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Abstract 
Objective: Melanocortin 2 receptor accessory protein 2 (MRAP2) have been shown to have a 

critical role in energy homeostasis. Although MRAP2 has been shown to regulate a number 

of GPCRs involved in metabolism, the key neurons responsible for the phenotype of gross 

obesity in MRAP2 deficient animals are unclear. Furthermore, to date, all the murine 

MRAP2 models involve the prenatal deletion of MRAP2.  

Methods: To target Melanocortin 4 receptor (MC4R)-expressing neurons in the 

hypothalamic paraventricular nucleus (PVN), we performed stereotaxic surgery using AAV 

to selectively overexpress MRAP2 postnatally in adult Mc4r-cre mice. We assessed energy 

homeostasis, glucose metabolism, core body temperature, and response to MC3R/MC4R 

agonist MTII.  

Results: Mc4r-crePVN-MRAP2 female mice on a standard chow diet had less age related weight 

gain and improved glucose/insulin profile compared to control Mc4r-crePVN-GFP  mice. These 

changes was associated with a reduction in food intake and increased energy expenditure. In 

contrast, Mc4r-crePVN-MRAP2 male mice showed no improvement on a chow diet, but 

improvement of energy and glucose metabolism was observed following high fat diet 

feeding. In addition, an increase in core body temperature was found in both females fed on 

standard chow diet and males fed on HFD. Mc4r-crePVN-MRAP2 female and male mice showed 

increased neuronal activation in the PVN compared to controls, with further increase in 

neuronal activation post MTII treatment in females.  

Conclusions: Our data indicate a site-specific role for MRAP2 in PVN MC4R-expressing 

neurons in potentiating MC4R neuronal activation at baseline conditions in the regulation of 

food intake and energy expenditure. 

 

Highlights  

• Postnatal overexpression of MRAP2 regulates energy balance, thermogenesis and 

glucose metabolism. 

• Overexpression of MRAP2 in MC4R expressing neurons increases PVN neuronal 

activation.  

• There is a sex difference in extent of metabolic protection, with a more marked lean 

phenotype in females.  
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1. Introduction  
MRAP2 is predominantly expressed in the hypothalamus, in particular within the 

paraventricular nucleus (PVN), a region known to express MC4R and with a critical role in 

energy homeostasis (1-3). Mice with global MRAP2 deletion and conditional MRAP2 

deletion in SIM1 expressing neurons developed marked obesity, while rare loss-of-function 

or missense heterozygous variants in MRAP2 were identified in humans with severe early-

onset obesity (4, 5). MRAP2’s critical role in the control of energy homeostasis has been 

linked to action on MC4R signaling (4, 6). Further evidence that MRAP2 acts via MC4R 

signaling came from a study on the role of Mrap2 in zebrafish feeding and growth (7).  

 

Although data point to a MC4R dependent function, Mrap2-/- mice do not fully phenocopy 

the Mc4r-/- mice. In particular, the paradoxical observation that while Mrap2-/- mice become 

obese without detectable changes in food intake or energy balance, Mc4r-/- mice have 

hyperphagia and reduced energy expenditure (EE) (8, 9). Mrap2-/- mice remain responsive to 

treatment with MTII, a MC3R/MC4R agonist, while the anorexic response to MTII is 

abolished in Mc4r-/- mice, suggesting at least some preservation of MCR function centrally 

(4, 10). 

 

The phenotype of gross, early onset obesity without detectable change of food intake and 

energy expenditure, replicated in an independent Mrap2 deficient model, is particularly 

intriguing (4, 6). However, the mechanism by which MRAP2 knockout animals become 

obese is still unclear. Plasma corticosterone, thyroid function, faecal energy measurements, 

body temperature, and brown fat function in response to cold challenge were all 

indistinguishable between Mrap2-/- and Mrap2+/+ mice (4, 6). Some of the complexity may 

arise from the fact that MRAP2 is a promiscuous accessory protein (1). In addition to the 

melanocortin receptor family (MCR) (11), MRAP2 interacts and regulates other G Protein-

Coupled Receptors (GPCRs) beyond the MCR family (1, 12-14). Interaction with 

Prokineticin 1 receptor, orexin 1 receptor, and Ghrelin receptor have been reported (12-14). 

However, these interactions would result in a lean phenotype in the absence of MRAP2. 

Thus, while interaction with these additional GPCRs form part of the growing understanding 

of MRAP2 action in the neuronal control of energy homeostasis, it does not explain the obese 

phenotype of MRAP2 deficient animals.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 5

With data pointing to the PVN and MC4R as the key to unravelling the obesity phenotype in 

MRAP2 deficient mice and because all existing mouse models to date involve developmental 

deletion of MRAP2, we undertook this study to assess the effect of postnatal overexpression 

of MRAP2 in MC4R neurons of the PVN. Furthermore, using this methodology we are able 

to  exclude the effects of MRAP2 interaction with non-PVN MC4R GPCRs, in particular 

those GPCRs that have been described to interact with MRAP2 in the arcuate nucleus (12-

14).  
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2. Material and Methods 
 
2.1 Ethics and animal husbandry  
All animal studies on male and female mice were approved by Yale University Institutional 

Animal Care and Use Committee. Animals had a free access to water and food was provided 

ad libitum, unless otherwise stated.  Mice were fed on a standard chow diet (SD) (diet no. 

