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1 Introduction

Multiple M5-branes are believed to be described at low energies by a novel, interacting,

strongly coupled, 6D CFT with (2, 0) supersymmetry. Very little is known about such

a theory and it is not expected to have a Lagrangian description. According to the type

IIA/M-theory duality it arises as the strong-coupling, UV fixed-point of multiple D4-branes

whose dynamics are obtained from open string theory. At weak coupling and low energy

the open string dynamics correspond to maximally supersymmetric Yang-Mills theory in

5D with gauge group U(N).

Thus there are three distinct theories at play. The first is the 6D (2, 0) supersymmetric

M5-brane CFT. The second is the reduction of this theory to 5D dimensions, but including

all the Kaluza-Klein (KK) modes. This is the worldvolume theory for multiple D4-branes

at any value of the coupling. Finally we can also consider, at least classically, 5D maximally

supersymmetric Yang-Mills gauge theory. Since it is power-counting non-renormalisable

it is not clear that there is a quantum theory that can be obtained from the classical

Lagrangian without adding additional UV degrees of freedom.

On the other hand the D4-brane worldvolume theory includes a coupling of the form

SRR ∝

∫

d5x C1 ∧ tr(F ∧ F ) + . . . , (1.1)

We see that instanton states1 on the D4-brane worldvolume source the graviphoton C1

of type IIA string theory. Furthermore the mass of such a particle state with instanton

number k in 5D Yang-Mills theory can be obtained from the BPS formula and is

M = |Z5|+ |QE | (1.2)

This matches nicely with the KK spectrum of a compactified 6D theory [1]. Thus, even in

the Yang-Mills limit, we can identify a tower of states which seem to know about the extra

direction of M-theory.

However there are puzzles in the identification of KK states with instantons [2, 3].

Consider the unbroken phase where the D4-branes all lie on top of each other. Here the

worldvolume theory does indeed possess smooth 1
2 -BPS particle soliton states where the

gauge field is that of an instanton in the spatial directions. Since it breaks half of the 16

supersymmetries this leads to 8 Fermion zero modes and, according to the analysis of [4]

(see also [5]), these states are degenerate and form a 24 = 16 dimensional set, i.e. 8 Bosons

and 8 Fermions. This indeed matches the 8 Bosonic and 8 Fermionic degrees of freedom

arising from the M5-brane with one unit of KK momentum. However the instanton moduli

space is 4Nk-dimensional, where k is the instanton number and N the number of D4-

branes, and includes some non-compact modes. In general, after quantisation, one expects

1These are BPS particles in 5D analogous to monopoles in 4D.
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that any non-compact directions in the moduli space will lead to a continuous spectrum of

states. In this case 4 of these modes can simply be thought of as the BPS particle’s position

in space and the associated continuous spectrum is just the spatial momentum. However,

even for k = 1, N = 2 one finds a non-compact scale size. This seems problematic since

the reduction of the M5-brane theory at KK level one should not give rise to an additional

continuous mode beyond the spatial momenta.

In addition 5D super-Yang-Mills is naively power-counting non-renormalisable and thus

cannot be viewed as a quantum field theory in its own right. The resolution to these

problems is generally thought to depend on a UV completion that will also introduce

additional degrees of freedom, which will contribute to the famous N3 dependence of the

free energy of N M5-branes [6].

As is well-known, the dynamics of D-branes is determined by the quantisation of open

strings that end on the D-brane. Despite recent progress the picture for M-branes is still

unclear. However the most natural interpretation is that the dynamics of M5-branes is

obtained by considering M2-branes that end on the M5-brane [7]. The resulting solution

for a single M5-brane is known as the self-dual string [8]. In the case of parallel M5-

branes one expects to find smooth, finite energy string states corresponding to M2-branes

stretched between any pair of M5-branes. The (2, 0) worldvolume theory of M5-branes is

then thought to arise from the dynamics of these strings.2

Upon compactification on x5 these self-dual strings states lead to particle states (when

the string wraps x5) as well as string-like states (when the self-dual string does not wrap x5).

Because of self-duality these are not independent degrees of freedom. Rather one typically

thinks of the particle states as giving rise to the perturbative states of five-dimensional

super-Yang-Mills. The string states are then their electro-magnetic duals. However the

M5-brane on a circle also admits a KK tower of massive states and as we have mentioned

these should appear as solitonic states that carry a non-vanishing instanton number. Here

we will attempt to show that five-dimensional super-Yang-Mills can correctly account for

all the required KK modes without the need for additional degrees of freedom, although

we will only consider the broken phase corresponding to separated branes. In particular

we will see that the aforementioned problem regarding non-compact modes of the moduli

space does not arise.3 We take the perspective that the unbroken phase is a singular point

in the vacuum moduli space where the system is strongly coupled and difficult to analyse,

even in an otherwise well-defined and UV-complete quantum field theory.

