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Abstract: 

During recent decades, many new models have emerged in pure and applied economic theory according 
to which agents’ choices may be sensitive to ambiguity in the uncertainty that faces them.  The exchange 
between Epstein (2010) and Klibanoff et al. (2012) identified a notable behavioral issue that 
distinguishes sharply between two classes of models of ambiguity sensitivity that are importantly 
different.  The two classes are exemplified by the 𝛼-MEU model and the smooth ambiguity model, 
respectively; and the issue is whether or not a desire to hedge independently resolving ambiguities 
contributes to an ambiguity averse agent’s preference for a randomized act.  Building on this insight, 
we implement an experiment whose design provides a qualitative test that discriminates between the 
two classes of models.  Among subjects identified as ambiguity sensitive, we find greater support for 
the class exemplified by the smooth ambiguity model; the relative support is stronger among subjects 
identified as ambiguity averse.  This finding has implications for applications which rely on specific 
models of ambiguity preference.   
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1. Introduction

Decision makers choosing between acts are said to face ambiguity if they are uncertain about the 

probability distribution over states of the world.  Over the past three decades a large decision theoretic 

literature has developed, inspired partly by the intuitive view that it is often implausible that a decision 

maker can confidently select a single probability distribution over states of the world to summarize her 

uncertainty, so ambiguity is ubiquitous for decision making in the real world.  This literature, reviewed 

for example by Etner et al. (2012) and Gilboa and Marinacci (2013), also draws important inspiration 

from numerous experimental studies, largely built on Ellsberg (1961)’s classic examples, which show 

that subjects often adjust their behavior in response to ambiguity in ways that cannot be accounted for 

by subjective expected utility theory (for surveys, see Camerer and Weber, 1992; Wakker, 2010; 

Trautmann and van de Kuilen, 2016). For instance, many subjects display an ambiguity averse attitude: 

intuitively put, being inclined to choose actions whose consequences are more robust to the perceived 

ambiguity.  Recent applied economic theory explores how such departures from subjective expected 

utility theory in the face of plausible forms of uncertainty may affect a range of economic phenomena.1 

The pioneering models in the decision theory literature on ambiguity, and arguably still the most 

popular, are the Choquet expected utility model of uncertainty aversion introduced in Schmeidler (1989) 

and the maxmin expected utility (MEU) model of Gilboa and Schmeidler (1989). These models have 

preference representations which show the decision maker (DM) behaving as if she has a set of 

probability distributions that she considers possible or relevant. Then, an ambiguity averse attitude is 

modeled by having the DM evaluate an act by its minimum expected utility, where the minimum is 

taken over the set of probability measures considered possible. In a more general version of this classic 

style of model (𝛼-MEU; Hurwicz, 1951; Jaffray, 1989; Ghirardato et al., 2004), the DM evaluates acts 

by considering a weighted average of minimum and maximum expected utility. More recent theories 

have brought in preference representations which would allow finer nuances of ambiguity attitude. An 

important feature that distinguishes the newer vintage models from the earlier ones is that the new 

models use aggregation rules that do not restrict attention to extreme expected utilities. An example is 

the smooth ambiguity model of Klibanoff et al. (2005) (KMM).   

Given this theoretical development a natural question is: Are the features that these newer theories 

build in empirically compelling? Or, if we were to stick to the classic models of ambiguity averse 

behavior, would we miss any empirically important aspect of such behavior? As models in both vintages 

were designed to capture Ellsberg’s classic examples, the many previous experiments based on 

decisions like those examples do not answer these questions as they do not typically discriminate 

between the classic and new vintage models.  In this paper, we report an experimental study that does 

1 We give examples below.  For wider coverage, see for example the discussion and references in Etner et al. 
(2012, Section 7), Gilboa and Marinacci (2013, Section 6) and Trautmann and van de Kuilen (2016, penultimate 
section). 
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so discriminate: the two classes of models predict qualitatively different behavior in our design.  Thus, 

the design discriminates between the MEU/𝛼-MEU family of models and the smooth ambiguity model, 

arguably the most popular models in applications.  As we explain in Section 2.3, this divide is not 

addressed well in existing experimental literature.      

This is important since, as noted above, there have been many recent applications of models of 

ambiguity-sensitive preferences to the understanding of economic phenomena, especially in 

macroeconomics and financial economics.  The typical paper uses a particular preference model, say 

the MEU model, to explain a phenomenon that is hard to explain plausibly using the standard, expected 

utility, model.  However, some of the explanations depend quite crucially on the particular model of 

ambiguity-sensitivity used.  For example, Epstein and Schneider (2010) discuss various applications 

where MEU works to give the desired result, but the smooth model does not because it does not generate 

kinked indifference curves, as MEU does.  On the other hand, some recent applications in the macro-

finance area, such as Ju and Miao (2012), Jahan-Parvar and Liu (2014), and Collard et al. (2018), rely 

on being able to calibrate beliefs and an ambiguity attitude parameter separately, something which can 

be done in the smooth ambiguity model, but not in the MEU model.  Models of ambiguity averse 

preference have now also been applied outside macroeconomics and finance, for instance to climate 

change policy, where similar issues apply (e.g., Millner et al. (2013)’s use of the smooth ambiguity 

model and Chambers and Melkonyan (2017)’s use of MEU).  Here too, there is no guarantee that results 

that hold under one model of ambiguity aversion generalize to other models.  The literature is therefore 

at a point where clearer guidance on the relative empirical performance of these models in particular – 

and the broader classes that they exemplify – is needed.  

Our testing strategy is inspired by the second thought experiment of Epstein (2010) and its 

generalization in Klibanoff et al. (2012).  Our main contribution is to recast the generalized thought 

experiment as a real operational design, to extend it with additional controls, and to run and report the 

resulting experiment. The testing strategy is to investigate whether a subject’s preference for a 

randomized act (compared to its pure constituents) is influenced by a desire to hedge across ambiguities 

in a way that is similar to how diversifying across bets on independent risks hedges those risks. Models 

of preferences whose representations focus exclusively on minimum and/or maximum expected utilities 

in the set considered relevant are uninfluenced by such a desire, in sharp contrast to models whose 

representations also consider non-extreme expected utilities. Intuitively, a DM focusing only on 

minimum expected utility is analogous to an infinitely risk averse agent caring exclusively about the 

worst possible outcome and so not about diversifying across independently resolving risks, since such 

diversification does not affect the possibility of the worst outcome.   

For concreteness and to allow the reader to relate easily to the discussions in Epstein (2010) and 

Klibanoff et al. (2012), we explain our design and results in the main text in terms of the α-MEU and 

smooth ambiguity models, the divide between which is particularly clear.  Appendix C substantiates 



4 

our claim that the predictions we test also mark a divide between broader classes of models, besides 

these two.  If (as suggested above) ambiguity is ubiquitous in real world decision making, the 

importance attached by economists to hedging as a response to uncertainty provides an additional 

general motivation for our study which goes beyond models, namely to investigate hedging of 

ambiguities rather than risks. 

The rest of the paper is organized as follows.  Section 2.1 describes the α-MEU and smooth 

ambiguity preference representations; Section 2.2 presents a modified version of Epstein’s example and 

uses it to explain our testing strategy; Section 2.3 contrasts this strategy with others taken in the 

literature. Section 3 presents the experimental design, and Section 4 the results, of our main study. 

Section 5 introduces some issues of robustness and generality which are examined further in 

Appendices A, B and C; it also briefly presents a follow-up study in which one aspect of the design of 

the main experiment is varied, for reasons explained at that point. Section 6 concludes the main text. 

Appendices D and E contain further details of the results, experimental procedures and instructions.      

2. Background

2.1 Preference representations 

Formally, the DM’s choices are acts, maps from contingent states of the world to consequences, which 

include simple lotteries with real outcomes.  We focus on two models of preferences over acts: the 𝛼-

MEU model and the smooth ambiguity model.  Each captures the idea that the DM does not know the 

probabilities of the states by postulating a set of probability measures over the states that she considers 

possible.  The models differ in respect of how that set informs her evaluations of acts.  

In the 𝛼-MEU model, an act f is evaluated by: 

𝑉ெ(𝑓) = 𝛼min
௣∊𝒫

ቀ𝐸௣൫𝑢(𝑓)൯ቁ + (1 − 𝛼) max
௣∊𝒫

ቀ𝐸௣൫𝑢(𝑓)൯ቁ , 

where 𝑢 is a von Neumann-Morgenstern utility function, 𝛼 a fixed weight, and 𝒫 the set of probability 

measures 𝑝 over the states.  The operator 𝐸௣ takes expectations with respect to the measure 𝑝.  Attitude 

towards pure risk is characterized by the shape of 𝑢, while attitude towards ambiguity is characterized 

by the weight 𝛼; in particular, the greater the value of 𝛼, the more ambiguity averse the preference. With 

𝛼 = 1, we get the MEU representation. 

In the smooth ambiguity model, an act f is evaluated by: 

𝑉ௌ(𝑓) = 𝐸ఓ𝜙 ቀ𝐸௣∊𝒫൫𝑢(𝑓)൯ቁ, 

where 𝜙 is an increasing function mapping utilities to reals, and 𝜇 is a subjective probability over the 

elements of 𝒫. The operators 𝐸ఓ and 𝐸௣ take expectations with respect to the measures 𝜇 and 𝑝, 

respectively. Thus, 𝜇 represents the DM's subjective uncertainty about the different probabilities 

deemed possible and, in this sense, is a second-order belief. Attitudes towards ambiguity are 
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characterized by the shape of 𝜙, given u.  In particular, a concave 𝜙 characterizes ambiguity aversion 

which is therefore modelled as an aversion to mean preserving spreads in the distribution of expected 

utilities induced jointly by 𝜇 and 𝑢.  When 𝜙 is linear or 𝜇 is degenerate, the smooth ambiguity model 

collapses to a subjective expected utility (SEU) model. 

Although these models have some common features, there are also marked differences between 

them, one of which drives our testing strategy as we now explain.   

2.2 Conceptual background 

Consider the following variant of the second thought experiment proposed in Epstein (2010).2  The DM 

is told that a ball will be drawn from an urn containing a fixed number of balls, of 4 different types: B1, 

B2, R1, R2.  She is also told that the combined number of balls of types B1 and B2 will equal that of balls 

of types R1 and R2; and, finally but importantly, that the relative proportions within the B-component 

(B1, B2) and within the R-component (R1, R2) will be determined separately.  The DM considers acts 

with contingent outcomes c, c* and the 50-50 lottery between them.  Let c* > c and normalize the utility 

index u, so that u(c*) = 1 and u(c) = 0.  The acts to be considered have state-contingent (expected) 

utility payoffs as described in Table 1. 

To clarify, f1 yields c* when a ball of type B1 is drawn and c otherwise; whereas f2 yields c* when 

type R1 is drawn and c otherwise.  The outcome of the act mix is in part decided by the toss of a fair 

coin: specifically, for any contingency, there is a 0.5 probability that the outcome is determined by 

applying f1 and a 0.5 probability that it is determined by applying f2.  Below, “mixed act” always refers 

to this mixed act and “constituent acts” to f1 and f2 (or, in each case, later to their experimental 

counterparts).  The acts g1 and g2 each yield, in the contingencies for which a cell-entry of ½ is shown, 

either c* or c, depending on the toss of a fair coin (and c otherwise). 

Table 1: Five Acts: (Expected) utilities 

 

How might we expect the DM to choose between these acts?  The probability of the event {B1, B2} is 

objectively known to her and equal to ½ (as types B1 and B2 jointly account for half of the balls), but 

2 Readers familiar with Epstein (2010) and Klibanoff et al. (2012) should note that our variant differs in some 
respects from Epstein’s thought experiment and that we adopt a notation that is suited to our experimental design 
in ways that will emerge below but does not match the earlier papers.   
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the DM does not know the probability of the event {B2, R1}.  Moreover, the information that she has 

about balls of type B1 exactly matches her information about type R1.  Thus, the symmetry in the 

situation suggests f1  f2; and, it is natural to expect that, if the DM is ambiguity averse, she will have

the strict preference g1  g2.3

While there may be little to disagree about in these claims, it is much more controversial whether 

an ambiguity averse DM would see mixing f1 and f2 as desirable, compared with either of the latter two 

acts alone.  This issue illustrates one of the main points of contention between the two models 

considered in the previous subsection.  The issue is whether, for an ambiguity averse DM who is 

indifferent between f1 and f2, 

f1    f2    mix    or     f1    f2  ≺ mix

would obtain.  In the α-MEU model, the former condition will hold whereas, in the smooth ambiguity 

model, the latter condition will hold.  In words, the issue which divides the models is whether, in this 

situation, an ambiguity averse DM would or would not value the averaging that the mixed act offers. 

To illustrate the point of contention, it is useful to write down a concrete set of probability measures 

{p1, …, p4} that we suppose to be those considered by the DM.  In the context of the smooth ambiguity 

model, think of these as probabilities that are given positive weight by the measure μ and, importantly, 

with the weights for p2 and p3 equal. 

Table 2: Example Probabilities 

 

 

 

 

These measures respect the given information, in that, for each i = 1, 2, 3, 4, pi(B1  B2) = pi(R1  R2) 

= ½; and,  as p2 and p3 have equal weight, there is complete symmetry between the B-component and 

the R-component.  The measures respect independence of the two components in that fixing a 

“marginal” over (B1, B2) does not restrict the “marginal” over (R1, R2), or vice versa.  The expected 

utilities generated by applying each of the measures pi from Table 2 to the acts from Table 1 are as 

follows: 

3 Correspondingly, if f1  f2 and the DM is ambiguity seeking, one would expect g2  g1. Ambiguity neutrality as
represented in the model of Anscombe and Aumann (1963) implies that the direction of preference between f1 and 
f2 should match that between g1 and g2, so that f1  f2 would imply g1  g2.
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Table 3: Resulting Expected Utilities 

 

 

First, consider acts f1 and f2.  Their expected utilities coincide under p1 and p4, but differ from each other 

under p2 and p3.  To see why, note from Table 1 that the evaluation of f1 depends on the ratio B1:B2 but 

not on R1:R2; whereas the evaluation of f2 depends on the ratio R1:R2 but not on B1:B2; and then note, 

from Table 2, that these ratios coincide under p1 and p4, but not under p2 or p3.  In contrast, the evaluation 

of mix depends on both the ratios, but has half the exposure to the uncertainty about each, compared to 

each of the constituent acts. The point of contention turns on the significance of these facts.  

 From the perspective of the α-MEU model, the extremes of the possible expected utilities are what 

matters for the evaluation of an act. The diversification aspect of the comparison between f1, f2 and mix 

is irrelevant, as the minimum and maximum possible expected utilities are the same under each of these 

three acts, as Table 3 shows. So, according to this model, the DM will be indifferent between f1, f2 and 

mix, regardless of her preference over g1 and g2.  

 However, from the perspective of the smooth ambiguity model, the mixed act provides a hedging 

of two separate ambiguities, one involving each of the two components, just as diversifying across bets 

on independent risks provides a hedging of risks. The benefit of such diversification to an ambiguity 

averse DM is captured through a concave 𝜙, in that mean-preserving spreads in the subjective 

distribution of expected utilities generated by an act are disliked.  Since p2 and p3 have equal weight, 

each of f1 and f2 yields a mean-preserving spread in expected utilities compared with mix, as Table 3 

shows.  Thus, according to the smooth ambiguity model, the mixed act is preferred to its constituents 

by any ambiguity averse DM.  To generalize, the distinctive prediction of the smooth ambiguity model 

for the case where p2 and p3 have equal weight is that an ambiguity averse DM will prefer not just g1 to 

g2 but also mix to each of f1 and f2; and, correspondingly, an ambiguity seeking DM (convex 𝜙) would 

have the reverse preference in each case; and an ambiguity neutral DM (linear 𝜙) would be indifferent 

between g1 and g2, and between mix and each of its constituents.           