2018; 18% calories from fat; Teklad Diets, Harlan Laboratories) for up to 6 months of age. 

For high fat diet (HFD) experiments, male mice were exposed to HFD (category no. 93075; 

45% fat; Teklad Diets, Harlan Laboratories) starting at 2 weeks after PVN injection. All 

animals were kept in temperature and humidity-controlled rooms, in a 12h dark and 12h light 

cycle, with lights on from 7:00AM to 7:00PM.  

 
2.2 Generation of Mc4r-t2a-cre mice and genotyping 
Mc4r-t2a-cre mice were generated as previously described (15). Genomic DNA was isolated 

from tails or yolk sacs by standard methods. Mc4r-t2a-cre mice were genotyped by 

polymerase chain reaction (PCR parameters: 42 cycles, 93°C for 30 s, 56°C for 1 min, and 

72°C for 5 min). Amplification of a wild-type (WT) allele generated a 3.6- kb product, and a 

4.1-kb product in the case of a mutant allele using the following primers: cre 350 FRT5: 5′-

ctgtcacttggtcgtggca -3′, Mc4r-2A-creStop F1 FRT3: 5′-gatcatgtgtaacgccgtc – 3, Mc4r-2A-

creStop R1 FRT3: 5′-catgtcaattcataacgccc - 3.  

 
2.3 Stereotaxic viral injection of Adeno-associated virus (AAV) into the PVN 
The AAV2-CMV-DIO-GFP [AAV-DIO-GFP] and AAV2-CMV-DIO-MRAP2-FLAG 

[AAV-DIO-MRAP2] virus (VECTOR BIOLABS) were injected bilaterally into the 

paraventricular nucleus of the hypothalamus (PVN) of Mc4r-cre animals. Moreover AAV2-

CMV-GFP (VECTOR BIOLABS cat No. 7004) virus was co-injected to determine 

successful PVN targeting. Eight weeks old Mc4r-cre mice were anesthetized with 100 mg/kg 

ketamine and 10mg/kg xylazine (IP) and placed in stereotaxic apparatus. A guide cannula 

with dummy cannula (Plastics one, Roanoke, VA) was inserted into the PVN according to the 

atlas of Franklin and Paxinos (Franklin KBJ) (co-ordinates, bregma: anterior-posterior -0.7 

mm; lateral +/- 0.2 mm; and dorsal-ventral -5.2 mm) at a rate of 40 nl/min (~2x1012viral 

particles/mL) for 15 min and the injector (Plastics one) remained in place for an additional 5 

min before. The injector was connected with a Hamilton syringe at a rate of 33.3 nL/minute.  
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2.4 GFP Immunostaining  
Fed mice were perfused and brains were processed for immunofluorescence staining to 

confirm the injection site in the PVN, using anti-GFP antibody (ab13970; Abcam). Mice in 

which viral injections were located outside the PVN were studied separately. The sections 

were incubated overnight in anti-GFP antibody (diluted 1:5,000 in 0.1 mol/L sodium 

phosphate buffer) and then incubated in secondary antibody (category no. A11039, Alexa 

Fluor 488–coupled goat anti-chicken, 1:500 dilution; Life Technologies) for 2 h. Sections 

were then analyzed with fluorescent microscope.   

 
2.5 FLAG Immunostaining  
Immunofluorescence staining was performed using anti-FLAG antibody (F1804; Sigma). 

Brains were sectioned with a vibratome, and sections were incubated for 24 hours at room 

temperature in anti-FLAG antibody (diluted 1:2000). After several washes with phosphate 

buffer (PB), sections were incubated in secondary antibody (category no. BA 2000 

biotinylated horse anti-mouse IgG; 1:200 in PB; Vector Laboratories) for 2 hours at room 

temperature, then rinsed in PB three times 10 min each time, and incubated for 2 hours at 

room temperature with Alexa Fluor 594 streptavidin (Life Technologies, 1:2000 in PB). 

Sections were mounted on glass slide with vectashield (Vector lab) and analyzed with 

fluorescent microscope. 

 

2.6 Indirect Calorimetry System and Body Composition 
Body weight was measured weekly after stereotaxic surgery. Body composition was 

measured in vivo by MRI (EchoMRI; Echo Medical Systems, Houston, TX). Twelve weeks 

after PVN injection male and female mice were acclimated in metabolic chambers (TSE 

Systems, Germany) for 4 days before the start of the recordings. Animals were continuously 

recorded for 3 days with the following measurements being taken every 30 minutes. 

Measurements include food intake, locomotor activity (in X and Y axes), and gas exchange 

(O2 and CO2) every 30 minutes using the TSE LabMaster System. Respiratory exchange ratio 

(RER) was calculated as a ratio if CO2 production and O2 consumption. Energy expenditure 

(EE) was calculated according to the manufacturer’s guidelines (PhenoMaster Software, TSE 

Systems) and analyzed relative to body weight using ANCOVA analysis (16). Food intake 

was determined continuously using weighing sensors integrated within the sealed cage.  