Our analysis can be taken to suggest that no new degrees of freedom are required

in order to identify 5D super-Yang-Mills as a 6D theory on S1. This implies that 5D

super-Yang-Mills is precisely the M5-brane 6D CFT on S1 for any value of the radius.

If so, since the M5-brane CFT is finite, it follows that 5D super-Yang-Mills is also well

defined. Furthermore this suggests the natural conclusion that 5D super-Yang-Mills is in

2See also [9].
3This was already mentioned in [10].
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fact UV-finite.4

The rest of this paper is organised as follows: In Section 2 we will review 5D super-

Yang-Mills and its superalgebra. In particular we will show that the instanton number is

identified with the momentum along the extra dimension. In Section 3 we look for charged

particle states in 5D super-Yang-Mills which carry instanton number, while in Section 4 we

will find charged string states in 5D that carry instanton number. In Section 5 we consider

some other states. In Section 6 we look at the Higgs mechanism of the (2, 0)-theory on S1.

Finally in Section 7 we close with some comments.

2 5D super-Yang-Mills

Let us start by reviewing 5D maximally supersymmetric Yang-Mills theory. The field

content consists of a vector Aµ with µ = 0, 1, 2, 3, 4, five scalarsXI with I = 6, 7, 8, 9, 10 and

Fermions Ψ, all taking values in the Lie-algebra of the gauge group. The supersymmetry

transformations for five-dimensional super-Yang-Mills are

δǫX
I = iǭΓIΨ

δǫAµ = iǭΓµΓ5Ψ (2.1)

δǫΨ =
1

2
FµνΓ

µνΓ5ǫ+DµX
IΓµΓIǫ−

i

2
[XI ,XJ ]ΓIJΓ5ǫ

and the spinor ǫ satisfies Γ012345ǫ = ǫ. Here DµX
I = ∂µX

I − i[Aµ,X
I ] and Fµν =

∂µAν − ∂νAµ − i[Aµ, Aν ]. There is an invariant action given by

S = −
1

g2YM

∫

d5x tr
(1

4
FµνF

µν +
1

2
DµX

IDµXI −
i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ5ΓI [XI ,Ψ]−

1

4

∑

I,J

[XI ,XJ ]2
)

. (2.2)

Here we have taken all spinors to be those of eleven-dimensions (i.e. real with 32 com-

ponents) with C = Γ0 as the charge conjugation matrix defined by ΓT
M = −CΓMC

−1,

M = 0, 1, 2, ..., 10. We are using x5 as the extra dimension associated with M-theory.

Let us compute the symmetry algebra of this theory. To begin with we consider the

supercurrent:

jµ = −
1

2g2YM

tr
(

ΓνΓµΓIDνX
IΨ−

1

2
FνλΓ

νλΓµΓ5Ψ+
i

2
ΓµΓIJΓ5[XI ,XJ ]Ψ

)

, (2.3)

which satisfies ∂µj
µ = 0 on-shell. We note that

ǭα{Qα, Qβ} =

∫

d4xǭα{Qα, j
0
β} =

∫

d4xδǫj
0 . (2.4)

4The claim that 5D super-Yang-Mills already contains all the states of the (2, 0) theory and is possibly

finite is also made independently in [11], which we received after this work was substantially completed.

Reference [11] also includes arguments about the structure of divergences in 5D super-Yang-Mills.
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If we write δǫj
0
α = (δǫj

0)α
βǫβ then we deduce

{Qα, Qβ} = −

∫

d4x((δǫj
0)C−1)−βα , (2.5)

where ((δǫj
0)C−1)− = 1

2(1− Γ012345)(δǫj
0)C−1. A lengthy but straightforward calculation

shows that

{Qα, Qβ} = Pµ(Γ
µC−1)−αβ + Z5(Γ

5C−1)−αβ + ZI
µ(Γ

µΓIC−1)−αβ

+ZI
5 (Γ

5ΓIC−1)−αβ + ZIJ
µνλ(Γ

µνλΓIJC−1)−αβ , (2.6)

which for vanishing Fermions employs

Pµ = −

∫

d4xT0µ (2.7)

Z5 = −
1

8g2YM

∫

d4x tr(FijFklεijkl) (2.8)

ZI
5 =

1

g2YM

∫

d4x tr(DiX
IF0i + i[XI ,XJ ]D0X

J) (2.9)

ZI
i =

1

2g2YM

∫

d4x∂jtr(X
IFkl)εijkl (2.10)

ZI
0 =

1

8g2YM

∫

d4x tr([XJ ,XK ][XL,XM ]εIJKLM) (2.11)

ZIJ
0ij =

1

6g2YM

∫

d4x∂itr(X
IDjX

J) (2.12)

ZIJ
ijk = −

i

72g2YM

∫

d4x∂ltr([X
K ,XL]XM )εijklε

IJKLM . (2.13)

