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Abstract. Twistor string theory is known to describe a wide variety of field theories at tree–

level and has proved extremely useful in making substantial progress in perturbative gauge

theory. We explore the twistor dual description of a class of N = 2 UV–finite super–Yang–

Mills theories with fundamental flavour by adding ‘flavour’ branes to the topological B–model

on super-twistor space and comment on the appearance of these objects. Evidence for the

correspondence is provided by matching amplitudes on both sides.

1. Introduction

One of the original motivations for Witten’s twistor string theory [1] was to explain the simplicity
of the Parke–Taylor formula for scattering of gluons at tree–level, which in spinor helicity
variables – where a light–like momentum p is decomposed in terms of commuting bosonic spinors
as pαα̇ = λαλ̃α̇ – takes the compact form:

A(r−, s−) =
〈r s〉4

〈1 2〉〈2 3〉 . . . 〈n−1n〉〈n 1〉
, (1)

where all momenta are taken to be outgoing. This describes the scattering of any number of
positive helicity gluons with two negative helicity gluons labelled by r and s and the angle

brackets denote a scalar product of positive chirality spinors 〈i j〉 ≡ 〈λi λj〉 ∼ ǫαβλ
α
i λ

β
j . As

such, the holomorphicity of (1) – i.e. its dependence solely on positive chirality spinors – was a
crucial ingredient in the construction of a perturbative string dual to N = 4 super–Yang–Mills
(SYM) and thence in understanding the fundamental importance of the so-called maximally
helicity violating (MHV) amplitudes described classically by (1).

This holomorphicity implies that under a Penrose transform [2], whereby one transforms
λ̃ → i∂/∂µ and µ → −i∂/∂λ̃, (1) localises on a simple algebraic curve in the space spanned
by Zm = (λα, µα̇). This algebraic curve is of degree one and genus zero and is a copy of CP1,
holomorphically embedded in CP3, the twistor space of complexified Minkowski space. With the
addition of four fermionic directions ψI , the target space becomes the Calabi-Yau supermanifold
CP3|4 which in [1] Witten considered as a background for the topological open-string B–model.

When supplemented with space–filling branes, the B–model on a Calabi-Yau (CY) [3] gives
rise to a (0, 1)–form A = dZ̄m̄Am̄ whose target space interactions can be encoded by the cubic
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holomorphic Chern–Simons theory Lagrangean (written with the help of the CY (3, 0)–form Ω)

L = 1
2Ω ∧ Tr(A · ∂̄A+ 2

3A ∧A ∧A) . (2)

Similarly, for a Calabi-Yau supermanifold the action is again given by holomorphic Chern–
Simons, but in this case the field A is a superfield depending on the super-coordinates ψ and ψ̄.
In the specific case of CP3|4, Witten considered Neumann boundary conditions on all directions
except for the antiholomorphic ψ̄ (‘D5’–branes) which leads to a superfield

A = A+ ψIλI +
1
2!ψ

IψJφIJ + 1
3!ǫIJKLψ

IψJψK λ̃L + 1
4!ǫIJKLψ

IψJψKψLG , (3)

giving the spectrum of N = 4 SYM theory.
In this description, the holomorphic Chern–Simons action is defined on a space with 6 real

bosonic dimensions (which also has fermionic coordinates ψI), and when transformed to four
dimensions, the interactions encoded in (2) actually correspond to those of self–dual N = 4
Yang–Mills rather than those of the full theory. At first sight one thus finds the spectrum of
N = 4 SYM but only a subset of the interactions. However, building on an idea due to Nair
[4], Witten demonstrated that the full set of interactions arise non–perturbatively by coupling
the theory to D1–instantons (Euclidean 2–branes) [1]. In the case of the MHV amplitudes these
wrap degree one genus zero curves holomorphically embedded in CP3|4 via the equations

µα̇ + xαα̇λ
α = 0 and ψI + θIαλ

α = 0 , (4)

where the moduli xαα̇ = σµαα̇xµ and θIα correspond to the coordinates of 4d Minkowski space
and (on–shell) N = 4 superspace respectively. The prescription for the calculation of tree–level
MHV amplitudes, and therefore integration over degree one, genus zero curves, is then

A(n) = g2
∫

d4x d8θ 〈

∫

CP1

J1w1 · · ·

∫

CP1

Jnwn〉 , (5)

where Ji are D1 worldvolume free–fermion currents coupling to the external ‘D5’–brane fields,
while the wi’s are the twistor space equivalents of wavefunctions for the external particles.