 
2.7 Glucose and insulin tolerance tests 
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Glucose tolerance test (GTT) was performed using 2 mg/kg glucose in saline (DeltaSelect) 

given intraperitoneally (IP) to 16 h fasted animals as previously described (17). Blood 

glucose levels were then monitored at 15, 30, 60, and 120 minutes from the injection. Insulin 

tolerance test (ITT) was performed using an insulin dose of 0.75 U/kg (Actrapid; Novo 

Nordisk A/S Denmark) delivered by  IP in mice fed ad libitum. Blood glucose was measured 

before IP injection and at 15, 30, 60, and 120 min after insulin injection.  

 

2.8 cfos Immunostaining  
Ad libitum fed mice were anesthetized and transcardially perfused with 0.9% saline with 

heparin followed by 4% paraformaldehyde. In another set of experiments, mice were injected 

with either MTII (200 nM, IP) or equal volume saline. Animals were perfused 1 h post 

injection. Brains were collected and post-fixed overnight before several sections of the entire 

hypothalamus were taken at every 50 µm. Sections were washed and incubated with the goat 

anti-cfos antibody (Santacruz, 1:2000), and rabbit anti-POMC antibody (Phoenix 

Pharmaceuticals, 1:2000) in PB containing 4% normal donkey serum, and 1% Triton X-100 

for 24 hours at room temperature. After several washes with phosphate buffer (PB), sections 

were incubated in the secondary antibodies (biotinylated donkey anti-goat immunoglobulin G 

[IgG]; 1:200 in PB; Vector Laboratories and donkey anti-rabbit Alexa-fluor 488; 1:500 in 

PB; Life Technologies) for 2 hours at room temperature, then rinsed in PB five times, 10 

minutes each time. Sections were then mounted on glass slide with VectaShield antifade 

(Vector Laboratories). Fluorescent images of five to seven brain sections were captured with 

fluorescent microscope and analyzed by imaging Software (Image J).  

 
2.9 Real-time RT PCR 
Total RNA from brown adipose tissue was extracted from Mc4r-crePVN-MRAP2 and control 

mice using Trizol solution (Invitrogen). Uncoupling protein 1 (UCP1) and Deiodinase 2 

(DIO2) mRNA levels in the brown adipose tissue, were measured by real-time PCR. A High 

Capacity cDNA Reverse transcription Kit (Applied Biosystems) was used for the reverse 

transcription. Real-time PCR (LightCycler 480; Roche) was performed with diluted cDNAs 

in a 20-µl reaction volume in triplicates. Primers used for this study are as follows: cat. No. 

Mm 01244861_m1 for UCP1, cat. No Mm 00515664_m1 for DIO2, and Mm 02619580_g1 

for β-actin (Applied Biosystems). The calculations of average Cp values, SDs, and resulting 

expression ratios for each target gene were based on the Roche LightCycler 480 software.  
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2.10 Statistical analysis  
All statistical analysis was performed using GraphPad Prism. Data is plotted as mean +/- 

S.E.M. Student’s t test was used to compare two groups, for more than two groups one-way 

ANOVA was performed followed by Bonferroni multiple comparison test. In all analyses, a 

two-tailed probability of <5% (i.e., P < 0.05) was considered statistically significant. 
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3. Results  
3.1. Postnatal overexpression of MRAP2 in PVN MC4R expressing neurons alters 
metabolism selectively in female Mc4r-crePVN-MRAP2 mice on a chow diet.  
To assess the role of MRAP2 in the MC4R-expressing neurons of the PVN postnatally, we 

injected an AAV-DIO-MRAP2 and its control, AAV-DIO-GFP, in the PVN of female (Figure 

S1A-B) and male (Fig. S1D-E) Mc4r-cre mice (15). Moreover, to assess the overexpression 

of MRAP2 in the PVN, immunostaining for FLAG epitope was performed in female (Figure 

S1 C) and in male Mc4r-crePVN-MRAP2 mice (Figure S1 F). To determine whether selective 

MRAP2 overexpression in PVN MC4R affects metabolism, metabolic analyses were 

performed in both male and female mice. Mc4r-crePVN-MRAP2 female mice fed on a standard 

chow diet showed lower body weight (n=11 per group; Figure 1A) starting at 3 weeks from 

the viral injections compared with Mc4r-crePVN-GFP controls. The lower body weight was due 

to a significant reduction of fat mass (4.49±0.61g n=11; Figure 1B) in Mc4r-crePVN-MRAP2 

female mice compared to female controls (7.80±0.51 g Mc4r-crePVN-GFP female mice; n=11) 

evidenced after 4 weeks post viral injections. No differences in lean mass were observed 

between the 2 experimental groups n=11; Figure 1C). This was associated with decreased 

food intake (2.79±0.10 g in female Mc4r-crePVN-MRAP2 mice and 3.35±0.22 g in female Mc4r-

crePVN-GFP controls; Figure 1D-E) specifically during the dark period (2.41±0.23 g in controls 

vs 1.89±0.10 g in Mc4r-crePVN-MRAP2 female mice; n=8 and 11, respectively; Figure 1D-E). 