In the above i, j, k = 1, 2, 3, 4 and

Tµν =
1

g2YM

tr
(

FµλFν
λ −

1

4
ηµνF

2 +DµX
IDνX

I −
1

2
ηµνDλX

IDλXI +
1

4
ηµν [X

I ,XJ ]2
)

(2.14)

is the energy-momentum tensor. In particular we see that, in a broken vacuum where

〈X6〉 6= 0, the central charge Z6
5 can be identified with the electric charge of the unbroken

gauge group (here we impose the Gauss-law constraint):

QE = Z6
5 =

1

g2YM

∮

tr(〈X6〉F0i)d
3Si (2.15)

and Z6
i with the dual magnetic charge of a string extended along xi:

QMi = Z6
i =

1

2g2Y M

∮

tr(〈X6〉Fklεijkl)d
2Sj . (2.16)

It is helpful to compare this to the (2, 0) superalgebra that arises on the M5-brane.

Its most general form consistent with the projection Γ012345Q = −Q and symmetric under
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α↔ β is5

{Qα, Qβ} = Pm(ΓmC−1)−αβ + ZI
m(ΓmΓIC−1)−αβ + ZIJ

mnp(Γ
mnpΓIJC−1)−αβ , (2.17)

where m,n, p = 0, ..., 5 and ZIJ
mnp is self-dual in spacetime indices. Dimensionally reducing

this algebra to five dimensions we see that we must identify P5 with Z5 and hence to the

instanton number in five-dimensional super-Yang-Mills:

P5 =
k

R5
= −

1

8g2Y M

∫

d4x tr(FijFklεijkl) , (2.18)

where i, j, k = 1, 2, 3, 4. Since both the KK momentum and instanton number are quantised

we must identify R5 = g2YM/4π
2. Note that k ∈ Z when tr is normalised to be the usual

matrix trace in the fundamental representation, i.e. tr 1ln×n = n for SU(n). The central

charges ZI
m with m 6= 0 (QE and QMi in the 5D theory) are carried by self-dual strings

extended along xm, corresponding to an M2-brane along xm, xI ending on the M5-branes

[8].

3 Dyonic Instantons as Wrapped Strings with KK momen-

tum

Let us examine the BPS spectrum of 5D Super-Yang-Mills with non-vanishing instanton

number. We start by looking at particle states in five dimensions. These correspond to

self-dual strings that are wrapped around the M-theory circle. Throughout this paper we

assume that the gauge group is SU(2), corresponding to two M5-branes.

We wish to look for time-independent (so that D0 = 0) Bosonic solutions and hence we

let Fij , F0i and X
I (I = 6, ..., 10) be non-vanishing functions of xi, where i = 1, ..., 4. We

select the X6 direction as special since we will separate the D4-branes along x6. We also

reserve x5 as the M-theory direction that is part of the M5 worldvolume. Following [10]

we can set the remaining scalars to zero and write the energy as

E =
1

g2YM

∫

d4x tr
[1

4
FijFij +

1

2
F0iF0i +

1

2
D0X

6D0X
6 +

1

2
DiX

6DiX
6
]

(3.1)

=
1

g2YM

∫

d4x tr
[1

8
(Fij −

1

2
εijklFkl)

2 +
1

2
D0X

6D0X
6 +

1

2
(F0i +DiX

6)2

+
1

8
εijklFijFkl −DiX

6F0i

]

,

where we have also fixed various possible choices of sign. The last two terms can be seen

to be total derivatives. To minimise this bound we set

D0X
6 = 0 , Fij =

1

2
εijklFkl , DiX

6 = −F0i . (3.2)

5See e.g. [12, 13].

5



Note that the Gauss law implies:

DiDiX
6 = 0 . (3.3)

In this case we see that

E ≥ |P5|+ |QE| , (3.4)

with equality iff (3.2) holds.

For solutions which satisfy (3.2) the YM supersymmetry transformations become

δΨ = F0iΓi(Γ0Γ5 − Γ6)ǫ+
1

4
FijΓijΓ5(1− Γ1234)ǫ . (3.5)

Given that Γ012345ǫ = ǫ for an M5-brane, we see that the preserved supersymmetries

satisfy Γ056ǫ = ǫ and Γ05ǫ = ǫ. From the M5-brane perspective, with x5 being the M-

theory direction, these are the projectors associated to an M2-brane along x0, x5, x6 (and

hence an F-string along x0, x6) and a momentum wave along x5. Let us look at solutions

to these equations. The solutions for instantons are well known and smooth. One can also

find smooth finite energy solutions to DiDiX
6 = 0. The case of a single SU(2) instanton

was explicitly given in [10] as

Ai = 2
ρ2

x2(x2 + ρ2)
ηaijx

j σ
a

2
, X6 = v

x2

x2 + ρ2
σ3

2
, (3.6)

where ηaij are the ’t Hooft matrices. It is important to see that the electric charge then

reads

QE = −4π2v2ρ2g−2
YM . (3.7)

Thus ρ must in fact be quantised and is no longer a modulus. Indeed by turning on

an electric charge one introduces a potential on the moduli space V ∝ ρ2 [10]. Upon

quantisation the wavefunctions are those of a harmonic oscillator and thus there is a discrete

spectrum (with the exception of the continuous momentum modes).