 It is important to note a key feature of the perspective of the smooth ambiguity model.  Each of p2 

and p3, the measures across which the mixed act smooths expected utility relative to its constituents, 

corresponds to a situation where there is one “marginal” over component (B1, B2) and a different 

“marginal” over (R1, R2). Thus, it is precisely because it is uncertain whether the two components are 

identical to one another (so leading the DM to consider p2 and p3) that the diversification provided by 

the mixed act is seen by the smooth model as valuable to an ambiguity averse DM.  If, instead, the two 

components were known to be identical (and so only p1 and p4 considered), smooth ambiguity 



 

 

8 

 

preferences would display indifference between the mixed act and its constituents, just as α-MEU 

preferences would.  Thus, the key difference between smooth ambiguity preferences and α-MEU 

preferences that we have highlighted is whether the DM values hedging across ambiguities that are 

separate, in the sense that the uncertainty about the probability governing one component resolves 

separately from the analogous uncertainty for the other component. This insight is crucial to our 

experimental design, as explained in Section 3. 

  

2.3  Related literature 

Our experimental design identifies subjects whose behavior is sensitive to ambiguity, categorizing them 

as ambiguity averse or seeking, and determines whether they behave according to the α-MEU model or 

the smooth ambiguity model in a set-up of the kind described in Section 2.2.  The tests of whether this 

is so rely on qualitative features of the data, i.e., binary preferences (revealed, as explained below, by 

ordinal comparisons of certainty equivalents).  None of our tests require estimates of model parameters.  

It is useful to bear these points in mind as we discuss how this experiment fits in with other recent 

literature. We concentrate on papers whose main objective is to distinguish empirically between models 

similar to those we consider.4   

 The experimental approach of Halevy (2007) is to determine whether a subject may be classified 

as ambiguity neutral/averse/seeking (using an Ellsberg style determination), while also checking how 

the subject evaluates an objective two-stage lottery, in particular whether the evaluation is consistent 

with reduction of objective compound lotteries (ROCL).5 The main finding is that ambiguity aversion 

is strongly associated with violation of ROCL. Using this finding, the study sifts evidence for or against 

various models of ambiguity sensitivity.  For instance, while the α-MEU model predicts a zero 

association with ROCL, in several models in (what Halevy terms) the “recursive expected utility” class, 

ambiguity sensitivity logically implies violation of ROCL.  However, under the assumptions of KMM, 

there is no logical connection between ambiguity aversion (or, seeking) and reduction of compound 

objective lotteries in the smooth ambiguity model.6  Hence, the strategy based on ROCL is not as useful 

in distinguishing α-MEU from the smooth model in KMM as it is in making other distinctions.7 

                                                      
4 Attanasi et al. (2014) tests the smooth model using its predictions in a portfolio choice experiment, but does not 
aim to discriminate between models.  Many other empirical papers are primarily concerned to measure ambiguity 
sensitivity rather than to test models.  Cubitt et al. (2018) does this using the smooth ambiguity model and Ahn et 
al. (2014) using both smooth ambiguity and α-MEU models.  Trautmann and van de Kuilen (2016) surveys a  
range of model-free measures of the sensitivity. 
5 See Abdellaoui et al. (2015) for an extension of this testing strategy. 
6 See the discussions following KMM’s Remark 1 and immediately preceding and in footnote 8 in Klibanoff et 
al. (2012).  
7 It is important that we refer to the smooth model as developed by KMM here.  Seo (2009) obtains a representation 
that uses an identical functional form to represent preferences defined on a choice domain that differs from 
KMM’s by including multi-stage lotteries, but excluding second-order acts. In this domain and under the axioms 
applied by Seo (but unlike in KMM), violation of ROCL is equivalent to a concave 𝜙. Because of this, Halevy’s 
experiment does distinguish between MEU, SEU and Seo’s preference model. In Section 5.2, we report on a 
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 Conte and Hey (2013) observe subjects’ choices between prospects and study how well the data 

fit various models of decision making.  Unlike that of Halevy, the identification strategy is not based 

primarily on qualitative features of the data. Instead, they estimate parametric preference models, in 

particular, the SEU, α-MEU and smooth ambiguity models. One part of the study fits the models 

subject-by-subject, while another part estimates a mixture model.  However, the uncertain prospects the 

subjects are given to choose between are still objective two-stage lotteries of the kind used in Halevy 

(2007).  So, the point still applies that subjects who are strictly ambiguity averse/seeking, and whose 

preferences conform to the smooth model, may not evaluate such lotteries any differently from those 

whose preferences satisfy expected utility theory.  Hey et al. (2010)8 and Hey and Pace (2014) also 

compare the descriptive and predictive performance of particular parameterisations of several “non-

two-stage probability models” of behaviour, in these cases using ambiguity that is generated by a bingo-

blower.  But the smooth ambiguity model is not one of those they consider and, despite their 

attractiveness in some contexts, it is unlikely that bingo-blower designs could deliver the control over 

beliefs that our design exploits, as we explain in the next section.   

 Taking a different approach, Ahn et al. (2014)’s  experiment studies a simulation of a standard 

economic choice problem: each subject allocates a given budget between three assets, each of which 

pays depending on the color of the ball drawn from a single Ellsberg style three color urn, while the 

prices of assets are exogenously varied.9  Different parametric preference models of choice under 

uncertainty imply different asset demand functions.  Ahn et al. (2014)’s testing strategy distinguishes 

quite effectively between two classes of models: those that have kinked indifference curves (e.g., α-

MEU and the rank dependent utility model) and those with smooth indifference curves (e.g., SEU and 

smooth ambiguity, even if ambiguity averse), as kinked and smooth indifference curves imply demand 

functions with different qualitative characteristics in their setting.  However, the identification is more 

problematic within each class of model.  Indeed, if a subject’s preferences are ambiguity averse and 

conform to the smooth ambiguity model, qualitative properties of choice data in this experiment do not 

distinguish her from an SEU subject.  Similarly, an α-MEU preference is difficult to distinguish 

qualitatively from first order risk aversion as models of first order risk aversion where preferences are 

fully probabilistically sophisticated in the sense of Machina and Schmeidler (1992) also bring in kinks 

in different ways – for example, the rank dependence model of Quiggin (1982) and prospect theory of 

Tversky and Kahneman (1992). 

 Hayashi and Wada (2009) investigate choice between lotteries where the subject has imprecise 

(objective) information about probability distributions defining the lotteries.  While they do not 

                                                      
follow-up to our main experiment motivated by the divide between the smooth model of KMM and the model of 
Seo (2009). 
8 See also Kothiyal et al. (2014). 
9 Bossaerts et al. (2009)’s experiment employs a choice problem very similar to Ahn et al. (2014)’s, but in the 
context of a market where prices are determined by trading among subjects. 
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specifically test the α-MEU model against a smooth ambiguity model, a finding relevant to our 

discussion is that their subjects appear to care about more than just the best-case and worst-case 

probability distributions.  However, their strategy for detecting this influence of non-extreme points (in 

the set of possible probabilities) does not exploit the hedging motive that we stress. 

 In contrast, Andreoni et al. (2014) studies subjects’ attitudes to mixtures between subjective and 

objective bets. As different models that allow for ambiguity sensitivity relax the Independence axiom 

in different ways, their test can potentially separate some of the different models (in particular MEU vs 

SEU vs the smooth ambiguity model). But, they point out that their test of the smooth ambiguity model 

is conditional on particular functional forms, unlike the one we apply in the present study.  

 Finally, Baillon and Bleichrodt (2015) use elicited “matching probabilities” to distinguish between 

several models, including the α-MEU and smooth ambiguity models. Their approach differs from ours 

by its use of indifferences expressed on a probability scale, rather than on a monetary scale, to indicate 

preferences; and by their focus on the ability of models to account for observed differences in ambiguity 

attitudes between the domains of gains and losses respectively.10 We set the latter issue aside by 

concentrating on the domain of gains, in order to focus on the hedging issue at the heart of the dispute 

between Epstein (2010) and Klibanoff et al. (2012) to which we now return.       

3.  Experimental Design 

3.1 Core of design 

Our design has at its heart an implementation of the theoretical set-up of Section 2.2.  In place of an 

ambiguous urn containing balls of four different types, we used specially constructed decks of cards, 

divisible into the four standard suits.  We implemented the component (B1, B2) as the composition by 

suit of the black-suit (henceforth black) cards and the component (R1, R2) as the composition by suit of 

the red-suit (henceforth red) cards, specifically B1 = spade, B2 = club, R1 = heart and R2 = diamond.  

Subjects were told that there would be equal numbers of black and red cards in each deck, but not 

exactly how the black cards would subdivide into clubs and spades, nor how the red cards would sub-

divide into hearts and diamonds.   

 A key feature of our design is that we manipulated whether the compositions of black cards and 

red cards were mutually dependent or mutually independent.  In each case, the compositions were 

determined by drawing from a bag containing two types of balls, the relative proportions of which were 

unknown to subjects. In our ‘1-ball’ condition, a single ball was drawn and its type determined the 

compositions of both the black cards and the red cards, making those compositions mutually dependent. 

In our ‘2-ball’ condition, two balls were drawn with replacement: the first to determine the composition 

                                                      
10 This issue is also considered by Dimmock et al. (2015) who – like Baillon and Bleichrodt (2015) - use matching 
probabilities to test various models, in their case including the α-MEU model but not the smooth ambiguity model. 
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of the black cards, the second to determine the composition of the red cards, making the two 

compositions mutually independent. 

 Subjects were informed of these procedures and our analysis uses as an identifying restriction that 

they believed what they were told.  As we explain in Section 3.3, the information given to subjects 

implied that the set of possible compositions of the whole deck corresponded, in the 1-ball condition, 

to {p1, p4} from Table 2 and, in the 2-ball condition, to {p1, p2, p3, p4}, with the compositions 

corresponding to p2 and p3 having equal (but unknown) likelihood. Thus, the 2-ball condition 

implements exactly our variant of the Epstein example, explained in Section 2.2.  This allows us to 

discriminate between the α-MEU and smooth ambiguity preference models using their predictions for 

that case described earlier. In contrast, because it has no deck compositions corresponding to p2 and p3, 

the 1-ball condition provides a control that eliminates the scope for strict preference for the mixed act 

over its constituents to derive from the hedging motive postulated by the smooth ambiguity model.  If 

that motive is the only driver of strict preference between the mixed act and its constituents in the 2-

ball condition then - and according to both models of Section 2.1 - we would not observe such strict 

preference in the 1-ball condition.  A different possibility is that there are other factors - not captured 

by either model of Section 2.1 - that give rise to strict preference between the mixed act and its 

constituents in the 1-ball condition.  In this case, we can assess whether the hedging motive postulated 

by the smooth ambiguity model contributes to preference over the acts by using our two conditions 

alongside each other, with the 1-ball condition controlling for the role of the other factors.   

 

3.2 Presentation of acts 

Acts were presented to subjects as “gambles”, the outcomes of which would depend, as just indicated, 

on the suits of cards drawn from decks.  We used two protocols, one verbal and the other tabular, in 

different sessions, to describe the acts and the construction of the decks to subjects.  The results proved 

insignificantly different and, in Section 4, we pool results from both types of session.  Here, we report 

the tabular protocol in the main text and indicate how the verbal protocol differed from it in footnotes.   

 In the tabular protocol, acts were described by rows in tables – like Table 4 - of which the column-

headings were suits and the cell entries indicated the results, under each given act, of a card of each suit 

being drawn.  The cell entries indicated either that the act would yield €20 in the relevant contingency; 

or that it would yield €0 in that contingency; or that the outcome in the relevant contingency would 

depend on a roll of a (standard 6-sided) die in the following way: €20 if the roll was even and €0 if it 

was odd.11  Table 4 has a row corresponding to each of the acts from Table 1.  Subjects never had to 

                                                      
11 We used the die-rolling procedure as it is easier to perform reliably in the lab than tossing a coin.  With this 
amendment, suits as contingencies, c* = €20 and c = €0, the experimental acts exactly match their theoretical 
counterparts in Table 1.   
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consider all these acts at once.  Instead, they saw tables like Table 4, but with only those rows for the 

acts they were required to consider at a given point (see below).12 

   

Table 4: Description of the Acts 

 Spade Club Heart Diamond 

f1 €20 €0 €0 €0 

f2 €0 €0 €20 €0 

Mix Roll die is EVEN: €20 
Roll die is ODD:    €0 

€0 
Roll die is EVEN: €20 

Roll die is ODD: €0 
€0 

g1 
Roll die is EVEN: €20 
Roll die is ODD:    €0 

Roll die is EVEN: €20 
Roll die is ODD:    €0 

€0 €0 

g2 €0 
Roll die is EVEN: €20 
Roll die is ODD:    €0 

Roll die is EVEN: €20 
Roll die is ODD:    €0 

€0 

 

 

3.3 Decks 

Each act was resolved using one of three 10-card decks that subjects were informed would be 

constructed after they had completed the experimental tasks.  Subjects were also told that, after each 

deck had been constructed, it would be shuffled and placed face down in a pile.  A 10-sided die would 

then be rolled and the card “drawn” from the deck would be the one whose position in the pile matched 

the number on the die. These processes were conducted publicly, making it transparent that any card 

could be drawn from a given deck and that neither the experimenter nor subjects’ choices could 

influence which one was.   

 At the start of the experiment, subjects completed tasks relating to two risky acts which would be 

resolved using Deck 1, which subjects were told would contain 7 spades and 3 hearts.  These risky acts 

served as a simple introduction to the experiment for subjects and, as they would be resolved with a 

deck of known composition, made it more salient that the remaining acts would be resolved using decks 

about which subjects had only limited information.  Those decks (Decks 2 and 3) are our main focus. 

 As explained in Section 3.1, our design is premised on an assumption that, in each condition (i.e. 

1-ball or 2-ball), subjects believed certain sets of compositions of the decks to be those possible.  To 

ground this assumption without compromising the ambiguity of ambiguous acts or deceiving subjects, 

we employed a strategy with three elements: (i) we used a process to construct the relevant decks that 

                                                      
12 In the verbal protocol, each act was described by a single line of text, indicating how the outcome would depend 
on the card drawn from a deck.  Subjects were told that, depending on the card drawn, each gamble could have 
one of three outcomes: WIN, LOSE, or ROLL. WIN and LOSE would yield payments to the subject of €20 and 
€0, respectively; whereas ROLL would yield €20 if a standard 6-sided die rolled at the end of the experiment 
came up even, and €0 if it came up odd.  Each line of text had the following form: “If ______ you ______, 
otherwise you LOSE” where the first placeholder was filled either by a single suit (e.g. “Spade”) or a disjunction 
over two suits (e.g. “Spade or Club”) and the second placeholder by either WIN or ROLL. 
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allowed us to control which compositions for each deck were possible in fact; (ii) we told subjects 

enough about that process to reveal which compositions were possible but not so much as to give 

objective probabilities over the possibilities; and (iii) we conducted the process publicly at the end of 

each session.        