Furthermore, increases in locomotor activity (37744±2138 beam break counts in controls vs 

55914±7631 beam break counts in Mc4r-crePVN-MRAP2 female mice; n=8 and 10, respectively; 

Figure 1F) and energy expenditure (Figure 1G-I) were also observed in Mc4r-crePVN-MRAP2 

female mice compared to female controls. vO2 was also different between Mc4r-crePVN-MRAP2 

female mice (3195.63±101.02 ml per day) and controls (2890.92±80.74 ml per day, Figure 

1J), while no differences in vCO2 (2430.37±104.96 ml per day in controls vs 2715.73±113.60 

ml per day in Mc4r-crePVN-MRAP2 mice) and in respiratory quotient were observed (0.83±0.01 

ml per day in controls vs 0.85±0.01 ml per day in Mc4r-crePVN-MRAP2 mice; Figure 1K-L) 

between the experimental groups. In agreement with the improved metabolic phenotype, both 

glucose (Figure S2A) and insulin tolerance tests (Figure S2B) were significantly improved in 

Mc4r-crePVN-MRAP2 female mice compared to female Mc4r-crePVN-GFP controls. Arcuate 

POMC cells are known to activate MC4R-expressing neurons in the PVN, inhibiting food 

intake and increasing energy expenditure. To ensure that the observed improved metabolic 

phenotype was not due to a differential activation of POMC neurons, we quantified PVN 
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POMC fiber density (1366.35±147.24 in controls vs 1478.14 ±83.66 in Mc4r-crePVN-MRAP2 

n=6; Figure S3A-C) and arcuate nucleus neuronal activation, including POMC (43.78±1.47 

in controls vs 46.27 ±1.36 in Mc4r-crePVN-MRAP2 n=6, cfos positive POMC neurons; 

36.41±1.74 in controls vs 39.08 ±2.76 in Mc4r-crePVN-MRAP2  n=6 per group, cfos positive 

cells in the ARC; Figure S3D and E), and found no difference between Mc4r-crePVN-MRAP2 

and Mc4r-crePVN-GFP female mice. In addition, a significant increase in body temperature was 

also found in Mc4r-crePVN-MRAP2 female mice (37.65±0.15 C°) compared to Mc4r-crePVN-GFP 

female mice (37.04±0.16 C°; Figure 2A) that was associated with significant increases in 

UCP1 (Figure 2B) and Dio2 (Figure 2C) mRNA levels in the BAT. Altogether, these data 

indicate that MRAP2 in PVN MC4R neurons affects energy metabolism in female mice. 

 

3.2. Selective MRAP2 overexpression in PVN MC4R neurons induced increased PVN 
neuronal activation, which is further affected by MTII administration, in female mice.  
As MRAP2 overexpression in PVN-MC4R neurons in adult female mice leads to a leaner 

phenotype; to determine the effect of MRAP2 overexpression on PVN neuronal activation, 

we performed and quantified cfos immunostaining in the PVN of Mc4r-crePVN-MRAP2 and 

Mc4r-crePVN-GFP female mice. A significant increase of cfos immunoreactivity was found in 

Mc4r-crePVN-MRAP2 female mice (59.97±3.88 cfos positive cells/section; n=6 Figure 3B, 3E) 

compared to Mc4r-crePVN-GFP female mice (44.20±1.39 cfos positive cells/section; n=5 Figure 

3A, 3E).  

Furthermore, when MTII, a MC3R/MC4R agonist, was peripherally injected, no difference in 

food intake (Figure 3E) and cfos activation in the PVN (Figure 3C-F) was observed between 

Mc4r-crePVN-GFP and Mc4r-crePVN-MRAP2 female mice (1.49± 0.46 g and 138.24± 13.35 cfos 

positive cells/section in controls vs 1.48± 0.31g and 116.54± 12.08 cfos positive cells/section 

in Mc4r-crePVN-MRAP2 female mice; n=4 per group; Figure 3E). Comparing saline and MTII 

treated Mc4r-crePVN-MRAP2 female mice, a statistical difference was noted in food intake and 

cfos positive cells (59.97±3.88 cfos positive cells/section; n=6 compared with 116.54± 12.08 

cfos positive cells/section in Mc4r-crePVN-MRAP2 female mice; n=4 per group Figure 3E,F).   