We should compare this against the predictions of the (2, 0) theory. Let us look for BPS

states with massM and momentum P5 along x
5. Upon reduction to 5D the electric-central

charge of the Yang-Mills theory comes from Z6
5 . The other central charges are not carried

by particle states. Thus we only consider Z6
5 6= 0. In this case we find

{Qα, Qβ} = (M + P5Γ
50 + Z6

5Γ
5Γ6Γ0)−αβ . (3.8)

To look for BPS states we need to find zero-eigenstates of M + P5Γ05 − Z6
5Γ05Γ

6. Since

[Γ05,Γ05Γ
6] = 0 these are simultaneous eigenstates of Γ05 and Γ05Γ

6. Thus we see that only

a quarter of the supersymmetries survive. This is in agreement with the dyonic instantons.

In addition we recover the same BPS formula for the mass.

Since the dyonic instanton has 12 Fermionic zero-modes it will come in a degenerate

multiplet with 64 states [4]. Let us examine this multiplet from the point of view of massive

particles in 5D. The 16 supersymmetries of the M5-brane can be labelled as Qη1,η2 where

η1/2 = ± and

Γ05Qη1,η2 = η1Qη1,η2 , Γ05Γ
6Qη1,η2 = η2Qη1,η2 , Γ012345Qη1,η2 = −Qη1,η2 (3.9)

6



and hence Γ6Qη1,η2 = η1η2Qη1,η2 . The preserved supersymmetries of the dyonic instanton

can be taken to be Q−+ and therefore the broken supersymmetries are Q−−, Q++ and Q+−.

Each of these has 4 real components. For Z6
5 6= 0 the R-symmetry is broken from Spin(5)

to Spin(4) ≃ SU(2) × SU(2). Since Γ678910Qη1,η2 = −Qη1,η2 the broken supersymmetries

are chiral spinors under this SU(2) × SU(2). In particular the four components of each of

Q−− and Q++ can be arranged into complex generators Q−− and Q++, each of which is

in the (2,1) of SU(2)× SU(2). Similarly the four components of Q+− can be arranged as

a complex Q+− transforming as (1,2) under SU(2)× SU(2).

In five dimensions the little group of a massive state is Spin(4) ≃ SU(2) × SU(2), i.e.

there is a second SU(2)×SU(2). Each of the Qη1,η2 is also a chiral (or anti-chiral) spinor of

this SU(2)×SU(2). In particular Q++ and Q+− transform under the first SU(2) and Q−−

transforms under the second SU(2).6 Since {Q,Q†} = 1 (where we have suppressed indices)

we can use Qη1,η2 as lowering operators and Q
†
η1,η2 as raising operators. We assume that

there is a highest weight state |s1, s2〉 that is annihilated by all the Q
†
η1,η2 and is a singlet

of the R-symmetry group. Acting with Q+,+ or Q+,− lowers the s1 weight by 1
2 whereas

acting with Q−− lowers the s2 weight by 1
2 . Thus the lowest weight state is |s1−2, s2−1〉.

Since the spectrum must be CPT self-conjugate we require that |s1−2, s2−1〉 = |−s1,−s2〉

and hence the highest weight state is |1, 12 〉. We obtain the remaining states by acting with

various powers of Q++,Q+− and Q−− to find

|1, 12〉 (1,1)

|1, 0〉 (2,1) |12 ,
1
2 〉 (1,2) ⊕ (2,1)

|12 , 0〉 (2,2) ⊕ (1,1) ⊕ (3,1) |0, 12〉 (1,1) ⊕ (1,1) ⊕ (2,2) (3.10)

|0, 0〉 (3,2) ⊕ (2,1) ⊕ (2,1) ⊕ (1,2)

...

where we have given their R-symmetry representations and the ellipses denote states |s1, s2〉

with s1 < 0 or s2 < 0 which have the same representation as the corresponding state

||s1|, |s2|〉.

Thus the field content of the multiplet (in the massive rest frame) is as follows. For

the Fermions we find a chiral ψ+
ij (1,1) which is self-dual in the spacetime i, j indices, 5

chiral λ ((1,1)⊕ (2,2)) and 8 anti-chiral χ ((1,1)⊕ (2,2)⊕ (3,1)). For the Bosons we find

a complex doublet of self-dual 2-forms B+
ij (2,1), four complex vectors Ai (1,2) ⊕ (2,1)

and 10 scalars φ ((3,2) ⊕ (2,1) ⊕ (1,2)). We note that these form 64 complex states.