 For each of Decks 2 and 3, subjects were told that the deck would consist of 5 black cards and 5 

red cards; and, in addition, that the number of spades would be either 4 or 1, with clubs adjusting 

accordingly; and, similarly, that the number of hearts would be either 4 or 1, with diamonds adjusting 

accordingly.  What subjects were told beyond this varied between Decks 2 and 3, with the different 

instructions employing in different ways an opaque bag containing balls numbered either 1 or 4.   

 In the 1-ball condition, tasks concerned acts to be resolved using Deck 2.  Before completing these 

tasks, subjects were told that, at the end of the experiment, one ball would be drawn from the opaque 

bag.  The number on it would give both the number of spades and the number of hearts in Deck 2.  Thus, 

in that deck, the number of spades and the number of hearts would be identical. 

 In the 2-ball condition, tasks concerned acts to be resolved using Deck 3.  Before completing these 

tasks, subjects were told that, at the end of the experiment, two balls would be drawn from the opaque 

bag, with replacement.  The number on the first ball would give the number of spades in Deck 3 and 

the number on the second ball would give the number of hearts in Deck 3.  Thus, in that deck, the 

number of spades and the number of hearts would be independent draws.  

 In each condition, the information just specified was conveyed to subjects by projection of slides 

onto the wall of the lab, while the experimenter described the relevant procedures.  The slides for the 

tabular protocol are as shown in Figures 1 and 2, for the 1-ball and 2-ball conditions respectively.13  

 

Figure 1: Deck 2 (1-ball condition) 

 
 
 
 
 

 

 

 

 

 

 

 

                                                      
13 Each suit (the symbol and corresponding word) appeared in its own color, as did the words black and red, with 
other text blue. In the verbal protocol, slides described the compositions in words rather than pictorially. 
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Figure 2: Deck 3 (2-ball condition) 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 Several features of these procedures are worth stressing.  As just explained, in both conditions, 

subjects were told that the compositions of Decks 2 and 3 would be determined by drawing the 

appropriate number of balls from the opaque bag, but were not told anything more than this about the 

contents of the opaque bag except that it contained balls of which some were numbered 1 and the others 

numbered 4.  Since subjects did not know the relative frequency of types of ball in the bag, they had no 

objective probabilities for the possible compositions of either Deck 2 or Deck 3. Thus, for acts resolved 

with these decks, subjects faced genuine ambiguity, not two-stage objective lotteries.  Indeed, the first 

stage of resolution of uncertainty (i.e. determination of the composition of decks 2 and 3) was 

ambiguous in just the same way as is a draw from an Ellsbergian urn containing specified types of 

object in unspecified proportions.14 

 As the process determining the outcome of any given ambiguous act was conducted publicly, 

subjects were able to verify their limited information about it: balls were drawn from the opaque bag as 

described; they were numbered 1 or 4; and each of Decks 2 and 3 was constructed to have the 

composition specified for that deck by the relevant slide, given the draws from the opaque bag.  As long 

as subjects attended to what they were told and realised we would not make statements about procedures 

                                                      
14 In making explicit mention of a prior stage which determines the probability distribution over payoff relevant 
contingencies, our design departs from the classic Ellsbergian one.  It creates an environment that is closer than 
the classic Ellsberg case to those considered in many recent applications of ambiguity frameworks, namely, 
instances of agents facing model uncertainty, e.g. in macroeconomics and asset pricing (Marinacci, 2015).  In 
these applications, model uncertainty is precipitated by a suspected regime change, leaving the decision maker 
uncertain about which stochastic data generating process is in operation in the immediate/near future. The decision 
maker is typically considered as having specific models of that process in mind, but not having reliable 
probabilistic information as to which of them yields the “true” distribution.     
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that would be publicly exposed as false later in the session, we are justified in assuming that subjects 

believed that each deck would have one of the compositions we had stated to be possible for it. 

   Some authors, such as Charness et al. (2013), conjecture that subjects of previous experiments may 

have suspected that devices used to resolve ambiguity might be stacked against them by the 

experimenters.   Our design is structured so that, as long as subjects believed information which they 

would be able to verify, such suspicions would be minimised; and so that any remaining ones would 

not undermine our objectives.  Some subjects may have considered the possibility that, when filling the 

opaque bag before the session, we might work against their interests but, provided they remained 

subjectively uncertain of the content of the opaque bag (e.g. because of also considering other scenarios 

about our characters), the required ambiguity would have remained.15        

 Although subjects had no information about the relative likelihoods of the two possible 

compositions of Deck 2, nor about those of the first and fourth possible compositions of Deck 3 (relative 

either to each other or the other two compositions), the information given to subjects implied that the 

second and third possible compositions of Deck 3 were equally likely.  (As draws from the opaque bag 

were with replacement, 1 followed by 4 was precisely as likely as 4 followed by 1.)  This is significant 

in relation to Section 2.2 as it means that a subject who understood the implications of what they were 

told would attach equal weight to possible compositions of Deck 3 corresponding to p2 and p3.  Of 

course, we cannot be sure that all subjects appreciated this.  Nevertheless, the information that they 

were given was entirely symmetric between the second and third possible compositions of Deck 3, so 

even a subject who did not see that their information implied equal likelihood of those compositions 

would have been given no grounds for thinking either of them more or less likely than the other.  In 

view of these points, we start from a maintained hypothesis that subjects did weight the second and 

third possible compositions of Deck 3 equally, as well as believing the possible compositions of each 

deck to be those we had stated to be possible for it. We discuss the robustness of our conclusions with 

respect to violations of this maintained hypothesis in Appendix A. 

 Finally, the 2-ball condition is not just a device for giving subjects a reason to put equal weight on 

the second and third possible compositions of Deck 3.  It also implements the key feature of the 

theoretical framework of Section 2.2 that the DM understands that the uncertainties about the “B-

component” (here, the relative frequency of spades and clubs) and uncertainties about the “R-

component” (here, the relative frequency of hearts and diamonds) are resolved separately.  This would 

                                                      
15 Even subjective certainty about the content of the opaque bag would not remove uncertainty about the 
compositions of decks 2 and 3, unless subjects were subjectively certain that the opaque bag contained only one 
type of ball.  We think that unlikely but, in any case, the design builds in an additional fail-safe.  A subject who 
was subjectively certain that the opaque bag contained only one type of ball would attach weight only to the deck 
compositions corresponding to p1, or only to those corresponding to p4.  Either way, they should be indifferent 
between g1 and g2 in the 2-ball condition and so (see below) would be coded as ambiguity neutral and, as a result, 
would not impinge on our comparisons of models.                          
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not have been achieved by an (arguably more classically Ellsbergian) design in which the four possible 

compositions of Deck 3 were simply listed for subjects.            

   

3.4 Elicitation of preferences  

Our procedure for inferring a preference between two acts was to elicit a certainty-equivalent for each 

of them and to infer the binary preference from the relative magnitudes of the certainty-equivalents.   

This procedure allows incentivized elicitation of indifference between two acts while avoiding the 

problems of choice-tasks in which subjects are allowed to express indifference directly.16 To infer a 

subject’s certainty-equivalent of a given act, we used a form of choice-list procedure that yielded 

interval estimates with a bandwidth of €0.05.  The procedure is similar to that of Tversky and Kahneman 

(1992), sharing with it the important feature that, because estimated certainty equivalents are obtained 

from choices, they should be unaffected by endowment effects.   

 In our case, the details of this procedure were as follows.  Acts were displayed to subjects and 

choice-lists completed by them on computers. The experiment was programmed using z-Tree 

(Fischbacher, 2007).  Each choice-list consisted of a table, each row of which described a choice 

between an act and a certain sum of money.  Comparing successive rows of a given choice-list, the 

sums of money rose moving down the table, but the act remained the same.17  In a basic list, the first 

row was a choice between the relevant act and €0; the certain sum of money then rose by €1 per row, 

till the final row was a choice between the act and €20.  (See Appendix E for example basic lists.)  As, 

for each act in our design, the two possible final outcomes were €20 and €0, we obviously expected 

subjects to choose the act in some early rows (at least the first one); to switch to the certainty in some 

subsequent row; and then to choose the certainty in all remaining rows.  After completing all rows of a 

basic choice-list to their satisfaction, subjects had to confirm their choices; the computer would only 

accept confirmed responses with the single-switch property just described (or with no switches).  After 

confirmation of their responses to a basic choice-list, a subject who had switched proceeded to a 

zoomed-in list for the same act.  This had the same structure as the basic one, except (i) that the first 

and last rows were, respectively, the two choices where the subject had switched from the act to the 

certainty in the basic list, with the responses to these rows filled in as the subject had already confirmed 

them; and (ii) across the intervening rows the certain sums of money rose in increments of €0.05.  Again, 

the subject was required to choose between the act and each certain sum, observing the single switch 

                                                      
16 If subjects are presented with the choice between two acts and allowed, as a third option, to express indifference, 
there would be a problem incentivizing the task. If the third option yields randomization over the other two then 
arguably, when it is taken, what would have been revealed is strict preference for the randomization, rather than 
indifference between the initial two acts (unless the nature of the randomization is unknown to subjects – but then 
there would be a worse confound via an unwanted role for ambiguity attitude).      
17 For support for use of choice lists rather than attempting to elicit an indifference point directly, see Cason and 
Plott (2014); and, for using choice lists where amounts of money, but not the uncertain option, vary from row to 
row, see Bosch-Domenech and Silvestre (2013).  In respect of the latter point and in using “zooming-in”, our 
design parallels the “iterative multiple price lists” of Andersen et al. (2006).    
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requirement (and could adjust their responses until they confirmed them).  A subject’s certainty 

equivalent was coded as the average of the certain sums in last row of the zoomed-in list in which she 

chose the act and the first row in which she chose the certain sum.     

   

3.5 Incentives 

Each subject completed basic lists for ten acts, plus the corresponding zoomed-in lists.  They were told 

at the start that, after they had completed all choices in all choice lists, one such choice would be selected 

at random to be for real18: that is, if they had chosen the certain sum of money in it, they would receive 

that sum; and, if they had chosen the act, they would receive the outcome of its resolution.19  This is a 

form of the random lottery incentive system, widely-used in individual choice experiments.  It prevents 

confounding income effects between tasks which might arise if more than one task was paid (likewise, 

Thaler and Johnson (1990)’s “house money” effects).  It is easy for subjects to understand and, in the 

current context, allows us to elicit certainty-equivalents without using cognitively more demanding 

devices such as auctions or forms of the Becker-De Groot-Marschak mechanism (Becker et al., 1964) 

in which buying or selling “prices” are declared and compared with randomly drawn ones.20    

 

3.6 Sequence of tasks 

After the choice-lists for the risky acts to be resolved with Deck 1, subjects completed choice-lists for 

the ambiguous acts f1, f2 and mix in the 1-ball condition (Deck 2), followed by choice-lists for the 

ambiguous acts f1, f2, mix, g1 and g2 in the 2-ball condition (Deck 3).  This progression from a risky 

environment to environments with progressively more complex ambiguity provided a natural sequence, 

conducive to subjects’ understanding.   

                                                      
18 The way in which this worked is significant.  Subjects were told that the computer would select at random one 
row from one basic choice-list.  If the task in this row was neither the last in which the subject chose the act nor 
the first in which she chose the certainty, the subject would receive her choice in the selected row. Otherwise, the 
computer would select at random a row from the zoomed-in list defined by the subject’s choices in the selected 
basic list, and the subject would receive her choice in that row. This procedure has the important property that the 
subject’s choices have no effect on which row of which basic choice-list is selected by the computer at the first 
stage; and, if the second stage is reached, no effect on which row of the relevant zoomed-in list is selected.  This 
avoids strategic concerns that would arise if all choices faced were selected to be for real with equal probability. 
19 A card was drawn from each deck at the end of the experiment and a 6-sided die was rolled. Together, these 
resolved all chosen acts. All sums due were paid in cash before subjects left the experiment.   
20 See Cubitt et al. (1998), Bardsley et al. (2010, Section 6.5), Baltussen et al. (2012), and Azrieli et al. (2016) for 
discussions of the random lottery incentive system.  If, as hypothesized theoretically by Holt (1986), Bade (2015) 
and Baillon et al. (2015), there is a tendency for subjects to see all their task-responses as steps in the construction 
of a single portfolio, that could in principle affect responses to individual tasks. However, it is unclear whether 
such effects will exist in practice even when there is a theoretical rationale for one, as subjects may take the 
cognitively simpler route of considering one task at a time.  (A typical subject in our design faces 400 binary 
choices across all choice-lists, so considering a portfolio of all responses would be very demanding.)  In the 
context of risky choice, Starmer and Sugden (1991), Beattie and Loomes (1997), Cubitt et al. (1998) and Hey and 
Lee (2005) found little evidence of any portfolio effect even in cases where Holt (1986)’s theoretical argument 
suggested there “should” be one. In any case, our design is robust in two further ways.  Provided any portfolio 
effect is the same in the 1-ball and 2-ball conditions, it would not affect the comparison of them.  Moreover, as 
long as the attractiveness of the mixed act is reduced by background randomization, that would tend to militate 
against, rather than for, it.  Given this, the direction of any portfolio effect in either condition can be anticipated.                   
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 Our design was constructed to make it “easy” for subjects to express indifference between the acts 

f1, f2 and mix. In each condition, all basic choice lists for these three acts were shown and completed 

side-by-side on the same screen; and subjects then proceeded to the corresponding zoomed-in lists, 

again with the lists for the three acts side-by-side on the same screen.  As subjects could adjust their 

responses at any time until they confirmed them, they could easily align (or disalign) their certainty 

equivalents for the acts appearing on the same screen.   

 After subjects had completed all choice-lists for the mixed act and its constituents in the 1-ball 

condition and then in the 2-ball condition, they proceeded to a further screen with the basic choice-lists 

for g1 and g2.  They were completed side-by-side on the same screen, as were the corresponding 

zoomed-in lists.  As the certainty-equivalents for these acts would be used to categorize subjects by 

ambiguity attitude (as we explain in the next sub-section), we decided to elicit them last to rule out any 

possibility that subjects could construct their other choices deliberately to make them consistent with 

these ones.  Subjects did not see these acts at all until after they had completed all tasks involving mix 

and its constituents in the 2-ball condition.  Full experimental instructions are given in Appendix E2.   

 

3.7 Classification of subjects 

As it was resolved with Deck 3, Table 4 and Figure 2 show that g1 offered 5 chances (out of 10) of a 

50-50 die-roll under every possible composition of the deck. In contrast, g2 would yield the die-roll if a 

club or a heart was drawn; and the combined number of clubs and hearts was uncertain.  Specifically g2 

offered 5, 8, 2 and 5 chances (out of 10) respectively of the 50-50 die-roll under the four possible 

compositions of Deck 3. As the second and third possible compositions of that deck are equally likely, 

ambiguity aversion requires preference for g1 over g2 and ambiguity seeking the reverse preference. We 

use this fact to classify subjects by ambiguity attitude. Subjects who were indifferent between g1 and g2 

were classified as ambiguity neutral; and all of the remainder as ambiguity sensitive, with the latter 

group divided into ambiguity seeking and ambiguity averse. Since the predictions in relation to 

preference over g1 and g2 are common to the smooth ambiguity and α-MEU models, this procedure is 

in line with and neutral between both two models.  

 A potential qualification to this procedure is that, strictly, preference over g1 and g2 only determines 

a subject’s attitude to ambiguity when the subject weights the second and third possible compositions 

of Deck 3 equally. We review robustness of our findings to violation of this condition and to other 

variations on our classification procedure in Appendix A. 

