral 3 LCGa3 Right Precentral 2 RCGa2
Left Precentral 4 LCGa4 Right Precentral 3 RCGa3
Left Precuneous 1 LPCU1 Right Precuneous 1 RPCU1
Left Precuneous 2 LPCU2 Right Precuneous 2 RPCU2
Left Subcallosal LSC Right Precuneous 3 RPCU3
Left Superior Frontal 1 LSFG1 Right Superior Frontal 1 RSFG1
Left Superior Frontal 2 LSFG2 Right Superior Frontal 2 RSFG2
Left Superior Frontal 3 LSFG3 Right Superior Parietal Lobule 1 RSPL1
Left Superior Parietal Lobule 1 LSPL1 Right Superior Parietal Lobule 2 RSPL2
Left Superior Parietal Lobule 2 LSPL2 Right Superior Temporal posterior 1 RSTGp1
Left Supramarginal anterior LSGa Right Superior Temporal posterior 2 RSTGp2
Left Supramarginal posterior LSMp Right Supramarginal anterior RSMa
Left Temporal Fusiform anterior LTFCa Right Supramarginal posterior RSGp
Left Temporal Fusiform posterior LTFCp Right Temporal Fusiform anterior RTFCa
Left Temporal Occipital Fusiform 1 LTOFC1 Right Temporal Fusiform posterior 1 RTFCp1
Left Temporal Occipital Fusiform 2 LTOFC2 Right Temporal Fusiform posterior 2 RTFCp2
Left Temporal Pole 1 LTP1 Right Temporal Occipital Fusiform RTOFC
Left Temporal Pole 2 LTP2 Right Temporal Pole 1 RTP1
Left Temporal Pole 3 LTP3 Right Temporal Pole 2 RTP2
Right Angular RAG Right Temporal Pole 3 RTP3

Table S2: Full list of Regions of Interest (ROIs) and abbreviations. Numbers denote the relative position
within a macro area, i.e. higher values stand for more posterior ROIs.
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