This differs from the 64 real states one might have expected since in the complete CPT-

symmetric multiplet we should also find the states with opposite charges, obtained from

dyonic instantons with the opposite choice of charge (F0i = DiX
6). We also note that since

the highest weight state is a Fermion, the Bosons transform under spinor representations

of the SO(4) R-symmetry which makes any spacetime interpretation obscure.

6Note that these SU(2)’s do not act on Qη1,η2
through the standard way and in particular rotate Qη1,η2

into Q⋆

η1,η2
.
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The quantum mechanical treatment of the dyonic instanton moduli space also admits

a normalisable ground-state wavefunction corresponding to a 1
2 -BPS instanton solution

without charge. The expectation value of the size is 〈ρ〉 ∝
√

g2YM/v. Thus in the v >

0 phase it would appear that quantum effects lead to a non-singular uncharged 1
2 -BPS

instanton solution with a finite, fixed value of ρ.

Once again we can compare these states to the predictions of the (2, 0) theory. In this

case we need to consider zeroes of

{Qα, Qβ} = (M + P5Γ
50)−αβ . (3.11)

Clearly these preserve the Q−− and Q−+ supersymmetries, which can be used to compute

the multiplet of these uncharged instantons, in close analogy to the dyonic instantons

above. The R-symmetry is still broken to SO(4), while the broken supersymmetries Q++

and Q+− are chiral with respect to the Spin(4) ≃ SU(2) × SU(2) massive little Lorentz

group. We then see that the CPT self-conjugate representation has highest weight |1, 0〉.

Acting with the lowering operators produces

|1, 0〉 (1,1)

|12 , 0〉 (2,1) ⊕ (1,2)

|0, 0〉 (2,2)⊕ (1,1) ⊕ (1,1) (3.12)

...

where again the ellipses denote states with s1 < 0 which have the same representations as

the corresponding states with s1 > 0. Thus we find a multiplet consisting of a self-dual

tensor B+
ij , four chiral Fermions λ (2,1) ⊕ (1,2) and five scalars in the (2,2) ⊕ (1,1) of

the R-symmetry. These states are therefore in agreement with the KK tower of instanton

states discussed in [14].

However, we also note that the one-instanton moduli space has a factor R
+ from the

scale size and a factor of SU(2) from the embedding of the solution into the gauge group

(i.e. Ai → UAiU
† with U ∈ SU(2)) - as well as a trivial factor of R4 from translations.

Since this SU(2) ≡ S3 acts in the adjoint, the moduli space is really SO(3) ≡ S3/Z2.

Thus the (non-translational part) of the moduli space is singular: R
4/Z2 ≡ R

+ × S3/Z2.

Therefore to define the quantum mechanics of the moduli space might involve additional

subtleties.

4 Monopoles as Unwrapped Strings with KK momentum

Having obtained dyonic instanton solutions which describe the KK tower of wrapped self-

dual strings we need to look for KK towers of five-dimensional strings, corresponding to

M2-branes that do not wrap the x5 direction. In particular, the D4-brane theory has 1
2 -BPS

string states, corresponding to D2-branes ending on a D4. From the M5-brane perspective

8



these states should therefore also allow for generalisations that carry KK momentum and

hence instanton number.

An infinitely long string moving in six dimensions will carry infinite momentum and

this would therefore translate into infinite instanton number. However we can regulate this

by assuming that the string is wrapped along the x4 direction and that x4 is periodic with

period 2πR4. We then need to look for states which are invariant under translations along

x4 but carry instanton number

−k =
1

32π2

∫

d4x tr(FijFklεijkl) =
R4

4π

∫

d3x tr(FabDcA4εabc) =
R4

4π

∮

d2Sc tr(FabA4εabc) ,

(4.1)

where a, b, c = 1, 2, 3 and d2Sc is the measure on the transverse two-sphere at infinity. In

addition, in five dimensions strings are the electromagnetic duals to charged particles and

therefore have magnetic charges. Thus we require that

QM4 =
1

2g2Y M

∮

d2Sc tr(FabX
6εabc) (4.2)

is non-zero and we need to consider a configuration with Fab, X
6 and A4 non-vanishing.