 
3.3. Selective overexpression of MRAP2 in MC4R neurons does not alter energy 
metabolism in male mice on a standard chow diet. 
Due to the clear phenotype in female mice, we then studied male mice and, interestingly, no 

significant differences in body weight (Figure S4A), fat mass (7.84±1.09 g in controls vs 7.38 
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±1.53 g in Mc4r-crePVN-MRAP2 n=6 per group, 12 weeks after injection in the PVN; Figure 

S4B), and lean mass (22.39±0.50 g in controls vs 21.76 ±0.94 g in Mc4r-crePVN-MRAP2 n=6 per 

group, 12 weeks after injection in the PVN; Figure S4C) were observed in male mice on a 

standard chow diet. In addition, no changes in glucose tolerance test (Figure S4D), insulin 

tolerance test (Figure S4E), and body temperature (36.42±0.13 C° in controls vs 36.54 ±0.37 

C° in Mc4r-crePVN-MRAP2 n=6 per group; Figure S4F) were observed between Mc4r-crePVN-GFP 

and Mc4r-crePVN-MRAP2 male mice exposed to a standard chow diet. However, when exposed 

to high fat diet (45% of fat), male Mc4r-crePVN-MRAP2 mice showed lower body weight gain 

compared to control male Mc4r-crePVN-GFP mice (Figure 4A; n=6 per group). This difference 

was due to a significant reduction in fat mass (24.75±1.01 g in controls vs 21.66 ±0.79 g in 

Mc4r-crePVN-MRAP2  n=6 per group, 8 weeks on HFD; Figure 4B). No significant changes in 

lean mass were found (24.51±0.60 g in controls vs 25.57 ±1.24 g in Mc4r-crePVN-MRAP2  n=6 

per group, 8 weeks on HFD; Figure 4C). Food intake analysis showed a significant reduction 

of feeding in Mc4r-crePVN-MRAP2 male mice compared to male controls specifically during the 

dark phase (1.81±0.19g in controls vs 0.82 ±0.29 g in Mc4r-crePVN-MRAP2  n=6 per group; 

Figure 4D and E). In addition, locomotor activity (20778±1747 beam break counts in controls 

vs 33736 ±5222 beam break counts in Mc4r-crePVN-MRAP2  n=6 per group; Figure 4F) and 

energy expenditure (11.699±0.615 kcal per day in controls vs 12.937 ±0.715 kcal per day in 

Mc4r-crePVN-MRAP2  n=6 per group; Figure 4 G-I) analyses also showed significant increases 

in Mc4r-crePVN-MRAP2 male mice compared to Mc4r-crePVN-GFP male mice. In agreement, with 

an overall improved metabolic phenotype, glucose (Figure S5A) and insulin tolerance (Figure 

S5B) tests were also improved in Mc4r-crePVN-MRAP2 male mice compared to Mc4r-crePVN-GFP 

male mice. Finally, similar to females, MRAP2 overexpression in MC4R neurons of the PVN 

induced a significant increase in body temperature (36.83±0.11 C° in controls vs 37.37 ±0.17 

C° in Mc4r-crePVN-MRAP2  n=7 per group; Figure 5A) that was accompanied by greater BAT 

UCP1 (Figure 5B) and Dio2 (Figure 5C) mRNA levels. Finally, to test that the observed 

improved metabolic phenotype was not due to a differential activation of POMC neurons, we 

quantified PVN POMC fiber density (1261.03±31.45 in controls vs 1157.57 ±86.70 in Mc4r-

crePVN-MRAP2  n=6 per group; Figure S6A-C) and arcuate nucleus neuronal activation, 

including POMC (36.11±2.53 in controls vs 40.97 ±3.59 in Mc4r-crePVN-MRAP2  n=6 per 

group, cfos positive POMC neurons; 50.04±2.32 in controls vs 47.85 ±4.60 in Mc4r-crePVN-

MRAP2  n=6 per group, cfos positive cells in the ARC; Figure S6D and E), and found no 

difference between Mc4r-crePVN-MRAP2 and Mc4r-crePVN-GFP male mice fed on HFD. 
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Altogether these data indicate that overexpression of MRAP2 in MC4R neurons affects 

energy metabolism in male mice when challenged on HFD feeding. 

 

3.4. MTII administration increases PVN cfos activation and decreases food intake of 
Mc4r-crePVN-GFP control male mice but does not affect Mc4r-crePVN-MRAP2 male mice 
To assess the response of MTII in Mc4r-crePVN-GFP and Mc4r-crePVN-MRAP2 mice, we assessed 

the effect of MTII on PVN cfos immunoreactivity and food intake in male mice fed on HFD. 

Similar to female Mc4r-crePVN-MRAP2 mice, HFD-fed Mc4r-crePVN-MRAP2 male mice injected IP 

with vehicle (saline) showed a significant increase in cfos immunostaining in the PVN 

compared to vehicle-injected HFD-fed Mc4r-crePVN-GFP male mice (46.88±4.34 cfos positive 

cells in controls vs 63.77 ±3.22 cfos positive cells in Mc4r-crePVN-MRAP2 n=3 per group; 

Figure 6A, B and E).  When MTII was injected IP in both HFD-fed Mc4r-crePVN-GFP and 

Mc4r-crePVN-MRAP2 male mice, no significant difference were observed (107.37±10.00 cfos 

positive cells in controls vs 85.97 ±13.21 cfos positive cells in Mc4r-crePVN-MRAP2  n=6 per 

group; Figure 6C, D and E). In agreement with these data, significant reductions in food 

intake were observed in HFD-fed Mc4r-crePVN-MRAP2 male mice injected with saline 

compared to Mc4r-crePVN-GFP male mice injected with saline, whilst no difference in food 

intake was noted between Mc4r-crePVN-MRAP2 and Mc4r-crePVN-GFP male mice injected with 