This description of weakly-coupled N = 4 Yang–Mills inspired a great deal of progress
in the understanding of perturbative gauge theory. In particular, the extension of (5) to a
number of non–MHV tree–level amplitudes was understood in [5; 6; 7] and a very important
related development was the method of Cachazo, Svrček and Witten (CSW) [8] for using MHV
amplitudes as effective vertices in the calculation of tree–level non–MHV processes. Despite
the appearance of conformal supergravity at one loop in twistor string theory [9], substantial
field theory progress has also been made at the quantum level as a direct result of [1]. This is
not limited to amplitudes in maximally supersymmetric Yang–Mills [10] where the CSW rules
have been shown to hold at one–loop, but extends to theories with less or no supersymmetry
[11; 12; 13; 14] and even N = 8 supergravity [15]. These and other developments are reviewed
in [16] where further references can also be found.

2. N = 2 theories with fundamental matter

The results previously mentioned strongly suggest that twistor string theory is both more widely
applicable than is currently known and that its validity should extend into the quantum regime.
As such, and as an intermediate step towards the latter goal, it is interesting and important
to map out the range of four–dimensional theories that can potentially admit a twistor string
description. In this vein, the N = 1 exactly marginal deformations of N = 4 SYM were shown
to have a twistor dual in [17], while various quiver gauge theories arising as N = 1 and N = 2



orbifolds of N = 4 SYM were treated in [18; 19]. References to other developments can be found
in e.g. [20].

In continuation of this programme, the present authors showed that it is possible to
use twistor string theory to describe theories with fundamental matter. In particular, the
twistor duals of N = 2 SYM with gauge group Sp(N) and one antisymmetric and four
fundamental hypermultiplets and of N = 2 SYM with SU(N) gauge group and 2N fundamental
hypermultiplets were identified in [20] and it is to those constructions that we now turn. Let us
begin with the first of the two aforementioned theories, which we term the Nf = 4 theory for
brevity. The second (Nf = 2N) theory is very similar – in fact simpler in some senses – and
as such we will only mention it briefly in what follows and refer the reader to [20] for further
details.

An important part of the identification of a twistor dual (in the sense of [1]) to a theory is
the ability to split its spacetime Lagrangean into a self–dual part and a part of O(g2) which
is obtained as a perturbation about the self–dual theory. This can indeed be done for the
Nf = 4 theory by performing various helicity dependent rescalings of the fields in the problem.
These are detailed in [20] as well as a number of field redefinitions, after which (introducing an
anti–self–dual two–form G to write the Yang–Mills action in first–order form) the Lagrangean
is:

L = Tr [− 1

2
GF+ 1

4
g2G2+Dφ†Dφ+iλ̄aσ̄µDµλa−λaλaφ

†+2g2λ̄aλ̄aφ]+Tr[ 1
2
DzaADzAa

+ iζ̄Aσ̄µDµζA−zaA[λa,ζ
A]−2g2zAa[ζ̄A,λ̄a]+ζAζAφ−2g2ζ̄Aζ̄Aφ†]+ 1

2
DqaMDqMa

− iη̄M σ̄µDµη
M+qaMλaη

M− 1

2
ηMφηM−2g2(η̄M λ̄aqMa+

1

2
η̄Mφ†η̄M)

+ g2(− 1

2
qaM{φ†,φ}qMa+

1

4
qaM [zbA,zAa]q

M
b)−

g2

8
((qaMqNa)(q

b
N qMb) (6)

+ (qaMqbN )(qNaq
M

b))−g2 Tr( 1

2
[φ†,φ]2+ 1

4
[zaA,zAb][z

b
B ,zBa]+[zaA,φ][φ†,zAa]) .