As a result we look for static solutions with D0A4 = D0X
6 = F0a = F04 = 0 . Let us

repeat the Bogomoln’yi argument used above for this case:

E =
2πR4

g2YM

∫

d3x tr
[1

4
FabFab +

1

2
DaA4DaA4 +

1

2
DaX

6DaX
6 −

1

2
[A4,X

6]2
]

(4.3)

=
2πR4

g2YM

∫

d3x tr
[1

4
(sin θFab − εabcDcA4)

2 +
1

4
(cos θFab − εabcDcX

6)2 +
1

2
(i[A4,X

6])2

+
1

2
εabcFabDc(sin θA4 + cos θX6)

]

,

where θ is an arbitrary angle. The last term is a total derivative so that the BPS equations

are

Fab = εabcDcΦ , A4 = sin θΦ , X6 = cos θΦ (4.4)

and the Bianchi identity implies D2Φ = 0. Similar states with a six-dimensional interpre-

tation were considered in [15]. These are nothing more than the equations for a 1
2 -BPS

monopole with scalar Φ that is a linear combination of X6 and A4. At large distances from

the string, the solution to (4.4) behaves as7

Φ = φ0σ
3 −

qσ3

4πr
+ . . . , (4.5)

where φ0 is arbitrary and q ∈ Z is the monopole charge, in the sense that 1
2

∮

d2ScFabεabc =

qσ3. In particular, if we take

cos θ =
v/2

√

v2/4 + k2π2/R2
4q

2
, sin θ =

kπ/R4q
√

v2/4 + k2π2/R2
4q

2
, φ0 =

√

v2/4 + k2π2/R2
4q

2

(4.6)

7We remind that we work with an SU(2) gauge group.
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we then find solutions with

P5 = −
4π2k

g2YM

, QM4 =
vq

g2YM

, (4.7)

as required, the energy of which is given by

E = 2πR4

√

Q2
M4 + (P5/2πR4)2 . (4.8)

The one-monopole moduli space is well-studied and only has 3 non-compact modes corre-

sponding to translations transverse to the string in five-dimensions. Thus there is no issue

with obtaining a continuous spectrum of states.

For completeness, let us check the amount of supersymmetry preserved by these solu-

tions. We see that:

0 = δψ

=
1

2
FabΓ

abΓ5ǫ+DaA4Γ
a4Γ5ǫ+DaX

6ΓaΓ6ǫ− i[A4,X
6]Γ4Γ6ǫ

= (
1

2
ǫabcΓ

abΓ5 + Γc(sin θΓ4Γ5 + cos θΓ6))DcΦǫ

= ΓcΓ0Γ4(1− sin θΓ0Γ5 + cos θΓ0Γ
46)DcΦǫ , (4.9)

which can be solved by the 1
2 -BPS projection (sin θΓ0Γ5 − cos θΓ0Γ

46)ǫ = ǫ.

We should also compare this with the 6D (2, 0) predictions for a state with central

charge Z6
4 and momentum P5. In particular we now find

{Qα, Qβ} = (M + P5Γ05 + Z6
4Γ

4Γ6Γ0)−αβ . (4.10)

Just as in the 5D case we have {Γ05,Γ04Γ
6} = 0. To solve this we write P5 =M sin θ and

Z6
4 =M cos θ so that we have the operator M(1+P ) where P = sin θΓ05 − cos θΓ04Γ

6 and

P 2
± = 1. So in total we find a 1

2 -BPS state in agreement with the 5D analysis above.

From the six-dimensional point of view it might seem odd that by adding momentum

along x5 we break an extra half of the supersymmetry in the case of a self-dual string that

is extended along x5 but not when it is extended along some other direction. After all, by

a Lorentz transformation one can go back to the rest frame where there is no momentum.

However it is important to note that the central charges are not Lorentz scalars. In the

case of a self-dual string extended along x4, the corresponding ZI
4 charge is left invariant

by the boost required to go back to the rest frame. However a self-dual string which is

extended along x5 and carries non-zero ZI
5 charge picks-up a ZI

0 charge after the boost.

Thus in the new frame one is simply not looking at a self-dual string but some other bound

state.

In addition note that the ground state of a string extended along x5 has Poincaré

symmetry in the x0, x5 plane. Thus it is invariant under a boost in the x0, x5 plane that

could give it non-vanishing x5 momentum. This means that the states that the dyonic

10



instantons describe should be thought of as 1
2 -BPS excitations of the self-dual string that

carry some x5 momentum. Whereas the monopole strings that are stretched along x4 are

ground-states of the self-dual string but carry x5 momentum. One can therefore also look

for 1
2 -BPS excited states of these strings. These states should agree with the spectrum

of dyonic instantons when the transverse space is R
3 × S1 rather than R

4. In fact this is

trivially true since the instanton equations on R
3 × S1 (and with no dependence on the

circle) are just the monopole equations. In both cases we are effectively looking at 1
4 -BPS

monopoles in 4D super-Yang-Mills.

5 Other States

In the previous two sections we showed that 5D super-Yang-Mills contains BPS solutions

corresponding to the full KK tower of self-dual string states and thus ‘knows’ about the

extra dimension associated to the M5-brane. There are of course other BPS states and it

is natural to consider whether or not these also admit a KK tower. However we will see

that the answer is no.