 

3.8 Predictions and control 

We now put the theoretical predictions in the context of the design. For the 2-ball condition, which 

matches the set-up of Section 2.2, the smooth ambiguity model predicts that those subjects who prefer 

g1 to g2 (ambiguity averse) should also prefer mix to each of f1 and f2; those who prefer g2 to g1 
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(ambiguity-seekers) should also prefer each of f1 and f2 to mix; and those indifferent between g1 and g2 

(ambiguity neutral) should be indifferent between mix, f1 and f2. In contrast, the α-MEU model predicts 

that all subjects should be indifferent in the 2-ball condition between mix and each of its constituents, 

regardless of their preference over g1 and g2. 

 We use the 1-ball condition as a control in several related ways. In the 1-ball condition, the smooth 

ambiguity model joins the α-MEU model in predicting indifference between f1, f2 and mix as, in each 

possible composition of Deck 2, the number of spades equals the number of hearts, making the overall 

chances of receiving €20 the same under those three acts.  If we observe preference for mix over its 

constituents among ambiguity averse subjects in the 2-ball condition, and if the smooth ambiguity 

model correctly diagnoses the only source of that preference, the preference should be absent in the 1-

ball condition.  However, it is possible that subjects will be attracted (or repelled) by the mixed act 

relative to its constituent acts for reasons other than the hedging argument of the smooth ambiguity 

model.  For example, subjects might have an attitude, positive or negative, towards the presence in the 

resolution of the mixed act of another source of uncertainty, die-rolling, in addition to the drawing of 

cards from decks. But, if so, this should show up in both the 2-ball and the 1-ball conditions. Thus, the 

difference between the two conditions is of particular interest, regardless of whether we observe the 

predicted indifference in the 1-ball condition. 

 To build on these points, we now define variables used in our data analysis. We use CE(f, C) to 

denote the certainty equivalent of act f in condition C (though we omit the condition where obvious 

from the context) and we use AvCE(f, g, C) to denote the (arithmetic) mean of a subject’s certainty 

equivalents for acts f and g in condition C.  The following premium variables can then be defined for 

each subject: 

 

Mixed act premium (2-ball)  =     CE(mix, 2-ball) – AvCE(f1, f2, 2-ball); 

Mixed act premium (1-ball)  =     CE(mix,1-ball) – AvCE(f1, f2, 1-ball); 

2-ball premium   =     CE(mix, 2-ball) – CE(mix, 1-ball); 
 
Difference between 
mixed act premia   =   Mixed act premium (2-ball)– Mixed act premium (1-ball). 

 

Mixed act premium (2-ball) measures the excess attractiveness of mix over its constituents in the 

condition where the smooth ambiguity model makes its distinctive prediction that ambiguity averse 

subjects prefer the mixed act and ambiguity seekers the constituent acts.21 Mixed act premium (1-ball) 

measures the corresponding excess attractiveness in the condition where both models predict that all 

three types are indifferent between mix and its constituents. The variable “difference between mixed act 

                                                      
21 Some readers may think it arbitrary to use AvCE(f1, f2, 2-ball) in cases where CE(f1, 2-ball)  CE(f2, 2-ball).  
However, cases where CE(f1, 2-ball)  CE(f2, 2-ball) are quite rare and we discuss a theoretically-grounded way 
of dealing with them in Appendix A.  It turns out to make little difference to the results. 
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premia” measures how far “excess attractiveness” of mix over its constituents is greater in the 2-ball 

condition than it is in the 1-ball condition.  Thus, it measures the influence of the hedging of independent 

ambiguities consideration, controlling for any other factors that (contrary to both models being 

considered) may make mix either more or less attractive than its constituent acts in the 1-ball condition.  

Finally, the 2-ball premium measures directly the extent to which mix is more attractive when it does 

offer a hedge across independent ambiguities than when it does not.   

 According to the smooth ambiguity model, all of these premium variables should be positive for 

the ambiguity averse, zero for the ambiguity neutral, and negative for the ambiguity seeking, except for 

mixed act premium (1-ball) which should be zero for all three types.  The predictions of the α-MEU 

model are simply that each of the four premium variables should be zero for all types.  Finally, SEU 

theory implies ambiguity neutrality and zero values of all four premium variables.22  Thus, three of the 

premium variables discriminate between models (for ambiguity sensitive subjects): mixed act premium 

(2-ball); 2-ball premium; and difference between mixed act premia.  The first is a direct comparison of 

the mixed act and its constituents in the 2-ball condition; the other two make comparisons across 

conditions, so exploiting the 1-ball control.  The difference between mixed act premia is our most 

refined discriminator between the smooth ambiguity and α-MEU models: it measures the contribution 

of the hedging of separately resolving ambiguities motive to preference over mix and its constituents, 

while controlling for other motives that might also affect that preference.   

 

4.  Results 

4.1 Preliminaries 

The experiment was conducted at the University of Tilburg.  97 subjects took part, all of whom were 

students of the university.23  They were paid a show-up fee of €5 on top of their earnings from the tasks, 

yielding a total average payment of €15.74.  The main function of the risky acts resolved with Deck 1 

                                                      
22 Except where otherwise stated, we consider subjects categorized as ambiguity averse, ambiguity seeking and 
ambiguity neutral separately when testing predictions for a given premium variable statistically.  This takes 
account of the fact that, when the premium is not predicted to be zero, it is predicted to differ from zero in a 
specified (category-dependent) direction for each ambiguity-sensitive category.  In these cases, we test the null 
hypothesis that the (central tendency of the) premium variable does not differ from zero (in the predicted direction) 
against the alternative that it does differ from zero in the direction predicted by the smooth ambiguity model, using 
a one-tailed test.  In cases where all the theories we consider predict the premium will be zero, we test a null of 
no difference from zero against the alternative that there is such a difference in either direction, using a two-tailed 
test.  For related tests of relationships between the underlying certainty-equivalents, we adopt the analogous 
policy: where the smooth ambiguity model predicts a difference between two certainty equivalents in a specified 
direction, for a given category of subject, we use a one-tailed test; otherwise we use a two-tailed test. Though 
theory mandates one-tailed tests in the cases where we use them, almost all our statistically significant results in 
one-tailed tests would also be statistically significant at the 5% level on a two-tailed test.     
23 We exclude from these figures and our data analysis five subjects who always chose the same option in at 
least one choice-list, so revealing misunderstanding by violating dominance. 
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was to enhance subjects’ understanding of subsequent ones, but we report that the median certainty 

equivalents for 70% and 30% chances, respectively, of €20 were €11.73 and €5.58, suggesting levels 

of risk aversion not uncommon among experimental subjects. We now turn to ambiguous acts.    

 

4.2 Results on classification of subjects 

Certainty equivalents for g1 and g2 allow us to categorize subjects into three types: the ambiguity averse 

(CE(g1) > CE(g2)); the ambiguity neutral (CE(g1) = CE(g2)); and the ambiguity seeking (CE(g1) < 

CE(g2)).  Out of a total of 97, the numbers of subjects of each type were 31, 50 and 16 respectively.     

 Although some studies have found a higher proportion of ambiguity sensitive subjects than we do, 

Ahn et al. (2014, p. 206) found that 72.7% of their subjects were either ambiguity neutral or close to it 

and Charness et al. (2013, p.3) found 60.3% of theirs to be ambiguity neutral.  Thus, our findings are 

not out of line with the range of previous findings.  Recall that our design was constructed to make it 

“easy” to reveal indifference between certain sets of acts the certainty equivalents of which were elicited 

side-by-side on the same screen.  A subject who saw a relationship between two such acts which she 

regarded as making them equally attractive would have had no difficulty in giving certainty equivalents 

that reflected that judgment. From this perspective, the proportion of subjects coded as ambiguity 

neutral is actually quite encouraging, even though it lowers the proportion coded as ambiguity sensitive.  

As subjects clearly were able to express indifference between g1 and g2, there is no reason to think they 

would not have been able to do so between mix and its constituents (the certainty equivalents of which 

were also elicited side by side on the same screen) if they saw fit.24   

 Notwithstanding ambiguity neutral being the largest group, the mean difference CE(g1) – CE(g2) 

was €0.45 across all subjects, reflecting some ambiguity aversion on average.  The corresponding 

figures for the two ambiguity sensitive types were €1.90 for the ambiguity- averse and –€0.93 for the 

ambiguity seeking. 

   

4.3 Comparing certainty equivalents: central tendencies 

As an initial display of our findings, Figure 3 reports the mean certainty equivalents, for each ambiguous 

act under each condition, separately by type of subject. 

 

 

 

 

 

                                                      
24 In further support of this: Out of 97 subjects, 71 gave identical certainty equivalents for f1 and f2 in the 2-ball 
condition, in line with theoretical predictions. (The others are considered in Appendix A1.) For comparison, the 
only case we have where all theories would predict a difference between certainty equivalents is that of the two 
risky acts; here, just 7 subjects gave identical certainty equivalents.   
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 Figure 3: Mean CE’s for Ambiguity Seeking, Neutral, and Averse Subjects 

 

 

 

 

 

 

 

 

 

 

  

 

As explained in Section 3.8, the most important features of our data are the premium variables defined 

in terms of the certainty equivalents. The mean, median and standard deviations of each of the four 

premium variables are reported Table 5. 

 

Table 5:  Premia (in €, rounded to nearest cent) 

 

Ambiguity Seeking  

(n=16) 

 

Ambiguity Neutral  

(n=50) 

 

Ambiguity Averse 

(n=31) 

Mean Median St.  Dev. Mean Median St.  Dev. Mean Median St.  Dev. 

   
Premia          

Mixed act (2-ball) 0.30 0.46 2.68 0.29 0.00 1.58 1.06 0.73 2.63 

Mixed act (1-ball) 0.69 0.00 2.53 0.09 0.00 2.02 0.12 0.00 2.39 

2-ball -0.60 -0.43 1.85 -0.58 0.00 2.13 0.83 0.55 2.53 

Difference between 
mixed act premia 

-0.39 -0.6425 2.01 0.21 0.00 2.00 0.95 0.30 2.39 

 

Several points stand out from Figure 3 and Table 5.  If, first, we confine attention to subjects coded as 

ambiguity averse, then the findings are, at eyeball level, very much in line with the predictions of the 

smooth ambiguity model.  In particular, the right hand panel of Figure 3 shows that, for these subjects, 

                                                      
25 Among the ambiguity seeking, median difference between mixed act premia is negative, though median mixed 
act premium (2-ball) is positive and median mixed act premium (1-ball) zero. This is not a typo, but just a sharper 
reflection of the fact, also evident for the ambiguity averse, that median (x-y) may not equal (median x) – (median 
y). 

   Ambiguity Seeking (n=16)            Ambiguity Neutral (n=50)              Ambiguity Averse (n=31) 
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mix seems to have been judged on average notably more attractive than its constituents in the 2-ball 

condition, but not in the 1-ball condition.  Table 5 indicates that, for the ambiguity averse, the mixed 

act premium (2-ball) and the 2-ball premium are both, on average and by median, positive and 

seemingly non-trivial; whereas the central tendencies of mixed act premium (1-ball) are close to zero.26  

 For ambiguity averse subjects, Wilcoxon signed-rank tests reveal that CE(mix,2-ball) exceeds each 

of CE(f1,2-ball) and CE(f2,2-ball) (p = 0.007 and p = 0.008, respectively) and also that CE(mix,2-ball) 

is larger than CE(mix,1-ball) (p = 0.019).  In contrast, we cannot reject equality of CE(mix, 1-ball) with 

either CE(f1,1-ball) or CE(f2,1-ball) (p = 0.664 and p = 0.635, respectively). Thus, there is evidence, at 

the level of central tendencies, in favor of the hypothesis that ambiguity averse subjects value the hedge 

against independent ambiguities that mix offers over its constituents in the 2-ball condition but that, as 

also predicted by the smooth ambiguity model, this attraction to mix disappears in the 1-ball condition, 

where the ambiguities are not independent. 

 In the case of subjects coded as ambiguity neutral, all theories agree.  The medians of each of the 

premium variables are exactly as predicted by the theories. However, surprisingly, ambiguity neutral 

subjects seem from Figure 3 to prefer each of the acts in the 1-ball condition over the same act in the 2-

ball condition, as Wilcoxon signed-rank tests confirm.27  The reason for this is unclear but, one 

possibility is that some subjects are averse to greater numbers of possible compositions of the deck.  

Whatever the reason, as the effect favors the 1-ball version, it does not seem to indicate any factor that 

would contribute to our earlier finding that ambiguity averse subjects prefer the 2-ball version of mix 

over its constituents.  Indeed, if anything, it strengthens that finding. 

 Our findings for subjects coded as ambiguity seeking are more mixed than those for the ambiguity 

averse.  For example, for these subjects, the mean and median values of the mixed act premium (2-ball) 

both have the wrong sign from the perspective of the smooth ambiguity model.  However, the picture 

changes if we consider the premium variables that use the 1-ball control.  The means and medians of 

the 2-ball premium and the difference between mixed act premia all take the sign predicted by the 

smooth model. That said, these effects receive only very limited corroboration in statistical tests28 so 

we cannot reject the predictions of the α-MEU model for ambiguity seeking subjects.  Given the small 

number of such subjects, it would inevitably be difficult to detect any statistically reliable pattern in 

their behavior.   

                                                      
26 In interpreting the median values in Table 5, recall that our design makes it easy to reveal certain indifferences 
and that we only have interval estimates of certainty equivalents, so median values of precisely zero are less 
surprising than they might otherwise seem. 
27 p-values for rejection of null hypotheses CE(mix,1-ball) = CE(mix,2-ball), CE(f1,2-ball) = CE(f1,1-ball) and 
CE(f2,2-ball) = CE(f2,1-ball) are, respectively, 0.029, 0.010, and 0.001. 
28 Statistically, CE(mix,2-ball) is not significantly smaller than either CE(f1, 2-ball) or CE(f2, 2-ball) (p = 0.226 
and p = 0.121, respectively)).  The difference between CE(mix,2-ball) and CE(mix,1-ball) is only marginally 
significant even on the appropriate one-sided test (p = 0.085); and difference between mixed act premia is not  (p 
= 0.250). 
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 However, ambiguity averse and ambiguity seeking categories can be pooled, using transformations 

of the three premium variables that discriminate between models in predictions for ambiguity-sensitive 

subjects.  For each of these variables, the transformation makes deviations from zero in the direction 

predicted by the smooth ambiguity model positive, and deviations in the opposite direction negative, 

by multiplying the original premium variable by minus 1 for the ambiguity seeking (only). Then, the 

smooth model predicts a positive value of the transformed variable for any ambiguity sensitive subject, 

whereas the α-MEU model predicts a zero value, and a negative value is possible but not predicted by 

either model.  This transformation allows statistical tests to be conducted on the n = 47 ambiguity 

sensitive subjects taken as a single group. We find that the transformed mixed act premium (2-ball) is 

only marginally significantly larger than zero (p = 0.061), but the transformed 2-ball premium and 

transformed difference in mixed act premia are both significantly larger than zero (p = 0.013 and p = 

0.013, respectively), so that, again, exploiting the 1-ball control sharpens the picture.  

 

4.4 Categorical analysis 

The analysis of the previous subsection is subject to two limitations. Firstly, it concentrates on 

magnitudes of certainty equivalents and premium variables, whereas the theoretical predictions are 

really about ordinal comparisons of certainty equivalents (and hence only about signs of the premium 

variables). Secondly, as it focuses on the “typical” subject in each type, it does not fully capture the 

proportion of subjects in a given type conforming to a given prediction. In this sub-section, we present 

a brief categorical analysis that addresses these points.  