This theory enjoys a large amount of symmetry apart from its supersymmetry and conformal
invariance. A,G, φ, φ†, λ and λ̄ are in the adjoint of the gauge group Sp(N), while z, ζ and
ζ̄ are in the irreducible second-rank antisymmetric representation and q, η and η̄ are in the
fundamental. M = 1, . . . , 8 is an index of a global SO(8) flavour symmetry under which the
fundamental fields are vectors, while a and A are fundamental indices of two different SU(2)
groups. The SU(2)a symmetry is a subgroup of the N = 2 R-symmetry group while SU(2)A is a
flavour–like symmetry for the antisymmetric fields; no other field transforms nontrivially under
its action.

The aim, then, is to find a twistor string theory describing the tree–level processes of (6),
which we expect to be described by a holomorphic Chern–Simons–like action enriched with D1–
instantons. The approach we take is similar to that of e.g. [18], where the theories there are
engineered by acting on the twistor dual to N = 4 SYM. In particular, an orbifold action on the
fermionic coordinates of CP3|4 breaks (some) supersymmetry (and in some instances the gauge
group) but maintains conformal invariance, since the bosonic directions remain untouched.

However, it is clear from the ideas of [18] and also the construction of the Nf = 4 theory
in terms of 10d string theory as an orientifold of Type IIB [21; 22; 23; 24] that a world–sheet
parity operation will also be required. Thus, we act on the fermionic coordinates of CP3|4 and
the N = 4 superfield (3) with the following transformations

(a) ψa → ψa , ψA → −ψA ; (b) Ai
j → Ωik(AT ) l

k Ωlj = (AT )i j ≡ A i
j , (7)

where Ω2N×2N is the Sp(N) invariant tensor, and we have also split the fermionic directions
into I = a,A where a = 1, 2 and A = 3, 4. Requiring A to be invariant under this operation, it
is easy to see that one obtains the following decomposition

Â = (A+ ψaλa + ψ1ψ2φ+ ψ3ψ4φ† + ǫcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)

+ ψA(ζA + ψazAa + ǫABψ
1ψ2ζ̃B) , (8)



where the fields in the first line are symmetric under (7) and thus in the adjoint of Sp(N) and
those in the second are antisymmetric.

We have thus obtained the adjoint and antisymmetric sectors of the Nf = 4 theory and now
turn our attention to the fundamentals. By analogy with the IIB string description, it should
be clear that incorporating the fundamental fields will require the introduction of a new object
in twistor space. We implement this by adding a new kind of brane to our configuration which
we call a ‘flavour’ (Df ) brane. As this object is expected to wrap the same number of bosonic
directions (but only the ψa fermionic directions) as the ‘D5’ branes already present we will
similarly term the ‘D5’ branes ‘colour’ (Dc) branes. Our boundary conditions on open strings
can thus be summarised in the following table:

Table 1. Boundary conditions for open strings in the B–model setup.

Direction Dc–Dc Dc–Df Df–Df

Z,Z̄ NN NN NN
ψa NN NN NN
ψA NN ND DD

ψ̄ā,ψ̄Ā DD DD DD

The mathematical requirements imposed by fermionic boundary conditions (b.c.’s) are not as
clear or straightforward as those for their bosonic counterparts. In the bosonic case, the concrete
constraints placed on the worldsheet by Dirichlet or Neumann b.c.’s can in many instances be
translated into a tangible geometrical picture in terms of branes and thus precise constraints
in spacetime. In the present case we are dealing with b.c.’s on fermionic directions primarily
from a target space perspective and as such the constraints to be imposed are not as evident.
For example, in [1] the Dirichlet conditions on the antiholomorphic fermionic directions were

interpreted as setting ψ̄Ī = 0. However, simply interpreting the Dirichlet conditions on the
holomorphic fermionic directions encountered here (as shown in Table 1) as imposing ψA = 0
does not seem to provide the correct degrees of freedom.

The resolution comes with the realisation that one really wants to apply a fermionic analogue
of dimensional reduction. This is part of a more general question of properly defining sub-
supermanifolds of supermanifolds, some aspects of which have been considered in [25], and in
our case the constraints involved can be implemented in terms of a suitable set of integral
conditions. We will not discuss these constraints any further here, but now present the fields
resulting from them and refer the reader to [20] for a more thorough discussion.