One can ask if there are chargeless instanton states with a non-vanishing vacuum ex-

pectation value for X6. However this cannot be the case since
∫

tr(DiX
6DiX

6)d4x =

∮

tr(X6DiX
6)dSi = QE . (5.1)

Thus a vanishing electric charge would imply DiX
6 = 0 and this in turn implies [Fij ,X

6] =

0. Since this is not possible we conclude that the only smooth instanton particle-like

solutions in a vacuum with 〈X6〉 6= 0 carry electric charge.

It is natural to ask what BPS states carry ZI
0 charge. From the (2, 0) algebra we

see that the supersymmetries are simply eigenstates of Γ6 or, equivalently, Γ78910ǫ = ǫ.

Furthermore, such states do not carry momentum along x5 if they are to preserve half of

the supersymmetry, and thus should appear in five-dimensional super-Yang-Mills. It is not

hard to see that they are provided by

[XI ,XJ ] = −
1

2
ǫ6IJKL[XK ,XL] , Aµ = ∂µX

I = 0 , (5.2)

i.e. instanton-like solutions in the transverse space. Note that these equations imply

[X6,XI ] = 0. As a result, such solutions do not exist for gauge group SU(2) in the

broken phase where X6 6= 0. Indeed they only exist when the unbroken gauge group is

non-Abelian, which we do not consider here. Furthermore the M-theory interpretation of

such a solution is not clear since there is no Abelian analogue.

We could also try to look for KK states that carry ZIJ
ijk charges. These correspond

to intersections of the M5-brane with another M5-brane in the xi, xj , xk, xI , xJ plane and

result in a 3-brane solution on the worldvolume of the original M5-brane [12]. However

there is an important distinction with the case of M2-branes and self-dual strings: an M2-

brane can end on the M5 and deposit a charge but M5-branes cannot end on other M5’s.

11



Thus it is not clear to what extent an M5-brane intersecting with another M5-brane leads

to a fundamental state in the theory and it has been associated to a sort-of D-brane in the

(2, 0) string theory [12].

Indeed if we look for solutions we find that they cannot have a non-zero instanton

number. Let us look at the two possible cases. Firstly consider an M5-brane that lies in

the x1, x2, x3, x6, x7 plane, on top of our original M5 along x1, x2, x3, x4, x5. The resulting

3-brane solution should have Poincaré symmetry along x1, x2, x3. However this means that

in the reduced theory Fab = 0, a, b = 1, 2, 3 and hence F ∧ F = 0. The other possible

configuration is when the intersecting M5-brane lies in the x3, x4, x5, x6, x7 plane, i.e. it

also extends along the M-theory direction. Now the Poincaré symmetry is along x3, x4.

This allows for F12 and F34 to be non-vanishing, so that F ∧F could also be non-vanishing.

However it also requires F13 = F23 = F14 = F24 = 0 and D3X
6 = D4X

6 = D3X
7 =

D4X
7 = 0. By additionally imposing that there is translational invariance along x3, x4

one finds the conditions [A3,X
6] = [A4,X

6] = [A3,X
7] = [A4,X

7] = 0. At least for SU(2)

these conditions imply [A3, A4] = iF34 = 0 and hence F ∧ F = 0.

6 A Higgs Mechanism for tensor non-Abelian multiplets

To summarise our results so far, we saw that we are able to identify instanton states that

correspond to a KK tower of charged string states. These are analogues of W±-Bosons

in the gauge theory. In M-theory these correspond to self-dual string states that carry

some non-zero central charge ZI
m, m 6= 0. We also saw that upon quantisation the dyonic

instanton moduli space admits a 1
2 -BPS uncharged ground state. These give a tower whose

Bosonic fields are a self-dual tensor and 5 scalars but no vectors.

This is in agreement with the fact that the (2, 0) theory is not a Yang-Mills gauge

theory based on a non-Abelian vector potential. Rather it contains a non-Abelian 2-form

potential. Little is known about such theories and it is certainly possible that the Higgs

mechanism is different. Indeed, already at the level of the Abelian theory, we can see that

there is no KK tower of photon vector modes and in fact the uncharged multiplet we found

in (3.12) was predicted to arise in [14].

In particular, the linearised equations of motion for an Abelian (2, 0) tensor multiplet

are8

Hmnp =
1

3!
εmnpqrsH

qrs , ∂[mHnpq] = 0 , ∂m∂
mXI = Γm∂mΨ = 0 . (6.1)

Let us focus on the 3-form which we express asH = 3∂[mBnp]. This has the gauge invariance

Bmn → Bmn + ∂mλn − ∂nλm. Let us also suppose that the x5 direction is compact with

period 2πR5 and expand the fields in terms of their Fourier modes:

Bmn =
∑

k

eikx
5/R5B(k)

mn , (6.2)

8These were first derived in linearised form in [16] and then the full non-linear equations in [17] in

superspace, with their component form given in [18].
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so that (B
(k)
mn)∗ = B

(−k)
mn .