MTII (2.97±0.16g in Mc4r-crePVN-MRAP2 +saline n=9, 3.55 ±0.17g in Mc4r-crePVN-GFP  +saline 

n=8, 2.70±0.33g in Mc4r-crePVN-MRAP2 +MTII n=6, 2.85 ±0.29g in Mc4r-crePVN-GFP  +MTII 

n=5, Figure 6F). Interestingly, unlike in females, no statistical difference in cfos positive cells 

was observed between Mc4r-crePVN-MRAP2 male mice treated with saline compared to Mc4r-

crePVN-MRAP2 mice treated with MTII. Together these data suggest a role for MRAP2 in PVN 

MC4R-expressing neurons in potentiating neuronal activation within the PVN at baseline, 

and in males without further increase after MTII administration.  
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4. Discussion  
MRAP2 has been shown to have a critical role in mammalian metabolism (4). Mice deficient 

in MRAP2 have severe early-onset obesity due to increased fat mass. The mechanism of how 

MRAP2 knockout animals become obese without detectable changes in food intake and 

energy expenditure remains unclear (1, 3). Deletion of MRAP2 in Sim-1 expressing neurons 

leads to obesity in mice to a similar extent as in global Mrap2-/- animals pointing to these 

neurons, located also in the PVN, as key targets of MRAP2 action in metabolism regulation 

(4). Although data suggest the involvement of MC4R signaling, the difference in phenotype 

between the Mrap2-/- and Mc4r-/- mice suggest possible non-MCR modes of action (4, 6). 

This has since been shown to be the case.  In addition to MC4R positive neurons, MRAP2 

has been shown to have a broader distribution in the Central Nervous System (4, 12-14, 18). 

Within the hypothalamus, MRAP2 has been shown to interact and regulate other GCPRs, 

including ghrelin receptors expressed in the arcuate Neuropeptide Y/Agouti-related 

(NPY/AgRP)- expressing neurons, where it positively regulates hunger signaling (13), adding 

to the complexity of the system.  

 

As Sim1-Cre mice express cre activity in sites outside the PVN (9, 19) and because of the 

critical role of PVN MC4R in the regulation of metabolism and the changes in neuropeptide 

transcripts observed in the PVN of global Mrap2-/- animals (6), we focused our study on 

investigating the role of MRAP2 in the MC4R-expressing neurons of the PVN. Our data 

provide evidence that MRAP2 in MC4R-expressing neurons of the PVN represents an 

important regulator of food intake and energy metabolism. Furthermore, the data indicate that 

postnatal manipulation of MRAP2 leads to changes in weight phenotype that are opposite of 

those observed in Mrap2-/- mice in which MRAP2 is deleted during development. By 

selectively overexpressing MRAP2 in MC4R neurons of the PVN, we reveal a reduction in 

food intake and energy expenditure that supports the observed lean phenotype, which is 

unlike that of Mrap2-/- in which no change in either measures were identified (4, 6). This 

difference could be due to action of MRAP2 on other GPCRs in the arcuate nucleus that acts 

on causing lean phenotype in the absence of MRAP2 (12-14).  

 

In addition, unlike data on the global Mrap2-deficient mice that showed no change in BAT 

activation or body temperature phenotype (4, 6), Mc4r-crePVN-MRAP2  mice showed a 

significant increase in BAT activation with increased UCP1 and Dio2 mRNA levels that were 

associated with increased body temperature compared to control mice in both genders.  
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We also found a sex-specific metabolic difference in the Mc4r-crePVN-MRAP2 mice compared 

with Mc4r-crePVN-GFP matched control. Whilst female mice overexpressing MRAP2 in PVN 

MC4R neurons demonstrate overt protection against obesity on a chow diet, this phenotype 

was only observed in male mice after challenge with high fat diet. Similarly, sex differences 

were also observed in locomotor activity and glucose handling. We have previously 

described a sex-specific increase in daytime locomotor activity and exploratory activity in 

global Mrap2-deficient mice (6). However, when taken in isolation, focusing on MRAP2-

overexpression in PVN MC4R neurons, we now demonstrate an increase in locomotor 

activity in both female and male Mc4r-crePVN-MRAP2 mice compared to controls. A difference 

in glucose clearance and hyerinsulinemia was demonstrated in Mrap2-/- mice on a C57/BL6N 

background, while on a 129/Sv genetic background no changes in insulin and glucose 

handling were found (4, 6). Others have confirmed a glucose metabolism phenotype in 

Mrap2-deficient mice on a C57/BL6N background (14). In agreement with previous work, 

here we found differences in glucose handling when MRAP2 was manipulated. However, our 

data suggest that the improved glucose handling was rather a consequence of the leaner 

phenotype of the female Mc4r-crePVN-MRAP2 mice. Indeed, no significant differences were 

observed in male mice on a chow diet.  