  

Table 6: “Signs” of Premia and Ambiguity Attitude 

 CE(g1) – CE(g2) 
Ambiguity attitude 

< 0 
(Seeking) 

0 
(Neutral) 

> 0 
(Averse) 

 
Mixed act premium 
(2-ball) 

>0 9         13      21     
 0 1      26      3       
<0 6      11       7      

 
2-ball premium >0    4     (4)   12      (7)    19     (17) 

        0    0     (4)     15      (23)      2       (6) 
      <0   12     (8)      23      (20)    10       (8) 

 
Difference between 
mixed act premia 

  >0     5     (5)      16      (16)     19     (17) 
  0     1     (1)       19      (21)       4       (7) 
 <0      10     (10)       15      (13)       8       (7) 

 

 We define (with slight abuse of terminology) the sign of a variable as taking one of three values: 

strictly positive, zero, or strictly negative.  Table 6 presents contingency tables for the sign of CE(g1) – 

CE(g2) (i.e. the subject’s type) against the sign of each of the three premium variables that discriminate 
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between models.  The table gives the frequencies of subjects with each combination of type and sign of 

premium variable, for each premium variable.  The first number in each cell gives the absolute number, 

for each frequency. 

 As it may be “difficult” for a subject to achieve a value of precisely zero for a given premium 

variable, we also consider an alternative coding.  We have already argued that subjects seemed to have 

no difficulty in achieving CE(g1) = CE(g2), as these two certainty equivalents were elicited side-by-side 

on the same screen. For this reason, we use a requirement of exact equality here when classifying 

subjects as ambiguity neutral.  But, that argument is less compelling for some of the premia.  To achieve 

either a 2-ball premium of zero or a difference between mixed act premia of zero requires suitable 

alignment of certainty equivalents elicited across different screens.  In view of these points, Table 6 

also indicates parenthetically, for these variables, the frequencies under a revised coding scheme in 

which a sign of zero is attributed to the premium variable if its absolute value is no more than €0.20 

from zero (an allowance equivalent to 4 rows of a zoomed-in choice list).  Unsurprisingly, this pulls 

more observations into the central rows of the relevant panels of Table 6. 

  According to the smooth ambiguity model, each subject’s type should match the sign of their 

premium variable, for each of the three premium variables presented in Table 6.  To capture the extent 

of conformity with this prediction, we calculate, for each of these premium variables, the sign-matching 

rate, defined as the percentage of subjects for whom type matches the sign of the premium variable.  

Correspondingly, for each premium variable, we also calculate the sign-zero rate, defined as the 

percentage of subjects for whom the sign of the premium variable is coded as 0, in accordance with the 

α-MEU model.   

 Table 7 reports both rates, for each of the premium variables from Table 6, separately for all 

subjects; ambiguity sensitive subjects; and ambiguity averse subjects.  Rates are given to the nearest 

percentage.  As with Table 6, un-parenthesized entries correspond to the stricter coding rule for a zero 

sign on the premium variable and parenthesized entries to the looser coding.  By construction, the looser 

coding rule for a sign of zero on the premium variable cannot lower the sign-zero rate.  In fact, as Table 

7 shows, it raises that rate in all cases and in some cases substantially so.  In contrast, the looser coding 

rule sometimes raises and sometimes lowers the sign-matching rate; and most of these adjustments are 

quite small.  In terms of the comparative performance of the smooth ambiguity and α-MEU models for 

a given premium variable and group of subjects, what matters is the difference between the sign-

matching and the sign-zero rate.  This is reduced by the looser coding rule for the latter rate in all cases 

shown.   

 

 

 

 



 

 

26 

 

 Table 7: Sign-matching and Sign-zero Rates (%) by Premium Variable 

Premium variable Rate: 

Sign-… 

All 

(n=97) 

Ambiguity 

sensitive 

(n=47) 

Ambiguity 

averse 

(n=31) 

     
Mixed act 
(2-ball) 

Matching 55   57   68   
Zero 31      9   10   

     
2-ball Matching 47  (49) 66  (53) 61  (55) 

Zero 18  (34)    4  (21)   6   (19) 
     
Diff.  between 
mixed act premia 

Matching 49  (49) 62  (57) 61  (55) 
Zero 25  (30) 11  (17) 13  (23) 

 

Using the looser of our codings where applicable, the sign-matching rate exceeds the sign-zero rate in 

every case reported in Table 7, by a margin never lower than 15 percentage points.  If attention is 

restricted to ambiguity sensitive subjects then, using the coding that favors the sign-zero rate in the 

second and third cases, the sign-matching rate exceeds it by 48 (= 57 - 9) percentage points, 32 (= 53 -

21) percentage points and 40 (= 57 – 17) percentage points for the mixed-act premium (2-ball), the 2-

ball premium, and the difference between mixed act premia, respectively.  In this respect, the smooth 

ambiguity model outperforms the α-MEU model.  

 That said, the performance of the smooth ambiguity model in Table 7 is far from perfect.  The 

sign-matching rates reported in the “All” column are only around 50%, and none of those reported in 

other columns exceeds 68%.  (These figures compare with a benchmark of 33%, if the three values of 

sign were allocated at random.) 

    

4.5:  Main experiment: Summary of findings 

The analysis of central tendencies reported in Section 4.3 and the individual-level categorical analysis 

of Section 4.4 broadly cohere with one another. 

 Where the smooth ambiguity and α-MEU models agree in relation to our design – that is, in their 

predictions for the ambiguity neutral in the 2-ball condition and for all types in the 1-ball condition – 

their shared predictions perform well, as judged by central tendencies, but less well at the individual-

level.  For example, the median value of each of our premium variables is zero in every case where both 

models predict that it will be zero, but neither model accounts for the fairly frequent incidence 

(evidenced by the central data column of Table 6) of individual-level violations of the shared prediction 

that each premium variable will be zero for each ambiguity neutral subject. 

 Our potential for discriminating between models is provided by ambiguity sensitive subjects, be 

they ambiguity averse or ambiguity seeking, since the two models disagree in their predictions for these 

subjects.  Too few subjects are coded ambiguity seeking for a statistically significant pattern to emerge 

when that group is considered on its own but, when all ambiguity-sensitive subjects are pooled, the 
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three premium variables that distinguish between models tell broadly in favour of the smooth ambiguity 

model.  This generalisation holds for individual-level analysis and central tendencies alike, but the 

evidence for it is less clear for the premium variable that only draws information from the 2-ball 

condition than it is for the two premium variables that exploit our 1-ball control by drawing information 

from both conditions.  This qualification suggests that neither model fully captures the behaviour of the 

whole set of ambiguity-sensitive subjects in either condition taken separately, yet comparison of the 2-

ball and 1-ball conditions is still broadly consistent with responses to separately resolving ambiguities 

in directions predicted by the smooth ambiguity model.      

 The qualification about reliance on measures that exploit the 1-ball control is not needed when 

attention is restricted to subjects coded as ambiguity averse as, for these subjects, all of the three 

premium variables that discriminate between models tell essentially the same story in both forms of 

analysis.  We find clear and statistically significant patterns in the behaviour of the subjects coded as 

ambiguity averse that conform more closely to the predictions of the smooth ambiguity model than to 

those of the α-MEU model. 

   

 

5.  Extensions 

Before concluding, we comment on some extensions of our investigations reported in this section and, 

especially, in Appendices A-C. 

   

5.1 Robustness to categorization 

As noted in Section 3.7, our categorization of subjects by ambiguity attitude assumes that they see the 

second and third compositions of Deck 3 as equally likely, as implied by the information provided.  It 

also assumes that, even when they have this belief, they reveal ambiguity neutrality through exact 

equality between CE(g1) and CE(g2). Appendix A explores the robustness of our conclusions to 

relaxation of these assumptions: Appendix A.1 considers the possibility of subjects not realizing that 

the second and third compositions of Deck 3 are equally likely and Appendix A2 what happens if we 

allow closeness (rather than only equality) between CE(g1) and CE(g2) to count as indicating ambiguity 

neutrality.  In each case, the details of our findings are affected but the general tenor is not.   

   A different possible concern about our analysis, in view of the findings of previous experiments 

in the literature, is its reliance on expected utility theory as the model of choice under objective risk. In 

this respect, our analysis is true to the smooth and α-MEU models, as usually formulated.29 

Notwithstanding this, in Appendix B, we show that our theoretical analysis would be robust to a 

                                                      
29 Dean and Ortoleva (2017) introduces a model with close affinity to the MEU model that also captures violations 
of expected utility theory under objective risk, such as the Allais paradoxes, and explores the links between 
hedging, Ellsberg-like, and Allais-like behavior.   
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reformulation of these models in which expected utility theory is replaced in this role by any one of a 

range of non-expected utility models.   

 

5.2 Divide across models: theory and a follow-up experiment 

In Appendix C, we substantiate Section 1’s assertion that the α-MEU and smooth ambiguity models 

stand as examples of broader classes of models of ambiguity sensitive preference: that is, respectively, 

of models of preferences whose representations focus exclusively on minimum and/or maximum 

expected utilities and of models whose representations also give weight to non-extremal expected 

utilities.  In particular, we identify other models that, under important but plausible assumptions, share 

the predictions of models that we have considered in the main text in the context of our design.     

In the case of the main study reported above, one model – that of Seo (2009) – shares the 

predictions of KMM’s smooth ambiguity model in a particularly direct way.  But, as footnote 7 explains, 

the two models differ in subtle respects, in particular in tying or not tying ambiguity aversion to 

violation of ROCL.  This issue connects to an important debate in the ambiguity literature about whether 

sensitivity towards ambiguity is simply the result of non-standard reduction of compound lotteries.  The 

experimental data of Halevy (2007) suggest that this is the case30: ambiguity aversion is strongly 

associated with violations of ROCL.  Abdellaoui et al. (2015), however, observe that ambiguity-neutral 

subjects also often violate ROCL and that a significant proportion of subjects that do reduce compound 

lotteries are sensitive towards ambiguity, suggesting that ambiguity attitude is more than DMs violating 

ROCL.   

 In view of these points, we ran an additional experiment with two-stage objective lotteries in place 

of the ambiguous acts of the main study.  In this follow-up study, the objective probabilities of the 

possible compositions of Decks 2 and 3 respectively were given to subjects. Specifically, the opaque 

bag that determined the composition of Deck 2 and Deck 3 was publicly filled with an equal number of 

balls numbered 1 and 4, so that subjects knew that each possible composition of Deck 2 was equally 

likely, as was each possible composition of Deck 3. In all other respects, the new treatment was identical 

to the main experiment.31 Since the probabilities for each possible composition are objectively given, 

in the new experiment the behavior implied by MEU and KMM’s model are identical and consistent 

with that implied by expected utility.  As noted in footnote 7, in Seo (2009)’s model, violation of ROCL 

is implied by a concave 𝜙 and unaffected by whether the second-order uncertainty is an objective risk 

or not.  

 In total, 86 undergraduate students (average payment €15.24) from Tilburg University 

participated.32  Classifying subjects based on the difference between the certainty equivalent of act g1 

                                                      
30 See also Chew et al. (2017). 
31 We used the tabular protocol.  Instructions for the follow-up experiment are in Appendix E3. 
32 The data of 4 subjects who always chose the same option in at least one choice-list was removed from the 
analysis. 
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and g2 yields the same general pattern of preferences as in the main experiment.  In particular, 20 

subjects reported CE(g1) > CE(g2), 16 reported CE(g1) < CE(g2), and 50 reported CE(g1) = CE(g2).  As 

all risks are objective in the follow-up experiment, the two strict inequalities are violations of ROCL 

and, in that sense, contrary to KMM’s model and MEU.  A two-sided Wilcoxon rank-sum test does not 

reveal a statistically significant difference between the two experiments in the statistic CE(g1) – CE(g2) 

(p = 0.231).  These findings are in line with the Seo (2009) model and also suggestive of the findings 

of Halevy (2007).  

 Just as with the main experiment, it is particularly interesting to consider the preferences over mix 

and its constituents of subjects appearing to be “ambiguity averse”, in the sense that ((CE(g1) > 

CE(g2)).33  But, here the picture is mixed, in part depending on whether the 1-ball control is used.  For 

subjects with CE(g1) > CE(g2) in the follow-up experiment, one-tailed Wilcoxon signed-rank tests 

provide some evidence that mix is preferred to its constituents, as CE(mix,2-ball) exceeds each of 

CE(f1,2-ball) and CE(f2,2-ball) (p = 0.063 and p = 0.039, respectively).  However, this evidence 

disappears when measures exploiting the 1-ball control are used.  In particular, the 2-ball premium is 

not significantly positive (p = 0.340) and nor is the difference between mixed act premia (p = 0.463).  

Recall in contrast that, in the main experiment, all premium variables told the same story for the 

ambiguity averse. This difference between the findings of the two experiments is more supportive of 

KMM’s version of the smooth model than of that of Seo (2009). 

 Moreover, in the follow-up experiment, a Friedman test does not detect differences between the 

distributions of the ranks of the certainty equivalents of the acts f1, f2 and mix in the 1-ball condition, f1, 

f2 and mix in the 2-ball condition and g1 and g2 in the 2-ball condition (p = 0.657).  In contrast, a similar 

Friedman test for the main experiment reveals that the ranks of those certainty equivalents are different 

(p = 0.001).  These findings suggest that the aggregate pattern of preference over these acts that we 

observe in the main experiment is not entirely driven by violations of ROCL in preferences over 

objective lotteries. However, two qualifications are in order. First, we do observe many violations of 

ROCL at the individual level in the follow-up experiment, so its findings do not in themselves support 

ROCL for objective risks. Secondly, as the follow-up study was run later than the main one, subjects 

were not randomly assigned between the two; so, any comparison of the studies must be made with 

caution.  Partly for this reason, we focus on the main study in our final concluding comments.  

6.  Concluding Remarks 

We have presented an experiment designed to discriminate empirically between two well-known and 

widely applied models of ambiguity attitude – the α-MEU and smooth ambiguity models – which stand 

                                                      
33 It is necessary, in Seo’s model, for 𝜙 to be concave for CE(g1) > CE(g2).  Therefore, in Seo’s model, subjects 
with CE(g1) > CE(g2) will prefer mix to its constituent acts in the 2-ball condition, but not in the 1-ball condition. 
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as representatives of a broader theoretical divide.  This is important as the conclusions of existing 

applied economic models that incorporate ambiguity are often derived from specific models of 

ambiguity sensitivity, sometimes on one side of the divide we mark and sometimes on the other.   

 Our strategy for distinguishing between models focuses on whether or not an agent’s preference 

for hedging separate ambiguities depends on ambiguity attitude.    Interpreting our findings narrowly in 

terms of a comparison of the smooth ambiguity and α-MEU models, we find that, while neither model 

captures all aspects of our data, there are striking features of the data that conform more closely to the 

smooth ambiguity model than to the α-MEU model.  As explained in Section 1 and Appendix C, this 

discrimination extends to a broader divide between models which do or do not give weight to non-

extreme expected utilities, among those considered possible.  