The introduction of the new Df branes mean that the f–f strings will give rise to fields living
on their worldvolume, which by comparison with the IIB description of the Nf = 4 theory in
[21; 22; 23; 24] is expected to be related (possibly by an analogue of the Penrose transform) to
an 8d theory. As such, we are not especially interested in them and furthermore expect them to
decouple from the low energy dynamics of the Nf = 4 theory. We therefore do not display their
explicit form (which can be found in [20]), but instead concentrate on the Dc–Df and Df–Dc

strings. The appropriate orientifold–invariant state for these gives rise to a (0, 1)–form field

Qi
X = ψAQi

AX = ψA
(

ηiAX + ψaqiaAX + ψ1ψ2η̃iAX

)

, (9)

whose conjugate is related under the orientifold action by the condition QX
i = ΩXY Qj

Y Ωji

and where i is an index of the fundamental of Sp(N) while X is in fact an index of Sp(2).



The particular form of Q is not new and was introduced in [26; 27] to describe superfields in
the fundamental representation, though its derivation here in terms of Q provides a stringy
description and a natural explanation for the fermionic nature of Q which had to be assumed
in [26; 27].

That X should be an Sp(2) index is perhaps rather surprising, given that the Nf = 4
theory has an SO(8) flavour group which is realised in the 10d string theoretic description via
the subgroup SU(4) × U(1) ⊂ SO(8). One might therefore have expected either SO(8) itself
or SU(4) to show up. In fact what we find is that twistor string theory seems to favour the
subgroup Sp(2)×SU(2)A ⊂ SO(8). Furthermore, the SU(2) in question is realised geometrically
as the rotations of the fermionic ψA into one another. The group on the Df branes is thus Sp(2)
(which is perhaps in some sense unsurprising given that the colour and flavour branes share the
same bosonic directions and we have an Sp(N) gauge group arising from the Dc’s) and we have
a novel situation where an SU(2) flavour subgroup has a geometrical realisation.

Having thus obtained the adjoint, antisymmetric and fundamental degrees of freedom we can
write down an analogue of the holomorphic Chern–Simons Lagrangean (2) appropriate to the
Nf = 4 theory:

L = 1
2Ω ∧

(

Tr(Â · ∂̄Â+ 2
3Â ∧ Â ∧ Â) +QX · ∂̄QX +QX ∧ Â ∧ QX

)

, (10)

where Â is as in (8) and Q as in (9). When expanded into component form, it is this action which
we expect to match that of the self–dual truncation of the Nf = 4 theory (i.e. the g → 0 limit of
(6)) via a suitable non–linear generalisation of the Penrose transform in the spirit of [28]. When
coupled to D1–instantons à la [1], we should then be able to compute tree–level amplitudes in
this theory by integrating over the moduli space of genus zero curves of appropriate degrees and
check this proposed duality.

In [20], this is precisely what was done and a number of different amplitudes were compared
on both sides of the duality. There, the ‘pre–analytic’ amplitudes, which have S = −4 under
S : ψI → eiβψI , were shown to vanish – trivially so from the string theory perspective as
they localise on points in twistor space implying that the kinematic invariants must vanish, and
by direct calculation from the 4d point of view. Furthermore a number of different analytic
amplitudes (i.e. those that are MHV or have S = −8) at 4 and 5–point were found to
agree precisely (up to a constant universal factor) by applying Witten’s prescription essentially
unmodified on the string theory side and by calculating the relevant Feynman diagrams on the
gauge theory side. Such amplitudes include ones with adjoint particles, antisymmetrics and
fundamentals both as external and internal states and the results match in all cases. This
gives us confidence that the two theories in question are dual to one another at tree–level and
moreover the results of the calculations provide further evidence for the geometric realisation of
the SU(2) flavour subgroup discussed previously.

A similar story emerges for the Nf = 2N theory, further details of which can be found in [20].
As expected, the world–sheet parity operation is unnecessary in this case and the colour–stripped
amplitudes again match with agreement found up to normalisation. We are thus confident that
such N = 2 theories that include fundamental matter have a twistor string description, and as
a result this provides important information about the scope of validity of twistor string theory.
More information is clearly needed in order to uncover the full (quantum) structure of such
descriptions, but this, together with further progress (perhaps, for example, [29]) could be of
assistance in achieving this goal.
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