For the zero-modes k = 0 we find that the self-duality simply relates H
(0)
µνλ = 3∂[µB

(0)
νλ]

to H
(0)
µν5 = 2∂[µB

(0)
ν]5. Thus it is sufficient to just consider the Abelian gauge field Aµ = B

(0)
µ5

with equation of motion ∂µFµν = 0, where Fµν = H
(0)
µν5. Since one also has the residual

gauge transformations Aµ → Aµ + ∂µλ
(0)
5 , we recover a familiar massless Maxwell field.

But let us now turn to the massive modes. Here things are quite different. Under a

gauge transformation we have

B(k)
µν → B(k)

µν + ∂µλ
(k)
ν − ∂νλ

(k)
µ , B

(k)
µ5 → B

(k)
µ5 + ∂µλ

(k)
5 − i

k

R
λ(k)µ (6.3)

and we can completely gauge away B
(k)
µ5 by a choice of λ

(k)
µ . As a result we are simply left

with the self-duality condition

B(k)
µν = −

iR5

2k
εµνλρσ∂

λB(k)ρσ , (6.4)

which implies that B
(k)
µν satisfies

∂λ∂
λB(k)

µν −
k2

R2
5

B(k)
µν = 0 (6.5)

so that B
(k)
µν is indeed a massive field.9 In addition we obtain 5 massive KK scalars from

the scalars of the six-dimensional theory. Note that in this Abelian limit the R-symmetry

is unbroken from SO(5), but in the non-Abelian theory of interest it will be broken to

SO(4). Thus the instanton spectrum that we obtain above agrees precisely with the what

is expected from the reduction of the (2, 0) theory.10

The non-Abelian version of this mechanism would be interesting to understand better.

In the familiar 6D Higgs mechanism a non-Abelian gauge field eats a single scalar degree

of freedom to become massive. In doing so, the number of degrees of freedom for the gauge

field goes from 4 to 5. However for a massive 2-form the counting is different. A massless

self-dual 2-form in six dimensions has 3 physical degrees of freedom whereas a massive one

has 5. In this case it cannot become massive by eating a single scalar field.

7 Conclusion

In this paper we have matched the KK spectrum for charged self-dual string states of the

(2, 0) theory compactified on S1 with instanton solitons of five-dimensional super-Yang-

Mills, in the broken phase when all the branes are slightly separated. It therefore seems

reasonable to conjecture that 5D SYM is precisely the (2, 0) CFT on S1, for any value of

the radius. We note that in a recent paper an attempt was made to construct non-Abelian

9This was also discussed in [19] and [14].
10See also [14].
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(2, 0) theories in six dimensions using 3-algebras [20]. However it was found that the non-

Abelian modes where constrained to propagate in five-dimensions. This is consistent with

what we find here. In particular, one should not be able to have both six-dimensional

momentum and non-Abelian instantons.

Since the M5-brane CFT is finite it follows that it remains finite once compactified.

Given our claim that this theory is precisely five-dimensional super-Yang-Mills, this state-

ment strongly suggests that the latter is also finite, despite being power-counting non-

renormalisable. Indeed, following the remarkable progress and results in the divergences

of maximally supersymmetric field theories, it is now known that five-dimensional super-

Yang-Mills is finite up to 5 loops [21–23]. In addition, holographic renormalisation of

Dp-brane theories behaves in qualitatively the same way for p = 1, 2, 3, 4 [24]. Since these

theories are finite for p ≤ 3 this points towards a finite or relatively simple UV structure

of 5D super-Yang-Mills. Some other recent work on the quantum properties of this theory

in light-cone superspace has appeared in [25].

It should be emphasised that the relationship between the (2, 0) and the super-Yang-

Mills finiteness may not be so simple, since the 6D CFT contains momentum states which

are non-perturbative from the point of view of the five-dimensional theory. Moreover, as

stressed in [26], although the theory might know about the existence of the KK states

it may not know enough about their dynamics. In particular, from the six-dimensional

point of view, once above the KK scale any scattering of states must create states with

momentum in the extra dimension. Thus, in terms of five-dimensional super-Yang-Mills,

once above the energy scale g−2
YM one must produce instanton-anti-instanton pairs. An

alternative, or perhaps complementary, possibility is that there is some kind of variation

of the ‘classicalisation’ process of [27].

In this paper, we have concentrated on the case of two M5-branes emerging in the UV

from an SU(2) gauge group on two D4-branes of type IIA. However, it is clearly of interest

to generalise these results to an arbitrary number of branes with gauge group SU(N). In

particular it is not clear that all the required solutions that we have constructed here have

appropriate analogues for the case of N > 2. It would also be interesting to relate our

discussion to those of [28, 29].
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