 

To determine a possible role for POMC neurons in the regulation of PVN MC4R neurons, we 

then assessed the activation levels of POMC neurons by cfos immunostaining.  No difference 

in POMC neuronal activation was observed between Mc4r-crePVN-MRAP2 and controls. 

Furthermore, no differences were found in POMC fiber staining in the PVN of controls and 

Mc4r-crePVN-MRAP2 mice. This suggests that the metabolic phenotype observed might be 

independent from changes in POMC neuronal activation, thus pointing to the increased 

neuronal activation in the PVN as the principal cause of the lean phenotype in the Mc4r-

crePVN-MRAP2 model as we observe a significant increase in cfos staining in the PVN of Mc4r-

crePVN-MRAP2 mice compared to controls irrespective of sex.  

 

To assess the hypothesis that MRAP2 overexpression in MC4R neurons affect MC4R 

signaling, thus affecting food intake, we then administrated MTII, a MC3R/MC4R agonist, in 

Mc4r-crePVN-MRAP2  and control mice. MTII induced a significant increase in PVN neuronal 

activation and a reduction in feeding in Mc4r-crePVN-GFP mice. In female Mc4r-crePVN-MRAP2  

mice MTII treatment results in further increase in PVN neuronal activation and decrease in 
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food intake. This would suggest that MRAP2 overexpression drives neuronal activation in the 

PVN in both males and females. Response to MTII, however, differed between genders; 

female Mc4r-crePVN-MRAP2 mice maintain responsiveness to MTII which was lacking male 

Mc4r-crePVN-MRAP2 mice.   

 

Altogether these results indicate that MRAP2 in PVN MC4R neurons can be manipulated 

postnatally to result in a lean phenotype in which feeding is reduced and energy expenditure 

increased along with core body temperature. Importantly, this leads to an increase in neuronal 

activation with in the PVN. As the number of PVN cfos positive cells are in excess of the 

number of FLAG positive Mc4r-cre MRAP2 overexpressing cells, the increased cfos would 

suggest a more global effect on PVN neuronal activation beyond MC4R expressing neurons. 

The likelihood is that the action of MRAP2 on MC4R PVN neurons are due to the action on 

enhancing MC4R function as much of the phenotype in Mc4r-crePVN-MRAP2 mice correlates to 

models of MC4R activation in which reduced food intake, increased energy expenditure and 

thermogenesis have been described (9, 15). Some other features such as sexual dimorphism 

of responses have not been seen in MC4R activation models. These differences could be due 

to estrogenic effects on MRAP2/MC4R interaction, which has been described with MRAP1 

and MC2R (20, 21), although action on other GPCRs expressed in MC4R expressing PVN 

neurons cannot be excluded.  

 
5. Conclusion 

In conclusion, our data provides the first evidence that MRAP2 acts postnatally, in a sex-

specific manner, to play a role in the regulation of food intake and energy expenditure 

through the enhancement of MC4R neuronal signaling in the paraventricular nucleus of 

hypothalamus.  
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Figure 1: Selective overexpression of MRAP2 in the PVN MC4R neurons affects metabolism 
in female mice.  
 (A-C) Graphs showing body weight (A), fat mass (B), and lean mass (C) of Mc4r-crePVN-

GFPcontrol female mice (n=11) and Mc4r-crePVN-MRAP2 (n=11) female mice at 4, 8 and 12 weeks 

after injection. (D and E) Graphs showing food intake in Mc4r-crePVN-GFP female mice (n=8) 

and Mc4r-crePVN-MRAP2 female mice (n=10). Total cumulative food intake in the 24 hr cycle is 

shown (D) and in the dark and light phases of the cycle (E). Gray area in D represents the dark 

phase. (F-I) Graphs showing locomotor activity (F) and total energy expenditure in the 24-h period 

(G) and in the dark (H) and light (I) phases of the cycle of Mc4r-crePVN-GFP (n=8) and Mc4r-crePVN-

MRAP2 mice (n=10) three months after the PVN viral injections.  (J-L) Graphs showing O2 consumed 

(J), CO2 produced (K), and the ratio in (L) of Mc4r-crePVN-GFP (n=8) and Mc4r-crePVN-MRAP2 mice 

(n=10) three months after the PVN viral injections.  All data are presented as mean ± SEM. 

*=P<0.05; **=P<0.01; ***=P<0.001 compared to Mc4r-crePVN-GFP mice.  

 
Figure 2: Effects of PVN-MRAP2 overexpression in MC4R expressing neurons on body 
temperature and brown adipose tissue of female mice. 
(A) Graph showing body temperature in Mc4r-crePVN-GFP female mice (n=7) and Mc4r-crePVN-MRAP2 

female mice (n=7) three months after PVN viral injections. (B and C) Graphs showing Real-Time 

RT PCR data for Ucp1 (B) and Dio2 (C) in brown adipose tissue of female Mc4r-crePVN-GFP (n=7) 

and Mc4r-crePVN-MRAP2 mice (n=7) three months after PVN viral injections. All data are presented as 

mean ± SEM. *=P<0.05; **=P<0.01 compared to Mc4r-crePVN-GFP mice.   