   Finally, our results provide a more general reassurance to the theories of ambiguity aversion. It has 

long been argued, at a theoretical level, that reliance on stochastic mixing as a way to hedge ambiguity 

is a defining part of a rational response to ambiguity.  Indeed, such is the motivating basis of 

Schmeidler’s (1989) Uncertainty Aversion axiom, which lies at the heart of ambiguity averse preference 

models, quite generally (Cerreia-Vioglio et al., 2011).  However, the best-known prior study that we 

are aware of which investigates the link between ambiguity aversion and preference for randomization 

– Dominiak and Schnedler (2011) – reports little support for this central premise of theories of 

ambiguity aversion. In view of this, it is particularly notable that our main finding, specifically strict 

preference for mix over f1 and f2 on the part of the ambiguity averse in the 2-ball condition, supports the 

Uncertainty Aversion axiom.34  Hence, a further overall “take-away” from our findings, is that they 

provide evidence for a link between ambiguity aversion and propensity to use randomization to hedge 

ambiguity, and thus for the central foundational principle of theories of ambiguity aversion, quite 

generally. 

   

                                                      
34 Consider ambiguity averse DMs. An α-MEU preference and a smooth ambiguity preference both satisfy 
Schmeidler’s Uncertainty Aversion axiom. The axiom requires that there will be instances when, given two acts 
between which the DM is indifferent, the mixture between the acts is strictly preferred to either act, delineating 
the characteristic departure of ambiguity aversion from behavior satisfying the (Anscombe and Aumann) SEU 
theory. However, the axiom does not further stipulate what those instances will be. Our acts mix, f1 and f2 in the 
2-ball condition provide an instance where a smooth ambiguity model implies a strict preference while an α-MEU 
model predicts indifference. (In contrast, both models predict strict preference for the mixture of two bets, one on 
each color of an Ellsberg 2-color ambiguous urn, over its constituents.) Hence, had we found that subjects coded 
as ambiguity averse were largely indifferent between our three acts in the 2-ball condition then that would be 
evidence neither in support nor against Schmeidler’s axiom, whereas the strict preference that what we do find is 
positive support for the axiom.  In our design, in line with the axiom, the objective randomization that mix offers 
is conducted as a final step in determining the outcome of the act.  In contrast, in Dominiak and Schnedler’s 
design, the objective randomization is ex ante.  
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Appendix A: Robustness to classification 

In this appendix, we consider the robustness of our findings to variations in our procedure for classifying 

subjects by ambiguity attitude, as explained in Section 5. 

  

A.1 Robustness towards beliefs 

As explained in Section 3.7, our classification of subjects as ambiguity averse, ambiguity neutral or 

ambiguity seeking used a procedure that, strictly, relies on subjects being indifferent, in the 2-ball 

condition, between f1 and f2.  In fact, for 71 subjects, the condition CE(f1,2-ball) = CE(f2,2-ball) holds 

exactly.  For the remaining 26 subjects, the statistic CE(g1) – CE(g2) is well-defined, but no longer 

sufficient to identify a subject’s ambiguity attitude, as the subjects do not appear to weight the second 

and third possible compositions of Deck 3 equally. In this appendix we comment on how that affects 

our analysis, in particular, the robustness of our conclusions regarding the comparison of models.  

 For purposes of this discussion, we fix the domain of preferences to include those described by:  

1. an α-MEU model with the set of probabilities in the representation given by  𝒫 = {pi | i 
=1,…,4}, or its convex hull, where pi refers to the probabilities described in Table 2;  

2. an SEU model (specifically, an Anscombe-Aumann model) which puts positive weight on 
each of the four probabilities, pi, i =1,…,4; 

3. a smooth ambiguity model with a non-linear 𝜙  and a 𝜇 which puts positive weight on each of 
the four probabilities, pi, i =1,…,4. 
 

Within this domain, the α-MEU model predicts indifference between f1 and f2 and mix regardless of 

preference over g1 and g2. In contrast, both the smooth ambiguity and SEU models allow non-

indifference between f1 and f2 if p2 and p3 are weighted unequally.35  Importantly, they also require that 

the directions of a subject’s preference over g1 and g2 and her preference over mix and f2 match, as can 

seen from an inspection of the relevant rows of Table 3. However, SEU imposes an additional restriction 

that the smooth model does not, namely, that the direction of preference between f1 and f2 must also 

match that between g1 and g2. Under the smooth ambiguity model, non-linearity of 𝜙 could upset this 

correspondence, thereby distinguishing SEU from smooth ambiguity. In fact, of the 26 subjects who 

are not indifferent between f1 and f2 in the 2-ball condition, only 5 conform to the additional restriction 

imposed by SEU.   

 Thus, if we set SEU aside and focus on the two models of ambiguity sensitivity, we may use a 

comparison of the preferences between mix and f2 and between g1 and g2 as a means of discriminating 

between the models, even when the subject is not indifferent between f1 and f2. Hence, our strategy for 

comparing the α-MEU and smooth ambiguity models is a simple modification of our analysis in the 

main part of the paper. We replace AvCE(f1, f2, 2-ball) with CE( f2, 2-ball) in the definitions of mixed 

act premium (2-ball) and of difference between mixed act premia. For a given sign of CE(g1) – CE(g2), 

                                                      
35 Allowing this possibility involves relaxing our maintained hypothesis that subjects understand the implications 
of their information, but is consistent with continuing to assume that they believe what they are told directly. 
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the predictions of the smooth ambiguity model for the signs of the two re-defined premium variables 

are exactly as for the original definitions.  Similarly, for the α-MEU model, the implications for the 

signs of the two re-defined premium variables are exactly as for the original definitions, since the model 

predicts indifference between mix and f2 for any value of CE(g1) – CE(g2). These points are unaffected 

by whether CE(g1) – CE(g2) indicates ambiguity attitude.   

 The redefinition can only affect subjects for whom CE(f1,2-ball)  CE(f2,2-ball).  (These subjects 

are spread roughly evenly across the three categories by sign of CE(g1) – CE(g2).)  The sign of the 

mixed act premium (2-ball) is changed by the redefinition in only nine cases and the sign of the 

difference between mixed act premia in only three. Clearly, the latter point makes little difference, so 

we focus on the former, using the stricter coding rule for a zero sign on a premium, because the 

redefinition of the mixed act premium (2-ball) makes it the difference of two certainty equivalents 

elicited next to each other.  For the mixed act premium (2-ball), the number of subjects with a zero sign 

rises from 30 to 35, whereas the number with a sign matching that of CE(g1) – CE(g2) falls from 53 to 

51.  Though this impact of the redefinition slightly favors the α-MEU model, the sign-matching rate for 

all subjects still exceeds the sign-zero rate by more than 16 percentage points.  Thus, the main qualitative 

conclusions of the categorical analysis (Section 4.4) are not affected. Moving beyond signs, the median 

mixed act premium (2-ball) rises by 2 (resp. 0) euro cents among subjects with CE(g1) – CE(g2) > (resp. 

=) 0. Hence, for these subjects the modification makes very little difference to the central tendency.  

But, among those with CE(g1) – CE(g2) < 0, the median mixed act premium (2-ball) rises from €0.46 

to €0.85.  This is a movement in the wrong direction for both smooth and α-MEU models. In that sense, 

it does not affect the conclusions that we drew from our analysis of the central tendencies of certainty 

equivalents in Section 4.3, about the relative performance of those models.   

  

A.2 Robustness to trembles 

In Section 4, we used exact equality of CE(g1) and CE(g2) to classify subjects based on their attitude 

towards ambiguity, because these certainty equivalents were presented to subjects side-by-side on the 

same screen. Here we consider whether our results are robust if we apply looser coding rules to classify 

subjects in terms of ambiguity attitude. In particular, we distinguish between three coding rules for 

monetary sums. Under strict coding (S), a variable of interest has to be exactly zero in order to be 

counted as zero; whereas, under Tremble-tolerant (TT) coding, the variable of interest has to be no more 

than + 0.05 and no less than – 0.05; and, under Loose (L), it has to be no more than + 0.20 and no less 

than – 0.20. In terms of choice behaviour, these codings translate respectively into no margin of error 

in a zoomed-in choice list (S), a margin of error equivalent to one row of a zoomed-in choice-list (TT), 

and a margin of error equivalent to four rows of a zoomed-in choice-list (L), respectively.  

Table A1 and A2 replicate the results reported in Table 5, using Tremble-Tolerant and Loose 

coding respectively, when classifying subjects by attitude toward ambiguity, rather than the Strict 
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coding used in Table 5.  By construction, applying a looser coding to type-classification reduces the 

number of ambiguity-sensitive subjects, specifically in our case from 47 under Strict coding (Table 5) 

to 39 under Tremble-tolerant coding (Table A1) and 36 under Loose coding (Table A2).  We have 

already defended Strict coding for use in identifying ambiguity-neutrality, on the grounds that CE(g1) 

and CE(g2) are elicited right next to each other on the same screen.  In view of this point, we also see 

Tremble-Tolerant as the more plausible of the two alternative coding rules for ambiguity attitude.  But, 

we include both for completeness. 

 

Table A1:  Premia (in €, rounded to nearest cent) with Tremble Tolerant Coding 

 

Ambiguity Seeking  

(n=11) 

 

Ambiguity Neutral  

(n=58) 

 

Ambiguity Averse    

(n=28) 

Mean Median St.  Dev. Mean Median St.  Dev. Mean Median St.  Dev. 

   
Premia          

Mixed act (2-ball) 0.89 1.05 2.69 0.24 0.00 1.66 1.03 0.69 2.77 

Mixed act (1-ball) 0.97 0.00 2.98 0.10 0.00 1.95 0.07 0.13 2.43 

2-ball -0.20 -0.05 1.57 -0.59 -0.02 2.12 0.84 0.53 2.63 

Difference between 
mixed act premia 

-0.09 -0.70 1.65 0.13 0.00 2.06 0.95 0.29 2.46 

 

Table A2:  Premia (in €, rounded to nearest cent) with Loose Coding 

 

Ambiguity Seeking  

(n=11) 

 

Ambiguity Neutral  

(n=61) 

 

Ambiguity Averse    

(n=25) 

Mean Median St.  Dev. Mean Median St.  Dev. Mean Median St.  Dev. 

   
Premia          

Mixed act (2-ball) 0.89 1.05 2.69 0.36 0.00 1.73 0.82 0.50 2.84 

Mixed act (1-ball) 0.97 0.00 2.98 0.05 0.00 2.00 0.19 0.25 2.39 

2-ball -0.20 -0.05 1.57 -0.45 0.00 2.18 0.66 0.10 2.70 

Difference between 
mixed act premia 

-0.09 -0.70 1.65 0.31 0.00 2.19 0.63 0.15 2.33 
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Our main findings regarding ambiguity averse subjects replicate under the Tremble-Tolerant 

coding, despite the lower number of observations.36  First, the central tendencies of the premium 

variables are hardly affected by switching from Strict to Tremble-Tolerant coding. Moreover, mixed 

act premium (2-ball) is again significantly positive (p = 0.020), whereas mixed act premium (1-ball) is 

not (p = 0.319).  The difference between these premia is also significantly positive (p = 0.049).  

Although, under Loose coding, mixed act premium (2-ball) and mixed-act premium (1-ball) are lower 

than those under tighter codings and neither significantly different from zero, this may in part be due to 

low power and, in any case, we see the Tremble-Tolerant coding as more plausible for classification of 

subjects by type of ambiguity attitude.  Nevertheless, the reader may be surprised that reducing the 

number of subjects coded as ambiguity-averse, by adopting Loose rather than Strict coding for 

ambiguity neutrality lowers the mean and median of the key premium variables for ambiguity averse 

subjects.  It is important to note, however, that the predictions of the smooth ambiguity model for these 

variables are only ordinal.  In particular, the model does not require that the larger is CE(g1) – CE(g2) 

the larger will be the premium variables predicted to be positive for the ambiguity averse.  Instead, the 

predictions are about signs.  

In view of this, we turn to the robustness of our categorical analysis.  For this, we need to consider 

combinations of coding rules, as we must code both type of ambiguity attitude and sign of the premium.  

So, for brevity, we focus – for each premium variable analysed in Sections 4.4 – on the robustness of 

our findings to different coding rule combinations of one measure of the comparative performance of 

the smooth ambiguity and α-MEU models, namely the excess of the sign-matching rate over the sign-

zero rate for ambiguity sensitive subjects.  Table A3 reports this statistic for each premium variable 

considered in Section 4.4, for four different coding combinations.37  The label at the top of each column 

gives the coding combination that column reports, with the first word of the label giving the coding rule 

applied to ambiguity neutrality in the classification by type and the second word the coding rule applied 

in coding the sign of the premium.  The third and fourth columns report new codings, not considered in 

the main text, whereas the first two columns repeat, for comparison, the two cases considered in Section 

4.4 (where we insisted on Strict coding for type).     

   

 

 

 

 

                                                      
36 We do not pursue statistical comparisons for ambiguity seeking subjects under the looser codings as there are 
only eleven such subjects.  
37 We consider Strict and Loose coding for signs of premia, as in the main text, and all three codings for type.  We 
consider that it does not make sense to use a looser coding for type than for sign of premium, as type is obtained 
from certainty equivalents elicited next to one another. 
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    Table A3: Sign-matching rate minus sign-zero rate (%) for ambiguity sensitive subjects: 
different codings 

 Coding a 
Strict-Strict 

(n = 47) 
Strict-Loose 

(n = 47) 
TT-Loose 
(n = 39) 

Loose-Loose 
(n = 36) 

 
Mixed act premium  

(2-ball) 
49 38 31 25 

 
2-ball premium 62 32 31 25 

 
Difference between mixed 

act premia 
51 40 36 31 

a) Strict-Strict refers to Strict coding of types and signs of premia; Strict-Loose refers to Strict coding of types and 
Loose coding of signs of premia; TT-Loose refers to Tremble-Tolerant coding of types and Loose coding of signs 
of premia; Loose-Loose refers to Loose coding of types and signs of premia. Cell entries are rounded to the nearest 
integer. 

 

As can be seen in Table A3, our main result that the smooth model outperforms the α-MEU model for 

ambiguity sensitive subjects is robust to the coding used, in the sense that in all cases shown the sign-

matching rate exceeds the sign-zero rate by at least twenty-five percentage points.  However, the result 

becomes less pronounced under looser coding as one moves from left to right along any row of the 

table, with both sample size and the excess of the sign-matching rate over the sign-zero rate falling.   
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Appendix B: Non-Expected Utility for Risk  

A possible concern about our theoretical analysis of preference over the acts is its use of expected utility 

theory as the underlying model of choice under risk. In this respect, our analysis is true to the smooth 

ambiguity and α-MEU models as usually formulated. But, as there is evidence from many experiments 

that subjects deviate from expected utility theory under risk (Starmer, 2000), one might wonder how 

the theoretical analysis would be affected if this were true of our subjects too.  It is possible to imagine 

more general formulations of these models which allow an induced probability distribution on 

consequences to be evaluated by a quite general non-expected utility functional (see, for example, the 

discussion of Corollary 1 in KMM).  In this appendix, we show that our testing strategy for 

distinguishing between the α-MEU and the smooth ambiguity models, and our conclusions about the 

relative support of each model in the data, would be robust to such reformulation. 

 An act together with a given probability distribution on the state space induces a probability 

distribution on consequences.  Since consequences may be lotteries, the induced distribution is, in 

general, a distribution over lotteries and hence, a two-stage lottery.  Both the α-MEU and the smooth 

ambiguity model, in their standard formulations, evaluate such an induced distribution just as would an 

expected utility model (see, e.g., Klibanoff et al. (2012), Equation 1.1 and 1.2).  In particular, the 

induced two-stage lottery is evaluated by reducing it to the corresponding one-stage lottery and 

computing the expected utility of the reduced lottery. We now consider a reformulation of the evaluation 

of such induced probability distributions that is more general than expected utility.    