 

Figure 3: Selective overexpression of MRAP2 in MC4R expressing neurons in the PVN affects 
neuronal activation in female mice which is further increased with MTII administration  
 (A and B) Representative hypothalamic sections from a female Mc4r-crePVN-GFP (A) and a female 

Mc4r-crePVN-MRAP2 mouse both injected IP with saline (B) immunostained for cfos (red) in the 

hypothalamic paraventricular nucleus (PVN).�(C and D) Representative hypothalamic PVN 

sections immunostained for cfos from a Mc4r-crePVN-GFP (C) and a Mc4r-crePVN-MRAP2 mouse (D) 

following IP injection with MTII. (E) Quantification of cfos expression in the PVN of Mc4r-crePVN-

GFP (n=5) and Mc4r-crePVN-MRAP2 female mice (n=6) post IP saline and cfos expression in the PVN 

of Mc4r-crePVN-GFP (n=4) and Mc4r-crePVN-MRAP2 female mice (n=4) injected with MTII. (F) Graph 

showing no differences in feeding responses (food intake over 24 hours) after peripheral injection 

of MTII in female Mc4r-crePVN-GFP (n=4) and Mc4r-crePVN-MRAP2 mice (n =4) three months after the 

PVN viral injections. A significant difference is noted between saline treated and MTII treated 
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animals in both groups. 3v= third ventricle; PVN= paraventricular nucleus of the hypothalamus. 

Bar scale in A-D represents 100 µm. All data are presented as mean ± SEM. **=P<0.01 compared 

to Mc4r-crePVN-GFP mice.  

 

Figure 4: Selective overexpression of MRAP2 in PVN MC4R expressing neurons affects 
metabolism in male mice on HFD. 
(A-C) Graphs showing body weight (A), fat mass (B) and lean mass (C) of male Mc4r-crePVN-GFP 

(n=6) and Mc4r-crePVN-MRAP2 mice (n=6) exposed to HFD at 2 weeks after PVN viral injections. 

(D and E) Graphs showing food intake in male Mc4r-crePVN-GFP (n=7), and Mc4r-crePVN-MRAP2 mice 

(n=7) at 8 weeks of HFD. Cumulative food intake over a 24 hr period, feeding during light and dark 

phases are shown. Gray area represents the dark phase. (F-I) Graphs showing locomotor activity 

(F), energy expenditure as a total in the 24-h cycle (G) and in the dark (H) and light (I) phases of 

the cycle of Mc4r-crePVN-GFP (n=7) and Mc4r-crePVN-MRAP2 mice (n=7) at 8 weeks of HFD. All data 

are presented as mean ± SEM. *=P<0.05; **=P<0.01 compared to Mc4r-crePVN-GFP mice. 

 

 

Figure 5: Effects of PVN-MRAP2 overexpression on body temperature and brown adipose 
tissue of male mice on HFD. 
(A) Graph showing  body temperature in male Mc4r-crePVN-GFP (n=7) and Mc4r-crePVN-MRAP2 mice 

(n=7). (B and C) Graphs showing Real-Time RT PCR data for Ucp1 (B) and Dio2 (C) in the brown 

adipose tissue of male Mc4r-crePVN-GFP (n=7) and Mc4r-crePVN-MRAP2 mice (n=7) after 8 weeks of 

HFD. All data are presented as mean ± SEM. *=P<0.05 compared to Mc4r-crePVN-GFP mice; 

**=P<0.01 compared to Mc4r-crePVN-GFP mice.  

 

 

Figure 6: Effect of peripheral MTII administration on feeding and neuronal activation in 
Mc4r-crePVN-GFP  and Mc4r-crePVN-MRAP2  male mice on HFD.  
(A-D) Representative hypothalamic sections immunostained for cfos (red) in male Mc4r-crePVN-GFP 

(A and C) and male Mc4r-crePVN-MRAP2 mouse (B and D) following IP injection with vehicle 

(saline; n=3 per group; A and B) or MTII (n=6 per group; C and D). (E) Quantification of cfos 

expression in the PVN of Mc4r-crePVN-GFP and Mc4r-crePVN-MRAP2 male mice injected with saline or 

MTII. (F) Graph showing feeding response (food intake over 24 hours) after peripheral injection of 

vehicle (saline; n=3 per group) or MTII (n =6 per group) in male Mc4r-crePVN-GFP and Mc4r-crePVN-

MRAP2 mice on HFD. 3v = third ventricle; PVN = paraventricular nucleus of the hypothalamus. Bar 
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scale in D (for A, B, C, D) represents 100 µm. All data are presented as mean ± SEM. * = P < 0.05, 

** = P < 0.01 compared to Mc4r-crePVN-GFP control mice.  
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Highlights  

• Postnatal overexpression of MRAP2 regulates energy balance, thermogenesis and 

glucose metabolism. 

• Overexpression of MRAP2 in MC4R expressing neurons increases PVN neuronal 

activation.  

• There is a sex difference in extent of metabolic protection, with a more marked lean 

phenotype in females.  
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