 For brevity, we consider only a domain of induced probability distributions comprising one-stage 

and two-stage objective lotteries defined on the set of final monetary consequences used in our 

experiment, i.e. on {€20, €0}.  Let preferences over such lotteries be represented by maximization of 

any real-valued function V, defined on the lotteries, such that (i) preferences respect first-order 

stochastic dominance; and (ii) V  satisfies the following Limited Reduction condition: V({{€20, ½; €0, 

½}, r; {€0,1}, 1 – r}}) = V({€20, r/2; €0, 1 – (r/2)} for any 1 > r > 0.  Notice that, Limited Reduction 

is much weaker than the standard reduction principle for compound lotteries and does not, by itself, 

impose any restriction on preferences over one-stage lotteries. It simply links preferences over two-

stage lotteries of a particularly simple form to preferences over particular one-stage lotteries, in the way 

specified.  This would be quite compatible, for example, with preferences over one-stage lotteries being 

generated by cumulative probability-weighting with a distorted (monotonic) weighting function.        

 We now generalize the α-MEU and smooth ambiguity models by using maximization of V, defined 

as above, in place of maximization of the expectation of u, as their representation of preferences with a 

given probability distribution on the state space.  How are the acts considered in the experiment 

evaluated under this generalization?  To compress notation, let V({€20, 0.4; €0, 0.6}) = x, V({€20, 0.25; 

€0, 0.75} = y, and V({€20, 0.1; €0, 0.9}}) = z. From first-order stochastic dominance, x > y > z.  
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Applying Limited Reduction where necessary, the values of V for each act and deck composition are 

given in Table B1 (to be compared with Table 3 in the main text). 

 

Table B.1: Values of V 

 

 

 

 

 

 

 From here, the theoretical analysis of the 2-ball condition can proceed essentially just as in the 

main text.  For the α-MEU model, as generalized in the preceding paragraph, the DM’s preferences 

must satisfy f1  f2  mix. For the smooth ambiguity model, as generalized in the preceding paragraph 

(but imposing, as in the main text, that μ(p2) = μ(p3)), the DM’s preferences must satisfy the conditions 

that f1  f2; and that, for f  {f1, f2}, g1  g2  mix  f; g1  g2  mix  f; and g1  g2  mix  f.   

Thus, the predictions of Section 2.2 about how preferences over acts in {f1, f2, mix} are (or are not) 

related to preferences over {g1, g2} under the two models are robust to the generalizations of the 

preceding paragraph. What matters for those predictions is just that preferences over one-stage lotteries 

satisfy first-order stochastic dominance and cohere with preferences over two-stage lotteries to the 

extent required by Limited Reduction.  This is compatible with departures from expected utility theory 

in preferences over one-stage objective risk, even quite marked departures. 
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Appendix C: Divide Across Models 

For concreteness in the main text, it was convenient to analyze and interpret the results purely in terms 

of the α-MEU model and the smooth ambiguity model.  However, the divide between models addressed 

by our design is broader, as we explain in this appendix. Consider the formal representation of the 

setting in our experiment.  Think of 𝒫 as the set of probabilities (on the set of states 𝑆 = {𝐵ଵ, 𝐵ଶ, 𝑅ଵ, 𝑅ଶ}) 

in an α-MEU model, or the set of probabilities in the core of the convex capacity in the representation 

of a Schmeidler (1989) model of uncertainty aversion, or the support of 𝜇 in a smooth ambiguity model.  

Let Z denote a component, 𝑍 = 𝐵, 𝑅. With slight abuse of terminology let 𝐵ଵ and 𝑅ଵ be the “first” 

elements of their respective component, and 𝐵ଶ and 𝑅ଶ be the “second” elements.  (For interpretation, 

𝐵ଵ equals spade, 𝐵ଶ equals club, 𝑅ଵ equals heart, 𝑅ଶ equals diamond.)  Let 𝑍௜ denote the i-th element 

from the 𝑍௧௛-component, 𝑖 = 1,2. Denote the set of probabilities of drawing a first element from the 

𝑍௧௛-component by Γ௓ = {𝑝(𝑍ଵ): 𝑝 ∈ 𝒫}. Let 𝒫 satisfy the following properties: 

 

Property One: Γோ = Γ஻. 

Property Two: Γ௓ is non-singleton, for  𝑍 = {𝐵, 𝑅}. 

Property Three: If 𝑞 ∈ Γோ and 𝑞′ ∈ Γ஻, there is 𝑝 ∈ 𝒫 such that 𝑝(𝑅ଵ) = 𝑞 and 𝑝(𝐵ଵ) = 𝑞′. 

Property Four: If 𝑝 ∈ 𝒫 then 𝑝({𝑍ଵ, 𝑍ଶ}) = 0.5. 

 

In our experiment, in the 2-ball condition that implements the theoretical set up of Section 2.2, the 

information given to subjects satisfies all four properties. Proposition 3.1 in Klibanoff et al. (2012) 

shows how the predictions of the α-MEU model and the smooth ambiguity model differ when Properties 

One through Four are assumed. 38, 39 Preferences of the Schmeidler (1989) model under uncertainty 

aversion (i.e., with a convex capacity representation) coincide with those in an MEU model where the 

representation set of probabilities is the core of the convex capacity.40  Hence, a Schmeidler model 

under uncertainty aversion whose convex capacity in the representation has a core that satisfies 

                                                      
38 For the case of the smooth ambiguity model, Proposition 3.1 further assumes that the weights 𝜇 are uniform. 
This assumption is, of course, consistent with the information given to subjects under both 1-ball and 2-ball 
conditions. But the assumption is not necessary for the application to the theoretical setup of Section 2.2 provided 
μ(p2) = μ(p3)). 
39 As was noted in Footnote 2, the formal details of the set up in Klibanoff et al. (2012) are slightly different from 
what we have here. In particular, they have a product state space, unlike here. So, Property Four stated here does 
not apply literally to their setup. However, the belief about each component of the product space is unambiguous: 
it is a probability known to the DMs. Hence, the substantive element of Property Four is implicitly assumed in 
Proposition 3.1, even though the assumption is not explicitly stated in the proposition.  
40 A convex capacity is a set function 𝜈: 2ௌ → [0,1], 𝜈(𝐸) ≥ 0, 𝜈(𝑆) = 1, 𝜈(𝐸 ∪ 𝐹) ≥ 𝜈(𝐸) + 𝜈(𝐹) − 𝜈(𝐸 ∩ 𝐹). Every 
convex capacity 𝜈 has an non-empty core, a compact, convex set of probability measures defined as 
follows: 𝒫(𝜈) ≡ 𝐶𝑜𝑟𝑒(𝜈) ≡ { 𝑝 ∈ ∆(𝑆) ∣∣ 𝑝(𝐸) ≥ 𝜈(𝐸), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐸 ⊂ (𝑆) }, where ∆(𝑆) denotes the set of all probability 
measures on 𝑆. Furthermore, 𝜈(𝐸) = 𝑚𝑖𝑛௣∈𝒫(ఔ)𝑝(𝐸). A belief function (also known as a totally monotone capacity) 
satisfies a stronger version of the third property specified for a convex capacity: for every 𝑛 > 0 and every collection 
𝐸₁, . . . , 𝐸௡ ∈ 2ௌ, 𝜈(⋃ 𝐸௜

௡
௜ୀଵ ) ≥ ∑ (−1)|ூ|ାଵ

ூ⊆{ଵ,…,௡},ூஷ∅ 𝜈(⋂ 𝐸௜௜∈ூ ), where |𝐼| denotes the cardinality of 𝐼.  
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Properties One through Four, will share the predictions of an α-MEU (with α = 1) as specified in 

Proposition 3.1.  In particular, this implies that there will be no strict preference for the mixed act over 

its constituents in the 2-ball condition. An example of a capacity whose core satisfies the four properties 

is a belief function 𝜈: 2ௌ → [0,1], satisfying the following further conditions: 𝜈(𝑍ଵ) = 𝑟 =

 𝜈(𝑍ଶ), 0.2 ≥ 𝑟 > 0;  𝜈({𝑍ଵ, 𝑍ଶ}) = 0.5. 41    

 However, under the 1-ball condition, the subject’s information violates Property Three, since the 

information implies that 𝑝(𝑅ଵ) = 𝑝(𝐵ଵ).  Under such a restriction the ambiguity in each component 

resolves in an identical way implying mixing cannot in any way help with ambiguity hedging.  As 

Klibanoff et al. (2012) point out, in this case the smooth model will, like the α-MEU model, also predict 

indifference to mixing. 

 Notice, given the set of probability distributions {𝑝ଵ, … , 𝑝ସ} in Table 2, if a DM weights the 

distributions uniformly, the reduced probability measure on 𝑆 under the 1-ball condition is the same as 

that under the 2-ball condition.42  Thus, under the information available to the subjects, it is natural to 

expect that a probabilistically sophisticated DM (Machina and Schmeidler (1992)) will choose the same 

way under the 1-ball and 2-ball conditions.  An example of a probabilistically sophisticated DM is a 

rank dependent utility maximizer à la Quiggin (1982). A rank dependent utility preference is another 

prominent member of the class of preferences representable as a Choquet expected utility (CEU).  Such 

a preference is represented by a capacity obtained via a distortion of the probability measure on 

outcomes induced (jointly) by the given probability measure on 𝑆 and an act.  Hence, a subject in the 

experiment with such preferences, given the information available, should not choose differently under 

1-ball and 2-ball conditions, since the reduced probability measure on states is identical under both 

conditions.  Thus, these preferences do not predict a difference between the premia under the two 

conditions.  In this sense, the prediction rank dependent utility is similar to that of an MEU preference 

rather than to a smooth ambiguity preference.  Thus, two very prominent types of CEU preferences, the 

                                                      
41 In Jaffray (1989), the model is a special case of α-MEU in that the set of probabilities is restricted to be given 
by the core of a belief function. In Jaffray’s presentation, the set of probabilities represent objectively given 
imprecise information. Gul and Pesendorfer (2014) axiomatize a fully subjective, “Savage-style” version of 
Jaffray’s “von Neumann-Morgenstern style” model. Olszewski (2007) posits and axiomatizes an α-MEU style 
model with an objectively given set of probabilities (on outcomes). Gajdos et al. (2008)’s “contraction” model, 
which falls in the MEU class, also takes the set of probabilities as objectively given to the DM. All these models 
share the prediction of the MEU model in our experiment. 
42 Actually, the assumption of a uniform distribution is not necessary for the conclusion in the context of our 
experiment. The reduced probability on suits is the same in the 1-ball and the 2-ball conditions, for any subject 
who obtains it by (standard) reduction from probability distributions over the possible compositions and for whom 
the latter conform with the information given.  The significance of the italicized phrase is that, in order for the 
claim to hold, the DM must treat the draws from the opaque bag that determine, respectively, Deck 2, the Black-
component of Deck 3, and the Red-component of Deck 3, as separate realizations of the same process.  Given 
this, it does not matter whether the DM thinks “1” and “4” equally probable in that process.         
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uncertainty averse Schmeidler model and the rank dependent expected utility model, may be seen to 

share the predictions of the MEU model taking into account the information available to the subjects.43 

 Turning to the other side of the divide, we note first that the models of Ahn (2008), Ergin and Gul 

(2009), Nau (2006), Nielsen (2010) and Seo (2009) have substantial subcategories that share the same 

functional form representation with the smooth ambiguity model, and these must share the predictions 

of the smooth model in our main experiment.  Second, a smooth ambiguity preference with the 

ambiguity attitude function 𝜙(. ) given by a negative exponential (constant absolute ambiguity 

aversion) is a Variational preference (Maccheroni et al. 2006).  Third, given the set of probability 

distributions {𝑝ଵ, … , 𝑝ସ} in Table 2, if a DM weights the distributions uniformly, a smooth ambiguity 

preference is also a Vector Expected Utility (VEU) preference since the sufficient conditions noted in 

Table II (pp. 826) of Siniscalchi (2009) are then met.  These points are illustrative.  They are sufficient 

to show that our main experiment’s results also support these models in so much as they support the 

smooth ambiguity model.  But, of course, there may be other possibilities too (and, as discussed in 

Section 5, the equivalence does not in all cases carry over into our follow-up experiment). 

 Finally, it is apparent that our discussion of the divide between models exploits Properties One – 

Four.  Thus, it does not rule out the possibility that the divide between models could be different if the 

beliefs of subjects about our 2-ball condition depart from those properties.  Just as with our 

discrimination between α-MEU and smooth ambiguity models in the main text, our discrimination 

between broader classes of models is also contingent on grounded assumptions about beliefs.   

  

                                                      
43 It is possible to have instances of CEU utility preferences that ignore part of the information available to the 
subjects and make predictions in our experiment akin to the smooth ambiguity model. Simon Grant gave us an 
example of such a convex capacity which violated Property Four and had choice implications like the smooth 
ambiguity model in the 2-ball condition case. Peter P. Wakker has also explained to us about these possibilities.   



  

Appendix D: Summary statistics for main experiment 

     Table D1: Certainty Equivalents (in €, rounded to nearest cent) 
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 Ambiguity Seeking 

(n=16) 

 Ambiguity Neutral 

(n=50) 

 Ambiguity Averse 

(n=31) 

 All Subjects  

(n=97) 

Mean Median SD Mean Median SD Mean Median SD Mean Median SD 

    
Ambiguous acts     

CE(f1,2-ball) 5.47 4.45 2.91 4.51 4.33 2.19 5.84 4.93 3.02 5.09 4.53 2.64 

CE(f2,2-ball) 5.28 4.50 3.01 4.65 4.15 2.74 6.03 4.98 3.24 5.19 4.48 2.98 

CE(mix,2-ball) 5.67 5.38 3.56 4.87 4.48 2.81 6.99 5.68 3.99 5.68 4.98 3.45 

CE(g1,2-ball) 5.43 5.25 2.59 4.95 4.53 3.01 7.43 5.23 4.19 5.82 4.98 3.53 

CE(g2,2-ball) 6.35 6.25 3.31 4.95 4.53 3.01 5.53 4.53 2.82 5.37 4.98 3.02 

    
Ambiguous acts     

CE(f1,1-ball) 5.43 4.95 2.29 5.28 4.93 2.72 6.06 5.03 2.48 5.56 4.98 2.58 

CE(f2,1-ball) 5.75 5.45 2.20 5.45 4.98 2.68 6.04 5.53 2.29 5.69 5.03 2.47 

CE(mix,1-ball) 6.27 5.73 3.30 5.45 4.33 3.60 6.17 5.03 3.10 5.81 4.88 3.38 

    
Risky acts  
(denoted by chance of €20) 

    

CE(0.7) 11.65 11.33 3.30 10.58 11.18 3.80 11.53 12.78 3.00 11.06 11.73 3.48 

CE(0.3) 5.59 5.25 2.00 6.19 5.73 3.05 6.39 5.73 2.82 6.15 5.58 2.81 
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Appendix E: Experimental Instructions 

E1. Supplementary information on procedures 

All subjects were recruited using an online recruitment system developed by Tilburg University.  On 
average, sessions contained approximately 10 subjects and lasted for about 45 minutes. In the main 
experiment, 62 subjects participated under the tabular protocol and 35 under the verbal protocol.  86 
subjects participated in the follow-up experiment. The instructions of the main experiment for the 
tabular protocol are given in Section E2. The instructions of the follow-up experiment are given in 
Section E3.  

E2.  Instructions for the main experiment 

<The following was distributed on paper and read aloud.> 

This experiment involves several decision tasks, each of which is a choice between two options 
involving amounts of money and/or chance.  At the end of the experiment, the computer will select one 
choice to be for real for you.  This means that you will be paid on the basis of what you chose in that 
choice, after any relevant chances have been resolved.  In addition to the payment based on your 
responses to the choices, we will pay you €5 simply for participating.  

Each choice is between two options.  One of the options will be a certain amount of money whereas the 
other option will be a gamble.  Here are some examples of gambles and an illustration of the kind of 
table with which your screen will display them:   

 Spade Club Heart Diamond 

Gamble 1 €0 €0 €0 €20 

Gamble 2 €20 €20 €0 €0 

Gamble 3 €0 €0 Roll die is EVEN: €20 
Roll die is ODD: €0 

€0 

 

Looking at these examples, you can see that all gambles yield an outcome depending on the suit of a 
card drawn at the end of the experiment from a particular deck of cards.  For example, Gamble 1 yields 
€20 if a diamond is drawn, and €0 otherwise.  Similarly, Gamble 2 yields €20 if a spade or club is 
drawn, and €0 otherwise.  As you can see, the outcome of Gamble 3 depends not only on the suit of a 
card drawn from a deck, but also on the roll of standard six-sided die performed at the end of the 
experiment.  In this case, if a Spade, Club, or Diamond is drawn from the deck, Gamble 3 yields €0.  If 
a heart is drawn from the deck, and the roll of the six sided die is even, Gamble 3 yields €20.  If a heart 
is drawn, and the roll of the six sided die is odd, Gamble 3 yields €0.   

The tasks will be grouped together in choice lists.  Your computer will show you either 2 or 3 of these 
lists at once on a screen.  An example screen is on the separate sheet provided.  This example is not a 
screen that you will actually encounter during the experiment, but merely illustrates the general format.  
At the top of each screen, you can see a line of text that tells you that a card will be drawn at the end of 
the experiment from a particular deck, here Deck 1.  During the experiment, you will encounter Decks 
1, 2 and 3.  I will tell you more about the decks later.  For now, just note that the top of each screen will 
tell you the deck from which the card will be drawn to determine the outcome of the gambles described 
on that screen.  Just below this, some gambles whose outcomes depend on the card drawn from the deck 
are presented in a table.  In this example, there are three such gambles – the  
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same ones in the table above.  In the bottom half of the screen, you can see three lists, labelled Basic 
List 1, Basic List 2 and Basic List 3.  Each of them is a numbered list of 21 choices with the same basic 
format, which I will now explain by talking you through Basic List 1 on the example screen.   

Each numbered row of List 1 describes a choice between two options labelled Left and Right.  In each 
case, Left corresponds to choosing Gamble 1 described at the top of the screen, whereas Right 
corresponds to choosing a certain amount of money.  Note that as you move down List 1, Left always 
corresponds to the gamble, whereas the amount of money offered by Right rises as you move down the 
list, starting at €0 and rising in increments of €1 to €20.  This basic structure will be the same for every 
list that you encounter.   

Figure E.1: Example Choice List 
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Note that Lists 2 and 3 are exactly the same, except that Left corresponds to choosing Gamble 2 in List 
2 and in List 3, Left corresponds to choosing Gamble 3.  The way you complete the lists is to select 
either Left or Right for each choice task on each list by using your mouse to click in the corresponding 
circle on that row.  You cannot proceed to the next screen until you have selected either Left or Right 
in each row of each list.  Now look closer at choice 1 in List 1.  We imagine that all of you will wish to 
choose Left in Choice 1.  This is because Left offers a chance of €20, whereas Right in Choice 1 yields 
a certain €0.  We also imagine that, as the certain amount of money offered by Right increases, at some 
point you will wish to switch to Right.  For example, even if you have not done so in an earlier choice, 
we imagine that you will wish to choose Right in Choice 21 because, in that choice, Right yields a 
certain €20, whereas Left only offers a chance of €20.  A similar logic applies to each list on the screen.  
Thus, for each list, we imagine that all of you will wish to select Left in the first choice and perhaps in 
some further choices until, at some point, you will switch to Right and then stick with Right until the 
final choice in the list.  In fact, the computer will only accept choices that do have this form of just 
switching once from Left to Right in each list.  The reason for this is that we assume throughout that, if 
you choose the gamble offered by Left in some choice over a particular sum of money, then you would 
also wish to choose that gamble over any smaller sum of money, and, similarly, if you would choose a 
particular sum of money over the gamble, you would also choose any larger sum of money over that 
gamble.  However, note that it is entirely up to you at which point in a choice list to make your switch 
from selecting Left to selecting Right.  Just recall that each choice in the list could prove to be the one 
selected at the end to determine your payment.  In that case, the choice you have made in it, together 
with any card draws or die roll, will determine the payment you receive.  After completing all the lists 
on a screen, you press the Confirm button.  When you press the Confirm button, the computer will 
check that you have made a selection in each choice on the decision screen and that, in each list, you 
have switched exactly once from Left to Right, as you move down the list.  If this is not the case, the 
computer will prompt you to make alterations.  But, if it is the case, the computer will accept your 
confirmed selections.  You cannot make any changes to them after that.  Note that we will wait for 
everybody to complete each list before proceeding; you might have to wait a while before a new list 
appears on your screen.   

In the experiment, there are two kinds of lists, called “basic” and “zoomed-in.”  At the top of each list, 
it will say which list it is. Basic lists have the form described above.  When you have completed such a 
list, you will have switched from Left to Right at some point.  The computer will then show you a 
“zoomed-in” list.  This is generated from the basic list by zooming-in on that part of the basic list where 
you switched from Left to Right.  Thus, the gambles listed at the top of the screen and the deck from 
which a card will be drawn are the same as on the previous screen.  However, in the zoomed-in list, the 
top choice will be the last choice in which you selected Left in the corresponding basic list, and the 
bottom choice will be the first choice in which you selected Right.  These choices will be filled in for 
you, because you have already confirmed them.  The computer then requires you to make further 
choices in which the sums of money offered by Right are intermediate between those on the top and 
bottom rows and rise as you move down the list, but now in increments of 5 cents.  Again, you must 
make a selection for each choice of each list, and are only allowed to switch just once from Left to Right 
in the zoomed-in lists as well.   

Each screen will have the format described above.  The gambles that depend on a draw of a card will 
be described at the top of the screen, together with the name of the deck from which a card will be 
drawn.  Remember that these things can differ from one screen to another so you should always study 
them carefully before completing each choice list. So far, I have not said much about the decks.  This 
is because, at each point in the experiment, I will project on the whiteboard here some important 
information about the deck that the decisions you are currently taking relate to.  At the end of the 
experiment, I will construct the decks in the ways specified by the information I will project on the 
board.  Then, each deck will be shuffled, and a 10-sided die with numbers 1-10 will be rolled by one of 
you.  Then, I will draw the card whose position from the top is given by the number on the die.  For 
example, if the die roll is a 3, I will draw the 3rd card from the deck.  This card will determine the 
outcome of any gamble that depends on a draw from that deck. 
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After I have done this for each deck, I will roll the 6-sided die to determine the outcome of any gamble 
that depends on this roll.  Finally, your computer will select one choice at random from all of those in 
all the basic lists that you have completed.  If this choice is not either the last choice in the list in which 
you chose Left or the first in which you chose Right, then what you chose in that choice task will 
determine your payment.  On the other hand, if the randomly selected choice is either the last choice in 
the list in which you chose Left or the first in which you chose Right, the computer will move to the 
corresponding list on the relevant zoomed-in screen and randomly select one choice from that zoomed-
in list.  What you chose in that task will then determine your payment. Note that this simply means that 
every choice that you face could prove to be the one selected to be paid for real.  If you chose Right in 
that choice, you will receive the amount of money specified by Right.  If you chose Left, you will 
receive either €20 or €0, depending on the card drawn from the relevant deck and/or on the roll of the 
six-sided die. 

<the following was read aloud only> 

Each deck that we use in the experiment will have ten cards.  First, I will ask you to complete some 
tasks relating to Deck 1.  This slide gives you some information about Deck 1.  It says that Deck 1 has 
seven spades and three hearts.  At the end of the experiment, I will construct Deck 1 to contain ten cards 
in total, made up of seven spades and three hearts.  Then I will draw a card from Deck 1, as explained 
in the instructions.  Your computer will now display several lists involving Deck 1.  Please complete 
them at your own pace. 

<subjects complete lists for Deck 1> 
  
Next, I will ask you to complete some tasks relating to Deck 2.  This slide gives you some information 
about Deck 2.  It says that Deck 2 has 5 black cards (i.e. either spade or club) and 5 red cards (i.e. either 
heart or diamond).  However, it does not tell you exactly how many cards of each suit there will be in 
Deck 2.  The way this will be resolved is as follows.  I have here an opaque bag containing balls, all of 
which are numbered either 1 or 4.  Here is an example of each.  I am not going to tell you how many 
balls of each kind there are.  At the end of the experiment, I will shake the bag and draw one ball from 
it.  The number on this ball will give both the number of spades and the number of hearts in Deck 2.  
The numbers of clubs and diamonds will adjust accordingly, to make up 5 black and 5 red cards in total.  
Thus, as this slide shows, there are two possibilities for the composition of Deck 2, depending on the 
ball that is drawn.  If that ball is numbered 1, the deck will contain 1 spade, 4 clubs, 1 heart and 4 
diamonds.  But, if the ball is numbered 4, the deck will contain 4 spades, 1 club, 4 hearts and 1 diamond. 
In both cases, there are 5 black cards and 5 red cards in total; and the number of spades equals the 
number of hearts.  Note that how likely each of the two possible compositions of Deck 2 is depends on 
the contents of the bag of balls, which I have not revealed.  The two compositions may or may not be 
equally likely.  Your computer will now display several lists involving cards drawn from Deck 2.  Please 
complete them at your own pace. 

<subjects complete lists for Deck 2> 
 
Next, I will ask you to complete some tasks relating to Deck 3.  This slide gives you some information 
about Deck 3.  Thus, as with Deck 2, Deck 3 has 5 black cards and 5 red cards, but the slide does not 
tell you how many cards of each suit there will be in Deck 3.  For Deck 3, this will also be resolved in 
a similar way to for Deck 2, except that this time two balls will be drawn from the bag rather than one.  
I will shake the bag and draw one ball from it; then I will show you the number of this ball and place it 
back, before shaking the bag again and drawing another ball.  The number on the first ball will give the 
number of spades in Deck 3 and the number of the second ball will give the number of hearts.  As 
before, the numbers of clubs and diamonds will adjust accordingly to make up 5 black and 5 red cards 
in total. Thus, as the slide shows, there are four possibilities for the composition of Deck 3.  If both 
balls drawn are numbered 1, Deck 3 will contain 1 spade, 4 clubs, 1 heart, and 4 diamonds.  If the first 
ball drawn is numbered 1 and the second ball numbered 4, Deck 3 will contain 1 spade, 4 clubs, 4 hearts, 
and 1 diamond.  If the first ball drawn is numbered 4 and the second ball numbered 1, the Deck 3 will 
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contain 4 spades, 1 club, 1 heart, and 4 diamonds.  If both balls drawn are numbered 4, the Deck 3 will 
contain 4 spades, 1 club, 4 hearts, and 1 diamond.  In all cases, there are 5 black cards and 5 red cards 
in total; the composition of the black cards is determined separately from the composition of the red 
cards, because the former is determined by the first ball and the latter by the second ball.  Thus, unlike 
Deck 2, the number of spades and hearts may or may not be equal in Deck 3.  Note that how likely each 
of the four possible compositions of Deck 3 is depends on the contents of the bag of balls, which I have 
not revealed.  The four compositions may or may not all be equally likely.  Your computer will now 
display several lists involving cards drawn from Deck 3.  Please complete them at your own pace. 

 

E3.  Instructions for follow-up experiment 

<Instructions were the same as those given in Appendix E2, except for the final two paragraphs.  These 
are given below with differences marked in red. > 

 
Next, I will ask you to complete some tasks relating to Deck 2.  This slide gives you some information 
about Deck 2.  It says that Deck 2 has 5 black cards (i.e. either spade or club) and 5 red cards (i.e. either 
heart or diamond).  However, it does not tell you exactly how many cards of each suit there will be in 
Deck 2.  The way this will be resolved is as follows.  I have here an opaque bag.  As you see, I am now 
going to fill the opaque bag with balls, all of which are numbered either 1 or 4.    Here is an example of 
each type.  I am going to put 10 balls in the bag.  Before I do so, I would now like a volunteer to confirm 
to you that there is nothing else in the bag and that I am putting into it 5 balls of each type.  At the end 
of the experiment, I will shake the bag and draw one ball from it.  The number on this ball will give 
both the number of spades and the number of hearts in Deck 2.  The numbers of clubs and diamonds 
will adjust accordingly, to make up 5 black and 5 red cards in total.  Thus, as this slide shows, there are 
two possibilities for the composition of Deck 2, depending on the ball that is drawn.  If that ball is 
numbered 1, the deck will contain 1 spade, 4 clubs, 1 heart and 4 diamonds.  But, if the ball is numbered 
4, the deck will contain 4 spades, 1 club, 4 hearts and 1 diamond.  In both cases, there are 5 black cards 
and 5 red cards in total; and the number of spades equals the number of hearts.  Note that each of the 
two possible compositions of Deck 2 is equally likely to be the one used, because the bag contains equal 
numbers of each type of ball.  Your computer will now display several lists involving cards drawn from 
Deck 2.  Please complete them at your own pace. 

<subjects complete lists for Deck 2> 
 
Next, I will ask you to complete some tasks relating to Deck 3.  This slide gives you some information 
about Deck 3.  Thus, as with Deck 2, Deck 3 has 5 black cards and 5 red cards, but the slide does not 
tell you how many cards of each suit there will be in Deck 3.  For Deck 3, this will also be resolved in 
a similar way to for Deck 2, except that this time two balls will be drawn from the bag rather than one.  
At the start of the procedure for Deck 3, the contents of the bag will be exactly as they were for the case 
of Deck 2, because I will replace the ball that determined Deck 2.  However, the procedure from that 
point on will be different for Deck 3, in the way just indicated.  I will shake the bag and draw one ball 
from it; then I will show you the number of this ball and place it back, before shaking the bag again and 
drawing another ball.  The number on the first ball will give the number of spades in Deck 3 and the 
number of the second ball will give the number of hearts.  As before, the numbers of clubs and diamonds 
will adjust accordingly to make up 5 black and 5 red cards in total. Thus, as the slide shows, there are 
four possibilities for the composition of Deck 3.  If both balls drawn are numbered 1, Deck 3 will contain 
1 spade, 4 clubs, 1 heart, and 4 diamonds.  If the first ball drawn is numbered 1 and the second ball 
numbered 4, Deck 3 will contain 1 spade, 4 clubs, 4 hearts, and 1 diamond.  If the first ball drawn is 
numbered 4 and the second ball numbered 1, the Deck 3 will contain 4 spades, 1 club, 1 heart, and 4 
diamonds.  If both balls drawn are numbered 4, the Deck 3 will contain 4 spades, 1 club, 4 hearts, and 
1 diamond.  In all cases, there are 5 black cards and 5 red cards in total; the composition of the black 
cards is determined separately from the composition of the red cards, because the former is determined 
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by the first ball and the latter by the second ball.  Thus, unlike Deck 2, the number of spades and hearts 
may or may not be equal in Deck 3.  Note that each of the four possible compositions of Deck 3 is 
equally likely to be the one used, because the bag contains equal numbers of each type of ball.  Your 
computer will now display several lists involving cards drawn from Deck 3.  Please complete them at 
your own pace. 


